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Weak spin-orbit coupling produces very limited current induced spin accumulation in semiconduc-
tor nanostructures. We demonstrate a possibility to increase parametrically the spin polarization
using the Kondo effect. As a model object we consider a quantum dot side coupled to a quantum
wire taking into account the spin dependent electron tunneling from the wire to the dot. Using the
nonequilibrium Green’s functions, we show that the many body correlations between the quantum
dot and the quantum wire can increase the current induced spin accumulation at low temperatures
by almost two orders of magnitude for the moderate system parameters. The enhancement is re-
lated to the Kondo peak formation in the density of states and the spin instability due to the strong
Coulomb interaction. This effect may be useful to electrically manipulate the localized electron
spins in quantum dots for their quantum applications.

Introduction—Semiconductor quantum dots (QDs)
hold a great promise for the scalable quantum infor-
mation processing using the localized spins in QDs as
qubits [1–5]. The electron and hole spins can be ef-
ficiently oriented [6–8], manipulated [9–12] and read
out [13–15] by optical means. However, electrical
schemes being based on the highly advanced fabrication
technology suggest larger ensembles of individually ad-
dressable qubits. On this way, the electrical spin trans-
port, spin correlations, and spin read out are already
firmly established [16–21]. Only the electrical single spin
polarization without magnetic field remains elusive for
years.

This stumbling block on the way of quantum technolo-
gies can be removed by the current induced spin polar-
ization effect [22]. The nonequilibrium flow of charge
carriers breaks the time inversion symmetry and allows
for the polarization of electron spins in the system. This
effect was first predicted [23] and observed [24] in bulk
Te crystals. Later it was extended to the epilayers [25]
and quantum wells [26, 27] based on GaAs-like semicon-
ductors. Nowadays the related effect of chirality induced
spin selectivity is in the focus of intense theoretical and
experimental investigations [28–30].

Generally, the degree of current induced spin polariza-
tion is small. This is related to the weakness of the spin-
orbit coupling and the small ratio of the drift and Fermi
velocities [31]. A number of approaches to overcome
these factors were suggested such as: spin-momentum
locking [32–34], streaming conductivity regime [35, 36],
hopping conductivity [37, 38], and exploitation of the va-
lence band spin-orbit splitting [39, 40]. In this Letter,
we demonstrate that the spin polarization can be dras-
tically increased at low temperatures due to the Kondo
many body correlations. Notably, this Kondo enhance-
ment of the spin accumulation can be combined with the
previously established tools to obtain the largest spin po-
larization.

As a model system, we consider a QD side coupled to

FIG. 1. Sketch of a QD side coupled to a quantum wire. The
difference of the tunneling probabilities for spin up (red balls
with arrows) and spin down (blue ones) particles leads to the
current induced spin accumulation in the QD.

a quantum wire, see Fig. 1. The structure is assumed to
be gate defined in two dimensional electron or hole gas.
The spin-orbit interaction gives rise to the spin depen-
dent tunneling. It leads to the spin accumulation in the
QD under current flow in the quantum wire [40], simi-
lar to the spin Hall [41] and Mott [42] effects. At the
same time, the Coulomb interaction in the QD produces
the many body correlations and leads to the Kondo ef-
fect [43]. This effect is known to enhance conductivity
and the spin susceptibility to external magnetic field [44].
Here, we demonstrate also the enhancement of the cur-
rent induced spin accumulation effect.

Model—The C2v point symmetry group of the system
allows for the linear coupling between the x component
of a vector and the z component of a pseudovector, i.e.
between the electric current along the wire and the spin
polarization in the QD along the growth axis, see Fig. 1.
To describe this coupling microscopically, we adopt the
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Anderson Hamiltonian [45]:

H = E0

∑
±
n± + Un+n− +

∑
k,±

Eknk,±

+
∑
k,±

(
Vk,±d

†
±ck,± + H.c.

)
. (1)

Here E0 is a single particle energy in the QD, n± = d†±d±
are the occupancies of the corresponding spin up and spin
down states expressed through the annihilation operators
d±, U is the Coulomb repulsion energy, Ek describes the
dispersion of particles in the quantum wire with the wave
vector k along the wire, and nk,± = c†k,±ck,± are the
occupancies of the corresponding spin states expressed
through the annihilation operators ck,±. We assume the
wire to be ballistic and also neglect the interactions in
it. Finally, the coefficients Vk,± describe the spin depen-
dent tunneling between the quantum wire and the QD.
Note, that the spin dependence in the form Vk,+ 6= Vk,−
is allowed for any crystal structure of the host semi-
conductors, so the current induced spin accumulation is
equally possible for GaAs, Si, and Ge-based heterostruc-
tures. The time reversal symmetry imposes a relation
Vk,+ = V ∗−k,−.

The spin-orbit coupling can lead to the spin splitting
of the electron dispersion in the quantum wire. This
however requires low symmetry of the system compared
to the spin dependent tunneling and is not important
for the current induced spin accumulation in the QD
separated from the quantum wire by a tunnel barrier.
The ratio of Vk,+ and Vk,− determines the chirality of
the quasi bound state in the QD [46–49]. For com-
pletely chiral quasi bound state Vk0,− = V−k0,+ = 0
and |Vk0,+| = |V−k0,−| 6= 0, so the spin orientation in
the QD is locked to the propagation direction along the
quantum wire (here k0 > 0 is determined by the relation
Ek0 = E0). We have shown recently, that this limit can
be reached in the heterostructures with the two dimen-
sional hole gas due to the complex valence band struc-
ture [40]. In what follows, we focus mainly on the com-
pletely chiral states and discuss the case of finite chirality
in the end of the Letter.

