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Abstract

Soft deployable structures – unlike conventional piecewise rigid deployables based on hinges and

springs – can assume intricate 3-D shapes, thereby enabling transformative technologies in soft

robotics, shape-morphing architecture, and pop-up manufacturing. Their virtually infinite degrees

of freedom allow precise control over the final shape. The same enabling high dimensionality,

however, poses a challenge for solving the inverse design problem involving this class of structures:

to achieve desired 3D structures it typically requires manufacturing technologies with extensive local

actuation and control during fabrication, and a trial and error search over a large design space. We

address both of these shortcomings by first developing a simplified planar fabrication approach that

combines two ingredients: strain mismatch between two layers of a composite shell and kirigami cuts

that relieves localized stress. In principle, it is possible to generate targeted 3-D shapes by designing

the appropriate kirigami cuts and selecting the right amount of prestretch, thereby eliminating the

need for local control. Second, we formulate a data-driven physics-guided framework that reduces

the dimensionality of the inverse design problem using autoencoders and efficiently searches through

the “latent” parameter space in an active learning approach. We demonstrate the effectiveness of

the rapid design procedure via a range of target shapes, such as peanuts, pringles, flowers, and

pyramids. Tabletop experiments are conducted to fabricate the target shapes. Experimental results

and numerical predictions from our framework are found to be in good agreement.

Morphing planar geometry to 3D shapes can find a wide variety of engineering ap-

plications [1] from additive and subtractive manufacturing to soft actuators [2, 3] and

architecture [4–6]. Multiple mechanisms have been reported for the 2D to 3D transformation,

including residual stress-induced bending [7], temperature-induced growth [8], inflatable

membranes [9], composite materials controlled by external stimuli (e.g., temperature and

pH) [1], paper folding [10], swelling [11], mechanical loads, and boundary conditions [12–14].

The fabrication of these shape-morphing structures often requires detailed local control of

the geometry, curvature, and stress [1, 7, 9, 13–17]. Even though optimizing and realizing

arbitrary 3D deformed shapes, such as a human face, is possible, this is often done at a cost of

complicated fabrication technique [1]. Moreover, the inverse design problem of optimizing the

physical parameters to achieve the targeted shape typically requires a trial and error search

over a high-dimensional space. To address such shortcomings, this work introduces a new
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paradigm for planar manufacturing, where a soft kirigami composite (a bilayer shell) deforms

from 2D plane to the target 3D shape due to the coupling between two key mechanisms,

i.e., kirigami (i.e. material removal) [3, 18, 19] and strain mismatch [20, 21]. Compared to

fabrication requiring precise control of various parts of the structure, the reported technique

first developed in [22] – described later in this paper – is much easier to implement.

The convenience of the proposed manufacturing technique, however, is not enough to

guarantee adoption unless the associated high-dimensional inverse design problem can also

be solved efficiently. In particular, we next address how one can efficiently optimize the

structural and geometrical properties to achieve a target 3D shape. In order to define the

problem let us first consider the case without any kirigami cuts. It has been shown that

by varying only the prestretch (but no kirigami cuts), a planar composite plate with strain

mismatch can morph into different 3D shapes; these shapes, however, are limited to only

the few mode shapes [20, 22]. To achieve programmability of more classes of shapes one

can locally remove materials, thereby introducing kirigami cuts. The optimization problem

then reduces to finding kirigami patterns in 2D (i.e. marking the areas where material has

to be removed) that would morph the planar structure to a desired 3D shape. However,

kirigami cuts have highly nonlocal impact on the structure. A cut at a certain location may

affect the global shape of the deformed shell. Hence, the kirigami pattern optimization for

target 3D shapes cannot be conducted locally in space, but requires a global approach to

explore the large design space, which is a common problem in many inverse metamaterial

designs [12, 23].

Such inverse design problems where metamaterials are designed for target functionalities

have received significant boost from recent advances in machine learning (ML). Various ML

algorithms, such as Variational Autoencoder (VAE) [24, 25] and Generative Adversarial

Network [23, 26] have been successfully applied. However, most of these ML-aided inverse

design methods still depend on the generation of a computationally prohibitive number

of forward simulation data [26, 27]. A network is then trained to learn the inverse map

in a supervised manner: the output of the forward simulation is used as input, and the

corresponding design parameters as the desired output. This computational overhead of

generating forward simulation data is particularly severe for our case. Given a kirigami

pattern and other parameters, it takes minutes of computing time to generate corresponding

3D shapes. To train an inverse ML system, one could require millions of such forward
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simulations, making such inverse approaches computationally intractable for our application.

In this paper, we make a judicious use of recent advances in dimension reduction techniques

(e.g., VAEs), and integrate them with active learning techniques (e.g., Bayesian optimization),

where forward computations are done on-demand; that is, only for local explorations. Such

active learning techniques, when used by themselves, typically do not work well for high

dimensional search spaces such as in our application. The use of model reduction techniques

of ML make these methods practicable. First, classes of candidate kirigami patterns that

possess the same symmetry property as the target 3D shape are generated. A VAE is

used to parameterize symmetric patterns with low-dimensional latent features and, thus,

reduce the dimension of the inverse problem. Then, the optimal latent features are searched

iteratively using the Bayesian Optimization framework [28]. Numerical simulations and

controlled tabletop experiments are conducted to create target 3D shapes with different

symmetric properties. Excellent agreement is found between experiments and simulations,

which demonstrates the prospect of using this method in algorithmic design of metamaterials.

