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Abstract

We study angular momentum radiation from electrically-biased chiral single molecular junctions

using the nonequilibrium Green’s function method. Using single and double helical chains as ex-

amples, we make connections between the ability of a chiral molecule to emit photons with angular

momentum to the geometrical factors of the molecule. We point out that the mechanism studied

here does not involve the magnetic dipole momentum. Rather, it relies on inelastic transitions

between scattering states originated from two electrodes with different chiral properties and chem-

ical potentials. Thus, the required time-reversal symmetry breaking is provided by nonequilibrium

electron transport.

I. INTRODUCTION

Angular momentum(AM) is a fundamental property of light[1–6], whose generation and

manipulation is of vital importance for their applications in optoelectronics, quantum infor-

mation science, and so on[6–10]. Light with AM can be generated by physical objects with

vastly different scales, from as small as synchrotron in particle physics[11–14] to as large as

rotating black hole in astrophysics[15]. The AM of light can be furthermore used to probe

the spin-polarized electronic structure and to study other types of chiral excitations.

The magneto-electric coupling, depending on both the magnetic and electric dipole tran-

sition elements, is a key factor that determines the magnitude or efficiency of many of

the above-mentioned processes[16]. Unfortunately, the magnetic dipole transition is much

weaker than the corresponding electric one, resulting in a small magneto-electric coupling.

Employing the chiral geometric or electronic structure in electric dipole transitions is a

promising approach to avoid the weak magnetic dipole transition, given that the time-

reversal symmetry breaking is provided by other mechanisms. Recently, it has been shown

theoretically that coupling of electron orbital motion with light in current-carrying molec-

ular junctions can lead to AM radiation (AMR)[17–21]. Electroluminescence from single

molecules or localized gap plasmons in a scanning tunneling microscope (STM) has been

studied for decades [22–28]. Different quantum statistical properties of emitted light has
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been characterized using STM setup[29–33]. Thus, it is also an ideal experimental candi-

date to study AMR at the single molecular scale.

On the other hand, molecular electronics and optoelectronics using chiral molecules such

as DNA have been the focus of recent intense research[34]. In the phenomenon of chiral-

induced spin selectivity (CISS)[35–41], spin-polarized electrons can be generated from chiral

molecular structure driven by electrical or optical stimuli. Spin-orbit interaction is argued

to play an important role, although the exact mechanism is still under debate. In light

emitting diode, large chiroptical effects are observed from chiral molecular structures[39, 42].

It origin is attributed to either the magneto-electric coupling (natural optical activity), or

structural chirality. Notably, a recent work proposed an electronic mechanism employing the

topological electronic structure for circular polarized light emission under electrical current

flow[43]. The common trends of CISS and optical dichroism in helical structures is also

studied very recently[41].

In this work, we study theoretically AMR from junctions of model helical chains using

nonequilibrium Green’s function (NEGF) method[17, 44]. We analyze in details how the

molecular geometry, electronic structure and molecule-electrode coupling influence the spec-

trum and efficiency of AMR. Suitable conditions for enhancing the AMR are proposed based

on the numerical calculation.

II. MODEL AND THEORY

A. Hamiltonian

We use a tight binding model to write the Hamiltonian of the molecule as [17, 18]

Hmol =
∑
ij

Hijc
†
icje

iθij . (1)

Molecular coupling to the radiation fields is taken into account by the Peierls substitution[45]

with the phase factor θij between sites i and j

θij =
e

~

∫ ri

rj

A · dl. (2)
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Here e is the elementary charge, ~ is the reduced Planck constant, and A is the vector

potential of the electromagnetic field, which is described by the following Hamiltonian

Hrad =
1

2

∫
d3r

(
ε0E

2
⊥ +

1

µ0

B2

)
, (3)

where ε0, µ0 the vacuum permittivity and permeability, respectively. E⊥ and B are electric

field and magnetic field in the transverse gauge ∇ ·A = 0. They are written in terms of A

as E⊥ = −∂tA, B = ∇×A. By expanding the exponential part to the first order in A, we

can divide the molecule Hamiltonian into two terms

Hmol = H0 +Hint.

