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Tissue growth kinetics and interface dynamics depend on the properties of the tissue environment
and cell-cell interactions. In cellular environments, substrate heterogeneity and geometry arise from
a variety factors, such as the structure of the extracellular matrix and nutrient concentration. We
used the CellSim3D model, a kinetic division simulator, to investigate the growth kinetics and
interface roughness dynamics of epithelial tissue growth on heterogeneous substrates with varying
topologies. The results show that the presence of quenched disorder has a clear effect on the colony
morphology and the roughness scaling of the interface in the moving interface regime. In a medium
with quenched disorder, the tissue interface has a smaller interface roughness exponent, α, and a
larger growth exponent, β. The scaling exponents also depend on the topology of the substrate and
cannot be categorized by well-known universality classes.

I. INTRODUCTION

Understanding the role of mechanobiological phenom-
ena in complex biological processes such as wound heal-
ing, tumor growth, and morphogenesis necessitates the
study of the physical interactions between cells and their
environments. In vivo, heterogeneities of different types
are always present. One of the prime examples is the
extracellular matrix (ECM) that typically provides sup-
port for cells and is a key factor for cell adhesion and the
differentiation of cells [1, 2]. Heterogeneities can also be
produced by the addition of pharmacological agents or
(gelly) materials, such as methylcellulose, or by changing
the nutrient concentration, as well as by other means [3–
5]. The presence of heterogeneities, or disorder in physi-
cal terms, often influences biochemical and biomechanical
parameters, such as cell-cell interactions, the rate of cell
division, and the average cell size and shape, and thus
alters cell mobility, colony spreading, and the roughness
of the colony interface [3, 4]. In addition, the situation
can be even more complex such as in the epithelial-to-
mesenchymal and mesenchymal-to-epithelial transitions
during which the whole cellular environment undergoes
fundamental and complex changes [6].

Tumor growth, and therapy to prevent it, may be char-
acterized as cellular processes involving molecular inter-
and intracellular control [7]. Cell migration continually
responds to the mechanical stresses from neighboring
cells and the ECM [8]. Mathematical and computer mod-
els are increasingly being used to examine and measure
the influence of different biophysical parameters on bio-
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logical processes such as nonequilibrium pattern genera-
tion in biological growth [4, 9–12].

The spreading of a cellular colony, e.g., tumor, healthy
or bacterial, can be seen as the propagation of an elastic
interface in the presence of a pinning potential that arises
from the surrounding enviroment. Analogous phenomena
occur in diverse systems including vortex motion in type-
II superconductors [13], charge-density waves [14, 15],
and fracture propagation [16]. For such systems, one
typically distinguishes between strong and weak pinning.
In the former case, the pinning energy (per impurity)
is much larger than the elastic energy wleading to local
energy minimization while in the weak pinning regime
the opposite is true and the interface adjusts collectively.

When the interface has adjusted to the disorder and
is not moving, it is in the pinned phase. When a driv-
ing force is applied and it exceeds a threshold force, Fc,
the interface undergoes a depinning transition and enters
the moving phase. The size of the advancing regions is
then characterised by a correlation length (ξ) which di-
verges upon approaching the critical force from above,
ξ = (F − Fc)−ν , where ν denotes the correlation length
exponent [17]. It is also common to differentiate between
annealed and quenched disorder. In the latter, disorder is
considered as stationary, that is, the motions of the pin-
ning sites are much slower than any other relevant time
scale in the system; in the annealed case this assumption
no longer holds. In this study, only quenched disorder
is considered. In addition, since here the driving force
enters through cell division, we are not interested in the
depinning transition itself.

Several dynamic universality classes have been pro-
posed for interface growth. The Kardar-Parisi-Zhang
(KPZ) dynamic universality class [18] describes the evo-
lution of a surface using a continuous nonlinear stochastic
differential equation

∂th(x, t) = −λ [∂xh(x, t)]
2

+ ν∂2xh(x, t) + η(x, t), (1)
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where h(x, t), or the height, is the distance from the ith
point at the colony front to the baseline of the colony.
Lateral growth normal to the interface, reflected in the
quadratic term −λ(∂xh)2, is a characteristic of the KPZ
universality class. Surface tension is accounted for by the
Laplacian term, ν∂2xh, which tends to flatten the surface,
and η(x, t) is an uncorrelated Gaussian noise given by
〈η(x, t)〉 = 0 and 〈η(x, t)η(x′, t′)〉 = 2Dδ(x− x′)δ(t− t′).

In the quenched KPZ (qKPZ) equation the thermal
noise in Eq. 1 is replaced by a position dependent noise,
that is, η(x, t) becomes η(x, h) with 〈η(x, h)〉 = 0 and
〈η(x, h)η(x′, h′)〉 = 2Dδ(x − x′)δ(h − h′). Since ther-
mal noise is usually present in experiments, the qKPZ
equation can be extended to contain both quenched and
thermal noise.

Dynamic scaling analysis provides powerful tools to
classify growth. Dynamic critical exponents, namely the
roughness (α), growth (β), and the dynamic exponent (z)
can be determined from the time evolution of the front’s
roughness; the cell colony’s front in this case [12, 19–26].
In addition to the above, the dynamic exponent is related
to the two other exponents via z = α

β .

Distinct critical exponents and universality classes are
described by different growth equations. For KPZ, the
critical exponents are αKPZ = 1

2 , βKPZ = 1
3 , and zKPZ = 3

2
for one dimensional interfaces [18]. For the quenched
KPZ equation, dynamic critical exponents haven been
determined to be αqKPZ = 3

4 , βqKPZ = 3
5 , and zqKPZ =

5
4 [27]. The critical exponents of the linear molecular
beam epitaxy (MBE) equation for a one-dimensional in-
terface are αMBE = 3

2 , βMBE = 3
8 , and zMBE =4.0.

