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Encounter-based reaction-subdiffusion model I:

surface adsorption and the local time propagator

Paul C. Bressloff

Department of Mathematics, University of Utah 155 South 1400 East, Salt Lake
City, UT 84112

Abstract. In this paper, we develop an encounter-based model of partial surface
adsorption for fractional diffusion in a bounded domain. We take the probability of
adsorption to depend on the amount of particle-surface contact time, as specified
by a Brownian functional known as the boundary local time ℓ(t). If the rate of
adsorption is state dependent, then the adsorption process is non-Markovian,
reflecting the fact that surface activation/deactivation proceeds progressively
by repeated particle encounters. The generalized adsorption event is identified
as the first time that the local time crosses a randomly generated threshold.
Different models of adsorption (Markovian and non-Markovian) then correspond
to different choices for the random threshold probability density ψ(ℓ). The
marginal probability density for particle position X(t) prior to absorption depends
on ψ and the joint probability density for the pair (X(t), ℓ(t)), also known as the
local time propagator. In the case of normal diffusion one can use a Feynman-Kac
formula to derive an evolution equation for the propagator. Here we derive the
local time propagator equation for fractional diffusion by taking a continuum
limit of a heavy-tailed continuous-time random walk (CTRW). We begin by
considering a CTRW on a one-dimensional lattice with a reflecting boundary
at n = 0. We derive an evolution equation for the joint probability density of the
particle location N(t) ∈ {n ∈ Z, n ≥ 0} and the amount of time χ(t) spent at
the origin. The continuum limit involves rescaling χ(t) by a factor 1/∆x, where
∆x is the lattice spacing. In the limit ∆x → 0, the rescaled functional χ(t)
becomes the Brownian local time at x = 0. We use our encounter-based model to
investigate the effects of subdiffusion and non-Markovian adsorption on the long-
time behavior of the first passage time (FPT) density in a finite interval [0, L]
with a reflecting boundary at x = L. In particular, we determine how the choice
of function ψ affects the large-t power law decay of the FPT density. Finally, we
indicate how to extend the model to higher spatial dimensions.

http://arxiv.org/abs/2303.10483v1
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1. Introduction

Encounter-based models of diffusion-mediated surface reactions assume that the
probability of adsorption depends upon the amount of particle-surface contact time
[18, 19, 5, 7, 3]. The latter is determined by a Brownian functional known as the
boundary local time ℓ(t) [22, 27, 26]. It has subsequently been shown that encounter-
based models can also be applied to non-diffusive processes such as active particles
[9, 10, 11], where the particle-surface contact time is the amount of time the particle
spends “stuck” to the boundary, and to diffusion in domains with partially absorbing
interior traps [5, 6, 8]. In the latter case, a particle freely enters and exits a trap,
but can only be absorbed within the trapping region. The probability of adsorption is
taken to depend on the particle-trap encounter time, which is given by the Brownian
occupation time.

There are two basic components of encounter-based models that underscore
their general applicability: (i) The stochastic process of adsorption at a surface (or
absorption within an interior trap) is separated from the bulk dynamics. This means
that the probability of adsorption can be taken to depend on the particle-surface
contact time. If the rate of adsorption is state dependent, then the adsorption process
is non-Markovian, reflecting the fact that surface activation/deactivation proceeds
progressively by repeated particle encounters [2, 16]. Alternatively, adsorption could
involve the exit of a particle through a stochastically-gated ion channel or pore, which
may require multiple return visits to the channel before it is open [4]. (ii) The
generalized adsorption event is identified as the first time that the particle-surface
contact time crosses a randomly generated threshold. Different models of adsorption
(Markovian and non-Markovian) then correspond to different choices for the random
threshold probability density ψ. In order to incorporate this form of adsorption,
it is necessary to determine the joint probability density or generalized propagator
for particle position and the boundary local time. This can be achieved by solving a
classical boundary value problem (BVP) for the probability density of particle position
and a constant rate of adsorption. (In the case of normal diffusion, this takes the form
of a Robin or radiation BVP.) The constant adsorption rate is then reinterpreted as a
Laplace variable z conjugate to the local time, and the inverse Laplace transform of
the classical solution with respect to z yields the propagator.

In this paper, we develop an encounter-based model of partial surface adsorption
for a fractional diffusion equation based on the continuum limit of a continuous-time
random walk (CTRW) [21]. The latter are widely used in studies of trapping-based
mechanisms for anomalous diffusion [1, 28]. For example, there are several mechanisms
of intracellular transport that involve the transient trapping of diffusing particles,
resulting in anomalous subdiffusion on intermediate timescales and normal diffusion
on long timescales. However, in the case of an infinite hierarchy of arbitrarily deep
but rare traps, anomalous subdiffusion can occur at all times. It is this type of
process that is modeled in terms of a CTRW. The basic idea is that trapping increases
the time between jumps (waiting times) of a classical random walk. This means
that the classical exponential waiting time distribution, which is equivalent to taking
constant hopping rates in the associated master equation, is replaced by a heavy-
tailed waiting time distribution. One of the interesting consequences of heavy tails
is that the resulting CTRW is weakly non-ergodic; the temporal average of a long
particle trajectory differs from the ensemble average over many diffusing particles
[20, 30, 13, 23, 24, 29]. Here we focus on the joint effects of subdiffusion and non-
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Markovian adsorption on the first passage time (FPT) density.
The structure of the paper is as follows. In section 2 we construct the local time

propagator equation for fractional diffusion on the half-line. In order to introduce
the encounter-based method, we first briefly summarize the case of normal diffusion.
We then derive the propagator equation for a CTRW by combining the analysis of
Feynman-Kac equations for functionals of CTRWs [14] with the analysis of a CTRW
with a reactive boundary [25]. The corresponding particle-boundary contact time is
simply the amount of time spent at the lattice site n = 0, which is given by the
functional χ(t) =

´ t

0
δN(τ),0dτ where N(τ) is the lattice site occupied at time τ . We

then show how to obtain the local time propagator equation for fractional diffusion
by taking a continuum limit of a heavy-tailed CTRW. The continuum limit involves
rescaling χ(t) by a factor 1/∆x, where ∆x is the lattice spacing. In the limit ∆x→ 0,
the rescaled functional χ(t) can be formally identified as the Brownian local time.
In section 3 we consider the first passage time (FPT) density for fractional diffusion
in a finite interval [0, L] with a partially absorbing boundary at x = 0 and a totally
reflecting boundary at x = L. Since the moments of the FPT density are infinite
for a subdiffusive process, we focus instead on the long-time behavior of the FPT
density. The latter can be extracted from the small-s behavior of the corresponding
Laplace transformed FPT density. We show how the FPT density can be expanded
as an asymptotic series in fractional powers of the time t. In particular, if the local
time threshold density ψ(ℓ) has finite moments, then the n-th term in the asymptotic
expansion, n ≥ 1, is proportional to τnt