The first term H0 is the non-interacting part

H0 =
∑
i,j

Hijc
†
icj, (4)

and Hint is the interacting part

Hint ≈
∑
ij

∑
k

∑
µ=x,y,z

Mkµ
ij c
†
icjAµ (rk) ,

V

I

Substrate L

R

(a) (b)

FIG. 1. (a) Schematic diagram of angular momentum radiation from voltage-biased chiral molecule.

(b) A double helical chain structure with radius R, pitch h, helix angle θ, and arc length la.
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where

Mkµ
ij =

ie

2~
Hij (ri − rj)µ (δki + δkj)

is electron-photon coupling matrix.

As an example, the noninteracting molecular Hamiltonian for a double helical chain

simulating double-stranded DNA is

H0,ds =
2∑
j=1

[
N∑
n=1

εjnc
†
jncjn +

∑
n,m

(
tjc
†
jncjm + h.c.

)]
+

N∑
n=1

(
tICn c†1nc2n + h.c.

)
. (5)

Here, j is the chain index, and m, n are site indices, εjn is onsite energy of site n in chain j,

tj,nm is inter-site hopping within chain j, tICn is inter-chain hopping, cjn (c†jn) is annihilation

(creation) operator of electron at site n in chain j. This Hamiltonian has been used in

previous works to study spin-dependent electron transport in ds-DNA [46, 47]. For single

helical chain, we can simply set j = 1 and drop the inter-chain hopping term. Note that we

have ignored the spin-orbit coupling in this work. We have checked that it does not bring

any new physical effect, contrary to the CISS effect.

To consider electron transport process, we take into account the molecule-electrode cou-

pling in the wide band limit. Two characteristic quantity ΓL and ΓR are used to model its

coupling to the left and right electrodes, respectively. We make further simplification to

write Γα as a diagonal matrix, whose non-zero diagonal elements are of the same magnitude

γα. The positions of the non-zero diagonals are determined by the way how the molecule

couples to the electrode, i.e., all the degrees of freedom that couple directly to electrode has

a non-zero element, and the rest elements are zero.

B. Light and angular momentum radiation

By applying the non-equilibrium Green’s function (NEGF) method, we can calculate

various physical quantities such as electrical current, light and angular momentum radiation,

and so on. The radiated power P , angular momentum flux Jγ and the photon flux JN can

then be written in terms of the self-energy[17, 48]

P =
dW

dt
= −

∑
µ

∫ ∞
0

dω

2π

~ω2

3πε0c3
Im
[
Πtot,<
µµ (ω)

]
, (6)

Jγ =
dLγ
dt

=

∫ ∞
0

dω

2π

~ω
3πε0c3

εγµν Re
[
Πtot,<
µν (ω)

]
, (7)
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JN =
dN

dt
= −

∑
µ

∫ ∞
0

dω

2π

ω

3πε0c3
Im
[
Πtot,<
µµ (ω)

]
. (8)

Here, µ, ν and γ are indices for the Cartesian coordinate, ε0, c and ~ are the vacuum

permittivity, the speed of light in the vacuum, and the reduced Planck constant, respec-

tively. The superscript ‘tot’ means summation over all the sites in the system Πtot,<
µν (ω) =∑

i,j Π<
µν(ri, rj, ω), where Π<

µν is photon self-energy due to interaction with electrons.

Under the random phase approximation, the photon self-energy is written as

Π<
µν(ri, rj, ω) = −i~

∫ ∞
−∞

dE

2π~
Tr
[
M iµG<(E)M jνG>(E − ~ω)

]
(9)

Here, Tr[...] is trace over all electronic degrees of freedom. The greater/lesser Green’s

function of non-interacting electrons is given by G>/<(E) = Gr(E)Σ>/<(E)Ga(E), with

Σ>/<(E) = Σ
>/<
L (E) + Σ

>/<
R (E) the greater/lesser self-energy due to electron coupling to

left and right electrodes, and E− = E−~ω. In the wide band limit, the self-energy is energy

independent Σr
α = −iΓα/2.

