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Abstract 

Two-dimensional material-based field effect transistors (2DM-FETs) are playing a revolutionary role in electronic devices. 

However, after years of development, no device model can match the Pao-Sah model for standard silicon-based transistors 

in terms of physical accuracy and computational efficiency to support large-scale integrated circuit design. One remaining 

critical obstacle is the contacts of 2DM-FETs. In order to self-consistently include the contact effect in the current model, 

it is necessary to perform self-consistent calculations, which is a fatal flaw for applications that prioritize efficiency. 

Alternatively, to improve efficiency, it is necessary to abandon the self-consistency of the model. Here, we report that the 

Landauer-QFLPS model effectively overcomes the above contradiction, where QFLPS means quasi-Fermi-level phase 

space theory. By connecting the physical pictures of the contact and the intrinsic channel part, we have successfully derived 

a drain-source current formula including the contact effect. To verify the model, we prepared transistors based on two typical 

2DMs, black phosphorus (BP) and molybdenum disulfide (MoS2), the former having ambipolar transport and the latter 

showing electron-dominant unipolar transport. The proposed new formula could describe both 2DM-FETs with Schottky 

or Ohmic contacts. Moreover, compared with traditional methods, the proposed model has the advantages of accuracy and 

efficiency, especially in describing non-monotonic drain conductance characteristics, because the contact effect is self-

consistently and compactly packaged as an exponential term. More importantly, we also examined the model at the circuit 

level. Here, we fabricated a three-bit threshold inverter quantizer circuit based on ambipolar-BP process and experimentally 

demonstrated that the model can accurately predict the circuit performance. This industry-benign 2DM-FET model is 

supposed to be very useful for the development of 2DM-FET-based integrated circuits. 
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Introduction 

Two-dimensional material-based field-effect transistors (2DM-FETs) have attracted significant interest for their potential 

to continue Moore's law [1, 2]. Their atomic thickness and dangling-bond-free interface with gate oxide enable high 

tunability when applied in FET devices [3]. For example, the ambipolar 2DM-FETs, which can transport the electrons and 

holes simultaneously, are extensively reported for a variety of channel materials, such as graphene (Gr) [4], black 

phosphorus (BP) [5], tungsten diselenide (WSe2) [6], and molybdenum ditelluride (MoTe2) [7]. Its conduction modes (hole's 

mode and electron's mode) have opened a brand new way of fabricating highly efficient computational components, which 

could bring bonus for broad applications, including signal processing [8-10], logic operation[11, 12], communication [13], 

hardware-security [14], 2DM-based memory [15] and in-memory computing [16, 17]. To explore the system-level 

applications mentioned above for 2DM-FETs, an experiment-accessible and circuit-deployable physical model that can link 

the lab data and industrial applications is desired by the electronic design automation (EDA) software.  

To this end, computational efficiency and accuracy are equally important. It has been reported that an abnormal nonlinearity 

that is distinct from the traditional models' prediction will arise from the output curves if significant Schottky barriers are 

formed at the source/drain contact [5, 18-20]. Unlike silicon, which can form Ohmic contacts through heavy doping, contacts 

between 2DMs and metals mainly belong to the Schottky category [1]. Due to the contact issue, the models currently 

developed generally make a trade-off between physical accuracy and computational efficiency, which has become a key 

bottleneck in developing 2DM-FETs’ models applicable for EDA tools. Since carriers pass through a series-connection of 

"source contact/channel/drain contact," an appropriate modeling would not describe the contact and the channel flows 

separately, where the former is essentially quantum and the latter remains in the semiclassical or even classical domain in 

most cases. Therefore, to self-consistently describe the channel current, including contact effects, it should be accomplished 

by seamlessly connecting two physical pictures. This is a challenging task, and according to traditional views, it would lead 

to a very complex model. 

The previously reported models, represented by the virtual-source model [21-23] and the Landauer model [24-27], 

completely ignore the drift-diffusion process in the channel. The virtual-source model is an empirical model that affords 

little information regarding transport mechanisms. The Landauer model is considered accurate in describing coherent 

transport at the quantum regime, but it completely ignores the possible carrier scattering inside the channel. Recently 

reported models that simultaneously handle the contacts and channel are still based on the scheme of equivalent circuits. 

One is the equivalent parasitic resistance (EPR) method, which regards the contacts as parasitic nonlinear resistors and 

substitutes them into the circuit to solve the resulting circuit equation [21-23, 28-33]. These equations usually have to be 

iteratively solved, sacrificing the efficiency. The other is the non-self-consistent model, which regards the contact as a 

device in parallel with the channel, calculates their currents separately, and then takes a weighted average as the equivalent 

current [34-36]. Despite its remarkable efficiency, this method is an ad hoc approach that lacks a sound physical foundation. 

Among them, although Ref. [34] attempted to introduce the electrostatic relation of the channel when calculating the 

junction energy bands of the source and drain contacts, a theoretical problem persists that the impact of the contacts on the 

boundary values of the quasi-Fermi levels (QFLs, or "electrochemical potential") was ignored. In other words, the contact 

and the channel are still treated independently in that model, and a "post-processing" had to be performed to splice the 

results, failing to consider the coupling between the contacts and the channel. Other works [37, 38] did incorporate the 
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contact current effect into the FET models, but the time consumption during simulation is a hindrance to their application 

in practical circuit design. 

It turns out that an ideal model solution should comprehensively reflect the transport characteristics of the contacts and 

channel, while maintaining the computational efficiency that is feasible for circuit level simulation. This is an extremely 

difficult task and  fundamentally requires innovative bottom-up theoretical methods. A breakthrough may be expected 

through our recently developed quasi-Fermi level phase space (QFLPS) theory [39], that can be used to describe the intrinsic 

channel very efficiently. This theory rigorously considers the influence of QFL splitting on transport characteristics and 

self-consistently includes channel electrostatics. The present work, signified by “Landauer-QFLPS modeling”, further 

proposes that the Landauer formula describing contact transport can be cogently connected to the QFLPS model describing 

channel transport. A rather surprising conclusion of the work is that the Landauer formula can be written in QFLPS-model 

form augmented by a barrier attenuation factor based on 2D carrier state density, intimately connecting the physics of the 

two regions. With this theoretical result, an efficient expression of the current that does not depend on intermediate variables 

can be derived.  

Based on the established model, three verification sections follow thereby. In “Model verification: BP-FET”, we use BP, a 

typical ambipolar 2DM, as an example, to demonstrate the model’s capability of mastering experimental data. Based on 

standard parameter extraction methods, complete I-V data collected from a dozen of devices have been tested. In “Tape-out 

verification: BP-ATIQ circuit”, we tape out a three-bit ambipolar threshold inverter quantizer (ATIQ) circuit with the 

ambipolar-BP process to demonstrate the model's circuit simulation capability. ATIQ circuit can be used in flash analog-

to-digital converters to reduce chip area and power consumption. Here, the study focuses on predicting and optimizing the 

circuit's performance to demonstrate its value for EDA software. In “Unipolar version: MoS2-FET verification”, we also 

verify the model against an MoS2-based FET, which typically exhibits n-type transport, to show that the coverage of the 

model in unipolar transport as well. 

Recent studies have proposed novel contact technologies that can achieve Ohmic contacts [40-42], but their feasibility for 

industrial production is still an open question due to process-compatibility issues. For example, Bi can suppress the 

generation of metal-induced gap states (MIGS) due to its semi-metallic band dispersion characteristics, resulting in Ohmic 

contacts [42]. However, both Bi and Sn are low-melting-point metals, which are incompatible with back-end-of-line (BEOL) 

processing, hindering the practicality of this technology. 2DM transistors prepared by conventional contact processes with 

large-scale production potential generally exhibit Schottky characteristics. Hence, it is generally eager to model devices by 

combining carrier injection and channel transport [2], and this work would like to fill this gap. 

Landauer-QFLPS modeling 

The Landauer-QFLPS model is constructed as follows. The channel region is divided into three parts: (i) the source-contact 

region [𝑥𝑠, 𝑥𝑠𝑖], (ii) the intrinsic channel [𝑥𝑠𝑖 , 𝑥𝑑𝑖], and (iii) the drain-contact region [𝑥𝑑𝑖, 𝑥𝑑]. With the gate-source voltage 

𝑉𝐺𝑆 and drain-source voltage 𝑉𝐷𝑆 (assuming 𝑉𝐷𝑆> 0 for clarity) applied, the current 𝐼𝐷𝑆 flows from the drain to the source 

(as shown in Fig. 1a) and includes both electron and hole components, i.e., 𝐼𝐷𝑆 = 𝐼𝑒 + 𝐼ℎ. It is assumed that the Schottky 

barrier at the source blocks the injection of electrons into the channel,  but a finite electron flow is present due to the thermal 

effect or tunneling effect, leading to the electron-injection current 𝐼𝑒𝑠 on the [𝑥𝑠, 𝑥𝑠𝑖] interval. At the same time, electron-
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QFL 𝜀𝐹𝑛 drops from 𝜀𝐹𝑠 at 𝑥𝑠 to 𝜀𝐹𝑛𝑖 at 𝑥𝑠𝑖 (as shown by the blue dotted line in Fig. 1b). Similarly, holes overcoming the 

Schottky barrier at the drain generates a hole-injection current 𝐼ℎ𝑑 on the [𝑥𝑑𝑖, 𝑥𝑑], interval and the hole-QFL 𝜀𝐹𝑝’s rising 

from 𝜀𝐹𝑑 at 𝑥𝑑 to 𝜀𝐹𝑝𝑖 at 𝑥𝑑𝑖 (as shown by the red dotted line in Fig. 1b). The energy band profile assumed here can be 

generalized when necessary. The internal QFLs, 𝜀𝐹𝑛𝑖 and 𝜀𝐹𝑝𝑖, are implicitly determined through the conservation laws of 

electron and hole currents, respectively, i.e., 𝐼𝑒𝑠 = 𝐼𝑒 and 𝐼ℎ𝑑 = 𝐼ℎ. Once 𝜀𝐹𝑛𝑖 and 𝜀𝐹𝑝𝑖 are determined, the conservation 

quantities 𝐼𝑒 and 𝐼ℎ (or 𝐼𝑒𝑠 and 𝐼ℎ𝑑) can be calculated, and thus 𝐼𝐷𝑆 can be obtained. However, solving the internal QFLs is 

cumbersome. A central message of this work is that 𝐼𝐷𝑆 can be determined without explicitly finding 𝜀𝐹𝑛𝑖 and 𝜀𝐹𝑝𝑖. Here, 

the intrinsic channel currents 𝐼𝑒 and 𝐼ℎ are already described by the QFLPS model, i.e., the integrals of carrier densities with 

their QFLs’ paths. Therefore, the key proposal is developing QFLPS-model-like forms for the contact currents 𝐼𝑒𝑠 and 𝐼ℎ𝑑, 

which is achieved through some intriguing derivation below. 

 

Fig. 1 | The schematic diagram of the Landauer-QFLPS model principle. a. 2DM-FET device structure and electrical testing schematic; b. Energy 

band diagram of current transport mechanism; c. Source electron transmission energy spectrum model; d. Source electron collective kinetic energy 

spectrum model; e. Drain conductance hole transmission energy spectrum model; f. Drain conductance hole collective kinetic energy spectrum model. 