−nα−1, where 0 < α < 1 and τn is the n-th
moment of the FPT in the case of normal diffusion (α = 1). This generalizes previous
results that were obtained for the fractional diffusion equation with Dirichlet or Robin
boundary conditions (constant rate of adsorption) [15, 31, 17]. We also consider a few
examples of heavy-tailed distributions for ψ(ℓ). In these cases the dominant power
law decay of the FPT density at large times t has contributions from two distinct
anomalous processes: subdiffusion within the bulk domain and the random threshold
for adsorption at the boundary. Finally, in section 4, we indicate how to extend
the analysis to higher spatial dimensions. In a companion paper [12], we develop a
corresponding theory for reaction-subdiffusion in the presence of a partially absorbing
trapping domain, which is based on the construction of a fractional diffusion equation
for the occupation time propagator.

2. Encounter-based reaction-subdiffusion model on the half-line

2.1. Normal diffusion

In order to motivate the encounter-based model of fractional diffusion, it is useful to
briefly recall the corresponding model for normal diffusion [18, 5]. Consider a particle
diffusing in the half-line x ∈ [0,∞). First suppose that the boundary at x = 0 is
totally reflecting. Introduce the boundary local time

ℓ(t) = lim
ǫ→0

D

ǫ

ˆ t

0

H(ǫ−X(τ)dτ = D

ˆ t

0

δ(X(τ))dτ, (2.1)

where H(x) is the Heaviside function. Let P (x, ℓ, t) denote the local time propagator,
which is defined to be the joint probability density for particle position X(t) and ℓ(t).
Using a Feynman-Kac equation, it can be shown that the propagator evolves according
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to

∂P (x, ℓ, t)

∂t
= D

∂2P (x, ℓ, t)

∂x2
for x ∈ (0,∞), (2.2a)

∂P (x, ℓ, t)

∂x

∣∣∣∣
x=0

=
∂P

∂ℓ
(0, ℓ, t) + δ(ℓ)P (0, 0, t). (2.2b)

Now suppose that the boundary at x = 0 is partially absorbing. Furthermore, assume
that the probability of adsorption depends on the amount of contact time between the
particle and the boundary, which is determined by ℓ(t). Introduce the stopping time

T = inf{t > 0 : ℓ(t) > ℓ̂}, (2.3)

where ℓ̂ is a random threshold with P[ℓ̂ > ℓ] = Ψ(ℓ). The stopping time T is the

FPT for the event that ℓ(t) crosses the random threshold ℓ̂, which we identify with
the time at which adsorption occurs. For a given distribution Ψ, let pΨ(x, t) denote
the marginal probability density at time t:

pΨ(x, t)dx = P[x < X(t) < x+ dx, t < T ].

Since ℓ(t) is a nondecreasing process, the condition t < T is equivalent to the condition

ℓ(t) < ℓ̂. This implies

pΨ(x, t) =

ˆ ∞

0

dℓ ψ(ℓ)

ˆ ℓ

0

dℓ′P (x, ℓ′, t) =

ˆ ∞

0

dℓ′P (x, ℓ′, t)

ˆ ∞

ℓ′
ψ(ℓ)dℓ

=

ˆ ∞

0

Ψ(ℓ)P (x, ℓ, t)dℓ. (2.4)

The penultimate line follows from reversing the order of integration, and ψ(ℓ) =

−Ψ′(ℓ) is the probability density of the random threshold ℓ̂. First suppose that

ℓ̂ is exponentially distributed so that Ψ(ℓ) = e−zℓ for constant z. Equation (2.4)
implies that p(x, t) (after dropping the superscript Ψ) is the Laplace transform of the
propagator with respect to ℓ:

p(x, t) =

ˆ ∞

0

e−zℓP (x, ℓ, t)dℓ := G(x, z, t), (2.5)

with

∂G(x, z, t)

∂t
= D

∂2G(x, z, t)

∂x2
, x > 0, (2.6a)

∂G(0, z, t)

∂x
= zG(0, z, t). (2.6b)

Note that the generator G(x, z, t) satisfies the classical diffusion equation with a Robin
boundary condition at x = 0, and can be solved using standard methods. Finally, given
G(x, z, t), the density pΨ(x, t) for non-exponential Ψ can be obtained by inverting the
solution with respect to z:

pΨ(x, t) =

ˆ ∞

0

Ψ(ℓ)L−1
ℓ [G(x, z, t)]dℓ, (2.7)

where L−1 denotes the inverse Laplace transform.
The local time does not change when the particle is diffusing in the bulk, which

suggests that the local time propagator equation for a fractional diffusion process
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could be obtained by replacing D with a fractional differential operator. For example,
in the case of a subdiffusive process,

∂P (x, ℓ, t)

∂t
= KαD1−α

t

∂2P (x, ℓ, t)

∂x2
for x ∈ (0,∞), (2.8a)

∂P (x, ℓ, t)

∂x

∣∣∣∣
x=0

=
∂P

∂ℓ
(0, ℓ, t) + δ(ℓ)P (0, 0, t), (2.8b)

where the fractional derivative D1−α
t is defined in Laplace space according to [1]

ˆ ∞

0

e−stD1−α
t f(t)dt = s1−αf̃(s). (2.9)

It can also be written as the fractional Riemann-Liouville derivative [1]

D1−α
t f(t) =

1

Γ(a)

∂

∂t

ˆ t

0

f(t′)

(t− t′)1−α
dt′. (2.10)

where Γ(α) is the gamma function. One could then proceed by Laplace transforming
with respect to ℓ to obtain a fractional diffusion equation for the generator with a
Robin boundary condition at x = 0:

∂G(x, z, t)

∂t
= KαD1−α

t

∂2G(x, z, t)

∂x2
, x > 0, (2.11a)

∂G(0, z, t)

∂x
= zG(0, z, t). (2.11b)

(This type of equation has been analyzed in Ref. [17] for finite z and in Ref. [31] for
z → ∞.) The corresponding marginal probability density for a general distribution
Ψ(ℓ) is then determined by substituting the solution of equations (2.11a) and (2.11b)
into equation (2.7).