For the ease of analysis, we define

Xαβ
µν (E,E−) = Tr

[
V µAα(E)V νAβ(E−)

]
(10)

= 2π
∑
m,n

〈ψα,m(E)|V ν |ψβ,n(E−)〉〈ψβ,n(E−)|V µ|ψα,m(E)〉. (11)

where Aα(E) = Gr(E)Γα(E)Ga(E) is spectral function contributed by scattering states from

electrode α, V µ is electron velocity matrix V µ = 1
ie

∑
kM

kµ, with V µ
ij = Hij(r

µ
i −r

µ
j )/~. In the

second equation, we have written it in terms of velocity matrix elements between scattering

states. This form highlights the origin of AMR as inelastic transitions from scattering states

of one electrode to those of the other. We can show that the following relations hold: (i)

Xαβ
µν (E,E−) = Xβα

νµ (E−, E), (ii) Xαβ
µν (E,E−) = [Xαβ

νµ (E,E−)]∗. The photon less self-energy

in the zero temperature limit can then be written as

Πtot,<
µν (ω) = −ie2~

∑
α,β=L,R

∫ µα

µβ+~ω

dE

2π~
Θ(µα − µβ − ~ω)

×Xαβ
µν (E,E−)(fα(E)− fβ(E−)) (12)

Here, fα(E) = 1/(exp((E − µα)/kBT ) + 1) is the Fermi-Dirac distribution function of elec-

trode α, and Θ(E) is the Heaviside step function, which gives the energy range where the
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inelastic transitions can take place. We focus on AMR along z direction in the case of

eV = µL − µR > 0. Writing JA = Jz, we get

JA =

∫ ∞
0

dωJA(ω)

=
4α

3πc2

∫ ∞
0

d~ω
2π

ωΘ(eV − ~ω)

∫ µL

µR+~ω

dE

2π
jA(E,E−) (13)

with fine-structure constant α = e2/(4πε0~c) ≈ 1/137 and AMR contribution

jA(E,E−) = 2~ ImXLR
xy (E,E−). (14)

Similarly,

JN =
4α

3πc2

∫ ∞
0

d~ω
2π

ωΘ(µL − µR − ~ω)

∫ µL

µR+~ω

dE

2π
jN(E,E−) (15)

with

jN(E,E−) = Re
{
XLR
xx (E,E−) +XLR

yy (E,E−) +XLR
zz (E,E−)

}
. (16)

We will apply the above theory to helical chain structures to study how the AMR depends

on the molecule parameters and its coupling to the electrodes.

III. RESULTS

A. Angular momentum radiation spectra

We now present numerical results for model helical chain structures. We perform dimen-

sionless calculation with ~ = e = la = t = 1. The default parameters are following: the

system temperature TL = TR = 0, the chemical potential µL = 4t, µR = −4t ,the coupling

larameter γL = γR = 0.5 t, radius of the chain rg = 7 Å, arc length la = 5.6 Å, helix angle

θ ≈ 0.66, and phase angle ∆φ = π/5. The electronic structure is modeled by using tight-

binding parameters, with onsite energy set to zero, the nearest neighbour (NN) hopping

tNN = t, different values of the next nearest neighbour (NNN) hopping tNNN will be used.

An energy step of 10−4t is used to do the numerical integration, and the energy range is set

to [−5t, 5t].

We start from the simplest structure of a single helical chain with length N = 3. The

AMR can be analyzed through the energy dependence of jA(E,E−). From Eq. (13) we see
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that the emission spectrum of the system at given energy ~ω can be obtained by integrating

along a line cut over an effective bias window where the inelastic optical transition can take

place. This bias window is determined by the relative positions between the two electrode

chemical potentials, controlled by the Θ function in Eq. (13). Thus, jA(E,E−) can be used

to characterize the ability of the system to emit radiation with angular momentum. This

is especially useful in molecular junctions where the rotational symmetry is broken and

orbital angular momentum can no longer be used to characterize the symmetry property of

molecular orbitals, as in simple molecules[17]. The total AMR is obtained by integrating jA

over E and ω. Figure 2 summarizes the main results with NN (upper row) and NNN (lower

row) hopping, respectively. We can identify several noteworthy points:

• Sharp peaks are observed and dominate the contribution in the parameter space (E,

E−). Their positions correspond to ~ω = E32 = E21 [Fig. 2(d)]. The positive and

negative values correspond to opposite angular momentum radiation, i.e., inelastic

transition from state 3 to 2 and from 2 to 1 in Fig. 2(d) contributes oppositely.