In one-dimensional quasilinear and quasicircular ex-
panding interfaces, previous experimental research on
cells grown on culture without quenched disorder have
presented various scaling behaviors [22, 23, 25, 26, 28].
Brú et al. [22, 23] suggested that the development dy-
namics of both malignant and normal cell colonies are
characterized exponents α = 1.5± 0.15, β = 0.38± 0.07,
and z = 4 ± 0.5 that belong to the MBE universality
class. The reported this for both in vitro and in vivo ex-
periments. In contrast, however, Huergo et al. reported
the exponents of α = 0.50 ± 0.05, β = 0.32 ± 0.04 and
z = 1.56± 0.1 for interfacial growth of HeLa (cervix can-
cer) cell colonies in vitro [25, 26, 28]. Plant calli, Brassica
oleracea and Brassica rapa, were studied by Galeano et
al. who reported exponents inconsistent with both MBE
and KPZ, α = 0.86± 0.04, and z = 5.0 [5].

Biological systems with substrate disorder appear in
situations such as growing bacterial colonies on agar-
containing media and in the development of bacterial
biofilms. For Escherichia coli and Bacillus subtilis
colonies, Vicsek et al. [29] found the roughness exponent
α=0.78±0.07, which exceeds the KPZ value. Huergo et
al. reported qKPZ-compatible exponents α=0.63±0.04,
β = 0.75 ± 0.05, and z = 0.84 ± 0.05 for the develop-
ment of quasilinear Vero cell colony fronts in culture
media containing methylcellulose (MC) [3]. Santalla et
al. conducted experiments at a high agar concentration

regime and found branching interfaces whose scaling ex-
ponents were in complete disagreement with both the
KPZ and qKPZ scaling exponents [30]. Rapin et al. stud-
ied the effects of pharmacological agents on the geometry
and roughness dynamics of in vitro propagating Rat1 fi-
broblast cell interfaces and reported two separate scaling
regimes, the first at the sub-cell level and the second at
intermediate length scales of 2-10 cells [4].

Various theoretical and computational models have
been developed to examine surface growth with quenched
disorder. The directed percolation depinning model pre-
dicts α to be between 0.66 and 0.73, and β = 0.68 ±
0.04 [31]. Models of self-organized growth have predicted
β = 0.9 ± 0.1 and α= 0.63 ± 0.02 [32], and a numerical
study of an automaton model yielded α = 0.63 ± 0.01
and β= 0.64 ± 0.02 [33]. Santalla and Ferreira incorpo-
rated nutrient diffusion to an off-lattice Eden model and
reported a transition from a transient KPZ-like regime
with β = 0.34 ± 0.01 to an unstable growth regime
with β = 0.43 ± 0.02, with an intermediate transient
regime belonging to the qKPZ universality class with
β = 0.633 and the local roughness exponents ranging
within 0.39 < αloc < 0.67 [34].

Further computational and theoretical studies have
demonstrated the effects of cell-cell mechanical tensions,
and nutrient concentration and distribution on the spa-
tial structures with morphologies ranging from smooth
to heavily fingered interfaces [35, 36]. Simulations of
two-dimensional cellular colonies by Block et al., showed
KPZ-like dynamics for a class of cellular automata mod-
els over a broad range of parameters [37]. Azimzade
et al. used the Fisher-Kolmogorov-Petrovsky-Piskunov
(FKPP) equation to study the effect of the cellular envi-
ronment’s stiffness and spatial correlations on the mor-
phology of the interface of growing tumors, and con-
cluded that the KPZ equation cannot describe their tu-
mor development model [38]. Bonachela et al. developed
an off-lattice cell model with quenched disorder describ-
ing competition among bacterial cells for space and re-
sources. They reported the exponents α = 0.68 ± 0.05,
β = 0.61 ± 0.05, and z = 1.11 ± 17 for the moving
regime [39]. Pinto et al. modified the self-propelled
Voronoi model of Bi et al. [40] to study the effect of spa-
tial disorder of the cell-substrate interaction, defined as
having stiff cells in the tissue, on cell motility in a con-
fluent tissue, reporting β = 0.194. ± 007 [41]. In our
previous work, we showed that a cell colony can show
both KPZ- and MBE-like scaling dynamics depending
on the strength of the cell-cell adhesion between the cells
and the cell colony’s geometry [42].

II. METHODS

A. CellSim3D simulator and model

CellSim3D is a coarse-grained molecular dynamics-
based model of cellular dynamics with an emphasis on
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mechanobiological features of tissue growth [43]. The
code is open source [44]. CellSim3D allows cellular
growth to be modelled in two (epithelial growth) or three
dimensions, and cells are modelled as three-dimensional
objects consisting of a set of interconnected nodes. Here,
the geometry and the nodes are those of a spherical C180
fullerene.

The CellSim3D force field consists of intra- and in-
tercellular forces and a noise term (η),

mr̈ = FB + Fθ + FR + FA + FF,e + FF,m + FP + η. (2)

The two intracellular forces on the surfaces of the cells
are FB, a damped harmonic oscillator force between the
nearest neighboring nodes with a spring constant (kB)
and a friction coefficient (γint), and Fθ, the angle force
which is a harmonic potential depending on the equilib-
rium angles between the nodes with a spring constant
kθ). The angle term preserves the cell’s surface curva-
ture. For simplicity, the spring constants for both the an-
gle force and the damped spring force between the nodes
are assumed to be constant over the cell surface.