For simplicity, we here focus on the case for electrons, and the derivation for the holes is similar. As the injection of electrons 

from the source to the channel occurs in an atomically thin space, the relation between the amount of QFL lowering and the 

resulting current 𝐼𝑒𝑠 should be described by the Landauer formula [24] 

𝐼𝑒𝑠 = 𝑊
𝑞

𝜋ℏ
∫ Γ𝑒𝑠(𝜀)𝑀𝑒𝑠(𝜀)[𝑓(𝜀, 𝜀𝐹𝑠) − 𝑓(𝜀, 𝜀𝐹𝑛𝑖)]𝑑𝜀

+∞

−∞

(1) 

where 𝑊 is the channel width, 𝑞 is the elementary charge, and ℏ is reduced Planck constant. Γ𝑒𝑠(𝜀) is the transmission 

energy spectrum of injected electrons at the source, while 𝑀𝑒𝑠(𝜀) is the corresponding density-of-mode (DOM) energy 
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spectrum. Function 𝑓(𝜀, 𝜀𝐹) = (1 + exp (𝜀 − 𝜀𝐹) 𝑘𝑇⁄ )−1 is the Fermi-Dirac distribution function, where 𝑘 represents the 

Boltzmann constant, and 𝑇 represents temperature. 

The transmission energy spectrum Γ𝑒𝑠(𝜀) is modeled considering the following fact: for electron energy higher than the 

source-contact barrier (𝜀 > 𝐸𝑐𝑠, where 𝐸𝑐𝑠 represents the conduction band edge 𝐸𝑐 at 𝑥𝑠 and the Schottky barrier for source 

electrons Φ𝑠𝑏,𝑒𝑠 ≔ 𝐸𝑐𝑠 − 𝜀𝐹𝑠, as shown in Fig. 1b), the thermal emission mechanism dominates, while for electron energy 

lower than the barrier (𝜀 < 𝐸𝑐𝑠), quantum tunneling dominates. This physical picture (Fig. 1c) can be summarized by the 

following equation:  

Γ𝑒𝑠(𝜀) = exp(−2𝛾 + Λ(𝜀 − 𝐸𝑐𝑠 ) Φ𝑡,𝑒𝑠⁄ ) (2) 

where 𝛾 = (2ℏ2𝑞𝜌𝑠 𝑚𝑒
∗𝑚0𝜖𝑠⁄ )−1 2⁄ (𝐸𝑐𝑠 − 𝜀)  is tunneling factor derived from the Wentzel–Kramers–Brillouin (WKB) 

approximation for the tunneling process (Supplementary Note 1). Here, 𝑚0, 𝑚𝑒
∗ , 𝜌𝑠, and 𝜖𝑠 represent the electron mass, 

electron’s relative effective mass, local effective charge density, and dielectric constant, respectively. Λ(⋅) represents the 

ramp function, and Φ𝑡,𝑒𝑠 represents the thermal-emission energy barrier for the injected electrons from the source. 

The DOM function 𝑀𝑒𝑠(𝜀) is given by the formula [25] 

𝑀𝑒𝑠(𝜀) =
𝑔𝑣

𝜋ℎ
√2𝑚𝑒𝑠

∗ 𝑚0𝐾𝑒𝑠(𝜀) (3) 

where 𝑔𝑣 is the valley degeneracy, 𝑚𝑒𝑠
∗  is the relative effective mass of source electrons, and 𝐾𝑒𝑠(𝜀) is the collective energy 

spectrum of electrons, taking into account the energy-level occupancy described by the Maxwell-Boltzmann distribution in 

thermal equilibrium. However, what is of interest is not the thermal equilibrium but the situation where the system is driven 

away from thermal equilibrium by applied 𝑉𝐷𝑆. Therefore, the 𝐾𝑒𝑠(𝜀) spectrum should be modified accordingly to lift the 

collective momentum to a higher level, as shown in Fig. 1d. With this acceleration effect, 𝐾𝑒𝑠(𝜀) is written as 

𝐾𝑒𝑠(𝜀) = 𝐸𝑏,𝑒𝑠 exp (
𝑞𝑉𝐷𝑆

Φ𝑎,𝑒𝑠
)exp (−

𝜀 − 𝜀𝐹𝑠

𝑘𝑇𝑠
) (4) 

where 𝐸𝑏,𝑒𝑠 represents the elemental kinetic energy when 𝑉𝐷𝑆 = 0, and Φ𝑎,𝑒𝑠 represents the acceleration barrier for the 

source electrons, while 𝑇𝑠 represents the temperature of the source contact. Based on Eqs. (2)-(4) and 2D density-of-states 

(DOS) of the channel carriers (introduced in Method), the electron-injection current 𝐼𝑒𝑠 at source contact defined by Eq. (1) 

can be transformed into a QFLPS-like form as (Supplementary Note 1) 

𝐼𝑒𝑠 = exp(−𝜂𝑒𝑠 +
𝑞𝑉𝐷𝑆

Φ𝑎,𝑒𝑠
)

𝑊

𝐿
∫ 𝜇𝑛𝑛

𝜀𝐹𝑠

𝜀𝐹𝑛𝑖

𝑑𝜀𝐹𝑛 (5) 

where 𝜇𝑛 is the electron mobility, 𝑛 is the 2D-electron density, and 𝐿 is the channel length. And, the reciprocal of the pre-

exponential factor of Eq. (5), i.e., exp(𝜂𝑒𝑠 − 𝑞𝑉𝐷𝑆 Φ𝑎,𝑒𝑠⁄ ), is defined as the barrier attenuation factor (BAF) for source 

electrons with 𝜂𝑒𝑠 defined as the contact-current-limiting (CCL) index for source electrons (Supplementary Note 1) and 

shown to be equal to 
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𝜂𝑒𝑠 = ln

[
 
 
 
 

𝑚𝑒
∗ 𝜇𝑛 𝑞⁄

𝐿
√2𝑚𝑒𝑠

∗ 𝐸𝑏,𝑒𝑠

8𝜋2Φ𝑡,𝑒𝑠
exp (−

Φ𝑠𝑏,𝑒𝑠

2𝑘𝑇𝑠
)
]
 
 
 
 

(6) 

The significance of Eq. (5) lies in that we connect the incoherent and coherent transports with the BAF factor. On the one 

hand, the integral of 𝑛 in Eq. (5) represents the QFLPS model describing an incoherent transport and arises by integrating 

the drift-diffusion current along the spatial dimension. On the other hand, 𝐼𝑒𝑠 originates from the coherent transport Eq. (1), 

where the current is given an integral over energy dimension. Therefore, the united form indicates that although the two 

current mechanisms are different, they can be unified in the QFL dimension. During this transformation, the unique carrier 

DOS of 2D materials and the abrupt transmission spectrum near the band edge play a crucial role. 

After the electrons are injected from the source into the channel, the source-injection current 𝐼𝑒𝑠 is converted as the intrinsic-

channel current 𝐼𝑒, which is described by the QFLPS model [39], i.e., the integral of (𝑊 𝐿⁄ )𝜇𝑛𝑛 over the interval [𝜀𝐹𝑑 , 𝜀𝐹𝑛𝑖]. 

Using the electron current conservation condition 𝐼𝑒 = 𝐼𝑒𝑠, the internal QFL 𝜀𝐹𝑛𝑖 can be implicitly eliminated from Eq. (5), 

which leads to the Landauer-QFLPS formula (Supplementary Note 1) 

𝐼𝑒 =
1

1 + exp(𝜂𝑒𝑠 − 𝑞𝑉𝐷𝑆 Φ𝑎,𝑒𝑠⁄ )

𝑊

𝐿
∫ 𝜇𝑛𝑛𝑑𝜀𝐹𝑛

𝜀𝐹𝑠

𝜀𝐹𝑑

(7) 

The pre-factor in Eq. (7) is always less than 1. Hence, it reflects the contact effect included in this model. Apparently, the 

effect becomes more pronounced with greater CCL index 𝜂𝑒𝑠  or the acceleration barrier Φ𝑎,𝑒𝑠 . Therefore, the model 

continuously describes the transition from Schottky to Ohmic contact by varying 𝜂𝑒𝑠  or Φ𝑎,𝑒𝑠  parameters. Since 𝜂𝑒𝑠 

comprehensively incorporates nearly all the model parameters, the following analysis is mainly focused on it.  

Table I Parameter estimations for 𝜂𝑒𝑠 

Quantity Magnitude order 

𝑚𝑒
∗ 10−30 kg 

𝑚𝑒𝑠
∗  10−30 kg 

𝜇𝑛 10−2 m2 V−1 s−1 

𝐿 10−6 m 

Φ𝑡,𝑒𝑠 1 eV 

𝐸𝑏,𝑒𝑠 1  eV 

Basically, 𝜂𝑒𝑠 measures the relative transport capabilities between the intrinsic channel and source contact according to its 

expression Eq. (6), where the numerator actually gives the carrier lifetime 𝜏𝑛 ≔ 𝑚𝑒
∗ 𝜇𝑛 𝑞⁄  due to the intra-band relaxation 

in the channel, while the denominator defines an effective source-contact-electron lifetime 𝜏𝑛,𝑒𝑠 for the source contact. 

Significant contact effect occurs if 𝜏𝑛,𝑒𝑠 is remarkably shorter than 𝜏𝑛. With channel materials fixed, properly choosing the 

contact metal to reduce the barriers Φ𝑡,𝑒𝑠  and Φ𝑠𝑏,𝑒𝑠  or increase 𝐸𝑏,𝑒𝑠  can extend 𝜏𝑛,𝑒𝑠 . The channel length 𝐿  in the 

denominator actually reminds that an appropriate contact is much important in the short-channel device. We can have a 

rough idea for 𝜂𝑒𝑠’s orders of magnitude by estimating the parameters given in Table I. 

With parameters in Table I, we can estimate that 𝜂𝑒𝑠~Φ𝑠𝑏,𝑛 2𝑘𝑇𝑠⁄ , which means that 𝜂𝑒𝑠 will approach 0 if the Schottky 

barrier is lowered to a negligible level. In this case, the pre-factor in Eq. (7) will tend to 1, making the contact effect 
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negligible and consistent with our physical intuition of device behavior. Thus, the above analysis confirms the model's 

validity to a certain degree. 

For holes, the physical pictures drawn above need inverting on the energy dimension. For example, for drain-injection holes’ 

the transmission spectrum Γℎ𝑑(𝜀) (Fig. 1e), hole’s thermal emission mechanism is activated when the energy is lower than 

the valence band maximum, while its quantum tunneling dominates when the energy is higher than it. For 𝐾ℎ𝑑(𝜀), the 

adaptions are similar (Fig. 1f). Hence, the Landauer-QFLPS model formula for holes can be derived as (Supplementary 

Note 2) 

𝐼ℎ =
1

1 + exp(𝜂ℎ𝑑 − 𝑞𝑉𝐷𝑆 Φ𝑎,ℎ𝑑⁄ )

𝑊

𝐿
∫ 𝜇𝑝𝑝𝑑𝜀𝐹𝑝

𝜀𝐹𝑠

𝜀𝐹𝑑

(8) 

where 𝜇𝑝 is the hole mobility, 𝑝 is the 2D-hole density, Φ𝑎,ℎ𝑑 is the acceleration barrier for the drain holes, and 𝜂ℎ𝑑 is the 

hole's CCL index at the drain contact defined as 

𝜂ℎ𝑑 = ln

[
 
 
 
 

𝑚ℎ
∗𝑚0 𝜇𝑝 𝑞⁄

𝐿
√2𝑚ℎ𝑑

∗ 𝑚0𝐸𝑏,ℎ𝑑

8𝜋2Φ𝑡,ℎ𝑑
exp (−

Φ𝑠𝑏,ℎ𝑑

2𝑘𝑇𝑑
)
]
 
 
 
 

(9) 

where 𝑚ℎ
∗  is the relative effective mass of holes, Φ𝑡,ℎ𝑑 is the thermal emission barrier for drain holes, 𝑚ℎ𝑑

∗  is the drain holes’ 

relative effective mass, 𝐸𝑏,ℎ𝑑 is the elemental thermal equilibrium kinetic energy of holes in the drain contact, 𝑇𝑑 is the 

equivalent temperature of the drain contact, and Φ𝑠𝑏,ℎ𝑑 is the corresponding Schottky barrier. 