Target shapes 1 32

Kirigami
layer

Bottom
layer

Figure 1. The inverse problem aims at designing target 3D shapes by finding the optimal fabrication

strategies. Six target shapes are shown on left, while the six experimental results correspond to the

target shapes shown on the right. The planar fabrication uses a kirigami layer and a bottom layer

is shown in the middle. The three classes of kirigami layers correspond to 1) unidirectional strips 2)

reflectional symmetry 3) four-fold radial symmetry.

OVERALL CONCEPT

Problem description

The inverse problem aims at designing target 3D shapes by finding the optimal fabrication

strategies, as shown in Fig. 1. The proposed fabrication technique is shown in Fig. 2A1
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Figure 2. A. Overview of the fabrication concept: The composite structure with a kirigami layer

and a substrate layer bend to a free buckling shape under radial prestretch. B. Flow chart of

the data-driven design and optimization of soft kirigami composite (B1) A VAE to reduce the

dimension of kirigami patterns to a small number of latent variables (B2) A Bayesian Optimization

loop that iteratively searches the optimal combination of latent kirigami pattern variables, size of

the structure, and amount of prestretch that results to the target 3D topology.

to A4. We start from two thin flexible and stretchable plates (Fig. 2A1). The maximum

radius of the top layer is R. First, strain mismatch between two plates or layers is created
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by radially stretching the bottom one with the amount of prestretch λ (Fig. 2A2). Then,

the top layer of the same radius as the stretched bottom layer is glued onto the bottom

layer (Fig. 2A3). The strain mismatch between the two layers induces out-of-plane buckling

(Fig. 2A4), since bending is less energetically expensive than compression for thin shells [11].

However, using strain mismatch in composite shells yields a limited number of structural

modes [20, 22], and the elastic shells may easily wrinkle (localized deformation) to relax the

compressive stresses instead of a global change in shape [29]. Hence, material needs to be

strategically removed from the top layer to create kirigami patterns in order to yield a target

3D shape. The theoretical characterization of these kirigami-aided stress relief is still not

fully available. The material removal expands the possible number of attainable 3D shapes

from 2D, with the out-of-plane buckling depending on both the magnitude of prestretch

and geometric parameters (including kirigami cuts) [30, 31]. Based on this rapid fabrication

technique, we aim at inversely designing the optimal kirigami patterns, size of the structure

(measured by radius R), and prestretch λ such that a target 3D shape can be achieved.

Machine learning framework for design of soft kirigami composite structure

To tackle the challenges of Edisonian searches, our machine learning-aided design process

is illustrated in Fig. 2B1 and B2, and discussed in more detail below.

Dimension reduction: Compact and continuous representation of kirigami patterns

A kirigami pattern can be represented by an N ×N binary image, where the pixels in the

uncut areas are represented by 1’s. This would correspond to a very high (N2) dimensional

search space. Recent advances in Computer Vision (CV), however, have shown that such a

family of images typically lies on a much smaller dimensional (say D) manifold, referred to

as the latent space. One can then search only over a D-dimensional space (e.g., D=6 in our

design), leading to considerable computational savings. A VAE is one such computational

model that can be used to learn a generative model of kiragami patterns, where (a) every

kirigami image can be mapped to a D-dimenional vector using an Encoder network, and (b)

every D-dimensional vector in the latent space can be mapped to a sample kirigami image

using a Decoder network. The Encoder and Decoder networks are trained simultaneously,
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such that the latent features are representative enough for various kirigami patterns. Once

trained, any active learning framework can view the space of kirigami patterns as a D-

dimensional continuous space. This allows one to train the VAE using only a limited set of

representative kirigami patterns, and using the VAE to interpolate and generate potentially

infinite number of similar kirigami patterns. The detailed architecture and hyperparameters

for the VAE are described in the supplementary material.

Design of numerical experiments

Optimal design parameters, including the kirigami latent features (D-dimensional), size

of the structure (measured by radius), and prestretch that yield the target 3D shape were

searched by performing iterative Bayesian Optimizations. To search global optimums, the

optimization aims to “explore” (prioritizing regions with large uncertainty) and “exploit”

(focusing on the regions with minimum loss function) the high dimensional parametric spaces,

until a suitable loss function is minimized [32].

To initialize the optimization process, we randomly sampled ten combinations of latent

features, sizes of the structure, and prestretches. For each combination of the proposed

kirigami patterns and prestretch, numerical experiments were performed via finite element

simulations. A Gaussian process regression model was constructed to approximate the

unknown effect of the design variables on the loss function, which is the error of the 3D shape

between the simulations and design target. A common way to represent 3D data is via the

projected image of the height [33]. The negative structural similarity index is chosen as the

loss function, which is used to characterize the dissimilarity between two images. Compared

to mean squared error, the structural similarity index (SSIM) is a perceptually-motivated

loss function, which is found to have better performance for image restoration tasks than the

squared l2 norm of the error [34].

Once the Gaussian process model is constructed, an expected improvement function [28],

that increases with both the mean of the loss function and its uncertainty, is calculated.

Then, the combination of latent features, size of the structure, and prestretch that maximizes

the expected improvement function is selected. The corresponding kirigami patterns for

that combination of latent features can be recovered from the trained decoder network.

The recovered patterns are used to create the mesh for the kirigami layer to perform next
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round of finite element simulation. The negative SSIM between the results of finite element

simulation and target shape is used to update the Gaussian process model and reassess the

expected improvement function. Such a process continues iteratively. Once the optimization

converges, we verify its effectiveness using precision desktop experiments.