Intercellular forces in CellSim3D consist of both cell-
cell and cell-environment interactions. In cells, the
cell-cell interactions are mainly caused by cell adhesion
molecules (CAMs) [45–47]. Here, the intercellular forces
are described by a repulsive force, FR and an attractive
force, FA, between two neighboring cells. In addition,
the model also includes a friction force, FF, between two
cells that pass by each other. The repulsive and attrac-
tive forces between the cells are represented, respectively,
by short-range harmonic potentials with distinct cutoffs
RR

0 , RA
0 , and spring constants kA, kR. In this study,

we assume that the adhesion molecules are distributed
uniformly across the cell surface, and that the adhesion
and repulsion spring constants (kA, kR) are identical for
all nodes on the surface. The intermembrane friction
force, FF,e = −γext vτmij , is defined up to a cutoff range,

RA
0 , between the nodes i and j on two separate cells as a

function of the tangential relative velocity to the cell sur-
faces, vτmij . The intermembrane friction coefficient, γext,
is assumed to be constant across the cells.

The friction force, FF,m = −γm v, approximates the
interactions between the cell and its environment, and it
is defined as a viscous drag force from a fluid medium.
The growth force, FP = PSn̂, is determined by the
cell’s internal pressure resulting from the osmotic pres-
sure within the cell [45], where n̂ is an outward pointing
normal to the surface of the cell and PS is the force due
to a growing pressure inside the cell. This growing force
compensates for the cell membrane elasticity modelled
by harmonic potentials. Finally the noise term, η, is de-
fined as a Gaussian white noise with 〈η(x, t)〉 = 0 and
〈η(x, t)η(x′, t′)〉=2Dδ(t− t′)δ(x− x′).

At each time step, the internal pressure increases by
the growth rate ∆(PS), resulting in a gradual increase
in the pressure force (FP) and the cell volume. When
the volume of the cell reaches a critical threshold, given
by the parameter Vdiv, the cell divides into two daughter

cells. The distinguishing characteristics of the cell divi-
sion are the orientation and the location of the division
plane. Cell division can be either symmetric or asym-
metric, depending on the position of the division plan.
In this study, we used symmetric cell division, in which
the volumes of the daughter cells become half the vol-
ume of the parent cell, and the mechanical properties are
a copy of the parent cell’s properties. The division algo-
rithm is accounts for the planar expansion of epithelial
tissue: The division plane is selected by randomly sam-
pling a vector from a circle in the plane defined by the
vector normal to the epithelial plane. To prevent buck-
ling during growth, three-dimensional cells are confined
between two frictionless plates with repulsion in the di-
rection normal to the plates [42, 48]. More details of the
theoretical basis, the code implementation, and the map-
ping of the parameters can be found in Refs. [42, 43, 48].
Parameters for the simulations performed in this study
are provided in Table I.

TABLE I. The parameters for the cells used in this study.
These values are based on the HeLa (named after Henrietta
Lacks [49]) cell properties. † indicates units of ∆t and ∗ units
of mean time to cell division, which varies between cell types
and is set to 1.0 in CellSim3D.

Parameter Notation Sim. Units SI Units

Nodes per cell Nc 180 -
Node mass m 0.04 40 fg

Bond stiffness kB 1000 100 nN/µm
Bond damping coefficient γint 100 0.01 g/s

Minimum pressure (PS)0 50 0.5 nN/µm2

Maximum pressure (PS)∞ 65 0.65 nN/µm2

Pressure growth rate ∆(PS) 0.002 2.0 × 10−5 nN/µm2

Attraction stiffness KA 10-2000 1-200 nN/µm

Strong attraction stiffness KA
strong 2000 200 nN/µm

Weak attraction stiffness KA
weak 10 1 nN/µm

Attraction range RA
0 0.3 3 µm

Repulsion stiffness KR 10 × 105 10 × 104 nN/m

Repulsion range RA
0 0.2 2 µm

Growth count interval - 1000 †
Inter-membrane friction γext 1 10 µg/s
Medium friction γm 0.4 4 µg/s

Time step ∆t 1.0 × 10−4 ∗
Threshold division volume V div 2.9 2900 µm3

B. Disorder

Pinning impurities were randomly positioned (at time
t = 0) as immobile cells that do not grow. They interact
with regular cells via adhesion, repulsion, and friction,
with the same strengths as the regular cells do. Impor-
tantly, when the adhesion interaction between the cells
is strong, so is the interaction between the cells and the
disorder. The same applies for the case of weak cell-
cell interaction. The pinned cells maintain their spher-
ical shapes and sizes throughout the simulation. For
each simulated parameter set, ten independent simula-
tions were performed for data averaging. The parameters
for quenched disorder are shown in Table II.
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FIG. 1. (a-b) Colony expansion (red cells) in a medium with quenched disorder (blue cells) with linear initial configuration.
(a) At weak and (b) strong cell-cell adhesion strength. (c-d) Interface evolution at different times (c) at weak and (d) strong
cell-cell adhesion strength. The scaling analysis was done using overhang-corrected interfaces [50]. For units, see Table I.

TABLE II. The area density, N
A

, for quenched disorder in SI

units ( 1
µm2 ) in the different configurations (linear and radial),

and at different attraction stiffnesses ( nN
µm

). The parameters
for the strong and weak cases are given in Table I.