In a word, the Landauer-QFLPS model gives the total current as 𝐼𝐷𝑆 = 𝐼𝑒 + 𝐼ℎ, where 𝐼𝑒 and 𝐼ℎ are described by Eq. (7) 

and (8), respectively. They distinguish with the intrinsic QFLPS model by the respective pre-factors to describe the contact 

effects at the source and drain. It is worth mentioning that this unique pre-factor eliminates the conductivity divergence that 

occurs in the intrinsic QFLPS model for short-channel limits (𝐿 → 0) and provides a finite value. 

The modeling equations for 2D-carrier densities 𝑛 and 𝑝 have been described in detail in the previous work [39, 43]. For 

the self-consistency of this work, these formulae are included in the Method for reference. The input parameters required 

there include the interface trap densities of electrons and holes, 𝑁𝑖𝑡,𝑒 and 𝑁𝑖𝑡,ℎ, and the thermal activation barrier of the 

channel carrier, Φ𝑡. Other physical parameters, such as the relative effective masses of carriers, 𝑚𝑒
∗  and 𝑚ℎ

∗ , can be found 

in published literature. Therefore, a nine-parameters list {𝜇𝑛, 𝑁𝑖𝑡,𝑒 , 𝜇𝑝, 𝑁𝑖𝑡,ℎ , Φ𝑡 , Φ𝑎,𝑒𝑠, 𝜂𝑒𝑠, Φ𝑎,ℎ𝑑 , 𝜂ℎ𝑑} needs specified. For 

practical ambipolar devices, electrons and holes can share a set of model parameters that characterize the contact effect 

(because ambipolar transport phenomena can hardly be observed if the CCL indices of electrons and holes differ too much), 

and {Φ𝑎,𝑒𝑠, 𝜂𝑒𝑠, Φ𝑎,ℎ𝑑 , 𝜂ℎ𝑑} can be simplified as {Φ𝑎, 𝜂}, so a seven-parameters list {𝜇𝑛, 𝑁𝑖𝑡,𝑒 , 𝜇𝑝, 𝑁𝑖𝑡,ℎ, Φ𝑡 , Φ𝑎 , 𝜂} can be 

used instead. Furthermore, for unipolar devices, such as n-type (p-type) devices, 𝜇𝑝 (𝜇𝑛) can be set to 0, and the remaining 

model variables can be used to describe the electrical characteristics. 

In the ideal case of the model assumptions, all model parameters should be constants. However, physical processes in 

practical devices, such as channel carrier scattering with lattice phonons, carrier-carrier scattering, and Coulomb scattering 
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induced by ionized impurities and defects, result that the mobility is not constant. The local electrical environment should 

influence the ionization degree of interface traps for electrons and holes. As for the conductivity of the contact, it should 

also be regulated by the gate-source voltage, as the gate electric field can affect the barrier height. Based on the above 

analysis, the model parameters should vary with the external bias. Due to the physical processes' complexity, which is 

constrained by experimental conditions and fluctuations in environmental and material properties, it is not easy to 

systematically model them. However, thanks to careful consideration along the 𝑉𝐷𝑆  variation dimension, a simple but 

efficient model parameterization strategy is proposed here, that is, the model parameters are assumed to only depend on 𝑉𝐺𝑆 

and can be approximated by a universal low-rank function. The coefficients of the low-rank function serve as parameters to 

be calibrated by experimental optimization. It has been found that linearized Gaussian wavelet functions [44] are well-suited 

for approximating the low-rank function. Technical details about this part are described in the Method section. 

Model verification: BP-FET 

BP is a classic 2DM platform demonstrating ambipolar current transport [45]. Unlike the transition-metal dichalcogenides 

(TMDs) family, BP can maintain a direct bandgap from the single-layer to the multi-layer range. The bandgap can be tuned 

from 2 eV in the single layer to 0.3 eV in the bulk material, which perfectly bridges the bandgap gap between Gr and TMDs. 

BP with a few-nanometer thickness obtained by mechanical exfoliation typically has a few hundred milli-electron volts 

bandgap and a switch ratio of about 103 at a drain-source bias of 0.1 V [45]. Taking advantage of the ambipolar transport 

characteristics of BP, numerous promising applications have been reported in the literature. 

Here, a batch of BP transistors was experimentally prepared by mechanical exfoliation. The device's optical microscope 

image is shown in Fig. 2a. The device adopts a back-gate structure (BG). The channel part is thermally evaporated with 

electrodes, which can be used as the gate, source, and drain of the transistor, respectively, to apply gate-source voltage 𝑉𝐺𝑆 

and drain-source voltage 𝑉𝐷𝑆. The fabrication process is described in the Method section. Mechanical exfoliation was chosen 

as the film preparation method mainly for two reasons: (i) the preparation process of mechanical exfoliation is simpler and 

faster, which is suitable for BP, a material that is readily oxidized by water vapor and facilitates the preservation of its 

intrinsic properties; (ii) the material obtained by mechanical exfoliation has inherent feature of random dispersion due to 

the uneven external mechanical stress introduced during the tearing and transfer process. Thus, it can provide device data 

with rich performance, which can be used for more harsh model testing. As shown in Fig. 2b, the BP film in the channel 

region was characterized by atomic force microscopy (AFM), and the thickness was determined to be approximately 9 nm 

(±0.7 nm). Transmission electron microscopy (TEM) combined with energy dispersive spectroscopy (EDS) characterizes ~ 

2 nm natural phosphorus oxide (POx) layers existing at the interfaces of BP with Ti- and Al2O3- layers (Supplementary 

Note 4). Hence, the intrinsic BP thickness is around 5-7 nm and is less than the thickness characterized by AFM, which is 

normal for BP [46]. After the device fabrication, Raman spectrum of the channel region was measured (Fig. 2c), which 

displayed three distinct and sharp characteristic peaks, indicating that the BP sample did not experience significant 

degradation during the preparation process. 

We sweep the drain-source voltage 𝑉𝐷𝑆 from 0 to 3 V and the gate-source voltage 𝑉𝐺𝑆 from −3 V to 3 V to test the BP-FETs. 

As the result, 15-sets BP-FETs’ I-V data are collected. The selected voltage’s range covers all possible voltage inputs within 

the power supply voltage 𝑉𝐷𝐷 = 3 V to make a full comparison, i.e., −𝑉𝐷𝐷  <  𝑉𝐺𝑆  <  𝑉𝐷𝐷 and 0 <  𝑉𝐷𝑆 < 𝑉𝐷𝐷. This test 
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setting should be standard for ambipolar-device’s experimental calibrations. However, it was rarely obeyed in practice [47], 

which limits the persuasiveness of the model's accuracy. A relevant cause is that the threshold voltage of the prepared device 

usually falls in a non-standard range, so the test voltage has to be shifted. In contrast, the BP-FETs in this article allows 

performance evaluation in the standard voltage range, and is advantageous for demonstrating the application of the model 

in circuit simulation, as shown in the next section.  

The measured I-V data, their model simulations, and extracted parameters are given in Supplementary Note 5 due to their 

large data-volume. We note that the extracted η parameter exhibits a bell-shaped distribution with the lowest value about 0 

and the highest value approaching 4, while most of devices’ 𝜂 concentrate on 1-3 interval (Fig. 2d). According to our theory, 

the 𝜂 factor measures the degree of contact effect. The extracted distribution means that devices with nearly ideal Ohmic 

contact and devices with significant Schottky contact are rare. Most of devices are in an intermediate stage. Actually, both 

Ohmic and Schottky contacts for 2DM FETs have been experimentally reported [5, 13, 18-20, 38, 48-53]. Experiments 

within similar materials systems can even exhibit both types of devices [6, 49, 54-57], too. Hence, it is essential to consider 

the coexistence of Ohmic and Schottky contacts in modeling practical devices. 

Specifically, the experimental data and their model simulations of three devices with representative η values, Dev#5-6 (with 

the lowest η), Dev#1-2 (with medium η), and Dev#2-3 (with the highest η), are compared and presented. As shown in Fig. 

2e-m, they are the transfer (Fig. 2e-g), output (Fig. 2h-j), and drain conductance (Fig. 2k-m) curves of the three devices, 

respectively. The simulated transfer curves in Fig. 2e-g reflect the matching on the global current range, while the output 

curves (Fig. 2h-j) focus on the matching for the on-state current. Their transfer and output curves show a typical ambipolar 

feature, i.e., the hole current dominates and decreases with increasing 𝑉𝐺𝑆  when 𝑉𝐺𝑆 < 0 , then, the electron current 

dominates and increases with increasing 𝑉𝐺𝑆 when 𝑉𝐺𝑆 > 0. The simulation results show that in the complete voltage range, 

the model simulation results can highly match the experimental test data.  

The drain conductance 𝐺𝐷𝑆 ≔ 𝜕𝐼𝐷𝑆 𝜕𝑉𝐷𝑆⁄  shows significantly different patterns among the devices, especially where the 

electron dominates (roughly when 𝑉𝐺𝑆 > 1.2 V). For example, 𝐺𝐷𝑆 for the typical case of 𝑉𝐺𝑆 = 3 V is studied (Fig. 2k-m). 

The experimental data for the drain conductance curve is obtained from the finite difference approximation (FDA) of the 

discrete data. Due to the inevitable noise signals contained in the experimental signals, the results obtained by FDA method 

will be affected by local fluctuations. Varying FDA’s range can, to some extent, offset the noise’s influence, which leads to 

the error bars in Fig. 2k-m. The device with a smaller η, Dev#5-6, exhibits a decreasing 𝐺𝐷𝑆-trend (Fig. 2k), which indicates 

the intrinsic saturation of the electron-dominated drain current for an Ohmic-contact device (Fig. 2k). In contrast, 𝐺𝐷𝑆 of 

Dev#1-2 and Dev#2-3, undergoes a non-monotonic change (Fig. 2l and Fig. 2m), which is an important feature caused by 

Schottky contact. It can be seen that the model can reproduce all these conductivities well within the error range.  
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Fig. 2 | Experimental Verification --- BP-FETs. a. Optical microscopy images of the prepared devices, with white dashed boxes highlighting the 

channel region used in the device; b and c show the AFM and Raman characterizations, respectively. AFM measurements were done for the colored 

dashed lines in a. Raman was performed for a region pointed by a yellow circle in a; d. The distribution of the model parameter 𝜂 in the device, where 

the color of the block represents the exact value for 𝜂; With the classification in d, three typical-𝜂 devices, Dev#5-6, Dev#1-2, and Dev#2-3, were 

selected, and their transfer (e-g), output (h-j), and 𝑉𝐺𝑆  = 3 V drain conductance (k-m) curves are shown in the figure. 
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Accurate drain conductance is essential for circuit simulation because, as is well known, the gain of a transistor amplifier is 

strongly influenced by the drain conductance (whose inverse is the output impedance). Even the predicted trend would be 

incorrect if the contact effect is not considered correctly. As a comparison, the output and drain conductance characteristics 

of the η device Dev #2-3 with the most pronounced contact effect at 𝑉𝐺𝑆 = 3 V were simulated using the traditional EPR 

method, as shown in Fig. 3. Although the equivalent parasitic resistance 𝑅𝑠𝑑 was scanned over a wide range of values (10 

kΩ ~ 10 MΩ), the trend obtained by EPR was still inconsistent with the experimental results, significantly inferior to the 

Landauer-QFLPS model. As for the drain conductance, the difference between the two is even more apparent: 𝐺𝐷𝑆 predicted 

by EPR, which monotonically decreases with 𝑉𝐷𝑆, is entirely wrong, while Landauer-QFLPS can correctly reproduce the 

single-peak of the 𝐺𝐷𝑆 curve rather than a monotonically changed pattern. 