A1 A2 A3 B4B3

4

B2B1
5 cm

2

1

3

Figure 3. A. Examples of different classes of kirigami patterns: 1) unidirectional fibers, 2) shapes

of reflectional symmetry with 2 lines of symmetry, 3) four-fold radial symmetry. B. Experimental

setup. (B1) Schematic representation of the system consist of two-knob stages (1) on 250 mm tracks

(2) knobs to adjust the stage location (B2) Snapshot of the system when the substrate layer (3) is

stretched (B3) Attach a kirigami layer (4) on top of the substrate layer (B4) Release the prestretch

by cutting along the outline of the circular substrate.

Generation of candidate kirigami patterns for VAE training

We tested the performance of three classes of candidate kirigami patterns, as shown in

Fig. 3A1 to A3. The first class, as shown in Fig. 3A1, is made of uni-directional fibers.

For example, Hanakata et al. [24] demonstrated that the uni-directional patterns have good

expressive power, and can be used to interpolate a variety of mixed kirigami cuts. The other

classes of kirigami patterns exhibit the same type of symmetric property as the target 3D

shapes, as shown in Fig. 3A2 and A3. We will see later in the paper (Fig. 5A and B) that the

peanut and pringle like shapes have reflectional symmetry with respect to the two principal

axes, while the flower shape has four-fold radial symmetry in Fig. 5D. To create symmetric

kirigami patterns, the kirigami cuts are created in certain regions, with the patterns in the

remaining regions directly created via rotations or reflections (see SI Text). Both types

of non-symmetric and symmetric patterns are augmented via rotation. After rotating the

kirigami patterns two to four times, the total number of images for each class is 40955, 40955,

and 24573, respectively. These images are used to train VAE models to find low-dimensional
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representations.

PHYSICAL AND NUMERICAL EXPERIMENTS

Desktop-scale physical experiments

Fig. 3B1 to B4 present our experimental setup and the key steps in fabrication. The

experimental setup consists of four linear translation stages (250 mm travel, Thorlabs).

The substrate and the kirigami layers are made of hyper-elastic materials (see Materials &

Methods). A large substrate layer is applied with the four corners fixed to the four stages

(Fig. 3B1). Then, to impose the radial strain upon the substrate, we stretch the substrate

layer with the same amount in the horizontal and vertical directions (Fig. 3B2). Once

stretching is complete, a kirigami layer is glued on top of the substrate (Fig. 3B3). We

ensure that the central region of the substrate layer – onto which the kirigami layer is glued

– is uniformly stretched, not affected by the boundaries. Afterwards, Fig. 3B4 shows that

the excess substrate is cut away along the outline of the circular substrate. The composite

structure then morphs to a certain 3D shape due to the strain mismatch in the two layers.

Finite element-based numerical simulations

The finite element software, Abaqus [35], is used to model the nonlinear large deformation

of the hyper-elastic composite structures. In the simulations, we use Mooney Rivlin model

to simulate the hyper-elastic materials of the substrate and the kirigami layer being tested.

Each layer of the composite structure was modeled as a shell to reduce the computational

cost. The two shell structures are constrained so that their normals match. The center of

the composite structure is fixed. The prestretch is modeled as isotropic thermal expansion

(see SI Text). The equivalent temperature corresponding to the prestretch is computed.

Then, the dynamics of the composite structure (for the given candidate kirigami pattern)

is modeled by Abaqus as the substrate is cooled back to the reference temperature. The

resulting 3D shape is obtained after each such simulation converges. A nonlinear quasi-static

simulation is conducted for each design inputs.

The final 3D shape when the active learning search converges will be referred to as the

optimal predicted shape; the corresponding kirigami patterns, radius, and prestretch are the
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predicted optimal parameters. The detailed structural properties of the composite structure

are included in the “Materials and Methods” section. The numerical simulation is the most

time-consuming step, which takes about 1-3 minutes wall clock time on a desktop computer

(Ryzen 2950wx CPU @ 2.4 GHz). In total, 100 simulations take about 6 hours. Since forward

simulations are expensive, cutting down the number of runs is important. In this study, we

are able to reduce the total number of forward runs from millions to just around 100, while

obtaining accurate target shapes. Such computational tractability without compromising

performance is one of the key advantages of the proposed machine learning-aided framework.

RESULTS

In this section, we test drive the framework with a few example target shapes with different

distributions of curvatures and symmetric properties. During the optimization, the range

of radius of the kirigami structure is constrained between 24 mm and 39 mm while the

amount of prestretch λ = 1 + ε is searched between 1.05 to 1.4, which means that the bottom

layer is stretched by 5% to 40% along both directions. Since in this range of prestretch, the

structural property is still properly modeled.

Target 3D shapes with reflectional symmetry

As an exemplar of this class, we pick a bilobe structure, resembling a peanut as the target

shape. Automatically generated 40,955 (64 by 64) binary kirigami images with reflectional

symmetry are used to train the VAE. We find that just a six dimensional latent space is able

to reconstruct the training kirigami data with very high accuracy (measured by SSIM ≈

0.97). Thus, the search space of kirigami patterns have been reduced from a 4098-dimensional

binary image space to only a six dimensional continuous search space.New kirigami patterns

can be generated by the VAE, and they are also found to exhibit reflectional symmetry, as

demonstrated in the supplementary material. More importantly, as demonstrated in Fig. 4

D, the interpolated new kirigami patterns are often needed to generate 3D shapes that best

match the target shapes. We next illustrate some of the salient characteristics of our inverse

design framework.