Configuration

Attraction stiffness
1 (weak) 200 (strong)

Moving linear interface 0.0010 0.0003

Moving linear interface at high disorder density 0.0012 -

Moving radial interface 0.0008 0.000075

Pinned radial interface 0.0012 -

C. Colony configurations

Simulations of both linear and radial growth at strong
and weak cell-cell adhesion strengths in the presence of
quenched disorder were performed at both low and high
disorder densities, see Table I for parameters and Table II
for disorder area densities. The initial configuration of
the linear interface was a line of 240 cells in a box of
size 600 × 1, 000 × 1.8. For linear interfaces in the low
disorder density regime at weak and strong cell-cell ad-
hesion, 60,000 and 18,000 immobile cells were initially
distributed at random in the box, while in the high dis-
order density regime at weak cell-cell adhesion, 72,000
immobile cells were randomly distributed in the box, see
Table II for disorder area density. Figure 1 shows time
evolution of a linear interface.

For radial growth, the initial configuration consisted of
a single cell at the center of the box of size 800×800×1.8.
In the low disorder density regime at weak and strong
cell-cell adhesion strengths, respectively, 51, 200 and
4, 800 immobile cells were initially distributed at random
in the box. In the case of high disorder density at weak
cell-cell adhesion strength, the box contained 77, 400 ran-
domly distributed immobile cells, see Table II. In the low
disorder density regime, the colonies maintained their
circular morphology with interface overhangs. In high
disorder density regime, however, the cell colonies devel-
oped a chiral morphology with branched structures lack-

ing circular interfaces for scaling analysis. Snapshots of
circular colony expansion, interface evolution and chiral
colony morphology at different times are shown in Fig. 2.

III. ANALYSES

A. Scaling analysis

1. Interface width

The standard deviation of the front height across a
length scale l at time t can be used to define the inter-
face’s local width function, w(l, t), which represents the
fluctuation around the average height of the interface [50]
as

w(l, t) =

{
1

N

N∑
i=1

[hi(t)− 〈hi〉l]2
} 1

2

L

, (3)

where L is the the length of the growing front. For ra-
dial growth, the height, hi(t), is replaced by the distance
ri(t) from the centre of mass of the cell colony. 〈hi〉l is
the local average of the subsets of arc length l, and {.}L
is the overall average. The fluctuations cannot increase
indefinitely, and there exists a saturation time, ts.

For times greater than the saturation time t � ts,
when the local length l equals the total interface length L,
the width function w(L, t) represents the interface vari-
ance and increases with the interface length L according
to w(L, t) ∼ Lα, where α is to referred as the global
roughness exponent. For times smaller than the satura-
tion time, the interface variance increases as w(L, t) ∼ tβ ,
where β is the growth exponent.

For self-affine interfaces the width function w(L, t) sat-
isfies the Family-Vicsek dynamic scaling relation [51].
This scale invariant behavior implies that the total in-
terface length, L, is the only characteristic length scale
in the system, and that all length scales are subject to
the same physics. However, for t > ts the local width
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FIG. 2. (a,b) Radially growing colony (red cells) in a medium with quenched disorder (blue cells). (a) At weak and (b) strong
cell-cell adhesion strength. (c) Interface evolution at different times at weak cell-cell adhesion strength. The interface has
overhangs, but the scaling analysis was done using overhang-corrected interfaces [50]. (d) Morphology for a system started with
a single cell at the centre of a box on a substrate with a high density of quenched disorder at weak cell-cell adhesion strength.
Due to the high disorder density, the morphology is not round but instead chiral with branched structures. Eventually the
interface becomes pinned by the disorder and the growth stops. The final population of the cell colony consists of roughly
10,000 cells. For units, see Table I.

function w(l, t) may increase as a function of the local
length, l, with a local roughness exponent [50] αloc as

w(l, t) ∼ lαloc . (4)

The local roughness exponent may differ from the global
roughness exponent and can also be derived from the
power law behavior of the height-height correlation func-
tion, which is defined as

C(`, t) = 〈|h(x, t)− h(x+ `, t)|2〉x ∼ ` 2ζ for `� ξ‖, (5)

where ξ‖ is the parallel correlation length of the interface,
and ` is the lateral distance between different points on
the interface. The the height-height correlation function
obeys the scaling ansatz [50]

C(`, t) ∼ ` 2ζc(`/t1/z
c

), (6)

where c(x) is constant for x � 1 and c(x) ∼ x− 2ζ ,
for x � 1. In growth models with anomalous behav-
ior, the global roughness (α) and dynamic exponents (z)
calculated from the interface width function differ from
ζ and zc calculated from the height-height correlation
function [52, 53]. In these models, the scaling function
c(x) can be different from constant for x � 1, and the
scaling relation for the height-height correlation function
becomes [52, 54]

C(`, t) ∼ C(1, t)` 2ζc(`/ξ(t)), (7)

where ξ(t) = [t/C(1, t)]1/z
c

. The average step height,
C(1, t), grows as

C(1, t) ∼ t 2λ. (8)

This modified scaling ansatz, Eq. 7, implies α = ζ +
λz/2(1− λ) and z = zc/(1− λ) [54].

For t� ts the value of the local width function w(l, t)
increases with time with the growth exponent β as

w(l, t) ∼ tβ for t� ts. (9)

2. Structure factor

The above real-space analysis takes into account all
wavelengths, including short ones, which indicates that
finite-size effects can be expected. As a solution, the
power-law behavior of the power spectrum of the height
fluctuations where only long-wavelength modes con-
tribute to the scaling behavior should be analyzed. To

calculate the structure factor, S(k, t) = 〈ĥ(k, t)ĥ(−k, t)〉,
the kth Fourier mode ĥ(k, t) needs to be evaluated.