 

Fig. 3 | Comparison of the Landauer-QFLPS and EPR models. a. Output characteristics; b. drain conductance at 𝑉𝐺𝑆 = 3 V; c. Simulation run time. 

The computer processor information used for testing is Intel(R) Core (TM) i7-10700 CPU (2.90GHz). 

The significant improvement in simulation quality should be attributed to the non-zero BAF. It is worth comparing the 

simulation results of the Landauer-QFLPS model and the EPR model with 𝑅𝑠𝑑 = 10 kΩ in Fig. 3a to illustrate its role. The 

difference between them is most prominent near 𝑉𝐷𝑆  =  0, and as 𝑉𝐷𝑆  increases, the two tend to overlap gradually. In the 

EPR model with such a small resistance, the BAF term is equivalently set to 0, and the electron density excited by the gate 

field gradually decreases as the drain potential increases due to the depletion of the gate-drain field, while the current 

gradually shows a concavely saturated trend due to the increased lateral drain-source field. In the Landauer-QFLPS model 

with a non-zero BAF, a significant contact effect represented by a large BAF near 𝑉𝐷𝑆=0 strongly suppresses the output 

curve. When 𝑉𝐷𝑆 increases to a significant level, the scattering barrier factor is almost no longer affected by 𝑉𝐷𝑆, and the 

trend of the corrected model is consistent with that of the intrinsic model. 

In addition to accuracy, it should be noted that the model's computing efficiency is significantly superior to the EPR method. 

This is crucial since the Landauer-QFLPS model does not require the solution of equations in order to characterize the 

contact effect. By comparing the CPU running time used by a single calculation obtained by averaging cumulative timings, 

as shown in Fig. 3c, it was determined that the former is roughly two orders of magnitude faster than the latter for the 

identical task (calculating the data in Fig. 3a). To guarantee a fair comparison, non-elementary calculations required by EPR 

and Landauer-QFLPS computations employed the identical numerical methodologies. The speed improvement is therefore 

solely attributable to the time saved by not needing to solve the KCL equation. 
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Fig. 4 | Circuit chip design verification: ATIQ circuit. a. Threshold inverter quantizer (TIQ) circuit structure based on conventional CMOS process; 

b. ATIQ circuit structure based on ambipolar-BP process; c. optical microscope image of 3-bit ATIQ chip die, where the surface contact electrode is 

colored with a red-yellow gradient to visually distinguish it from the back gate (pale yellow), and the light green color is the BP thin layer material; d. 

Circuit test signal code table; e. The ideal electrical characteristic curve of the circuit; f-j are the model calibration results of the on-chip BP transistor's 

device output characteristics; k-m are the predicted circuit operating characteristics based on the calibrated model, and the table on the right summarizes 

the predicted boundary code element voltages; n-p and the corresponding actual test results are shown in the table on the right. 
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Overall, the proposed model can satisfactorily match all the experimental measurement data obtained over the entire voltage 

range. In addition, this example revealed that the 𝜂 factor recovered by the model quantitatively reflects varying contact 

effect, emphasizing the model’s benefit in considering the intrinsic channel and contact holistically. 

Tape-out verification: BP-ATIQ circuit 

The previous section demonstrated that the developed Landauer-QFLPS model could achieve customized modeling of 

transistor performance for specific processes. This technique enables the prediction of device performance after circuit 

deployment, which is the basis for chip design using emerging 2DM transistors. Here, an ambipolar threshold inverter 

quantizer (ATIQ), designed theoretically in previous work [39], is chosen as a chip example to test the circuit simulation 

capability of the model. ATIQ can be used as a quantization element in a flash analog-to-digital converter (ADC), which 

has a compact structure and low power consumption advantages by fully utilizing the ambipolar characteristics of 2DMs 

[39]. A simple summary of its principal characteristics is shown in Fig. 4a. The conventional threshold inverter quantizer 

(TIQ) uses a series of inverters with different flip thresholds to quantize the analog input into digital levels [58, 59]. Because 

the quantization process is completed in a single step in parallel, it is the fastest ADC architecture [60]. However, the full 

parallel structure also rapidly increases chip area and dynamic power consumption with increasing quantized bits, thus 

limiting its application. ATIQ employs the physical properties of the BP-FET’s ambipolar transport to strike a balance 

between high speed, compact size, and low power consumption. As shown in Fig. 4b, BP-FETs are stacked in series and 

the output voltage signal is still yielded in parallel, but most of BP-FETs (except the lowest and highest ones) in the series 

is multiplexed during operation since they can work as a p-type or n-type transistor, saving half of the devices compared 

with CMOS-based TIQ. The area savings are even more noteworthy. Previous study [39] has shown that the scaling 

properties of chip area with the number of bits have been compressed from the square law 𝒪(𝒩2) to the quasi-linear law 

𝒪(𝒩 ln𝒩)  by this design, where 𝒩  represents the number of quantization levels. Additionally, dynamic power 

consumption is significantly reduced because all the transistors share the only one current branch drawn from the power 

supply 𝑉𝐷𝐷 . Therefore, the ATIQ circuit is a circuit design example suitable for verifying models and has practical 

application significance. 

The chip fabricated here includes the minimum circuit configuration that can demonstrate the operations of ATIQ, which is 

the two-output-port structure with three BP-FETs, as shown in Fig. 4b. Its ideal voltage transfer curves are shown in Fig. 

4e. Due to the different equivalent networks seen by the two ports, two different code boundary voltages 𝑉cb,1 and 𝑉cb,2 are 

successively generated, thereby realizing a three-bit one-hot-coded quantization. Without a doubt, if the large-area thin film 

preparation method is adopted, the quantization level that can be verified will be higher. Although the mechanical exfoliation 

method is more difficult in preparing the circuit, the advantage is that it can provide a more comprehensive check of the 

model, so this preparation method is still adopted here. 

Based on the ambipolar-BP process, the core circuit unit of the 3-bit ATIQ chip was fabricated in the laboratory. The optical 

microscope photo of the chip is shown in Fig. 4c. A local back-gate (BG) was fabricated as the input port, and three flakes 

of the appropriate thickness (Flake I-III) were transferred to the local gate region. Among them, Flake I has a larger area, 

which allows the fabrication of three BP-FETs, T1a, T1b, and T1c, by sharing a common drain electrode (Port 3) so that 

different BP-FETs can be accessed by choosing the corresponding ports for 𝑉𝐺𝑁𝐷 in subsequent circuit tests. The other two 
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smaller flakes, Flake II and Flake III are used to construct T2 and T3, respectively, where the drain of T2 is connected to the 

source of T3 through Port 5, the source of T2 is connected to Port 3, and the drain of T3 is led out through Port 6 for power 

supply 𝑉𝐷𝐷. The high two-bit devices of the 3-bit ATIQ are fixed to T2 and T3. In contrast, the low-bit device is selected 

among T1a, T1b, and T1c, which are denoted as ATIQ#6-1, ATIQ#6-2, and ATIQ#6-4, respectively. The mapping relationship 

among circuits, devices, and ports on the chip is summarized in the embedded table in Fig. 4c. 

First, the I-V data of the BP-FETs on the chip were measured to calibrate the model. The bias conditions were consistent 

with the previous section. The comparison between the model simulations and the experimental data is shown in Fig. 4f-j 

(parameters are given in Supplementary Note 6). Again, the model can accurately reproduce the experimental results for 

both T1a/b/c and T3, which show negligible contact effect, and for T2, which shows significant contact effects.  

Next, the three 3-bit ATIQ circuits were simulated based on the calibrated model. The test scheme is summarized in Fig. 

4d, and is illustrated as follows. It is assigned that the input analog signal 𝑉in was fed from the local back gate BG, the 

power supply voltage 𝑉𝐷𝐷 was connected to Port 6, and the output voltages 𝑉o,1and 𝑉𝑜,2were measured from Port 3 and Port 

5, respectively. To test ATIQ#6-1, one should connected 𝑉𝐺𝑁𝐷 to Port 1 while floating Port 2 and Port 4; To test ATIQ#6-

2,  one should connected 𝑉𝐺𝑁𝐷 to Port 2 while floating Port 4 and Port 1;  And, to test ATIQ#6-4,  one should connected 

𝑉𝐺𝑁𝐷 to Port 4 while floating Port 1 and Port 2;  The circuit simulation results are shown in Fig. 4k-m, demonstrating that 

the model predicts the three circuits all exhibiting the expected three-value quantization. Based on the simulations, the key 

circuit parameters, the code boundary voltages 𝑉cb,1 and 𝑉cb,2, were extracted, as summarized in the table beside Fig. 4m. 

 

Fig. 5 | Optimizing 3-bit ATIQ circuits based on the Landauer-QFLPS model. a-c are schematics for the width optimizations of the three circuits 

ATIQ#6-1, ATIQ#6-2, and ATIQ#6-4, respectively. d-f are the optimized circuit operating curves. The table on the right summarizes the optimized 

boundary codes. 

The measured data of the circuits are shown in Fig. 4n-p. Comparing with the simulations in Fig. 4k-m, it is evident that 

the model's simulations successfully reproduce the experimental data. The extracted code boundary voltages from the 

experiment show an error within 50 mV compared to the model's extracted results, thus quantitatively verifying the model's 

circuit simulation capability. 
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Fig. 6 | Verification of MoS2 devices. a, Schematic diagram; b, Raman spectrum; (c-e) Comparison of simulated and measured data for the device’s 

transfer, output, and drain conductance characteristics. 

Note that the code boundary voltage of the ATIQ#6-1 configuration is higher than the other two configurations. This can 

be explained by the fact that the lowest transistor T1a of the ATIQ#6-1 has a higher impedance compared to T1b and T1c used 

in the other two circuits, consistent with the fact that T1a has the longest channel (see Fig. 4c).Optimizing the circuit 

performance is an important function of EDA software. Typically, the ideal code distribution should be uniform. That is, 

the overall quantization space is evenly divided. Hence, we should have 𝑉cb,1 =1 V and 𝑉cb,2 =2 V. However, the initial 

boundary codes shown above are lower than these ideal values. Although many model parameters can be adjusted to achieve 

the optimization goal, the most realistic optimization strategy in practical circuit design is still to adjust the channel widths. 

The following calculations show that this is feasible. 

Note that the drain current remains unchanged under overall proportional scaling, so we can fix the scaling factor for one 

device and modify the channel width design of the remaining devices. Since we need to increase the boundary codes, we 

need to increase the conductivity of the pull-up network, so it can be expected that the correction factors for T2 and T3 will 

be greater than 1. Furthermore, due to the physical half-pitch of the process, the allowed width design is not continuous on 

the real axis but can only take some discrete values. Obviously, the larger the device size, the more quasi-continuous the 

values. However, too large dimension will impair the chip area. Now we consider an extreme case, assuming that the original 

device width is already twice the half-pitch, so the acceptable width-amplification factor can only be a multiple of 0.5. 