• Switching electron and hole energy, jA remains unchanged. This can be shown ana-

lytically (Appendix A) and is reflected by the symmetry about line E = E−. For a

given photon energy ~ω, the integral in Eq. (13) over E is along a line (red dashed line

for example). jA is odd about the point where this line crosses with line E +E− = 0.

Inclusion of NNN hopping breaks the second symmetry, while keeping the first intact.

• Inelastic transition from state 3 to 1 can not generate AMR in the NN case. But this

‘selection rule’ is broken once NNN is included.

• According to these symmetries, in the large bias limit µL � En � µR, the total AMR

is zero. However, if it is possible to include only part of the region, AMR becomes

possible. In realistic structure, this may be achieved by: (1) selective enhancement

of certain spectral range, i.e., via localized gap plasmon modes in a junction[32, 49],

(2) electrical tuning of molecular levels through gating or source-drain voltage in a

transistor setup.

To make the system more realistic, we increase the chain length to N = 10. The AMR

distribution represented by jA(E,E−) spreads to much larger regions (Fig. 3). The effect of

NNN hopping on angular momentum radiation is more dramatic than the shorter chain. The
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FIG. 2. Numerical results for a single helical chain with N = 3. In the upper row, only the nearest

neighbour (NN) hopping tNN = t is included. In the lower row, in additional to tNN, next nearest

neighbour (NNN) hopping tNNN = 0.4t is included. (a, e) Electron transmission spectrum. (b, f)

jA as a function of energy E and E− within the range [-2.5t,2.5t] . The velocity is v0 = lat/~. (c,

g) Line cuts of the plot in (b, f). (d, h) IET Diagram. Red (blue) arrow represents transition with

positive (negative) AMR, while dashed arrow corresponds to zero AMR.

negative regions shrink and the whole distribution is dominated by the positive regions. This

is also reflected in the asymmetric distribution of the electron transmission in the positive

and negative energy range. We have shown in Fig. 4 the dependence of JA on the NNN

hopping in the full bias regime, where the bias window encloses all the molecular orbitals.

We observe increase of both magnitude and efficiency of AMR, and the efficiency JA/JN

saturates at around 0.3~.

B. Geometrical dependence

To show the geometrical origin of the AMR in chiral molecules, dependence of AMR

in the high bias limit on phase angle ∆φ is shown in Fig. 5. It can be seen that AMR

increases with the absolute value of phase angle. It is exactly zero (Appendix A) for achiral

straight chain and changes sign when ∆φ goes from positive to negative. Further analysis of
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FIG. 3. Results for single helical chain with N = 10. Results with NN hopping are shown in the

upper row (a-c). NNN hopping of tNNN = 0.4t is included for results shown in the lower row (d-f).

(a, d) Electron transmission spectrum. (b, e) 2D plot of jA as a function of energy E and E− .

Grid lines represent the eigen energy levels. (c, f) Line cut of the plot in (b, e) for different ~ω,

blue for 0.23, orange for 0.61, green for 1.08, red for 1.63.

jA(E,E−) shows that the whole distribution in energy space reverses sign when ∆φ changes

sign. This positive correlation between AMR and chirality of the chain is one evidence of

geometrical origin of AMR studied here.