Search trajectory in the SSIM space: The evolution of the design solutions via
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Figure 4. A. Search trajectory Variation of SSIM between target peanut shape and predicted free

buckling shape over iterations. B. Multiple optimal solutions B1-B4.The top four optimal design

solutions, including the kirigami patterns, prestretch and krigami size. The corresponding height

distribution for each design is presented at the bottom. C. Exploration during optimization C1-

C2.Two examples showing the algorithm explores new kirigami patterns, that does not lead to closer

solutions. D. Interpolated kirigami patterns are often required to better approximate

target 3D shapes: D1-D2. Two nearest neighbors for kirigami patterns found at iteration No.

78, whose free buckling shape gives lower SSIM. E. Effect of initialization E1-E2. We tested

different initialization of the Bayesian Optimization, and presented the results of optimized design

parameters and free buckling shape over 100 iterations.
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iterations to create a target peanut shape is demonstrated in Fig. 4A and Movie S1.The

red dots in Fig. 4A plots the variation of SSIM over iterations. The maximum SSIMs

before certain iteration steps are connected via the blue line. The maximum SSIM improves

significantly from 0.7 (in the first 10 random searches) to around 0.91 over time. Some red

dots are clustered near the optimal blue line, while some others scatter around the blue

line. This suggests that during the Bayesian optimization, the model explores and exploits

the design space interchangeably. It will not only locally exploit optimal solutions (such as

between iteration 78 and 79 in Fig. 4B, with materials concentrated to the left and right

sides), but also explore unknown design space (such as iteration 81 and 82 in Fig. 4C. More

materials cover the top and bottom side of the planar structure).

Multiple optimal solutions give SSIM around 0.9: Fig. 4B shows that multiple

latent feature combinations can lead to similar 3D deformed shapes. Even though these

optimal patterns look different, they share the common characteristics of having more material

concentrated near the left and right ends of the kirigami. The regions with more material

compress the bare regions in between where the stiffness is lower, and such a compression

leads to a ridge in the middle.

Interpolated kirigami patterns are often required to better approximate target

3D shapes: We also explored the generalization capability of VAE and the role it plays

in optimization. For example, the optimal design shown in Fig. 4B2 is an interpolated

pattern generated by the VAE, and not in the patterns used to train it. We find the nearest

neighbours of this optimal generated pattern using K-nearest neighbors algorithm [36]. If we

replace the generated pattern with its neighbours in in Fig. 4D, we find a decrease in the

SSIM. This suggests the importance of interpolation capability in the latent space to achieve

more accurate design solutions.

The optimal solutions can be different to the initializations: We repeat the

optimization process several times with different initializations (described in SI Text). For

different initializations that lead to similar values of SSIM (around 0.91) over 100 iterations,

the optimized kirigami patterns are different from each other, as presented in Fig. 4E1 and

E2. However, the optimized prestretch and the radius are close to each other. This suggests

that there exists a region of optimal strain-mismatch and structural size that leads to the

target 3D shape.

We also use the same class of input kirigami patterns to create a pringle and a ship
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A. Peanut

B. Pringle

C. Ship hull (inverted)

D. Pyramid

E. Flower
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R= 29 mm

22.50
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H=15.3 mm

H=12.2 mm

H=13.6 mm

SSIM=0.91

SSIM=0.92

SSIM=0.90

SSIM=0.87

SSIM=0.92

Figure 5. Inverse design framework: manufacturing programmable soft 3D structures.

We illustrate the end to end design and manufacturing process. Target 3D shapes: the first column

shows five different 3D shapes (a peanut, pringle, ship hull, pyramid, flower) input to the optimization

algorithm. Height-coded 2D image representations: the second column shows distribution

of height for the target 3D shape. Optimal design parameters: the third column presents the

optimized kirigami patterns, prestretch, and radius selected after 100 iterations. Height-coded

2D image representations of the optimal predicted shapes: the fourth column presents the

height distribution of predicted 3D topology obtained from finite element simulation using the

optimal design parameters. The SSIM are approximately in 0.9. The predicted 3D shapes:

the fifth column shows the predicted 3D shape in simulation. The maximum heights for the 3D

images are shown in the bottom. Experimentally realized morphing 3D soft structures

with desired shapes: the sixth column shows the experimental result of the 3D topology given

the optimal parameters and following the manufacturing setup illustrated in Fig. 3

hull-like 3D shape, presented in Fig. 5B and C. The optimized SSIM over 100 iterations is as
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high as 0.92 and 0.90, respectively. While the maximum SSIM over 10 random searches is

at 0.70 and 0.73, respectively. This suggests the importance of strategic search in creating

target shapes. The largest errors are found to be near the sharp edges, where the local

curvature has sharp changes.

Target 3D shapes with four-fold radial symmetry

Inspired by flowers in nature and man-made pyramids, we further aim to create two

corresponding deformed soft structures. Both targets are composed of shapes of four-fold

radial symmetry. For example, for each petal in a flower, the structure is bilaterally symmetric,

where each half is a mirror image of the other half. The generation of such radially symmetric

kirigami patterns are described in SI Text. These kirigami patterns can also be represented

by six latent features, without sacrificing the high reconstruction accuracy (measured by

SSIM ≈ 0.99). As shown in Fig. 5, we get very high SSIM. For the flower like shape, the

maximum SSIM increases from 0.81 in the first 10 random combinations to 0.92 within 100

iterations. The maximum SSIM slightly increases from 0.83 in the first 10 random searches

to 0.87 for the pyramid shape.

Experimental validation

We carried out the entire end-to-end design process involving five shapes, shown in Fig. 5.