Under the constraints, the device widths were redesigned using the calibrated model. The results are shown in Fig. 5a-c, 

which indicate the magnification ratio of the new widths relative to the original values. With the new designs, a sufficiently 

uniform code distribution was achieved (Fig. 5d-f), with fluctuations relative to the ideal distribution not exceeding 40 mV. 

VDS = 0.04 V : 0.36 V : 4.0 V VGS = −1.0 V : 0.5 V : 4.0 V

a b

TiN

HfO2

Ti/Pd

Si/SiO2

Ti/Pd
MoS2

VGS VDS

IDS

c d e

A



15 
 

Unipolar version: MoS2-FET verification 

A MoS2-FET device is studied in the following to demonstrate this model for unipolar devices. MoS2 is a typical n-type 2D 

layered semiconductor that has attracted much attention due to its suitable mobility and bandgap. Here, the MoS2 transistors 

[61] were prepared based on back-gate technology for research purposes (Fig. 6a-b). 

The power supply voltage was selected as 4 V. Unlike BP, the MoS2 transistor completely turns off at a negatively higher 

gate-source voltage, so 𝑉𝐺𝑆  here is only measured till −1V. The experimental data for the transfer, output, and drain 

conductance characteristics of the prepared MoS2 transistor are shown in the circular plots in Fig. 6c-e. It can be seen that 

the output characteristics exhibit a significant contact effect, while the corresponding drain conductance curve shows a clear 

single-peak feature. The model extraction results (parameters given in Supplementary Note 7) show that, for unipolar 

devices, the model can still describe the device well and achieve first-order derivative accuracy. 

Conclusion 

This article reports a theoretical model, Landauer-QFLPS model, which combines the contact current with the channel 

current to describe a 2DM-FET. The unique advantage of the Landauer-QFLPS model is manifested in its simulation ability 

to reproduce the non-monotonic drain conductance observed in the experiments. The universality and practicality of the 

model is examined in detail to achieve a full-stack coverage from underlying physics to top-level system applications. The 

Landauer-QFLPS model provides critical support for ending the long-standing situation where no standard model is 

available for 2DM-FETs and will actively promote 2DM transistors as a new electronic device for mature large-scale 

system-level applications. 

Method 

The carrier density model, low-rank approximation formula, and experimental preparation processes are described below. 

Carrier density model 

The electron (𝑛) and hole (𝑝) densities’ functional relations with their QFLs (𝜀𝐹𝑛 and 𝜀𝐹𝑝, respectively) are implicitly 

determined by the electrostatic-statistic relations (ESRs), which comprise three equations given as follows [39]. 

(i) Gauss’s law for the gate-oxide-2DM channel system 

𝑞2(𝑛 − 𝑝) 𝐶𝑜𝑥⁄ + Ψ + 𝑞𝑉𝐺𝑆 = 0 (10) 

where Ψ is the electrostatic energy, and 𝐶𝑜𝑥 = 𝜖𝑟,𝑜𝑥𝜖0 𝑡𝑜𝑥⁄  is the specific gate-oxide capacitance with 𝜖𝑟,𝑜𝑥 as the relative 

permittivity, 𝜖0 as the vacuum permittivity, and 𝑡𝑜𝑥 as the gate-oxide thickness.  

(ii) 2D-electron density 

𝑛 = Φt𝐷𝑒 ln(1 + expΦ𝑡
−1(𝜀𝐹𝑛 − Ψ − Φ𝑛

′ )) (11) 

(iii) 2D-hole density 

𝑝 = Φ𝑡𝐷ℎ ln(1 + expΦ𝑡
−1(Ψ − Φ𝑝

′ − 𝜀𝐹𝑝)) (12) 
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where Φ𝑡  is the effective thermal barrier, 𝐷𝑒(ℎ) = 𝑔
𝑠
𝑔

𝑣
𝑚𝑒(ℎ)

∗ 𝑚0 𝜋ℏ2⁄  is the effective density of states (DOS) for 

conduction (valence) band electrons (holes) with the spin valley degeneracy set as 1 for simplicity. Here, 𝑚𝑒
∗ = 0.15 and 

𝑚ℎ
∗ = 0.14 are used for BP’s simulations. For MoS2, 𝑚𝑒

∗ = 0.45 and 𝑚ℎ
∗ = 0.55 are used. The shifted Fermi potential 

barrier for electrons (Φ𝑛
′ ) and holes (Φ𝑝

′ ) are respectively defined as  

Φ𝑛
′ = Φ𝑛0 − Φ𝑚𝑠 − 𝑞2𝑁𝑓 𝐶𝑜𝑥⁄ + 𝑞2𝑁𝑖𝑡,𝑒 𝐶𝑜𝑥⁄ (13) 

Φ𝑝
′ = Φ𝑝0 + Φ𝑚𝑠 + 𝑞2𝑁𝑓 𝐶𝑜𝑥⁄ + 𝑞2𝑁𝑖𝑡,ℎ 𝐶𝑜𝑥⁄ (14) 

For BP, it is set that equilibrium electron Fermi potential Φ𝑛0 = 0.19 eV, equilibrium hole Fermi potential Φ𝑝0 = 0.20 eV, 

workfunction difference Φ𝑚𝑠 = 0.02 eV, and fixed charged impurity 𝑁𝑓 = 5.03 × 1012 cm-2. 

Efficient algorithms to solve the ESRs defined by Eqs. (10)-(12) and the integrals in Eqs. (7) and (8) have been reported 

by our previous numerical work [43]. Hence, there is no obstacle to planting the model into a standard circuit simulator.  

Low-rank approximation formula 

An 𝑁 -th ( 𝑁 ≥ 2 ) order linearized Gaussian Wavelet (LGW) with 𝜎 -extension on the bounded interval ℬ =

[𝑉𝐺𝑆,𝑚𝑖𝑛, 𝑉𝐺𝑆,𝑚𝑎𝑥] is constructed as follows [44] 

𝐻𝑁,𝜎(𝑉𝐺𝑆) = ∫
1

√2𝜋𝜎
𝑒−(𝑋−𝑉𝐺𝑆)2 2⁄ 𝜎2

ℎ{𝑌𝑖}1≤𝑖≤𝑁

+∞

−∞

(𝑋)𝑑𝑋 (15) 

where ℎ{𝑌𝑖}1≤𝑖≤𝑁(𝑋) represents the linear interpolation function of the control points {𝑋𝑖, 𝑌𝑖}1≤𝑖≤𝑁 located on interval ℬ, 

and the interpolation function value outside the interpolation interval ℬ is set to 0. Although the integral form is employed 

by Eq. (15), the value can be evaluated analytically with the help of the error function (given in Supplementary Note 3), 

which possesses a standard fast algorithm by rational Chebyshev approximations [62]. 

Control points setting 

In principle, both the {𝑋𝑖}1≤𝑖≤𝑁  and {𝑌𝑖}1≤𝑖≤𝑁  coordinates can be selected as optimization variables, but this would 

significantly increase the difficulty of the optimization convergence. Therefore, we evenly distribute the {𝑋𝑖}1≤𝑖≤𝑁 

coordinates on the interpolation interval ℬ and leave only the {𝑌𝑖}1≤𝑖≤𝑁 coordinates as optimization variables. 

Rank optimization 

In principle, the higher the value of 𝑁, the more accurate the approximation. However, due to considerations of convergence 

cost, we limit 𝑁 to be less than or equal to 3 in this case. 

Boundary effect 

We employed the odd-extension technique in the computation here to suppress the well-known boundary effects [63]. 

Fabrication process 

BP-FET 

First, deposit a 35 nm Pd/3.5 nm Ti metal stack as a buried gate electrode on a 300 nm SiO2 substrate. Then, by atomic layer 

deposit (ALD), a 20 nm Al2O3 dielectric layer was prepared. Next, use a mechanical exfoliation process to peel BP from 
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the bulk material into thin layers and transfer it onto the prepared buried gate substrate using a dry transfer method. Next, a 

3.5 nm Ti/35 nm drain-source electrode stack was defined using electron beam lithography. Finally, a 20 nm Al2O3 

passivation layer was encapsulated to protect the BP channel. 

MoS2-FET 

First, we sputtered a 10 nm TiN electrode onto a 300 nm SiO2 substrate and left a predefined pattern with a lift-off process. 

Next, a 15 nm HfO2 dielectric layer was deposited with ALD as the gate insulator, followed by a spin-coating process to 

deposit a uniform layer of MoS2 nanosheet [61]. Heat the sample in an N2 atmosphere for 1 hour at 300 ℃. Finally, we used 

electron beam evaporation to deposit source/drain Ti/Pd electrodes. 
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Supplementary Note 1 | Landauer-QFLPS formula derivation: electrons flow 
Based on the Landauer formula, the electron flow injected from the source junction is written as 

𝐼𝑒𝑠 = 𝑊
𝑞

𝜋ℏ
∫ Γ𝑒𝑠(𝜀)𝑀𝑒𝑠(𝜀)[𝑓(𝜀, 𝜀𝐹𝑠) − 𝑓(𝜀, 𝜀𝐹𝑛𝑖)]𝑑𝜀
+∞

−∞

(𝑆1) 

where 𝜀𝐹𝑛𝑖 and 𝜀𝐹𝑠 label the Fermi levels of the intrinsic channel point and the source electrode, respectively. The Fermi-

Dirac distribution function is defined as 

𝑓(𝜀, 𝜀𝐹) =
1

1 + exp (
𝜀 − 𝜀𝐹
𝑘𝑇

)
(𝑆2) 

where 𝑘  and 𝑇  denotes the Boltzmann constant and the temperature, respectively. The modeling for the transmission 

function Γ𝑒𝑠(𝜀) and the effective density of mode (DOM) function 𝑀𝑒𝑠(𝜀) are given as follows. 

A. transmission function Γ𝑒𝑠(𝜀) 

The transmission rate function Γ𝑒𝑠(𝜀) considers two kinds of transport mechanism: (i) quantum propagation rate that 

happens on the global energy scale, and (ii) thermal emission rate that occurs only when the energy is higher than the 

conduction band minimum 𝜀 > 𝐸𝑐𝑠; 

For quantum propagation rate, WKB approximation (𝜀 < 𝐸𝑐𝑠) gives that  

Γ𝑒𝑠(𝜀) = exp(−2𝛾) (𝑆3) 

where the 𝛾 factor is calculated as 

𝛾(𝜀) = ±∫
1

ℏ
√|2𝑚𝑒

∗𝑚0(𝐸𝑐(𝑥) − 𝜀)|
𝑎

0

𝑑𝑥 (𝑆4) 

where 𝐸𝑐(𝑥) represents the energy profile function and 𝑎 denotes the endpoint of the propagation path at the energy level 𝜀 

so that 𝐸𝑐(𝑎) = 𝜀 and 𝐸𝑐(0) = 𝐸𝑐𝑠. Energy band profile 𝜀𝑐(𝑥) can be determined with Poisson’s equation as a parabolic 

solution as 

𝐸𝑐(𝑥) = 𝜀 +
𝑞𝜌𝑠
𝜖𝑠
(𝑥 − 𝑎)2 (𝑆5) 

Substituting the expression into 𝛾(𝜀), one obtains that 

𝛾(𝜀) =
1

ℏ

𝐸𝑐𝑠 − 𝜀

√2𝑞𝜌𝑠 𝑚𝑒
∗𝑚0𝜖𝑠⁄

(𝑆6) 

For 𝜀 > 𝐸𝑐𝑠, the transmission rate is enhanced by the thermal emission mechanism as 

Γ𝑒𝑠(𝜀) = exp(−2𝛾 + (𝜀 − 𝐸𝑐𝑠 ) Φ𝑡,𝑒𝑠⁄ ) (𝑆7) 

where Φ𝑡,𝑒𝑠 is the thermal emission barrier. 