However, as we highlighted in the introduction, a more principled way of deriving
a fractional diffusion equation for a subdiffusive process is to consider the continuum
limit of a CTRW. Therefore, in this section we show how equations (2.8a) and (2.8b)
follow from taking the continuum limit of a corresponding propagator for a heavy-
tailed CTRW. In particular, we find that the derivation of the boundary condition
(2.6b) is non-trivial.

2.2. Propagator equation for a CTRW

Consider a CTRW on a 1D lattice {n, n ≥ 0} and a reflecting boundary at n = 0. Let
N(t) be the lattice site occupied at time t. Waiting times between jump events are
independent identically distributed random variables with probability density u(τ).
For simplicity, we assume that the CTRW is unbiased so that for all n ≥ 1, the jumps
n → n± 1 occur with probability 1/2. Given the stochastic process N(t), define the
functional

χ(t) =

ˆ t

0

F (N(τ))dτ, F (N(τ)) = hδN(τ),0, (2.12)

with h a positive constant. (In section 2,3 we will show that for an appropriate choice
of h, χ(t) → ℓ(t) in the continuum limit, where ℓ(t) is the boundary local time). Note
that χ(t) is a positive, non-decreasing function of time. Let Pn(ℓ, t) denote the joint
probability density or propagator for the pair (N(t), χ(t)). It follows that

Pn(ℓ, t) =

〈
δ (ℓ− χ(t))

〉N(t)=n

N(0)=n0

, (2.13)
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where expectation is taken with respect to all CTRWs realized by N(τ) between
N(0) = n0 and N(t) = n. Introduce the generator

Gn(z, t) =

〈
exp (−zχ(t))

〉N(t)=n

N(0)=n0

=

ˆ ∞

0

e−zℓPn(ℓ, t)dℓ. (2.14)

Analogous to Brownian functionals, one can derive an evolution equation for the
propagator using a discrete version of a Feynman-Kac formula. This was previously
shown for an infinite lattice in Ref. [14]. Here we derive the corresponding formula
in the case of a reflecting boundary at n = 0 by adapting a study of a CTRW with a
reactive boundary [25].

Let wn(ℓ, t)dt be the probability that the particle jumps to the state N(t) = n
and χ(t) = ℓ in the time interval [t, t+ dt]. The propagator away from the boundary
can be expressed as

Pn(ℓ, t) =

ˆ t

0

U(τ)wn(ℓ− τF (n), t − τ)dτ, n ≥ 1, (2.15)

where U(τ) = 1 −
´ τ

0
u(τ ′)dτ ′ is the probability of not jumping in a time interval of

length τ . That is, if the last jump was at time t−τ then over the time interval [t−τ, t]
we simply have ∆ℓ = τF (n). The next step is to derive a recursion relation for wn
by noting that to arrive at (n, ℓ) at time t, the particle must have hopped from one
of the neighboring sites n± 1 for all n ≥ 1. Assuming that the last jump occurred at
time t− τ and the CTRW is unbiased, we have

wn(ℓ, t) = P (0)
n δ(ℓ)δ(t) +

1

2

ˆ t

0

u(τ)wn+1(ℓ − τF (n+ 1), t− τ)dτ

+
1

2

ˆ t

0

u(τ)wn−1(ℓ− τF (n− 1), t− τ)dτ (2.16)

for all n ≥ 1 with P
(0)
n = Pn(ℓ = 0, t = 0). Laplace transforming with respect to ℓ by

setting Hn(z, t) =
´∞

0 e−zℓwn(ℓ, t)dℓ leads to the equation

Hn(z, t) = P (0)
n δ(t) +

1

2

ˆ t

0

u(τ)e−zτF (n+1)Hn+1(z, t− τ)dτ

+
1

2

ˆ t

0

u(τ)e−zτF (n−1)Hn−1(z, t− τ)dτ, (2.17)

and Laplace transforming the result with respect to s yields

H̃n(z, s) = P (0)
n +

1

2
ũ(s+ zF (n+ 1))H̃n+1(z, s)

+
1

2
ũ(s+ zF (n− 1))H̃n−1(z, s), (2.18)

where ũ(s) =
´∞

0 e−sτu(τ)dτ . Denoting the propagator at the boundary by

P0(ℓ, t) =

ˆ t

0

U(τ)w0(ℓ− τF (0), t− τ)dτ, n ≥ 1, (2.19)

and setting G0(z, t) =
´∞

0
e−zℓP0(ℓ, t)dℓ and H0(z, t) =

´∞

0
e−zℓw0(ℓ, t)dℓ, we find

that

H̃0(z, s) = P(0)
0 +

1

2
ũ(s+ zF (1))H̃1(z, s) +

1

2
ũ(s+ zF (0))H̃0(z, s). (2.20)
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This follows from introducing an auxiliary site at n = −1, which is a common method
for treating reflecting boundary conditions in finite difference schemes.

Performing the double Laplace transform of equation (2.19) shows that

G̃n(z, s) = Ũ(s+ zF (n))H̃n(z, s), (2.21a)

G̃0(z, s) = Ũ(s+ zF (0))H̃0(z, s), (2.21b)

with Ũ(s) = (1 − ũ(s))/s. Substituting into equation (2.18) leads to the recursion
equations

(s+ zF (n))G̃n(z, s) = P (0)
n +

1

2

{
ṽ(s+ zF (n+ 1))G̃n+1(z, s)

+ ṽ(s+ zF (n− 1))G̃n−1(z, s)− 2ṽ(s+ zF (n))G̃n(z, s)

}
, n ≥ 1, (2.22)

where ṽ(s) = sũ(s)/(1− ũ(s)) and, at the boundary,

(s+ zF (0))G̃0(z, s) = P(0)
0 +

1

2

{
ṽ(s+ zF (1))G̃1(z, s)− ṽ(s+ zF (0))G̃0(z, s)

}
. (2.23)

Finally, setting F (n) = hδn,0 gives

sG̃n(z, s) = P (0)
n +

ṽ(s)

2

{
G̃n+1(z, s) + G̃n−1(z, s)− 2G̃n(z, s)

}
, n ≥ 1, (2.24a)

(s+ zh)
ṽ(s)

ṽ(s+ zh)
G̃0(z, s) = P(0)

0 +
ṽ(s)

2

{
G̃1(z, s)− G̃0(z, s)