We depict the length (N) and radius (R) dependence of the AMR in Fig. 6. We have

integrated all the positive (termed Right-handed (RH), jAR) and negative (termed Left-

handed (LH), jAL) regions of jA in the energy space to characterize the system’s ability to

radiate angular momentum. When λ = 0, corresponding to zero NNN hopping, the positive

and negative regions are of the same magnitude. They become asymmetric with enhanced

positive AMR once λ 6= 0. In any case, the AMR grows linearly with chain length N and

quadratically with radius R. This is the second evidence of geometrical nature of AMR.
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FIG. 4. AMR JA (a), AMR per photon JA/JN (b) for single helical chain with N = 10 as a

function of λ = tNNN/tNN in the full bias case µL > max{εi} > min{εi} > µR, with {εi} the set

of eigen energies of the molecular orbitals. (c) AMR spectrum JA(ω) from λ = 0 (bottom) to 0.4

(top).

-0.2 0 0.2
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5

Δϕ(π)

J
A
(1
0-
10
t)

(a) -0.2 0 0.2
-0.4

-0.2

0.0

0.2

0.4

Δϕ(π)

J
A
/J
N
(ℏ
)

(b) -0.2 0 0.2

-3
-2
-1
0
1
2
3

Δϕ(π)

J
A
/I
(1
0-
9 ℏ
)

(c)

FIG. 5. Dependence of JA (a), AMR per photon JA/JN (b) , AMR per electron JA/JE (c) as a

function of phase angle ∆φ for parameters tNN = t, λ = 0.2, N = 12, γL = γR = 0.1t, µL = 2t, µR =

−2t. I is the current through the molecule. Insets of (a) show single helical chains with phase

angle ∆φ = −π/4, 0, π/4, respectively.

C. Double-helical chain

Double-stranded DNA is a typical chiral molecule that has received considerable attention

in molecular electronics[46, 50, 51]. We now use a commonly adopted tight-binding model

of double helical chain to study its AMR property. Specifically, we take the following model

parameters that resemble DNA[52]: NN hopping tNN = 1.0 eV, inter-chain hopping tIC = 2.4
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FIG. 6. Angular momentum radiation as a function of chain length N (a-b) and radius of gyration

rg (c-d) with different λ in the full bias regime. Default values are used for other parameters. JAR:

RH radiation corresponding to jA > 0, JAL: LH radiation corresponding to jA < 0. Note the

different scales of JAR and JAL.

eV, onsite energy ε1,2 = ±0.56 eV, NNN hopping tNNN = 0 eV, electrode coupling Γ = 0.5

eV.

We focus on the coupling of the molecule to the two electrodes, by consider two types

of coupling [(I), (II) in Fig.7]. The first type is coherent coupling (I), whose ‘off-diagonal’

elements are non-zero

ΓLij = Γ(δi1 + δi,N+1)(δj1 + δj,N+1), (17)

ΓRij = Γ(δiN + δi,2N)(δjN + δj,2N). (18)

This introduces coherent coupling between the two chains. The second type is the incoherent

type (II) with zero ‘off-diagonal’ elements

ΓL,incoij = Γ(δi1 + δi,N+1)δij, (19)

ΓR,incoij = Γ(δiN + δi,2N)δij. (20)

In this case, electron transport and light emission processes are independent for the two

chains. The final result is simply sum of contributions from each single helical chain.

The final results are summarized in Fig. 7. The first column compares electron trans-

mission spectra for the two types of coupling to the electrodes. For coherent/incoherent

coupling, the electron-hole pair symmetry in the transmission is broken/preserved. This has

important consequence on photon and AMR spectra shown in the following columns. For

incoherent coupling, jA is anti-symmetric along diagonal lines E = −E−. Integration over E

and E− leads to cancellation of contributions from opposite sides of the E = −E− line. This
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FIG. 7. Results for the double-helical chain with coherent (I, upper) and incoherent (II, lower)

coupling to the two electrodes. (I, II) Schematic views of two types of coupling of the double

helical chain to electrodes. (a-d) Electron transmission spectrum (a), 2D Plot of jA (b), jN (c)

and ηA/N = jA/jN (d) as a function of E and E−, respectively. (e-h) The same as (a-d) but for

incoherent coupling to electrodes.

can be avoided in the coherent coupling case due to the breaking of electron-hole symmetry.

The resulting AMR efficiency ηA/N = jA/jN is enhanced in a wide range of (E,E−) space.