We picked one optimal design for each target shape from our algorithm. Next we used these

optimal design parameters to manufacture the corresponding 3D structures. As Fig. 5 shows,

the target, the predicted and the manufactured 3D shapes have the same structural forms,

validating our design process. Given such structural similarity, the maximum height (H)

of the 3D structure is an easily measured metric for comparison. As shown in the fifth and

the sixth columns of Fig. 5, the H values are in good agreement between the predicted and

manufactured 3D structures.

One can further explore the physics of the kirigami patterns discovered by our design

framework. For example, for the four-fold radial symmetry involving the flower and the

pyramid target shapes, the optimal kirigami patterns are shown in Fig. 5E and D. The

kirigami pattern for the flower shape has materials concentrated in the four lobes and has
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Figure 6. Scaling law and kirigami invariance: the same kirigami can be used to design target

shapes with varying size parameters H/R by selecting prestretch and radius of the composite

structure A. Distribution of H/R with the variation of size ratio R/t and the amount of

applied prestretch ε. The star symbol denotes the optimal size and prestretch combination that

gives the target pyramid shape. The black dots denote the regions where the size and prestretch

is perturbed around the optimal point. B. Typical free buckling shapes that correspond

to the black dots in A. Both the height-coded 2D image representation and the corresponding

3D structure are presented. C. A normalized shape parameter Ht/R2 as a function of

normalized radius R/t at different amount of prestretch. The line horizontal dashed lines

indicates the scaling prediction: H/R scales linearly with R/t

material removed in the center. This can explain the final shape: the bending of the areas

covered with kirigami creates a ridge of slightly lower height in the middle, giving rise to the

four lobed flower pattern. In contrast, the pyramid shape with the maximum height in the

center requires more material concentrated in the center, as shown in Fig. 5D.

DISCUSSION

Kirigami invariance: Scaling Law

We address the problem of manufacturing the same shape but with different scales (e.g.,

pyramids with different heights), without having to solve for optimal design parameters for

each scale. Recall that designing a target 3D shape requires around hundreds of optimization

steps, each involving an expensive forward simulation step. Thus, if we can identify a scaling

law involving the radius R, prestretch λ, and the scale of the target shapes –while fixing the

kirigami patterns– then such a scaling law can guide designers to quickly vary the scale of

the deployable 3D soft structures.
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For a given material property and kirigami pattern, the maximum normalized height H/R

is affected by prestretch λ = 1 + ε, and normalized radius R/t, where H is the maximum

height of the free buckling shape, and R and t represent the radius and thickness of the

planar structure, respectively (see Fig. 6). We derive an analytical relationship by balancing

the stretching-induced energy (pre-buckling) in the bottom layer and the bending-related

energy dominated by the kirigami layer. We find that for a pyramid like 3D shape, the

maximum normalized height H/R scales with R
t

√
Es

Ek

ε
1+ε

(see SI Text), where Es and Ek are

the Young’s moduli of the substrate and the kirigami, respectively. Such a relationship can

directly extend the design of soft composite structures from one maximum height to different

heights by changing the original radius of the composite structures and prestretch.

As an example, we choose the optimized kirigami pattern in Fig. 5D that leads to a

pyramid shape, and investigate how the normalized height is scaled with the variation of

normalized radius and prestretch. Fig. 6A shows the maximum normalized height H/R as a

function of normalized radius R/t and prestretch. The star symbol in Fig. 6A denotes the

optimal combination of prestretch and radius that leads to the target pyramid shape over

100 iterations. The black dots are the selected examples where the radius and prestretch are

perturbed around the optimal values. If we want to design taller pyramids, we can slightly

increase the normalized radius from Fig. 6B1 to Fig. 6B2. When we slightly increase the

prestretch around the optimal point from Fig. 6B1 to Fig. 6B3, the height of the 3D shape

also increases, but the radius of the deformed geometry decreases. Similar phenomena can

be observed by varying from Fig. 6B2 to Fig. 6B4.

The increase of H/R is proportional to the increase of the normalized radius R/t in

Fig. 6C. This agrees with the scaling analysis of elastic energies. When the prestretch is

larger, the stretching energy in the deformed (i.e. post-buckling) configuration becomes

larger, which causes H/R to deviate from the linear relationship with R/t. As R/t decreases,

the more important the post-buckling stretching energy becomes, but such stretching energy

is not considered in the current analytical derivation, which is based on balancing only

the pre-buckiling stretching energy.This suggests that the coupling between stretching and

bending are important in these conditions, which needs more complicated models beyond the

scaling analysis to explain the coupling and hence the shape variation. Similar phenomena are

also found for other target shapes, such as flower and peanut, and more detailed discussion

can be found in SI Text.
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Importance of symmetry

In this section, we aim to demonstrate that an arbitrarily constructed large class of kirigami

patterns may still be limited in forming target 3D shapes. The free buckling shape assumed

by the symmetry-constrained shapes and unidirectional strips, which doesn’t guarantee the

reflectional or four-fold radial symmetry, are compared. Fig. 7A shows that even though the

unidirectional strips are able to predict the ship hull like shape with reasonable accuracy,

it fails to predict the flower shape in Fig. 7B. The optimized kirigami patterns and the

corresponding 3D shapes after 100 iterations are also compared with the target shape in

Fig. 7. Even though the VAE models can generate new patterns, with mixed combination of

multi-directional strips, few of the generated patterns are exactly radially symmetric. This

causes the free buckling shape to bend more in a preferred direction. The desired reflectional

symmetry of a ship hull like target shape is also not guaranteed using the combinations

of unidirectional strips. The comparisons demonstrate the importance of constraining the

design space with appropriate symmetric property at the very beginning of design process.