}
, (2.24b)

where we have set

G̃0(z, s) =
ṽ(s+ zh)

ṽ(s)
G̃0(z, s). (2.25)

2.3. Continuum limit

In the special case of an exponential waiting-time density, u(τ) = he−hτ , the relevant
Laplace transforms are ũ(s) = h/(h+ s) and ṽ(s) = h. Equations (2.24a) and (2.24b)
then reduce to the form

sG̃n(z, s) =
h

2
[G̃n+1(z, s) + G̃n−1(z, s)− 2G̃n(z, s]− zhG̃0(z, s)δn,0 (2.26)

for n ≥ 0, and we have set G̃−1 = G̃0 for notational convenience. Inverting with
respect to z and s leads to the Feynman-Kac equation for a classical unbiased random
walk with a constant hopping rate h:

∂Pn(ℓ, t)

∂t
=
h

2
[Pn+1(ℓ, t) + Pn−1(ℓ, t)− 2Pn+1(ℓ, t)]

− h

[
∂P0

∂ℓ
(ℓ, t) + δ(ℓ)P0(0, t)

]
δn,0, (2.27)

with P−1 = P0. In order to take a continuum limit of equation (2.27), we set

h =
2D

∆x2
, h =

D

∆x
, (2.28)

so that

L(t) =
D

∆x

ˆ t

0

δN(τ),0dτ. (2.29)
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In the continuum limit, L(t) → ℓ(t) with

ℓ(t) = lim
∆x→0

D

∆x

ˆ t

0

δX(τ),0dτ = D

ˆ t

0

δ(X(τ))dτ. (2.30)

This a formal definition of the Brownian local time [22, 27, 26] scaled by the diffusivity
D for convenience. Substituting for h and h in the propagator equation (2.27) gives

∂Pn(ℓ, t)

∂t
= D

Pn+1(ℓ, t) + Pn−1(ℓ, t)− 2Pn(ℓ, t)]

∆x2

− D

∆x

∂P0

∂ℓ
(ℓ, t)− D

∆x
δ(ℓ)P0(0, t), (2.31)

with P−1 = P0. It follows that

∂Pn(ℓ, t)

∂t
= D

Pn+1(ℓ, t) + Pn−1(ℓ, t)− 2Pn(ℓ, t)]

∆x2
, n ≥ 1, (2.32a)

∆x
∂P0(ℓ, t)

∂t
= D

P1(ℓ, t)− P0(ℓ, t)

∆x
−D

[
∂P0

∂ℓ
(ℓ, t) + δ(ℓ)P0(0, t)

]
. (2.32b)

Taking the limit ∆x → 0 with P (x = n∆x, ℓ, t)∆x = Pn(ℓ, t) then recovers the local
time propagator equation for reflected BM on the half-line given by equations (2.2a)
and (2.2b).

Obtaining a continuum limit of the general CTRW propagator equation, see
equations (2.24a) and (2.24b), is more involved. Following Refs. [25, 14], consider
the heavy-tailed waiting time density

u(τ) ∼ Bα
|Γ(−α)| τ

−(1+α), 0 < α < 1. (2.33)

The Laplace transform for small s is then

ũ(s) ∼ 1−Bαs
α and ṽ(s) ∼ s

Bα
(s−α −Bα). (2.34)

Here Bα plays the role of the inverse of the hopping rate h. We also assume that
u(t) ∼ he−ht for small t, so that ũ(s) ∼ h/s and ṽ(s) ∼ h in the limit s → ∞. Given
the lattice spacing ∆x, we take h and h to be given by equations (2.28), whereas

Bα =
(∆x)2

2Kα
(2.35)

for a constant Kα. Setting G̃(n∆x, z, s)∆x = G̃n(z, s), n ≥ 0. and taking the limit
∆x→ 0 in equation (2.24a) gives

sG̃(x, z, s) = P (x, 0, 0) +Kαs
1−α ∂

2G̃(x, z, s)

∂x2
(2.36a)

for all x > 0. In order to determine the continuum limit of equation (2.24b) we use the
fact that h→ ∞ as ∆x→ 0, which implies that ṽ(s+ zh) ∼ h for large s. Assuming

that P(0)
0 → 0 as ∆x→ ∞, we find that

∂G̃(0, z, s)

∂x
= zG̃(0, z, s). (2.36b)

Finally, inverting the Laplace transforms in s and z, we obtain the fractional diffusion
equation for the local time propagator given by equations (2.8a) and (2.8b).
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3. FPT problem for reaction-subdiffusion in an interval

In this section we apply the encounter-based reaction-diffusion model to a FPT
problem. In the case of a subdiffusive process, the MFPT for adsorption is infinite even
in the case of a bounded domain. However, it is possible to investigate the long-time
and short-time asymptotic behavior of the FPT density by considering, respectively,
the small-s and large-s behavior of the corresponding Laplace transform. (Since we are
dealing with a partially absorbing boundary at x = 0, it is important to distinguish
between the FPT for the particle to reach the boundary for the first time and the
FPT for the particle to reach the boundary and be permanently absorbed. That is,
the particle may visit x = 0 and return to the bulk domain multiple times before being
absorbed. Hence, the FPT for adsorption is sometimes referred to as the last passage
time for exiting the domain.)

3.1. Derivation of the FPT density

Consider the fractional diffusion equation in a bounded domain [0, L] with a partially
absorbing boundary at x = 0 and a totally reflecting boundary at x = L. Furthermore,
suppose that the initial condition for the local time propagator is P (x, ℓ, 0) =
δ(x − x0)δ(ℓ) for 0 < x0 < L, which implies that pΨ(x, 0) = δ(x − x0) in the case of
the marginal density defined by equation (2.4). Introduce the survival probability

SΨ(t) =

ˆ L

0

pΨ(x, t)dx. (3.1)

Differentiating both sides with respect to t and using equations (2.8a) and (2.8b) gives

dSΨ(t)

dt
=

ˆ ∞

0

[
ˆ ∞

0

Ψ(ℓ)
∂P (x, ℓ, t)

∂t
dℓ

]
dx

=

ˆ ∞

0

Ψ(ℓ)KαD1−α
t

[
ˆ ∞

0

∂2P (x, ℓ, t)

∂x2
dx

]
dℓ

= −
ˆ ∞

0

Ψ(ℓ)

[
KαD1−α

t

∂P (x, ℓ, t)

∂x

∣∣∣∣
x=0

]
dℓ

= −
ˆ ∞

0

Ψ(ℓ)KαD1−α
t

[
∂P (0, ℓ, t)

∂ℓ
+ δ(ℓ)P (0, 0, t)

]
dℓ

= −Kα

ˆ ∞

0

ψ(ℓ)D1−α
t P (0, ℓ, t)dℓ := −JΨ(t). (3.2)

We have assumed that the order of integration and differentiation can be reversed,
and have performed an integration by parts with respect to ℓ. The term JΨ(t) is the
probability flux into the boundary at x = 0, and is equivalent to the FPT density for
adsorption at x = 0.