The Family-Vicsek scaling form of the structure factor
can be then given as

S(k, t) = k−(2α+1)s(kt
1
z ), where (10)

s(u = kt
1
z ) =

{
const for u� 1;
u2α+1 for u� 1.

(11)

Here, α is the global roughness exponent and s(u = kt
1
z )

the scaling function. Systems with different local and
global roughness exponents represent what is known as
anomalous roughening [55]. This phenomenon has been
observed in various growth models [56–58] and experi-
ments [23, 59, 60]. Two known types of anomalous rough-
ening are intrinsic anomalous roughening, where αloc < 1
and α > αloc , and superroughening, where α > 1 and
αloc = 1 [55, 61]. In such systems the scaling function,
s(u), has the general form

s(u = kt
1
z ) =

{
u2(α−αs) for u� 1;
u2α+1 for u� 1,

(12)

where the spectral roughness exponent, αs, is indepen-
dent from the global roughness exponent. In system with
intrinsic anomalous roughening, αs = αloc < 1, and αs is
different from global roughness exponent, α.
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FIG. 3. Interface velocity calculated from the time evolution
of the mean colony radius (〈R〉) and the mean interface height
(〈h〉) for radially (circles) and linearly (triangles) expanding
interfaces, respectively. For units, see Table I.

B. Chi-squared minimization

Chi-squared minimization was used to determine the
slope and the y-intercept of the line that best fits the
data. As every data point in our case was measured ten
times, there is a standard error σi that can be associated
with individual points in the graphs at different times
or lengths. The model’s prediction is a lin-lin or log-log
straight line f(x) = b + a x with parameters a and b.
The Chi-squared function is calculated by summing the
squares of the differences between the model’s prediction
and the observed data yi, then dividing by the data’s
variance. It is defined as

χ̃2 =

Nd∑
i=1

(yi − f(xi; a, b))
2

σ2
i

, (13)

where Nd is the total number of data points. The opti-
mal values for the model parameters a and b are obtained
by minimization of the chi-squared function. Goodness
of fit, the p-values, are calculated from the chi-squared
probability function Q(χ2|Nd − 2) corresponding to the
probability of accepting the null hypothesis of obtaining
the same model parameters if the experiment was per-
formed numerous times with identical setup. A p-value
near unity indicates that the fit is good, whereas a small
p-value indicates that the fit is poor.

IV. RESULTS

1. Interface velocity

For both linear and radial colonies at low disorder den-
sities, the interfaces move at a constant velocity and do
not become pinned by disorder, Figure 3.

In the case of linear interface at weak cell-cell ad-
hesion strength, the interface moves at the velocity of

101 102

Box size (pixels)

102

103

 B
ox

 c
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nt
s

df = 1.74±0.06
df = 1.23±0.02
df = 1.23±0.01
df = 1.34±0.03
df = 1.33±0.06
df = 1.28±0.07

FIG. 4. Fractal dimension (df) determined by plotting box
counts vs. box size for the linear interface (triangles) 1) at
weak (red triangles) and 2) at strong (orange triangles) adhe-
sion strength, and 3) at weak cell-cell adhesion in high disor-
der density (purple triangle). For the radially expanding in-
terface (circles) 1) at weak (green circles) and 2) strong (blue
circles) cell-cell adhesion, and high disorder density (violet cir-
cles). The colony fractal dimension, (dcolf ), for colony expan-
sion at weak cell-cell adhesion began with a single cell in the
centre of a box on a substrate with a high density of quenched
disorder. This system does not have a dense and round mor-
phology, instead it forms slowly to a chiral morphology with
branched structure until the colony interface becomes pinned
with the disorder on the substrate. The colony fractal dimen-
sion is very close to the DLA fractal model, df = 1.71.

〈v〉 = 1.82 ± 0.02. At strong cell-cell adhesion strength
the velocity drops to 〈v〉=0.74± 0.02.

In radial interface growth, the velocities are higher,
〈v〉=2.19± 0.03 at weak cell-cell adhesion strength, and
〈v〉=1.86± 0.02 in the case of strong adhesion strength.

Two cases deserves special attention: First, in linear
growth with weak cell-cell adhesion and high disorder
density, the growth slows down and there is a crossover
from 〈v〉1 = 1.06 ± 0.03 at short times to 〈v〉2 = 0.73 ±
0.07 at late times. Second, in the case of weak adhesion
strength and high disorder density in circular expansion,
the colonies develop a chiral morphology in which the
branches proliferate and get pinned over time, preventing
the definition of a circular interface and the evaluation
of its velocity.

2. Fractal dimension

The fractal dimensions of interfaces were evaluated us-
ing the box-counting method, Fig. 4. As a general trend,
the fractal dimensions of the linear interfaces are slightly
larger compared to the circular ones. In addition, the
fractal dimensions here are slightly higher than those in
the absence of quenched disorder [42]. Table III lists the
fractal dimensions in the current study, and several past
experiments and simulations under different conditions.
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The one outlier regarding the fractal dimension is the
system that develops chiral morphology, that is, the cir-
cularly growing system with high disorder density. The
result is df = 1.74 ± 0.06. This value is within the
margin of error to computer simulations of the diffusion
limited aggregation (DLA) fractal model with dDLA

f =
1.71 [62, 63]. This chiral morphology has no well-defined
interface but rather a branched structure, and it has been
observed, for example, in bacterial growth on agar plates
with a low nutrient concentration [64–66].