The advantage of proposed VAE and Bayesian Optimization combined approach

over evolutionary algorithms

We also compare the optimization results from the proposed framework with that using

genetic algorithm (GA), which is a standard evolutionary algorithm (see SI Text). In the

evolutionary approach, we set the variables to be 13 binary integers representing the presence

of kirigami materials in the 13 divided regions in Fig.S1 A2, B2, and C2 . Another discrete

integer is used to indicate the amount of rotation applied to the kirigami patterns, and two

other continuous variables are introduced to represent the radius of the structure, and the

amount of prestretch to be applied. The population size in the standard algorithm is chosen

as 10, and the maximum number of iterations is set as 20. This means that we need to

perform 200 numerical simulations per design; recall that this is twice the number of forward

simulations used in our design framework, thus giving the GA approach a computational

advantage.

Fig. 7 compares the resucolt of applying genetic algorithm to the unidirectional or sym-

metric shapes.The comparison suggests that the proposed VAE and Bayesian Optimization
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A. Ship hull

B. Flower shape

λ= 1.10
R=27 mm

λ= 1.08
R=29 mm

λ= 1.14
R= 28 mm

λ= 1.18
R=29 mm

λ= 1.12
R=28 mm

λ= 1.12
R=24 mm

λ= 1.25
R=36 mm

λ= 1.25
R= 32 mm

1-SSIM: 0.09 0.10 0.13 0.16

1-SSIM: 0.08 0.21 0.12 0.23

VAE+Bayes
Symmetric

VAE+Bayes
Unidirectional

GA search
Symmetric

GA search
Unidirectional

Figure 7. Comparison of the optimal kirigami patterns and height distribution of

assumed 3D shape using different optimization methods. Target shapes: The first

column shows the distribution of height for the target shapes A. Ship hull B. Flower shape.

The optimizations are conducted using four approaches. VAE+Bayesian optimization with

symmetric patterns: the second column presents the optimal solution found in 100 iterations

using VAE+Bayesian optimization with symmetric patterns. VAE+Bayesian optimization

with unidirectional strips: the third column shows the optimal solution in 100 iterations using

VAE+Bayesian optimization with unidirectional strips. Genetic algorithm with symmetric

patterns: the fourth column shows the optimal solution in 200 iterations using genetic algorithm

with symmetric patterns. Genetic algorithm with unidirectional strips: the fifth column

shows the optimal solution in 200 iterations using genetic algorithm with unidirectional strips.
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combined approach can search the optimal combinations of kirigami and prestretch faster,

and can achieve 3D deformed shapes closer to target shapes, compared to the evolutionary

search. Without the VAE-aided reduced dimensional and continuous kirigami search space,

the standard evolutionary optimization is limited to searching only the discrete design space.

The comparisons between the third and the fifth column of Fig. 7A and B demonstrate that

the incapability of generating new kirigami patterns beyond the input dataset restricts the

conventional optimization approaches from interpolating between the candidate kirigami

patterns to achieve desired free buckling shapes.

CONCLUSIONS

We numerically and experimentally explored the capability of deforming a planar composite

structure to target 3D shape via kirigami cutting and strain-mismatch. The design space is

very high dimensional to be optimized directly. We formulated a VAE and active learning

combined approach to tackle the design challenges. A VAE is used to represent originally

high-dimensional design variables to a much lower dimensional continuous search space. The

Bayesian optimization is then conducted to quickly obtain multiple optimal design solutions

that achieve similar target free buckling shapes, ranging from shapes inspired by a peanut to

a pyramid. We found that the nonlinear interplay between the strain mismatch, size of the

composite structure, and the kirigami patterns strongly affect the free buckling shapes. We

also studied the effect of imposing symmetry constraints on the machine learning-aided design

results. The comparison of the results with and without symmetry constraints demonstrates

that the symmetry constraints at the beginning of the machine learning process are important

in better approximating the target shapes. A scaling law is used to guide scaling of the target

shapes from one size to another, without having to search for the optimal design parameters.

We also discussed the advantage of the proposed framework over traditional approaches,

such as genetic algorithm. The proposed framework accelerates the design of a series of

shape morphing, fully soft composite structures from weeks and months of running millions

of simulations to a few hours of strategically examining around 100 examples.

The inverse design method can provide a systematic way to solve a variety of form

finding problems not limited to soft kirigami structures, but also to the manufacturing of

gridshell [37, 38] and compressive buckling-induced 3D architectures using micro ribbons [39],

19



which can find applications in a range of areas including soft robotics, additive manufacturing,

and architecture. In our future work we plan to improve fabrication accuracy even further

by potentially incorporating controls that can induce local deformations into our planar-only

manufacturing platform.

MATERIALS AND METHODS

Bayesian optimization

Bayesian optimization is a sample-efficient approach for solving a wide range of global

optimization problems. See Ref. [28] for details; a short summary follows. This approach

aims to solve an optimization, expressed as

θ∗ = argmax
θ

f(θ), (1)

where f is a black box model which is expensive to evaluate. The function is approximated

by a Gaussian process model. A Gaussian process prior using a Matern similarity kernel

with homoscedastic noise is selected as the functional prior Φ(θ). Given the available data

D, the posterior distribution of the parameters is computed via the Bayes’ theorem,

Φ(θ) =
Φ(D|θ)Φprior(θ)

Φ(D)
(2)

Based on the current posterior distribution, the acquisition function EI is selected as the

EI(θ) = E[u(θ)] = E[[f(θ)− f(θ∗t )]
+] (3)

where E is computing the expectation, θ∗t is the best point observed so far. When f(θ) > f(θ∗t ),

u(θ) = f(θ) − f(θ∗t ). While when f(θ) ≤ f(θ∗t ), f(θ∗t ) = 0. The next data to be sampled

θt+1 is selected such that the acquisition function is maximised, i.e., θt+1 = argmaxEI(θ)
θ

.