B. density of modes (DOM) function 𝑀𝑒𝑠(𝜀) 

The DOM function is defined as 

𝑀𝑒𝑠(𝜀) =
𝑔𝑣
𝜋ℎ
√2𝑚𝑒𝑠

∗ 𝑚0𝐾𝑒𝑠(𝜀) (𝑆8) 

where 𝑔𝑣 is the valley degeneracy, 𝑚𝑒𝑠
∗  is the relative effective mass for the electrons in the source metal, and 𝐾𝑒𝑠(𝜀) is the 

collective kinectic energy of the source electron defined as 
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𝐾𝑒𝑠(𝜀) = 𝐸𝑏,𝑒𝑠 exp (−
𝜀 − 𝜀𝐹𝑠
𝑘𝑇𝑠

) exp (
𝑞𝑉𝐷𝑆
Φ𝑎,𝑒𝑠

) (𝑆9) 

where 𝐸𝑏,𝑒𝑠 is the elemental thermal kinectic energy for electron in the source metal, 𝑇𝑠 is the effectively local temperature 

for the source junction, and Φ𝑎,𝑒𝑠 is the acceleration barrier for the electrons injected from the source junction. 

C. Formulization of 𝐼𝑒𝑠 

Given the definitions for Γ𝑒𝑠(𝜀) (Eq. (𝑆3) and (𝑆7)) and 𝑀𝑒𝑠(𝜀) (Eq. (𝑆8)), one can introduce an index function 𝐴(𝜀) to 

simply the calculation so that 

Γ𝑒𝑠(𝜀)𝑀𝑒𝑠(𝜀) = 𝑒
𝐴(𝜀)[m−1] (𝑆10) 

which leads to the explicit expressions for 𝐴(𝜀) as 

𝐴(𝜀) =

{
 

 −2𝛾 +
𝜀 − 𝐸𝑐𝑠 

𝛷𝑡,𝑒𝑠
−
𝜀 − 𝜀𝐹𝑠
2𝑘𝑇𝑠

+ ln𝑀𝑒𝑠(𝜀𝐹𝑠) 𝜀 ≥ 𝐸𝑐𝑠,

−2𝛾 −
𝜀 − 𝜀𝐹𝑠
2𝑘𝑇𝑠

+ ln𝑀𝑒𝑠(𝜀𝐹𝑠) 𝜀 < 𝐸𝑐𝑠,

(𝑆11) 

With the aid of 𝐴(𝜀), one can go further to simplify the 𝐼𝑒𝑠 in Eq. (𝑆1) as 

𝐼𝑒𝑠 = 𝑊
𝑞

𝜋ℏ
∫ 𝑒𝐴(𝜀)[𝑓(𝜀, 𝜀𝐹𝑠) − 𝑓(𝜀, 𝜀𝐹𝑛𝑖)]𝑑𝜀
+∞

−∞

(𝑆12) 

Re-write the Fermi window in the square bracket as the integral of the derivative as 

𝑓(𝜀, 𝜀𝐹𝑠) − 𝑓(𝜀, 𝜀𝐹𝑛𝑖) = ∫
𝜕

𝜕𝜀𝐹
𝑓(𝜀, 𝜀𝐹)

𝜀𝐹𝑠

𝜀𝐹𝑛𝑖

𝑑𝜀𝐹 (𝑆13) 

Since the 2D electron density 𝑛 is proportional to the integral of the 𝑓 as 

𝑛(𝐸𝑐 , 𝜀𝐹) = ∫ 𝐷𝑒𝑓(𝜀, 𝜀𝐹)
+∞

𝐸𝑐

𝑑𝜀 (𝑆14) 

where 𝐷𝑒 = 𝑔𝑠𝑔𝑣𝑚𝑒
∗𝑚0 𝜋ℏ2⁄  is the density of states for conduction band electrons in the channel semiconductor with the 

spin valley degeneracy set as 1, distribution function 𝑓 can be expressed by the partial derivative of 𝑛 as 

𝑓(𝜀, 𝜀𝐹) =
1

𝐷𝑒

𝜕

𝜕𝜀𝐹
𝑛(𝜀, 𝜀𝐹) (𝑆15) 

and an useful identity holds as 

𝜕

𝜕𝜀𝐹
𝑓(𝜀, 𝜀𝐹) = −

𝜕

𝜕𝜀
𝑓(𝜀, 𝜀𝐹) (𝑆16) 

Next, substituting Eq. (𝑆13) into Eq. (𝑆12) and interchange the order of integrals, one obtains  

𝐼𝑒𝑠 = 𝑊
𝑞

𝜋ℏ

1

𝐷𝑒
∫ {∫ 𝑒𝐴(𝜀)

+∞

−∞

𝜕

𝜕𝜀𝐹
𝑓(𝜀, 𝜀𝐹)𝑑𝜀}

𝜀𝐹𝑠

𝜀𝐹𝑛𝑖

𝑑𝜀𝐹 (𝑆17) 

Using properties (𝑆15) and (𝑆16), one has 

𝐼𝑒𝑠 = 𝑊
𝑞

𝜋ℏ

1

𝐷𝑒
∫ {∫ 𝑒𝐴(𝜀)

+∞

−∞

𝜕2

𝜕𝜀2
𝑛(𝜀, 𝜀𝐹)𝑑𝜀}

𝜀𝐹𝑠

𝜀𝐹𝑛𝑖

𝑑𝜀𝐹 (𝑆18) 

Integrating by parts for the inner bracket integral yields 
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𝐼𝑒𝑠 = 𝑊
𝑞

𝜋ℏ

1

𝐷𝑒
∫ {∫ 𝑛(𝜀, 𝜀𝐹)

+∞

−∞

[𝐴′′(𝜀) + 𝐴′(𝜀)2]𝑒𝐴(𝜀)𝑑𝜀}
𝜀𝐹𝑠

𝜀𝐹𝑛𝑖

𝑑𝜀𝐹 (𝑆19) 

Since a leap of the derivative arises for 𝐴(𝜀) (c.f. Eq. (𝑆11)), 𝐴′′(𝜀) yields a Dirac delta function as 

𝐴′′(𝜀) =
1

Φ𝑡,𝑒𝑠
𝛿(𝜀 − 𝐸𝑐𝑠) (𝑆20) 

Hence, by neglecting the first-order derivative of 𝐴(𝜀), one arrives at 

𝐼𝑒𝑠 = 𝑊
𝑞

𝜋ℏ

1

𝐷𝑒
∫ 𝑛(𝐸𝑐𝑠, 𝜀𝐹)

1

Φ𝑡,𝑒𝑠
𝑒𝐴(𝐸𝑐𝑠)

𝜀𝐹𝑠

𝜀𝐹𝑛𝑖

𝑑𝜀𝐹 (𝑆21) 

With the definition of 𝐴(𝜀) and noting that 𝐸𝑐𝑠 − 𝜀𝐹𝑠 = Φ𝑠𝑏,𝑒𝑠, one further obtains 

𝐼𝑒𝑠 = 𝑊
𝑞

𝜋ℏ

1

𝐷𝑒

1

Φ𝑡,𝑒𝑠
𝑀𝑒𝑠(𝜀𝐹𝑠) exp (−

Φ𝑠𝑏,𝑒𝑠
2𝑘𝑇𝑠

)∫ 𝑛(𝐸𝑐𝑠, 𝜀𝐹)
𝜀𝐹𝑠

𝜀𝐹𝑛𝑖

𝑑𝜀𝐹 (𝑆22) 

By gathering the coefficients, it can be written as 

𝐼𝑒𝑠 = 𝑒
−𝜂𝑒𝑠+

𝑞𝑉𝐷𝑆
Φ𝑎,𝑒𝑠

𝑊

𝐿
∫ 𝜇𝑛𝑛
𝜀𝐹𝑠

𝜀𝐹𝑛𝑖

𝑑𝜀𝐹 (𝑆23) 

where approximation 𝑛(𝐸𝑐𝑠, 𝜀𝐹) ≈ 𝑛(𝐸𝑐 , 𝜀𝐹) has been made, and the index 𝜂𝑒𝑠 is defined as 

𝜂𝑒𝑠 = ln

[
 
 
 
 

𝑚𝑒
∗𝑚0 𝜇𝑛 𝑞⁄

𝐿
√2𝑚𝑒𝑠

∗ 𝑚0𝐸𝑏,𝑒𝑠
8𝜋2Φ𝑡,𝑒𝑠

exp (−
Φ𝑠𝑏,𝑒𝑠
2𝑘𝑇𝑠

)
]
 
 
 
 

(𝑆24) 

Combining with the QEA-model for 𝐼𝑒 as 

𝐼𝑒 =
𝑊

𝐿
∫ 𝜇𝑛𝑛
𝜀𝐹𝑛𝑖

𝜀𝐹𝑑

𝑑𝜀𝐹 =
𝑊

𝐿
∫ 𝜇𝑛𝑛
𝜀𝐹𝑠

𝜀𝐹𝑑

𝑑𝜀𝐹 −∫ 𝜇𝑛𝑛
𝜀𝐹𝑠

𝜀𝐹𝑛𝑖

𝑑𝜀𝐹 (𝑆25) 

one can obtain the final result for 𝐼𝑒 by substituting the second integral in Eq. (𝑆25) with Eq. (𝑆23). 
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Supplementary Note 2 | Landauer-QFLPS formula derivation: holes flow 
Based on the Landau formula, the hole flow injected from drain junction is written as 

𝐼ℎ𝑑 = 𝑊
𝑞

𝜋ℏ
∫ Γℎ𝑑(𝜀)𝑀ℎ𝑑(𝜀)[𝑓(𝜀, 𝜀𝐹𝑝𝑖) − 𝑓(𝜀, 𝜀𝐹𝑑)]𝑑𝜀
+∞

−∞

(𝑆26) 

where 𝜀𝐹𝑝𝑖 and 𝜀𝐹𝑑 label the Fermi levels of the intrinsic channel point and the drain electrode, respectively. The Fermi-

Dirac distribution function is defined as 

𝑓(𝜀, 𝜀𝐹) =
1

1 + exp (
𝜀 − 𝜀𝐹
𝑘𝑇

)
(𝑆27) 

where 𝑘  and 𝑇  denotes the Boltzmann constant and the temperature, respectively. The modeling for the transmission 

function Γℎ𝑑(𝜀) and the density of mode (DOM) function 𝑀ℎ𝑑(𝜀) are given as follows. 

A. transmission function Γℎ𝑑(𝜀) 

The transmission rate function Γℎ𝑑(𝜀) considers two kinds of transport mechanism: (i) quantum propagation rate that 

happens on the global energy scale, and (ii) thermal emission rate that occurs only when the energy is lower than the valence 

band maximum 𝜀 < 𝐸𝑣𝑑; 

For quantum propagation rate, WKB approximation (𝜀 > 𝐸𝑣𝑑) gives that  

Γℎ𝑑(𝜀) = exp(−2𝛾) (𝑆28) 

where the 𝛾 factor is calculated as 

𝛾(𝜀) = ±∫
1

ℏ
√|2𝑚ℎ

∗𝑚0(𝐸𝑣(𝑥) − 𝜀)|
𝑎

0

𝑑𝑥 (𝑆29) 

where 𝐸𝑣(𝑥) represents the valence band energy profile function and 𝑎 denotes the endpoint of the propagation path at the 

energy level 𝜀 so that 𝐸𝑣(𝑎) = 𝜀 and 𝐸𝑣(0) = 𝐸𝑣𝑑. Energy band profile 𝐸𝑣(𝑥) is described with a parabolic function as 

𝐸𝑣(𝑥) = 𝜀 −
𝑞𝜌𝑠
𝜖𝑠
(𝑥 − 𝑎)2 (𝑆30) 

Substituting the expression into 𝛾(𝜀), one obtains that 

𝛾(𝜀) =
1

ℏ

−𝐸𝑣𝑑 + 𝜀

√2𝑞𝜌𝑠 𝑚ℎ
∗𝑚0𝜖𝑠⁄

(𝑆31) 

For 𝜀 < 𝐸𝑣𝑑, the transmission rate is enhanced by the thermal emission mechanism as 

Γℎ𝑑(𝜀) = exp(−2𝛾 + (−𝜀 + 𝐸𝑣𝑑) Φ𝑡,ℎ𝑑⁄ ) (𝑆32) 

where Φ𝑡,ℎ𝑑 is the thermal emission barrier. 