3. Roughness exponents for linear interfaces

The interface roughness, w(l, t), was evaluated from
Eq. 9. For linear interface growth with quenched disor-
der, increasing the cell-cell adhesion strength or the disor-
der density resulted in higher growth exponents (β) than
in the absence of disorder, see Ref. [42] and Table III.
The local roughness exponents, αloc, were obtained from
Eq. 4. The exponents have the same value at weak ad-
hesion strength both low and high disorder density. At
strong adhesion strength and low disorder density, αloc

increases slightly, Table III. These local roughness ex-
ponents are also less than what has been obtained from
simulations without quenched disorder, see Ref. [42] and
Table III.

The global roughness exponents (α) were calculated
via structure factor analysis, Eq. 11. The results are
shown in Fig. 5. As in the case of αloc, the global rough-
ness exponents have lower values than those from sim-
ulations without quenched disorder [42], see Table III.
The values are in the same range and independent of the
adhesion strength and disorder concentration, whereas
for linear colony growth in media without quenched dis-
order [42], the value of the global roughness exponent
depends on the adhesion strength, see Table III.

Figure 6 shows the correlation exponent (ζ) defined via
Eq. 5. Interestingly, the exponent is the same in all cases
for linear growth, independent of the disorder density or
cell-cell adhesion, Table III. The scaling regime, however,
increases as cell-cell adhesion increases.

The correlation exponent was also determined in the
absence of disorder based on the data from Ref. [42].
In that case, the correlation function shows a crossover
between two exponents both at weak and strong cell-
cell adhesion, Table III. For shorter scales, the exponents
are within the margin error to the value ζweak = 0.53
obtained in the presence of disorder. For longer scales,
the exponent crosses over to about ζ ≈ 0.32.

The scaling exponents of linear interface growth at
low disorder density at weak adhesion strengths are com-
patible with KPZ scaling exponents, whereas the global
roughness exponent of linear interface growth at weak
adhesion strengths in media without quenched disorder
is greater than the KPZ global roughness exponent, see
Table III.
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a) b)

FIG. 5. The structure factor (Eq. 10) measured at three dif-
ferent times, green: long time; orange: intermediate time;
blue: short time, and different conditions (indicated by line
type; legend). (a) For the linear interface: Solid lines: strong
cell-cell adhesion and low disorder density; dashed lines: weak
adhesion, low disorder density; dotted lines: weak adhesion,
high disorder density. The black dashed line with a slope of
= −2.0 is drawn to guide the eye. (b) for the radial interface
at low disorder density: Solid lines: strong cell-cell adhesion;
dashed lines: weak adhesion. The black dashed line with
a slope of = −2.26 is drawn to guide the eye. The global
roughening exponent for each case is reported in Table III.
For units, see Table I.

4. Roughness exponents for radial growth

Next, we determine the scaling exponents for radially
expanding interfaces. As with linear interfaces, the pres-
ence of disorder leads to higher growth exponents (β)
compared to the cases in the absence of disorder, Ta-
ble III. Similarly to linear colony growth, the local rough-
ness exponents (αloc) are in the same range, but some-
what smaller than without disorder [42], see Table III.

The global roughness exponents (α) were calculated
via structure factor analysis, Eq. 11. Similar to linearly
expanding interfaces, for the radially expanding interface
in media with quenched disorder, the global roughness
exponents are in the same range and independent of the
adhesion strengths, where, as previously mentioned, the
global roughness exponent is dependent on the adhesion
strength in the absence of quenched disorder, see Fig. 5
and Table III.

The global roughness exponents in media with
quenched disorder, similar to linearly expanding inter-
faces, are smaller than the global roughness exponents
for the radially expanding interface in media without
quenched disorder [42], see Table III.

The correlation exponents (ζ) were obtained by de-
termining the height-height correlation function, Eq. 5,
shown in Fig. 6, and they have the same value at both
strong and weak adhesion strengths, see Table III. Fig-
ure 6 shows the height-height correlation functions for
radially expanding interfaces in media without quenched
disorder, and show a crossover with two different corre-
lation exponents for both weak and strong cell-cell adhe-
sion, see Table III.
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TABLE III. Interface fractal dimension (df), global (α) and local (αloc) roughness exponents, correlation function exponent (ζ;
Eq. 5), growth exponent (β), and average step height exponent (λ), in different configurations with different cell-cell adhesion
stiffness strengths, and quenched disorder densities, see Tables I and II. For the DLA-like chiral geometry, the fractal dimension
is the colony fractal dimension. The exponents for the well-knows cases of KPZ, qKPZ and MBE for one-dimensional interfaces
are also given for reference. † indicates experiments in heterogeneous media and ∗ indicates the crossover with two different
regimes.

Configuration Adhesion df α αloc ζ β λ
Kardar-Parisi-Zhang (KPZ) [18] - - 1/2 1/2 - 1/3 -
quenched KPZ (qKPZ) [27] - - 3/4 3/4 - 3/5 -
Molecular beam epitaxy (MBE) [53] - - 3/2 1.0 - 3/8 -
linear interface at high disorder density weak 1.33± 0.06 0.50± 0.03 0.53± 0.05 0.53± 0.01 0.49± 0.07 -
linear interface at low disorder density weak 1.34± 0.03 0.52± 0.04 0.53± 0.02 0.53± 0.01 0.33± 0.08 -
linear interface strong 1.28± 0.07 0.47± 0.07 0.55± 0.05 0.53± 0.01 0.67± 0.07 -
circular interface at high disorder density weak 1.74± 0.06 - - - -