Then, the Gaussian process and acquisition functions are updated. Such a process iterates

several times, until the optimal solution converges. The algorithm is implemented using the

Scikit-Optimize package [40].

Implementation details of finite element simulation

In the finite element simulations, the substrate and kirigami layers were meshed using

3-node triangular shell element. The substrate layer is divided into 2772 triangle elements.
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Table I. Material parameters for the substrate and kirigami layer

Parameter Value

Cs
1 2.4 KPa

Cs
2 23.4 KPa

Thickness ts 1.1 mm

Ck
1 -2.6 KPa

Ck
2 185.8 KPa

Thickness tk 1.4 mm

Outer radius of the circular substrate 3 cm

The material properties for the substrate and kirigami layer are listed in Table I.

DATA DEPOSITION

We have created a repository at https://github.com/StructuresComp/inverse-kirigami

containing the matlab code for generating finite element simulations and python code for

performing machine learning.
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Supplementary Information

Creating symmetric kirigami patterns

For example, when the 3D structure has two symmetry axes, we divide the 2D structure

into four quadrants. According to the symmetric property of target 3D structure, the ”planar

design space” reduces to the regions in the first quadrants. In the first quadrant, the kirigami

patterns are created by randomly combining the 13 independent pieces, as shown in Figure 8

A1, B1 and C1. Then, in case of reflectional symmetry, the kirigami patterns are created by

reflecting the image in the first quadrant with respect to the two symmetry axes, as shown

in Figure 8 B3.

While in case of structures that are of four-fold radial symmetry, the planar design space

further reduces to the half of the first quadrant. The other half can be directly created by

the mirror image in Figure 8 C3. The final kirigami cuts are created by rotating the patterns

of the first quadrants by 90, 180, and 270 degrees, as presented in Figure 8 C4.

Augmenting the kirigami design space via rotation

Rotation is a common way to introduce more diverse patterns for machine learning

training. Once we create a certain set of kirigami cuts in the design space, we further rotate

the kirigami cuts in the clockwise and counterclockwise directions two to four times, and

only keep the rotated patterns inside the design space, as shown in Figure 8 A2, B2, and

C2. For the class of kirigami with unidirectional strips, we rotate the strips four times,

which are 72, 144, 216, 288 degrees in the clockwise direction. For the class of the kirigami

patterns of reflectional symmetry, the kirigami cuts are rotated 7.5 and 15 degrees in the

counter-clockwise direction, and are rotated in 4.5 and 12 degrees in the clockwise direction.

Finally, for the class of the patterns with four-fold radial symmetry, the cuts in the half of

the first quadrants are rotated in 7.5 degrees in the counter-clockwise direction, and in 4.5

degrees in the clockwise direction.
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Figure 8. Key steps for creating kirigami patterns for A. Unidirectional strips. B. Kirigami patterns

that have reflectional symmetry. C. Kirigami patterns that have four-fold radial symmetry

Variational Autoencoder

We assume that each observed data point yi is generated in a nonlinear fashion with latent

variable zi, whose joint probability density can be expressed as,

p(y, z) =
N∏
i=1

pg(yi|zi)p(zi) (4)

The full variational lower bound to be optimized include a reconstruction loss (Binary

Cross Entropy Loss) and a Kullback-Leibler divergence term, which is written as,

ELBO = Ez∼q(z|y)log p(y|z)−DKL(q(z|y)||p(z)) (5)

The approximate posterior given by the inference network for image y is q(z|y) =

N(µz(y), σ2
z(y)), which follows a normal distribution with mean µz(y) and standard deviation

σz(y). The prior distribution is given as a normal distribution p(z) = N(0, I).
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Structure of the Variational AutoEncoder

The weights in the encoder and decoder are optimized simultaneously to minimize the

ELBO loss function, including the KL divergence term and the reconstruction loss. The

encoder and decoder each has two hidden layers with 128 neurons per layer. The activation

function for each neuron is chosen as the tanh() function. While the activation function

for the output is chosen as sigmoid() function. The loss are minimized using the Adam

optimization, an extension of Stochastic Gradient Descent with the learning rate set as

0.0005. The input and output for the VAE model are the same binary image, whose size is

64 by 64.

Examples of generated kirigami patterns via the Variational AutoEncoder

Figure 9 presents some typical generated images when images of reflection symmetry (data

size of training set is 40955) are input to the Variational Autoencoder model. These images

are created by inputting 10 cluster centers in a K-Means clustering process into the trained

decoder neural network. It can be found the typical images are also reflection symmetry.