IV. DISCUSSIONS

We can try to understand these numerical results using Eqs. (11) nad (14). We see that

the AMR in z direction is proportional to the imaginary part of the two electric dipole

matrix elements in the x and y directions. Geometrical chiral properties of the molecule

are encoded in the velocity matrix V µ, µ = x, y. Both of them involve occupied scattering

state from one electrode and unoccupied state from the other. Importantly, it does not

involve any magnetic dipole matrix element. This is in contrast to circular dichroism and

optical rotation in chiral molecules, where the magnetic dipole transition is critical[16].

Non-zero AMR needs breaking of time-reversal symmetry (TRS). In optical rotation and

circular dichroism, the molecular eigen states are time-reversal symmetric. Breaking of TRS

is realized by the external magnetic field. Meanwhile, the biased chiral molecular junction

studied here is an open system. The electronic states participating the inelastic transition
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are scattering states. The involved scattering states are determined by current direction.

TRS breaking is realized by external bias and resulting electrical current. Thus, magnetic

dipole transition is not necessary. This is the central observation of present study. It enables

electrical generation of optical angular momentum utilizing the chiral geometric properties

of the molecule without introducing magnetic field. It also differs from other approaches

where optical angular momentum is generated by chiral wave guide from initially linear

polarized light.

V. CONCLUSION

In summary, we have studied electrically driven AMR from helical chains using the

nonequilibrium Green’s function method. The ability of AMR is characterized by the imag-

inary part of a joint optical transition matrix element between scattering states originated

from the two electrodes [Eq. (11)]. We have made direct connection between the geometrical

factors and the radiation properties. The most important property of this chiral-induced

AMR is that it does not rely on the magnetic dipole transition moment, which is normally

much smaller compared to the electric counterpart and hinders the radiation efficiency.

Rather, the mechanism studied here relies on the electrical dipole transitions at two different

directions, from filled to empty scattering states originated from two different electrodes. We

have also shown the dependence of AMR on the tight-binding parameters and the coupling

to electrodes. These parameters allow electrical engineering of molecule’s AMR property.
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Appendix A: Properties for X

In this section, we derive the properties for X in Eq. (11) in the main text. Using the

cyclic property of the trace, we get

Xαβ
µν (E,E−) = Tr[V µAα(E)V νAβ(E−)] = Tr[V νAβ(E−)V µAα(E)] = Xβα

νµ (E−, E) (A1)

By noting that Aα, V µ are Hermitian, we obtain another relationship by performing conju-

gate of X

Xαβ
µν (E,E−) = Tr[V µAαV νAβ−] = Tr[V νAαV µAβ−]∗ = [Xαβ

νµ (E,E−)]∗ (A2)

We use the above two equations and derive useful properties for X, which can help us to

understand the results in the main text.

1. Single helical chain with NN hopping

The system under this case obeys particle-hole symmetry, from which we get one addi-

tional condition

gr(−E) = ga(E) (A3)

In a physical sense, this means a process involving an energy E and a time-reversed process

involving an energy −E are equivalent. Similarly, The spectral function is also symmetric

Aα>(E) = −Aα(−E). (A4)

The above results lead to

XLR
xy (−E−,−E) = Tr[V xAL(−E−)V yAR(−E)]

= Tr[V xAL>(E−)V yAR>(E)]

= Tr[V xAR(E)V yAL(E−)]

= XRL
xy (E,E−)

(A5)

This means that for any transition E → E−, the AMR contribution is exactly the opposite

of the corresponding transition −E− → −E. If both transitions are allowed in the large

bias limit, their AMR contribution cancels.
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2. Analysis of AMR for straight chain

For straight chain, rxij/r
y
ij is constant, so is V x/V y. That means V x and V y are switchable

by multiplying a constant. Then, we have XLR
xy = XLR

yx . Combining with Eq. (A2), we get

XLR
xy = (XLR

yx )∗ = XLR
yx (A6)

So ImXLR
xy = 0, meaning that AMR contribution jA is zero for straight chain.
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