In general it is difficult to obtain an analytical expression for JΨ(t). Therefore,
we will proceed by calculating the Laplace transformed flux

J̃Ψ(s) = Kαs
1−α

ˆ ∞

0

ψ(ℓ)L−1
ℓ [G̃(0, z, s)]dℓ, (3.3)

with G̃(x, z, s) satisfying the BVP

Kαs
1−α ∂

2G̃(x, z, s)

∂x2
− sG̃(x, z, s) = −δ(x− x0), (3.4a)
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∂G̃(0, z, s)

∂x
= zG̃(0, z, s). (3.4b)

A solution of equation (3.4a) for 0 ≤ x < x0 that satisfies the boundary condition at
x = 0 takes the form

G̃<(x, z, s) =
√
sα/Kα cosh(

√
sα/Kαx) + z sinh(

√
sα/Kαx). (3.5a)

Similarly, for L > x > x0 with a reflecting boundary condition at x = L, we have

G̃>(x, z, s) = cosh(
√
sα/Kα(L− x)). (3.5b)

Imposing continuity of the solution across x = x0 and the flux discontinuity condition
∂xG̃(x

+
0 , z, s)− ∂xG̃(x

−
0 , z, s) = −1/(s1−αKα) implies that

G̃(x, z, s) =

{
A(z, s)p̃<(x, s)p̃>(x0, s), 0 ≤ x < x0
A(z, s)p̃<(x0, s)p̃>(x, s), x < x0 ≤ L,

(3.6)

with

A(z, s) =
1

s

√
sα/Kα√

sα/Kα sinh(
√
sα/KαL) + z cosh(

√
sα/KαL)

. (3.7)

Note that
√
sα/Kα has units of inverse length. Setting x = 0 in the solution (3.6)

gives

G̃(0, z, s) = A(z, s)
√
sα/Kα cosh(

√
sα/Kα(L− x0)). (3.8)

Since A(z, s) has a simple pole with respect to z, it follows that

L−1
ℓ G̃(0, z, s) =

cosh(
√
sα/Kα(L− x0))

s cosh(
√
sα/KαL)

L−1
ℓ

[
sα/Kα

z +
√
sα/Kα tanh(

√
sα/KαL)

]

=
cosh(

√
sα/Kα(L− x0))

Kαs1−α cosh(
√
sα/KαL)

exp
(
−
√
sα/Kα tanh(

√
sα/KαL)ℓ

)
. (3.9)

Plugging in the solution for L−1
ℓ G̃(0, z, s) into equation (3.3) gives

J̃Ψ(s) =
cosh(

√
sα/Kα(L − x0))

cosh(
√
sα/KαL)

ψ̃(Γ(
√
sα/Kα)), (3.10)

where ψ̃(z) is the Laplace transform of ψ(ℓ), and

Γ(y) = y tanh(yL). (3.11)

Hence, mathematically speaking, J̃(s) for an exponential distribution can be mapped

to J̃Ψ(s) for a non-exponential distribution by taking s/D → sα/Kα. This also
follows from the structure of the modified Helmholtz equation (3.4a), see Ref. [17].
In general, it is difficult to derive an analytical expression for JΨ(t) by finding the
inverse Laplace transform of equation (3.10) with respect to the Laplace variable s.
In the special case of an exponential density ψ(ℓ) = κe−κℓ, it is possible to derive an
infinite series representation of the exact FPT density using a spectral decomposition
of the solution to the Robin BVP given by equations (2.11a) and (2.11b) [17]. On
the other hand, for non-exponential densities ψ(ℓ), there is not a simple analog of a
Robin boundary condition. Therefore, we will focus on the long-time and short-time
behavior of JΨ(t) by considering, respectively, the small-s and large-s behavior of

J̃Ψ(s). The details of the analysis will then depend on whether or not the density
ψ(ℓ) is itself heavy-tailed.
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3.2. Asymptotics of the FPT density for a gamma distribution ψ

One example of a non-exponential density with finite moments at all orders is the
gamma distribution, see Fig. 1,

ψgam(ℓ) =
κ(κℓ)µ−1e−κℓ

Γ(µ)
, ψ̃gam(z) =

(
κ

κ+ z

)µ
(3.12)

for positive constants κ, µ with µ 6= 1, where Γ(µ) is the gamma function

Γ(µ) =

ˆ ∞

0

e−ttµ−1dt, µ > 0. (3.13)

(The case µ = 1 corresponds to the exponential distribution with constant reactivity
κ.) It can be seen from Fig. 1 that the probability of small values of the local

time threshold ℓ̂ can be decreased relative to an exponential distribution by taking
µ > 1. This could represent a reactive surface that is initially inactive, but becomes
more activated as the number of particle-surface encounters increases, ultimately
approaching a constant level of reactivity. On the other hand, the probability of
small values of the local time threshold ℓ̂ is increased when µ < 1. Now the surface is
initially highly reactive, but reduces to a lower constant level after a sufficient number
of particle-surface encounters.