B. density of modes (DOM) function 𝑀ℎ𝑑(𝜀) 

The DOM function is determined by the conservation law as 

𝑀ℎ𝑑(𝜀) =
𝑔𝑣
𝜋ℎ
√2𝑚ℎ𝑑

∗ 𝑚0𝐾ℎ𝑑(𝜀) (𝑆33) 

where 𝑔𝑣 is the valley degeneracy, 𝑚ℎ𝑑
∗  is the relative effective mass for the electrons in the source metal, and 𝐾ℎ𝑑(𝜀) is 

the collective kinectic energy of the source electron defined as 

𝐾ℎ𝑑(𝜀) = 𝐸𝑏,ℎ𝑑 exp (
𝜀 − 𝜀𝐹𝑑
𝑘𝑇𝑑

) exp (
𝑞𝑉𝐷𝑆
Φ𝑎,ℎ𝑑

) (𝑆34) 
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where 𝐸𝑏,ℎ𝑑 is the elemental thermal kinetic energy for hole in the drain metal, 𝑇𝑑 is the effectively local temperature for 

the drain metal, and Φ𝑎,ℎ𝑑 is the acceleration barrier for the holes injected from the drain junction. 

C. Formulization of 𝐼ℎ𝑑 

Given the definitions for Γℎ𝑑(𝜀) and 𝑀ℎ𝑑(𝜀), one can introduce an index function 𝐴(𝜀) to simply the calculation so that 

Γℎ𝑑(𝜀)𝑀ℎ𝑑(𝜀) = 𝑒
𝐴(𝜀) [m−1] (𝑆35) 

which leads to the explicit expressions for 𝐴(𝜀) as 

𝐴(𝜀) =

{
 

 −2𝛾 +
−𝜀 + 𝐸𝑣𝑑
Φ𝑡,ℎ𝑑

+
𝜀 − 𝜀𝐹𝑑
2𝑘𝑇𝑑

+ ln𝑀ℎ𝑑(𝜀𝐹𝑑) −𝜀 ≥ −𝐸𝑣𝑑

−2𝛾 +
𝜀 − 𝜀𝐹𝑑
2𝑘𝑇𝑑

+ ln𝑀ℎ𝑑(𝜀𝐹𝑑) −𝜀 < −𝐸𝑣𝑑

(𝑆36) 

With the aid of 𝐴(𝜀), one can go further to simplify the 𝐼ℎ𝑑 in Eq. (𝑆1) as 

𝐼ℎ𝑑 = 𝑊
𝑞

𝜋ℏ
∫ 𝑒𝐴(𝜀)[𝑓(𝜀, 𝜀𝐹𝑝𝑖) − 𝑓(𝜀, 𝜀𝐹𝑑)]𝑑𝜀
+∞

−∞

(𝑆37) 

Re-write the Fermi window in the square bracket as the integral of the derivative as 

𝑓(𝜀, 𝜀𝐹𝑝𝑖) − 𝑓(𝜀, 𝜀𝐹𝑑) = ∫
𝜕

𝜕𝜀𝐹
𝑓(𝜀, 𝜀𝐹)

𝜀𝐹𝑝𝑖

𝜀𝐹𝑑

𝑑𝜀𝐹 (𝑆38) 

Since the 2D hole density 𝑝 formally is proportional to the integral of the 𝑓 as 

𝑝(𝐸𝑣 , 𝜀𝐹) = ∫ 𝐷ℎ𝑓(−𝜀,−𝜀𝐹)
𝐸𝑣

−∞

𝑑𝜀 (𝑆39) 

where 𝐷ℎ = 𝑔𝑠𝑔𝑣𝑚ℎ
∗𝑚0 𝜋ℏ2⁄  is the density of states for valence band holes in the channel semiconductor with the spin 

valley degeneracy set as 1, distribution function 𝑓 can be expressed by the partial derivative of 𝑝 as 

𝑓(−𝜀,−𝜀𝐹) =
1

𝐷ℎ

𝜕

𝜕𝜀
𝑝(𝜀, 𝜀𝐹) (𝑆40) 

and an useful identity holds as 

𝜕

𝜕𝜀𝐹
𝑓(𝜀, 𝜀𝐹) = −

𝜕

𝜕𝜀𝐹
𝑓(−𝜀,−𝜀𝐹) =

𝜕

𝜕𝜀
𝑓(−𝜀,−𝜀𝐹) (𝑆41) 

Next, similarly, one obtains  

𝐼ℎ𝑑 = 𝑊
𝑞

𝜋ℏ
∫ {∫ 𝑒𝐴(𝜀)

+∞

−∞

𝜕

𝜕𝜀𝐹
𝑓(𝜀, 𝜀𝐹)𝑑𝜀}

𝜀𝐹𝑝𝑖

𝜀𝐹𝑑

𝑑𝜀𝐹 (𝑆42) 

followed by 

𝐼ℎ𝑑 = 𝑊
𝑞

𝜋ℏ

1

𝐷ℎ
∫ {∫ 𝑒𝐴(𝜀)

+∞

−∞

𝜕2

𝜕𝜀2
𝑝(𝜀, 𝜀𝐹)𝑑𝜀}

𝜀𝐹𝑝𝑖

𝜀𝐹𝑑

𝑑𝜀𝐹 (𝑆43) 

Integrating by parts for the inner bracket integral yields 

𝐼ℎ𝑑 = 𝑊
𝑞

𝜋ℏ

1

𝐷ℎ
∫ {∫ 𝑝(𝜀, 𝜀𝐹)

+∞

−∞

[𝐴′′(𝜀) + 𝐴′(𝜀)2]𝑒𝐴(𝜀)𝑑𝜀}
𝜀𝐹𝑝𝑖

𝜀𝐹𝑑

𝑑𝜀𝐹 (𝑆44) 

Since a jump of the derivative arises for 𝐴(𝜀) in this section, 𝐴′′(𝜀) yields a Dirac delta function as 
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𝐴′′(𝜀) =
1

Φ𝑡,ℎ𝑑
𝛿(−𝜀 + 𝐸𝑣𝑑) =

1

Φ𝑡,ℎ𝑑
𝛿(𝜀 − 𝐸𝑣𝑑) (𝑆45) 

Hence, by neglecting the first-order derivative of 𝐴(𝜀), one arrives at 

𝐼ℎ𝑑 = 𝑊
𝑞

𝜋ℏ

1

𝐷ℎ
∫ 𝑝(𝐸𝑣𝑑 , 𝜀𝐹)

1

Φ𝑡,ℎ𝑑
𝑒𝐴(𝐸𝑣𝑑)

𝜀𝐹𝑝𝑖

𝜀𝐹𝑑

𝑑𝜀𝐹 (𝑆46) 

With the definition of 𝐴(𝜀) and noting that 𝐸𝑣𝑑 − 𝜀𝐹𝑑 = −Φ𝑠𝑏,ℎ𝑑, one further obtains 

𝐼ℎ𝑑 = 𝑊
𝑞

𝜋ℏ

1

𝐷ℎ

1

Φ𝑡,ℎ𝑑
𝑀ℎ𝑑(𝜀𝐹𝑠) exp (−

Φ𝑠𝑏,ℎ𝑑
2𝑘𝑇𝑑

)∫ 𝑝(𝐸𝑣𝑑 , 𝜀𝐹)
𝜀𝐹𝑝𝑖

𝜀𝐹𝑑

𝑑𝜀𝐹 (𝑆47) 

By gathering the coefficients, it can be written as 

𝐼ℎ𝑑 = 𝑒
−𝜂ℎ𝑑+

𝑞𝑉𝐷𝑆
Φ𝑎,ℎ𝑑

𝑊

𝐿
∫ 𝜇𝑝𝑝
𝜀𝐹𝑝𝑖

𝜀𝐹𝑑

𝑑𝜀𝐹 (𝑆48) 

where  

𝜂ℎ𝑑 = ln

[
 
 
 
 

𝑚ℎ
∗𝑚0 𝜇𝑝 𝑞⁄

𝐿
√2𝑚ℎ𝑑

∗ 𝑚0𝐸𝑏,ℎ𝑑
8𝜋2Φ𝑡,ℎ𝑑

exp (−
Φ𝑠𝑏,ℎ𝑑
2𝑘𝑇𝑑

)
]
 
 
 
 

(𝑆49) 

Combining with the QEA-model for 𝐼ℎ as 

𝐼ℎ =
𝑊

𝐿
∫ 𝜇𝑝𝑝
𝜀𝐹𝑠

𝜀𝐹𝑝𝑖

𝑑𝜀𝐹 =
𝑊

𝐿
∫ 𝜇𝑝𝑝
𝜀𝐹𝑠

𝜀𝐹𝑑

𝑑𝜀𝐹 −∫ 𝜇𝑝𝑝
𝜀𝐹𝑝𝑖

𝜀𝐹𝑑

𝑑𝜀𝐹 (𝑆50) 

one can obtain the final result for 𝐼ℎ by substituting the second integral above with Eq. (𝑆48). 
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Supplementary Note 3 | Linearized-Gaussian control function 
Define the control set for model variables 𝛼 ∈ {𝜇𝑛, 𝑁𝑡𝑟𝑝,𝑒 , 𝜇𝑝, 𝑁𝑡𝑟𝑝,ℎ, Φ𝑡 , 𝜑𝑎 , Φ𝑎}, where 𝜑𝑎 ≔ 𝜂 ∙ Φ𝑎 , on gate-source 

voltage interval [−3,3] 

𝑌𝛼 = {(𝑣𝑖, 𝑦𝑖)|1 ≤ 𝑖 ≤ 𝑁} (𝑆51) 

where 𝑣𝑖 is the 𝑁-division points of [−3,3]. 𝑌𝛼 set is augmented by bilateral inversion operation to obtain its closure 𝑌𝛼̅ to 

suppress the boundary effect. The 𝑌𝛼 set for all devices are listed in Table SI. 

The 𝑁-points control set generates the linearized-Gaussian wavelet control function as 

𝐻𝑁,𝜎(𝑉𝐺𝑆)(𝑣) = ∑
1

2
𝑧𝑖(𝑣)[erf(𝑢𝑖+1) − erf(𝑢𝑖)]

𝑦𝑖∈𝑌𝛼̅

+
𝜉𝑖𝜎

√2𝜋
[exp(−𝑢𝑖

2) − exp(−𝑢𝑖+1
2 )] (𝑆52) 

where erf(·) is the error function with 𝜉𝑖 = (𝑦𝑖+1 − 𝑦𝑖) (𝑣𝑖+1 − 𝑣𝑖)⁄ , 𝑧𝑖 = 𝑦𝑖 + 𝜉𝑖(𝑣 − 𝑣𝑖), and 𝑢𝑖 = (𝑣𝑖 − 𝑣) 2𝜎⁄ . The 

control function is linear with the control set, and is a quasi-affine transform of the control set. Only small control sets are 

required (𝑁 = 2, 3), hence model efficiency is kept.  
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Supplementary Note 4 | TEM and EDS characterizations for the BP-FET devices 
TEM analysis is performed for the cross-section of the BP-FET devices used in main text, as indicated in Fig. S1. 