A

B

Figure 9. Typical kirigami patterns, reconstructed from the 5 cluster centers of the latent features

using K-Means clustering A. Reflectional symmetry patterns B. Four-fold radial symmetry patterns
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The effect of initialization on the results for Bayesian optimization

For the peanut shape, we redo the Bayesian optimiaztion with different initial choices of

10 random searches. We find that the initialization affects the maximum SSIM over 100

iterations in Figure 10. However, for the initializations that give similar maximum SSIM

(Initialization No. 1, 2, 4), the amount of optimized prestretch and kirigami radius are

found to be similar, in Figure 10B and C. This suggests that there exists a sweet-spot of

strain-mismatch and structural size that leads to the target 3D shape.
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Figure 10. For different initalizations, the Bayesian Optimization gives the (A) Variation of

maximumm SSIM over iterations. (B) Variation of kirigami radius over iterations. (C) Variation of

prestretch over iterations (Target shape: peanut shape)

Detailed description of the genetic algorithm

The genetic algorithm is a search heuristic relying on biologically inspired operators such

as mutation, crossover and selection. The idea of selection phase is to select the fittest

individuals and let them pass their genes to the next generation.The “parents” are selected,

based on their fitness scores (e.g. the error between prediction and target). Individuals with

high fitness have more chance to be selected as parents for reproduction. The offsprings

are generated by exchanging the genes of the parents at certain probability.These generated

offsprings are added into the population. To maintain the diverstiy within the population,

a portion of the genes are replaced by a random value. This process is also called as

mutation. A pracitcal variant of the general genetic algorithm process also involves allowing

the best individuals, determined by the elite ratio,to be directly carry over to the next

generation, unaltered. This helps guarantees that the solution quality obtained by the genetic
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Table II. Parameters for genetic algorithm

Parameter Value

Maximum number of iterations 10

Population size 20

Mutation probability 0.1

Elite ratio 0.01

Crossover type uniform

Crossover probability 0.5

Parents portion 0.3

Crossover type uniform

algorithm won’t decrease from generation to the next. The algorithm is implemented using

https://github.com/rmsolgi/geneticalgorithm.

When the genetic algorithm is applied to the kirigami composite designs, the inputs (i.e.

genes) are variables mixed with integers and continous variables. The fitness function to

be minimized in the genetic algorithm is the 1-SSIM, where SSIM measures the structural

similarity between the prediction and the target. The parameters for the genetic algorithm

is listed in Table II.

Trade-off between size of the composite and the amount of pre-stretch

If we keep the kirigami fixed, the target shapes of other 3D geometries also have nonlinear

relationships with prestretch and kirigami size, especially when prestretches are large, as

shown in 12 and 13. In general, we can see that the maximum height H/R increases together

with the prestretch and structure size. The radius of the deformed shape increases with

the structure size, but decreases with larger prestretch. Even though the linear relationship

between H/R and R/h holds well for small prestretch conditions, as prestretch increases,

the 3D shape can be very different from the deformation under small prestretch. The actual

relation between H/R and R/h starts deviating from the linear relationship. For instance, for

the kirigami pattern that creates the targeted peanut shape, if we decrease the prestretch to
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a small enough value, the 3D shape also turns into a pringle shape, rather than maintaining

the peanut shape (13).

Simulation of prestretch release via temperature reduction

To simulate the prestretch release, we apply an isotropic expansion.

εsim = α(θ − θ0) = αδθ (6)

where α is the thermal expansion coefficient, which is set to 1, εsim is the strain induced by

the temperature variation. θ and θ0 are the current and initial temperature, respectively.

The temperature variation δθ is relatd to the prestretch in the experiments ε via

ε =
δθ

1− δθ
(7)

Analytical analysis of the effect of design parameters on the free buckling shape

For small strain, we calculate the stretching-induced energy for the substrate layer as,

E s =
1

2
πR2Csδθ

2 (8)

where Cs = Est/(1 − ν2).t is the thickness of the plate, which is around 1mm in the

experiment.

We assume that after the deformation, the structure is bending dominated, and the

curvature is about the same everywhere. The bending energy can be calculated as,

E b =
1

2
πR2Dsκ

2 +
1

2
nπR2Dkκ

2 ≈ 1

2
nπR2Dkκ

2 (9)

where n is the fraction of the area covered by the kirigami layer, which is a factor between 0

and 1. Ds = Est3

12(1−ν2) and Dk = Ekt
3

12(1−ν2) are the bending rigidity of the substrate and kirigami

layer, respectively.

We further assume that the deformed shape is close to a spherical cap shape with maximum

height H, and has approximately constant curvature everywhere, as shown in Figure 11. The

length of the curve R can be approximated as,

R2 = ρ2 − (ρ−H)2 +H2 (10)
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Figure 11. Sketch of a spherical cap with height H

where ρ is the radius of the hemisphere, which is related to the curvature κ via κ = 1/ρ.

Hence, the maximum height of the shape is related to the curvature via,

H =
R2

2
κ (11)

Hence, equalizing the bending energy and stretching energy, and combining equation (5)

gives,
H

R
=

√
3Es
nEk

δθ
R

t
≈

√
3Es
nEk

ε

1 + ε

R

t
(12)

H

R
≈

√
3Es
nEk

ε

1 + ε

R

t
(13)
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Figure 12. (A) Distribution of H/R with the variation of size ratio R/h and the amount of applied

prestretch ε. The star symbol denotes the optimal size and prestretch combination that gives the

target pyramid shape. The black dots denote the regions where the size and prestretch is perturbed

around the optimal point. (B) Typical free buckling shapes that correspond to the black dots in (A).

(C) Normalized Hh/R2 as a function of normalized radius R/h at different amount of prestretch.

The line horizontal dashed lines indicates the scaling prediction. (Target shape: flower shape)
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Figure 13. (A) Distribution of H/R with the variation of size ratio R/h and the amount of applied

prestretch ε. The star symbol denotes the optimal size and prestretch combination that gives the

target pyramid shape. The black dots denote the regions where the size and prestretch is perturbed

around the optimal point. (B) Typical free buckling shapes that correspond to the black dots in (A).

(C) Normalized Hh/R2 as a function of normalized radius R/h at different amount of prestretch.

The line horizontal dashed lines indicates the scaling prediction. (Target shape: peanut shape)
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