3.2.1. Long-time behavior. The Laplace transform of the gamma distribution,
ψ̃gam(z), is analytic at z = 0, that is, dmψ̃gam(z)/dz

m|z=0 < ∞ for all m ≥ 0. It
follows that all moments of the gamma distribution are also finite, since

E[ℓm] :=

ˆ ∞

0

ℓmψgam(ℓ)dℓ =

(
− d

dz

)m
ψ̃gam(z)

∣∣∣∣
z=0

<∞ for all m ≥ 0. (3.14)

10-2 10-1 102
10-3

10-2

10-1

100

101

100 101

ℓ

ψ
g

a
m
(ℓ
)

μ= 0.5

μ = 1.0

μ = 2.0

Figure 1. Plots of the probability density ψgam(ℓ) as a function of the local time
threshold for the gamma distribution with κ = 1 and various values of µ.
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For example, the first and second moments are

E[ℓ] =
µ

κ
, E[ℓ2] =

µ(µ+ 1)

κ2
. (3.15)

Analyticity of ψ̃gam implies that J̃Ψ(s) is an even, analytic function of
√
sα/Kα for

small s. Hence, Taylor expanding J̃Ψ(s) about s = 0 generates a power series in
sα/Kα. To leading order we have

J̃Ψ(s) =

(
1− sα

L2 − (L− x0)
2

2Kα

)(
ψ̃gam(0) +

sαL

Kα
ψ̃′
gam(0)

)
+ h.o.t. (3.16)

where ψ̃gam(0) = 1 and −ψ̃′
gam(0) = E[ℓ]. Clearly

J̃Ψ(0) ≡
ˆ ∞

0

JΨ(t)dt = 1. (3.17)

A well-known result from the theory of Laplace transforms is that the large-t behavior
of a function f(t) with f̃(s) ∼ 1 − sα for 0 < α < 1 and small s takes the form
f(t) ∼ t−α−1. More precisely,

JΨ(t) ∼ 1

|Γ(−α)|tα+1

[
L2 − (L− x0)

2 + 2LE[ℓ]

2Kα

]
, t→ ∞. (3.18)

We recognize the expression inside the square brackets, after replacing Kα with
the diffusivity D, as the MFPT for adsorption at x = 0 in the case of normal diffusion
[5]. The term (L2 − (L − x0)

2)/2D is the classical result for a totally absorbing
boundary at x = 0 and a reflecting boundary at x = L. The additional terms E[ℓ]L/D
is the contribution from paths that make one or more excursions from the boundary
at x = 0 back into the bulk domain before the particle is finally absorbed. In order
to understand this result and to include higher-order terms in the small-s expansion
of J̃Ψ(s), consider the corresponding flux for normal diffusion, which we write as

J̃(s) = A(
√
s/D)ψ̃gam(Γ(

√
s/D)), A(y) =

cosh(y(L − x0))

cosh(yL)
. (3.19)

Since both A(y) and Γ(y) are even functions of y, it follows that both sides can be
expanded in integer powers of s. First,

J̃(s) =
∞∑

n=0

J̃ (n)(0)sn

n!
=

∞∑

n=0

(−1)n
E[T n]sn

n!
, (3.20)

where τΨn := E[T n] = (−1)nJ̃ (n)(0) is the n-th moment of the FPT density for normal
diffusion in [0, L]. On the other hand,

A(
√
s/D)ψ̃gam(Γ(

√
s/D))

=

∞∑

n=0

A(2n)(0)

n!

( s
D

)n
ψ̃gam

(
∞∑

k=1

Γ(2k)(0)

(2k)!
sk/Dk

)
(3.21)

=

∞∑

n=0

A(2n)(0)

(2n)!

( s
D

)n ∞∑

m=0

ψ̃
(m)
gam(0)

m!

(
∞∑

k=1

Γ(2k)(0)

(2k)!

( s
D

)k
)m

.

Note that A(0) = 1 and Γ(0) = 0. Equating the power series expansions of equations
(3.20) and (3.21), assuming that they are uniformly convergent for sufficiently small
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s, we find that

τΨ1 = −A
(2)(0)

2D
− ψ̃′

gam(0)
Γ(2)(0)

2D
=
L2 − (L− x0)

2 + 2LE[ℓ]

2D
(3.22a)

τΨ2
2

=
A(4)(0)

4!D2
+
A(2)(0)ψ̃′

gam(0)Γ
(2)(0)

2D2
+
ψ̃′′
gam(0)

8D2
[Γ(2)(0)]2 +

ψ̃′
gam(0)Γ

(4)(0)

24D2

=
5L4 + (L − x0)

4 − 6L2(L− x0)
2

4!D2
+

[L2 − (L− x0)
2]LE[ℓ]

D2

+
E[ℓ2]L2

2D2
+
L3

E[ℓ]

3D2
. (3.22b)

and the general result for all n is of the form

τψn
n!

=
(−1)n

Dn

∑

0≤i≤n

∑

0≤j≤n

∑

0≤k≤n

δjk,n−ic
(n)
ijkA

(2i)(0)
[
Γ(2j)(0)

]k
ψ̃(k)
gam(0) (3.22c)

for constants c
(n)
ijk . Given the explicit expressions for A(y) and Γ(y) we find that

τΨ1 =
L2 − (L− x0)

2 + 2LE[ℓ]

2D
(3.23a)

τΨ2
2

=
5L4 + (L − x0)

4 − 6L2(L− x0)
2

4!D2
+

[L2 − (L− x0)
2]LE[ℓ]

D2

+
E[ℓ2]L2

2D2
+
L3

E[ℓ]

3D2
. (3.23b)

Finally, returning to the case of fractional diffusion (0 < α < 1), it follows that for
small s

J̃Ψ(s) =

∞∑

n=0

A(2n)(0)

(2n)!

(
sα

Kα

)n ∞∑

m=0

ψ̃
(m)
gam(0)

m!

(
∞∑

k=1

Γ(2k)(0)

(2k)!

(
sα

Kα

)k)m

= 1 +

∞∑

n=1

(−1)nτψn

(
D

Kα

)n
snα−1. (3.24)

We thus obtain the large-t approximation

JΨ(t) ∼
∞∑

n=1

(−1)n

Γ(−αn)n!

(
D

Kα

)n
τΨn
tnα+1

, t→ ∞. (3.25)

Equation (3.25) is the encounter-based generalization of the result obtained in Ref.
[17] for a constant rate of adsorption, that is, for an exponential distribution ψ. Note
that Γ(−α) < 0 for 0 < α < 1 so that the leading-order term is positive. Moreover, if
α is a rational number, α = p/q with p, q having no common divisor other than unity,
then all terms in the sum for which n is an integer multiple of q vanish. This follows
from the fact that Γ(−m) = ∞ for all integers m ≥ 1.

3.2.2. Short-time behavior. The small-t asymptotics of Jψ(t) can be extracted from

the large-s behavior of J̃Ψ(s). From equation (3.10), we see that

J̃Ψ(s) ∼ exp
(
−
√
sα/Kαx0)

)
ψ̃gam(

√
sα/Kα), s→ ∞. (3.26)

In the case of the gamma distribution,

J̃Ψ(s) ∼ κµ exp
(
−
√
sα/Kαx0

)( sα

Kα

)−µ/2

, s→ ∞. (3.27)
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Figure 2. Fractional diffusion on the interval [0, L] with a partially absorbing
boundary at x = 0 and a totally reflecting boundary at x = L. We plot the first
two-terms in the asymptotic expansion (3.25) of the FPT density JΨ(t) for the
gamma distribution (3.12) with E[ℓ] = µ/κ = 1 and various values of µ. We also
show the corresponding short-time approximation (3.29). Other parameters are
α = 2/3, Kα = 1, L = 1, and x0 = 0.75.