DLA-like chiral geometry -
circular interface at low disorder density weak 1.23± 0.02 0.64± 0.04 0.60± 0.02 0.58± 0.01 0.46± 0.13 -
circular interface strong 1.23± 0.01 0.63± 0.04 0.62± 0.02 0.58± 0.01 0.47± 0.13 -
Mazarei et al. [42] (linear interface) weak 1.22± 0.01 0.75± 0.04 0.59± 0.01 0.51± 0.01∗ 0.28± 0.01 0.02± 0.01

0.31± 0.03∗

Mazarei et al. [42] (linear interface) strong 1.26± 0.01 0.52± 0.02 0.62± 0.02 0.55± 0.01∗ 0.25± 0.02 0.01± 0.01
0.33± 0.04∗

Mazarei et al. [42] (circular interface) weak 1.13± 0.01 0.95± 0.04 0.66± 0.01 0.59± 0.01∗ 0.40± 0.04 0.37± 0.01
0.32± 0.01∗

Mazarei et al. [42] (circular interface) strong 1.21± 0.01 0.71± 0.02 0.70± 0.01 0.60± 0.01∗ 0.42± 0.06 0.47± 0.01
0.35± 0.01∗

Bru et al. [22] (circular interface) - 1.12−1.34± 0.03 1.5± 0.15 0.90± 0.10 - 0.38± 0.07 -
Huergo et al. [26] (circular & Vero Cells) - 1.20± 0.05 0.5± 0.05 - - 0.32± 0.04 -
Huergo et al. [28] (circular & HeLa Cells) - 1.20± 0.05 0.5± 0.05 - - 0.32± 0.04 -
Huergo et al.† [3] (linear & Vero Cells) - - 0.63± 0.03 - - 0.75± 0.05 -
Vicsek et al.† [29] (linear interface) - - 0.78± 0.07 - - - -
Galeano et al.† [5] (circular interface) - 1.18± 0.02 0.86± 0.04 - - - -
Rapin et al.† [4] (linear interface) - - - - 0.58∗ -

0.13− 0.25∗ -
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FIG. 6. The height-height correlation function vs length (`) for the linear interface in a medium (a) with quenched disorder
(b) without quenched disorder, and for the radial interface in a medium (c) with quenched disorder (d) without quenched
disorder at (green) long (orange) intermediate (blue) short time at different adhesion strengths and disorder densities: Solid
lines: strong cell-cell adhesion and low disorder density; dashed lines: weak adhesion, low disorder density; dotted lines: weak
adhesion, high disorder density. The correlation function exponents, ζ, are reported in the Table III. For units, see Table I.

V. DISCUSSION AND CONCLUSIONS

Comparison of the present data with previous results
for epithelial tissue growth in media without quenched
disorder [42] shows that quenched disorder can signif-

icantly alter the morphology of the interface and cell
colony. It also affects cell motility and duplication rate
in the colony, resulting in higher fractal dimensions and
slower spreading rates. This is consistent with previous
experiments for cell colony growth in plain and gel me-
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dia [3, 67].
At the limit of high disorder concentration, colony

growth exhibits branched chiral morphologies and the
fractal dimension is quite close to the fractal dimension
of clusters in diffusion-limited aggregation [62]. This has
also been observed in bacterial growth on agar plates at
low nutrient concentrations [64–66]. In the absence of
quenched disorder, increasing adhesion strength affects
the colony morphology and increases the interface fractal
dimension [42]. Here, we have shown that the fractal di-
mension is independent of the cell-cell adhesion strength
for colony expansion on heterogeneous substrates.

In the absence of disorder, adhesion strength is a cru-
cial parameter that generates both KPZ and MBE-like
scaling for colony expansion at strong and weak cell-
cell adhesion strength, respectively [42]. Here, we have
demonstrated that in the presence of quenched disorder,
the local and global roughness exponent are independent
of adhesion strength. This indicates that the effect of ad-
hesion strength on interface roughness and morphology
become insignificant on heterogeneous substrates. Dis-
order does, however, alter the growth exponent. The
growth exponent for linear colony expansion at strong
adhesion are within the margin of error of those obtained
by Huergo et al. in experiments of linear interface expan-
sion of Vero Cells in a gel medium [3]. However, in the
case of the linear interface expansion at weak adhesion
with both high and low disorder, the growth exponent is
different from the one reported by Huergo et al.

At low disorder density and weak adhesion, colony ex-
pansion from a single line showed KPZ-like scaling. This
is in contrast to the situation without disorder [42]. Al-
though, increasing adhesion strength and disorder den-
sity does not affect the local and global roughness expo-
nents, the higher disorder density leads to higher growth
exponents and makes the scaling behavior of this config-
uration unclassified.

The systems with radial growth at both weak and
strong adhesion in media with low disorder density do
not show any scaling universality class behavior. This is
in contrast to the case of weak adhesion strength in the
absence of disorder that displays MBE-like behavior [42].
These results indicate that the concepts of scaling behav-
ior in characterizing cell colony growth should be used

with caution due to sensitivity to parameters such as dis-
order concentration and cell-cell adhesion strengths.

The growth exponents for linear and radial interface
growths differ for both strong and weak cell-cell adhe-
sion. The fractal dimensions for radial interfaces are
lower than the fractal dimensions for linear interfaces,
and the local and global roughness exponents are greater
for the radial interface than for the linear interface. The
substrate topologies for linear and radial colony expan-
sions are different. The radial configuration grows on a
plane, whereas the linear configuration grows on a cylin-
der because of the periodicity in one direction. Both the
plane and the cylinder have the same Gaussian curva-
ture. However, the first homotopy groups of a plane and
a cylinder are different, despite the fact that there is no
local difference between the two. A continuous contrac-
tion to a point is possible for every closed loop in the
plane, but only for some closed loops on the cylinder.