 

Fig. S1 The cut-line (blue dashed line) for TEM analysis 

TEM graphs for the defined cross-section are shown in Fig. S2. The gray scale graphs in Fig. S2 exhibit the vertical 

structures of Pd/Ti/BP/Al2O3/Pd stacked layers under six electrodes labelled in Fig. S1, respectively. The 9-nm BP (as 

measured by AFM in the main text) contains 2-nm around POx (varying from 1.3 nm to 2.4 nm as shown in Fig. S2). 

 

Fig. S2 Cross-section view of the BP-FET devices at 5-nm scale. Subplots a-f correspond to the electrodes 1-6. 

To confirm the element species, we performed the EDS mapping for the stacked layers, as shown in Fig. S3 and Fig. S4. It 

shows that oxygen exists at the interfaces of BP with Ti- and Pd- layers. 
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Fig. S3 EDS mapping images 
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Fig. S4  EDS mapping spectrum 
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Supplementary Note 5 | BP-FET parameter library and I-V benchmark plots 
 

Table SI  Model parameters library for simulations of the BP-FETs 

 𝑌𝜇𝑛 𝑌𝑁𝑖𝑡,𝑒 𝑌𝜇𝑝 𝑌𝑁𝑖𝑡,ℎ 𝑌Φ𝑡 𝑌𝜑𝑎 𝑌Φ𝑎 𝜎𝑠 
 (cm2V-1s-1) (cm-2) (cm2V-1s-1) (cm-2) (eV) (eV) (eV) (V) 

Dev#1-2 
        

        

1 6.00E+00 2.09E+13 1.34E+02 5.81E+12 3.62E-01 1.01E+00 5.68E-01 7.40E-01 

2 2.93E+00 7.72E+12 4.00E+02 9.89E+12 5.27E-01 2.09E+00 7.20E-01 * 

3 * * * * 3.85E-01 7.00E-01 5.66E-01 * 

Dev#2-3 
        

        

1 6.01E+00 1.94E+13 8.77E+01 5.81E+12 4.67E-01 1.32E+00 6.14E-01 4.31E-01 

2 1.77E+00 6.15E+12 4.01E+02 8.02E+12 5.46E-01 5.30E+00 1.30E+00 * 

3 * * * * 2.48E-01 1.56E+00 8.37E-01 * 

Dev#3-4 
        

        

1 6.00E+00 2.02E+13 1.27E+02 5.71E+12 2.70E-01 -2.03E-01 5.31E-01 6.12E-01 

2 2.84E+00 7.48E+12 4.00E+02 9.93E+12 5.09E-01 1.58E+00 5.38E-01 * 

3 * * * * 3.61E-01 9.85E-01 4.35E-01 * 

Dev#4-5 
        

        

1 6.01E+00 1.84E+13 7.63E+01 4.92E+12 2.45E-01 6.26E-01 1.08E+00 1.26E+00 

2 1.49E+00 6.22E+12 4.00E+02 7.19E+12 4.74E-01 5.55E+00 2.17E+00 * 

3 * * * * 2.42E-01 -2.35E-01 9.61E-01 * 

Dev#5-6 
        

        

1 9.86E+00 1.64E+13 1.13E+02 5.32E+12 2.64E-01 4.98E-01 5.50E-01 3.07E-01 

2 3.66E+00 9.12E+12 5.81E+02 8.02E+12 3.88E-01 -1.00E+00 6.17E+00 * 

3 * * * * 3.59E-01 -9.98E-01 3.09E+00 * 

Dev#1-3 
        

        

1 1.00E+01 2.06E+13 1.25E+02 5.81E+12 4.64E-01 9.93E-01 5.89E-01 4.03E-01 

2 3.32E+00 4.53E+12 4.67E+02 9.95E+12 5.72E-01 3.94E+00 1.04E+00 * 

3 * * * * 2.34E-01 1.21E+00 5.73E-01 * 

Dev#2-4 
        

        

1 9.72E+00 2.08E+13 1.43E+02 5.37E+12 3.35E-01 7.16E-01 4.94E-01 6.56E-01 

2 3.29E+00 6.86E+12 4.33E+02 7.07E+12 4.73E-01 2.46E+00 1.25E+00 * 

3 * * * * 2.92E-01 -6.78E-02 8.00E-01 * 

Dev#3-5 
        

        

1 6.00E+00 1.98E+13 1.39E+02 5.79E+12 3.25E-01 5.42E-01 5.08E-01 3.05E-01 

2 2.80E+00 6.23E+12 4.73E+02 9.02E+12 4.79E-01 1.63E+00 7.70E-01 * 

3 * * * * 2.67E-01 5.55E-01 2.74E-01 * 

Dev#4-6 
        

        

1 6.85E+00 2.01E+13 1.16E+02 5.51E+12 3.39E-01 7.44E-01 4.91E-01 1.76E-01 

2 3.22E+00 7.19E+12 6.00E+02 8.90E+12 4.49E-01 2.89E+00 1.92E+00 * 

3 * * * * 3.54E-01 -4.00E-01 6.47E-01 * 

Dev#1-4 
        

        

1 9.09E+00 1.87E+13 1.51E+02 5.81E+12 4.62E-01 8.89E-01 4.69E-01 1.35E+00 
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2 5.60E+00 5.50E+12 4.39E+02 7.11E+12 5.80E-01 3.88E+00 9.83E-01 * 

3 * * * * 1.89E-01 -2.49E-01 8.32E-01 * 

Dev#2-5 
        

        

1 9.53E+00 2.08E+13 1.30E+02 3.97E+12 2.32E-01 7.51E-01 4.82E-01 4.26E-01 

2 3.76E+00 7.55E+12 6.00E+02 8.78E+12 4.38E-01 1.48E+00 1.99E+00 * 

3 * * * * 3.82E-01 -1.84E-01 5.66E-01 * 

Dev#3-6 
        

        

1 6.01E+00 1.81E+13 1.58E+02 5.74E+12 3.68E-01 6.81E-01 4.41E-01 1.37E-01 

2 4.30E+00 6.46E+12 6.00E+02 8.84E+12 4.66E-01 2.21E+00 1.16E+00 * 

3 * * * * 2.94E-01 4.49E-01 2.56E-01 * 

Dev#1-5 
        

        

1 9.98E+00 1.76E+13 1.37E+02 3.50E+12 2.47E-01 8.36E-01 4.77E-01 3.43E-01 

2 5.25E+00 5.03E+12 6.00E+02 7.89E+12 4.56E-01 2.92E+00 1.34E+00 * 

3 * * * * 1.94E-01 -4.18E-01 4.51E-01 * 

Dev#2-6 
        

        

1 1.00E+01 2.07E+13 1.67E+02 4.52E+12 2.94E-01 7.38E-01 4.03E-01 2.27E-01 

2 5.57E+00 8.27E+12 6.00E+02 9.13E+12 4.46E-01 1.30E+00 1.86E+00 * 

3 * * * * 4.34E-01 -2.47E-01 6.09E-01 * 

Dev#1-6 
        

        

1 6.00E+00 1.92E+13 1.50E+02 3.54E+12 3.05E-01 7.37E-01 3.83E-01 2.23E-01 

2 5.60E+00 6.09E+12 5.99E+02 8.67E+12 4.60E-01 2.21E+00 1.28E+00 * 

3 * * * * 3.71E-01 -3.43E-02 3.22E-01 * 

         

 

Simulated output/transfer curves in linear/logarithm scale benchmarked with experimental data are shown below 
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Fig. S5  Simulated output curves (lines) benchmarked with experimental data (circles) in linear scale. 

1.8 V
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Fig. S6  Simulated transfer curves (lines) benchmarked with experimental data (circles) in logarithm scale.  

VDS = 0.3 V : 0.27 V : 3.0 V
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Supplementary Note 6 | BP-based ATIQ circuits: Simulation Parameters 
 

Table SII  Model parameters library for simulations of the BP-FETs 

 𝑌𝜇𝑛 𝑌𝑁𝑡𝑟𝑝,𝑒 𝑌𝜇𝑝 𝑌𝑁𝑡𝑟𝑝,ℎ 𝑌Φ𝑡 𝑌𝜑𝑎 𝑌Φ𝑎 𝜎𝑠 
 (cm2V-1s-1) (cm-2) (cm2V-1s-1) (cm-2) (eV) (eV) (eV) (V) 

Dev#3-1 
        

        

1 5.78E+01 2.54E+12 2.97E+01 5.58E+12 4.53E-01 1.68E-01 4.13E-01 6.69E-01 

2 3.31E+01 7.28E+12 5.70E+01 3.83E+12 3.59E-01 -1.91E+00 1.09E-02 * 

3 * * * * 4.77E-01 * 5.51E+00 * 

Dev#3-2 
        

        

1 8.20E+01 2.35E+12 5.90E+01 7.84E+12 4.37E-01 -5.52E+00 1.46E+01 5.37E-01 

2 4.91E+01 8.65E+12 1.85E-01 1.73E+12 3.43E-01 4.38E+00 6.53E-01 * 

3 * * * * 4.48E-01 * 6.41E+00 * 

Dev#3-4 
        

        

1 6.49E+01 5.27E+12 4.90E+01 1.07E+13 6.03E-01 1.00E-01 3.39E-01 4.57E-01 

2 3.35E+01 8.63E+12 1.50E+00 2.48E+11 3.79E-01 -1.57E+00 2.12E-03 * 

3 * * * * 4.68E-01 8.74E-01 6.55E+00 * 

Dev#5-3 
        

        

1 2.85E+02 2.96E+12 1.51E+02 1.00E+13 4.47E-01 -2.84E+00 2.11E+00 9.91E-01 

2 2.97E+02 9.06E+12 4.26E+00 2.35E+12 3.00E-01 3.03E+00 1.58E+00 * 

3 * * * * 2.54E-01 5.42E+00 * * 

Dev#6-5 
        

        

1 2.97E+02 1.19E+13 1.17E+02 1.56E+13 1.04E+00 1.55E+00 5.14E-01 7.95E-01 

2 4.90E+01 9.25E+12 6.00E+02 2.78E+12 4.89E-01 1.87E+00 2.36E+00 * 

3 * * * * 3.32E-01 -1.67E-01 * * 
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Supplementary Note 7 | MoS2 FET: Simulation Parameters 
 

Table SIII  Model parameters library for simulations of the MoS2-FETs 

 𝑌𝜇𝑛 𝑌𝑁𝑡𝑟𝑝,𝑒 𝑌𝜇𝑝 𝑌𝑁𝑡𝑟𝑝,ℎ 𝑌Φ𝑡 𝑌𝜑𝑎 𝑌Φ𝑎 𝜎𝑠 
 (cm2V-1s-1) (cm-2) (cm2V-1s-1) (cm-2) (eV) (eV) (eV) (V) 

T0 
        

        

1 1.86E+00 4.04E+12 * 3.48E+12 2.64E-01 -3.93E-01 2.54E-01 1.00E+00 

2 1.86E+00 2.97E+12 * 9.19E+12 4.99E-01 1.93E-01 6.10E-01 * 

3 * * * * 2.64E-01 1.40E-01 5.73E-01 * 
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