Using the approximation [17],

L[sβe−
√
sα/Kαx0 ] ≈ 1

tβ+1

αβ+1/2

√
π(2 − α)

(
x20α

α

4Kαtα

)(β+1/2)/(2−α)

× exp

[
−(2− α)

(
x20α

α

4Kαtα

)1/(2−α)
]
, (3.28)

and setting β = −αµ/2, we obtain the leading order result

JΨ(t) ∼ [κ
√
Kα]

µ

t1−µα/2
[αω(t)])(1−µα)/2√

π(2 − α)
e−(2−α)ω(t), ω(t) :=

(
x20α

α

4Kαtα

)1/(2−α)

. (3.29)

In Fig. 2 we plot the short-term approximation (3.29) and the first two terms
in the long-time approximation (3.25) of the FPT density for the gamma distribution
and various values of µ and a fixed mean E[ℓ] = µ/κ. It can be see that increasing µ
increases the FPT at large times but reduces it at small times. This is consistent with
the switch in the µ-dependent ordering of the gamma distribution curves shown in
Fig. 1 from small values of ℓ to large values of ℓ. Moreover, the log-log plots indicate
that the long-term decay in JΨ(t) is algebraic. Note that we focus on values of α in
the range 1/2 ≤ α < 1, since more terms in the asymptotic expansion are needed for
a given t as α → 0. In Fig. 3 we show corresponding plots of JΨ(t) for fixed µ and
different values of κ. This shows that the short-time approximation is insensitive to
changes in κ for small µ. ( In Ref. [17] it is shown that the short-time and long-time
asymptotics agree very well with the numerical solution of the full FPT density.)
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Figure 3. Same as Fig. 2 except that JΨ(t) is plotted as a function of t for
various values of κ with (a) µ = 2 and (b) µ = 0.1.

3.3. Asymptotics of the FPT density for a heavy-tailed distribution ψ

The Taylor expansion of J̃Ψ(s) about s = 0 in powers of sα/Kα breaks down when
the local time threshold density is heavy-tailed. In particular, equations (3.24) and
(3.25) no longer hold. However, it is still possible to perform a small-s expansion for

specific choices of ψ̃(s). For the sake of illustration, we consider two different examples
of heavy-tailed distributions as illustrated in Fig. 4. (For a more extensive list, see
Ref. [18].)
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Figure 4. Two examples of a heavy-tailed distribution ψ(ℓ). (a) One-side Levy
distribution for different values of κ. (b) Mittag-Leffler distribution for different
values of κ with µ = 0.5 (thin curves) and µ = 0.75 (thick curves).

(i) One-sided Lévy-Smirnov distribution

ψls(ℓ) = κ
e−1/(κℓ)

√
π(κℓ)3/2

, ψ̃ls(z) = e−2
√
z/κ. (3.30)

This could represent a surface that has an optimal range of reactivity [18].
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Substituting for ψ̃ls in equation (3.10) gives

J̃Ψ(s) =
cosh(

√
sα/Kα(L− x0))

cosh(
√
sα/KαL)

exp


−2

√
Γ(
√
sα/Kα)

κ


 . (3.31)

For small s, we have the approximation

J̃Ψ(s) ≈
(
1− sα

L2 − (L− x0)
2

2Kα

)(
1− 2

√
sαL

κKα

)
= 1− 2

√
sαL

κKα
+ h.o.t. (3.32)

Hence, the leading-order large-t approximation of JΨ(t) is

JΨ(t) ∼ 2

|Γ(−α/2)|tα/2+1

√
L

κKα
, t→ ∞. (3.33)

The leading order power law t−α/2 has contributions from two distinct anomalous
processes. The first is subdiffusion within the bulk domain, which generates the
factor t−α, whereas the additional square-root is a consequence of the heavy-
tailed Lévy distribution ψls(ℓ) that determines adsorption at x = 0. Note that
the short-term contribution to the FPT density is negligible due to inactivity of
the boundary for small thresholds ℓ̂, see Fig. 4(a).

(ii) Mittag-Leffler distribution

ψml(ℓ) = −Eµ,0(−(κℓ)µ)/ℓ, Eµ,0(z) =

∞∑

k=0

zk

Γ(µk)
(3.34)

for 0 < µ < 1. The corresponding Laplace transform is

ψ̃ml(z) =
κµ

κµ + zµ
. (3.35)

Substituting for ψ̃ml in equation (3.10) gives

J̃Ψ(s) =
cosh(

√
sα/Kα(L − x0))

cosh(
√
sα/KαL)

κµ

κµ + Γ(
√
sα/Kα)µ

. (3.36)

For small s, we have the approximation

J̃Ψ(s) ≈
(
1− sα

L2 − (L− x0)
2

2Kα

)(
1−

(
sαL

κKα

)µ)

= 1− sα
L2 − (L− x0)

2

2Kα
−
(
sαL

κKα

)µ
+ h.o.t. (3.37)

Since 0 < µ < 1, it follows that the sαµ term dominates for small s. Hence, the
leading-order large-t approximation of JΨ(t) is

JΨ(t) ∼ 1

tαµ+1

(
L

κKα

)µ
, t→ ∞. (3.38)

Again the characteristic power law t−αµ has contributions from anomalous bulk
diffusion and surface adsorption. On the other hand, the short-time behavior is
identical to a gamma distribution with the parameters (µ, k).
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4. Higher spatial dimensions

Consider a d-dimensional version of the local time propagator equations (2.8a) and
(2.8b) for fractional diffusion. Suppose that a particle diffuses in a bounded, simply
connected domain Ω ⊂ R

d with a smooth boundary ∂Ω, see Fig. 5(a). Introduce the
boundary local time

ℓ(t) = lim
ǫ→0

D

ǫ

ˆ t

0

H(ǫ− dist(X(τ), ∂Ω−))dτ = D

ˆ t

0

[
ˆ

∂Ω

δ(X(τ) − y)dy

]
dτ, (4.1)

where H(x) is the Heaviside function and dist(Xτ , ∂Ω) denotes the shortest Euclidean
distance ofX(τ) from the boundary ∂Ω. The d-dimensional propagator equation takes
the form