Independent of adhesion strength and geometries stud-
ied here, interface growth in media without quenched
disorder does not belong to the superroughening or
the intrinsic anomalous roughness subclasses reported in
Refs. [23, 55–57, 59, 61]. The average step height expo-
nent, λ, and the modified scaling ansatz for the height-
height correlation function (Eq. 7) [52, 54], are also not
applicable to the type of anomalous behavior in interface
growth in media without quenched disorder. The results
imply the existence of a new type of anomalous behav-
ior, perhaps necessitating a new scaling ansatz for the
interface width scaling relation.
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González, A. E. Bolzán, and A. J. Arvia, Dynamic
scaling analysis of two-dimensional cell colony fronts
in a gel medium: A biological system approaching a
quenched Kardar-Parisi-Zhang universality, Phys. Rev.
E 90, 022706 (2014).

[4] G. Rapin, N. Caballero, I. Gaponenko, B. Ziegler,
A. Rawleigh, E. Moriggi, T. Giamarchi, S. A. Brown,
and P. Paruch, Roughness and dynamics of proliferating
cell fronts as a probe of cell–cell interactions, Sci. Rep.
11, 1 (2021).

[5] J. Galeano, J. Buceta, K. Juarez, B. Pumarino,
J. De La Torre, and J. Iriondo, Dynamical scaling analy-
sis of plant callus growth, Europhys. Lett. 63, 83 (2003).

[6] I. Pastushenko, A. Brisebarre, A. Sifrim, M. Fioramonti,
T. Revenco, S. Boumahdi, A. Van Keymeulen, D. Brown,
V. Moers, S. Lemaire, S. De Clercq, E. Minguijón, C. Bal-

https://doi.org/10.1103/physreve.90.022706
https://doi.org/10.1103/physreve.90.022706
https://doi.org/10.1209/epl/i2003-00481-1


10

sat, Y. Sokolow, C. Dubois, F. De Cock, S. Scozzaro,
F. Sopena, A. Lanas, N. D’Haene, I. Salmon, J.-C. Ma-
rine, T. Voet, P. A. Sotiropoulou, and C. Blanpain, Iden-
tification of the tumour transition states occurring during
EMT, Nature 556, 463 (2018).

[7] S. SenGupta, C. A. Parent, and J. E. Bear, The principles
of directed cell migration, Nat. Rev. Molec. Cell Biol. 22,
1 (2021).

[8] G. Ventura and J. Sedzinski, Emerging concepts on
the mechanical interplay between migrating cells and
microenvironment in vivo, Front. Cell. Dev. Biol. 10,
961460 (2022).

[9] A. Buttenschön and L. Edelstein-Keshet, Bridging from
single to collective cell migration: A review of models and
links to experiments, PLoS Comput. Biol. 16, e1008411
(2020).

[10] I. M. Wortel and J. Textor, Artistoo, a library to build,
share, and explore simulations of cells and tissues in the
web browser, Elife 10, e61288 (2021).

[11] R. Conradin, C. Coreixas, J. Latt, and B. Chopard, Pala-
Cell2D: A framework for detailed tissue morphogenesis,
J. Comput. Sci. 53, 101353 (2021).

[12] J. Li, S. K. Schnyder, M. S. Turner, and R. Yamamoto,
Role of the cell cycle in collective cell dynamics, Phys.
Rev. X 11, 031025 (2021).

[13] A. Larkin and Y. N. Ovchinnikov, Pinning in type II
superconductors, J. Low Temp. Phys. 34, 409 (1979).

[14] L. Balents and M. P. Fisher, Temporal order in dirty
driven periodic media, Phys. Rev. Lett. 75, 4270 (1995).

[15] M. Karttunen, M. Haataja, K. R. Elder, and M. Grant,
Defects, order, and hysteresis in driven charge-density
waves, Phys. Rev. Lett. 83, 3518 (1999).

[16] J. Bouchaud, E. Bouchaud, G. Lapasset, and J. Planes,
Models of fractal cracks, Phys. Rev. Lett. 71, 2240
(1993).

[17] D. S. Fisher, Threshold behavior of charge-density waves
pinned by impurities, Phys. Rev. Lett. 50, 1486 (1983).

[18] M. Kardar, G. Parisi, and Y.-C. Zhang, Dynamic scaling
of growing interfaces, Phys. Rev. Lett. 56, 889 (1986).

[19] F. Costa, M. Campos, and M. da Silva, The universal
growth rate behavior and regime transition in adherent
cell colonies, J. Theor. Biol. 387, 181 (2015).

[20] E. Khain and J. Straetmans, Dynamics of an expanding
cell monolayer, J. Stat. Phys. 184, 1 (2021).

[21] M. Radszuweit, M. Block, J. Hengstler, E. Schöll, and
D. Drasdo, Comparing the growth kinetics of cell pop-
ulations in two and three dimensions, Phys. Rev. E 79,
051907 (2009).
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Generic dynamic scaling in kinetic roughening, Phys.
Rev. Lett. 84, 2199 (2000).

[62] T. Witten Jr and L. M. Sander, Diffusion-limited aggre-
gation, a kinetic critical phenomenon, Phys. Rev. Lett.
47, 1400 (1981).

[63] P. Meakin, Diffusion-controlled cluster formation in 2—6-
dimensional space, Phys. Rev. A 27, 1495 (1983).

[64] E. Ben-Jacob, O. Shochet, A. Tenenbaum, I. Cohen,
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