∂P (x, ℓ, t)

∂t
= KαD1−α

t ∇2P (x, ℓ, t) for x ∈ Ω, (4.2a)

−∇P (x, ℓ, t) · n =
∂P

∂ℓ
(y, ℓ, t) + δ(ℓ)P (y, 0, t) for y ∈ ∂Ω, (4.2b)

where n is the outward unit normal at a point on the surface ∂Ω Again this can
be derived by taking a continuum limit of a heavy-tailed CTRW on a d-dimensional
regular lattice. Using analogous arguments to the 1D case, we introduce the FPT
(2.3) for adsorption. Given the threshold distribution Ψ(ℓ), the marginal probability
density for particle position can be written as

pΨ(x, t) =

ˆ ∞

0

Ψ(ℓ)L−1
ℓ [G(x, z, t)]dℓ, x ∈ Ω, (4.3)

with

KαD1−α
t ∇2G(x, ℓ, t)− sG(x, ℓ, t) = −δ(x− x0) for x,x0 ∈ Ω, (4.4a)

−∇G(y, z, t) · n = zG(y, z, t) for y ∈ ∂Ω. (4.4b)

Similarly, the total flux through ∂Ω is

JΨ(t) = Kα

ˆ ∞

0

ψ(ℓ)

[
ˆ

∂Ω

D1−α
t L−1

ℓ [G(y, z, t)]dy

]
dℓ. (4.5)

(b)

Ω 

U 

∂U 
x0

target

(a)

Ω 

∂Ω 

x0

target

Ω 
Ω 

reflecting

∂Ω 

Figure 5. Higher-dimensional (sub)diffusion to a target surface. (a) Target
surface is the exterior boundary ∂Ω of a simply-connected bounded domain Ω.
(b) Target surface is an interior boundary ∂U with U ⊂ Ω and ∂Ω totally reflecting.
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A crucial observation is that the small-s series expansion (3.24) and its
corresponding large-t expansion (3.25) still hold for the gamma distribution ψgam,
except that τΨn are now the moments of the FPT density for normal diffusion in
Ω ⊂ R

d. Hence, calculating the large-t asymptotics reduces to finding the higher-
dimensional analogs of the functions Γ(y) and A(y) of equations (3.10) and (3.11).
One configuration where this can be achieved is for a d-dimensional sphere. Suppose
that Ω = {x ∈ R

d | 0 ≤ |x| < R} and thus ∂Ω = {x ∈ R
d | |x| = R}, where R

is the radius of the sphere. We assume that the initial distribution of the particle is
spherically symmetric, that is, G(x, z, 0) = δ(|x|−r0)/Ωdrd−1

0 , where Ωd is the surface
area of the unit sphere in R

d and 0 < r0 < R. This allows us to exploit spherical
symmetry by setting G(x, z, t) = G(r, z, t) with r = |x|. The Laplace transformed

propagator G̃(r, z, s) satisfies the modified Helmholtz equation equation

Kαs
1−α

[
∂2G̃(r, z, s)

∂r2
+D

d− 1

r

∂G̃(r, z, s)

∂r

]
− sG̃(r, z, s)

= −Γdδ(r − r0), R < r, (4.6a)

D
∂G̃(r, z, s)

∂r
= −zG̃(r, z, s), r = R, (4.6b)

with Γd = 1/(Ωdr
d−1
0 ). Equations of the form (4.6a) and (4.6b) can be solved in terms

of modified Bessel functions [31, 17, 10]. In particular,

G̃(R, z, s) = A(z, s)
√
sα/KαF (

√
sα/Kαr0), 0 < r, r0 < R,

(4.7)

with

F (x) =





cosh(x) d = 1,
I0(x) d = 2,
sinh(x)
x d = 3.

(4.8)

and

A(z, s) =
1

s

1

ΩdRd−1

√
sα/Kα√

sα/KαF ′(
√
sα/KαR) + zF (

√
sα/KαR)

. (4.9)

Substituting into the Laplace transform of equation (4.5) and imposing spherical
symmetry yields

J̃Ψ(s) =

ˆ ∞

0

ψ(ℓ)L−1
ℓ

[
F (
√
sα/Kαr0)√

sα/KαF ′(
√
sα/KαR) + zF (

√
sα/KαR)

]
dℓ (4.10)

=
F (
√
sα/Kαr0)

F (
√
sα/KαR)

ψ̃(Γ(
√
sα/Kα)), (4.11)

with

Γ(y) =
yF ′(yR)

F (yR)
. (4.12)

Note that the 1D version of the configuration shown in Fig. 5(a) has a reflecting
boundary at x = 0 and a partially absorbing boundary at x = R. Hence, we recover
the 1D result on setting F (yR) = cosh(yL) and F (yr0) = F (y[L − x0). Another
configuration that reduces to the equivalent 1D problem is shown in Fig. 5(b). This
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consists of a pair of concentric spheres of radii R0 and R with R0 < R. Now there is a
reflecting boundary at x = R and a partially absorbing boundary at x = R−R0. The
higher-dimensional version can be analyzed along similar lines to the previous case by
exploiting spherical symmetry, see also Ref. [12].

5. Conclusion

One of the characteristic features of encounter-based models is that the stochastic
process of surface adsorption is separated from the stochastic dynamics in the bulk.
This allows one to incorporate non-Markovian models of adsorption that depend
non-exponentially on the amount of particle-surface contact time. In this paper we
exploited this feature in order to investigate how non-Markovian surface adsorption
affects the long-time power-law decay of the FPT density for subdiffusion in a bounded
domain Ω, see Fig. 5(a). In a companion paper [12], we consider the complementary
problem of a particle diffusing in Ω with a partially absorbing interior trap, see Fig.
5(b). However, rather than taking ∂U to be absorbing, we allow the particle to freely
enter and exit U until it is eventually absorbed somewhere within U . This type of
scenario was previously considered in the case of normal diffusion, where the relevant
particle-surface contact time is the Brownian occupation time of U [5, 6]. In order to
incorporate subdiffusion, we derive a fractional diffusion equation for the occupation
time propagator by taking the continuum limit of a corresponding heavy-tailed CTRW.
We use the model to determine conditions under which the MFPT for absorption
within the trap is finite, assuming that the particle diffuses normally within Ω\U and
suddiffusively with U .
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