Formalism—For the calculation of the current induced
spin accumulation in the QD as a function of the bias
applied to the quantum wire, we use the nonequilibrium
Green’s functions [50–52]. This approach despite having
disadvantages [53], allows us to account for the Kondo
effect even beyond the linear response regime in the sim-
plest way and to demonstrate the Kondo enhancement
of current induced spin accumulation. The truncation of
the system of the Heisenberg equations of motion allows
one to obtain a closed set of equations for the operators
d±, ck,±, d±n∓, ck,±n∓, c†k,∓d∓d±, and ck,∓d

†
∓d±. From

its solution one finds the retarded Green’s functions of
spin up and spin down particles in the QD GR±(ω). In
particular, in the limit of the large Coulomb repulsion,

U →∞, one obtains (~ = 1) [54–56]

GR±(ω) =
1− 〈n∓〉

ω − E0 − Σ0(ω)− Σ1,±(ω)
, (2)

where 〈n∓〉 are the average occupancies of the QD states,
which should be determined self consistently. The self
energies Σ0(ω) and Σ1,±(ω) in the wide band approxi-
mation have the form

Σ0(ω) =
Γ

π

W∫
−W

1

ω − E + i0
dE, (3a)

Σ1,±(ω) =
Γ

π

W∫
−W

fR/L(E)

ω − E + i0
dE. (3b)

Here Γ is the tunneling rate between the QD and the
quantum wire, W is the band width, and

fL/R(E) =
1

1 + exp
[
(E − EL/RF )/T

] (4)

are the Fermi distribution functions in the left and right

leads with T being the temperature (kB = 1), and E
L/R
F

being the Fermi energies in the left/right leads. Eq. (2) is
qualitatively correct in the weak coupling regime, when
the temperature exceeds the Kondo temperature TK =
W exp (−π|EF − E0|/Γ).

The density of states related to the QD is given
by D(ω) = − Im

[
GR+(ω) +GR−(ω)

]
/π. It is shown in

Fig. 2(a) for the thermal equilibrium, ELF = ERF , and
different temperatures. Generally it consists of a broad
peak with the width ∼ Γ at the QD energy E0 (which
is a bit renormalized due to the tunneling) and a nar-
row peak at the Fermi energy, which leads to the Kondo
effect. The peak has a width of the order of TK and dis-
appears with increase of the temperature, as one can see
in Fig. 2(a).

To calculate the occupancies of the spin states in the
QD, we consider the expressions for the current to the QD
from the left/right lead corresponding to spin up/down
particles [57]:

JL/R = eΓ

∫
dω

2π

[
iG<+/−(ω)− 2fL/R(ω) ImGR+/−(ω)

]
,

(5)
where G<±(ω) are the lesser Green’s functions of the QD.
In the steady state, these currents vanish, which yields
the desired occupancies:

〈
n+/−

〉
= −i

∫
dω

2π
G<+/−(ω)

= −
W∫
−W

dω

π
fL/R(ω) ImGR+/−(ω). (6)
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Here the retarded Green’s functions also depend on the
occupancies, Eq. (2), so they should be calculated self
consistently. Ultimately, the spin polarization in the QD
is given by

P =
〈n+〉 − 〈n−〉
〈n+〉+ 〈n−〉

. (7)

Its calculation and analysis is the main goal of this work.

Results—The spin polarization induced by the electric
current is shown in Fig. 2(b) as a function of the bias

eV , which is applied symmetrically: E
L/R
F = EF ± eV/2.

This dependence looks the same for the three tempera-
tures T = TK , 20TK and 0.1Γ shown in the figure. Qual-
itatively, the bias produces the difference of the fluxes of
the particles moving to the left and to the right along the
quantum wire, and since the tunneling matrix elements
depend on the spin and direction of the propagation, this
results in the current induced spin accumulation in the
QD. At the same time, the large bias eV ∼ Γ� TK de-
stroys many body correlations, so the dependences shown
in Fig. 2(b) overlap for the different temperatures. The
spin polarization is an odd function of the bias in agree-
ment with the time reversal symmetry. It increases with
increase of the bias and saturates at |eV | > 2|EF − E0|.
The polarization approaches 100% when the quasi bound
state in the QD with the width Γ lies completely below
the Fermi energy in one lead and above the Fermi energy
in the other lead.

The many body correlations, which lead to the Kondo
effect, manifest themselves at the smallest voltages, eV ∼
TK , as shown in Fig. 2(c). Here the same curves as in
Fig. 2(b) are zoomed in. One can see, that the current
induced spin accumulation is in fact temperature depen-
dent for the smallest voltages: the higher the tempera-
ture, the smaller the polarization. For the large voltages
the curves for the low temperatures approach the curve
for the high temperature.

This suggests the introduction of the spin susceptibility
χs for the current induced spin accumulation as

χs = lim
V→0

P

eV
. (8)

Its temperature dependence is shown in Fig. 3(a) by the
black curve for the same parameters as in Fig. 2. One can
see that it strongly increases with decrease of tempera-
ture. Note that our approach is valid as long as T > TK
only, and TK = 3.5 · 10−4 Γ for these parameters.

The gray dashed curve represents an analytical approx-
imation, which is quite cumbersome and is given in the
Supplemental Material [58]. Its analysis for low temper-
atures T & TK shows that the spin susceptibility can be
estimated as

χs ∼
1

Γ
× EF − E0

Γ
. (9)

FIG. 2. (a) Density of states related to the QD calculated af-
ter Eq. (2). (b) Degree of spin polarization in the QD [Eq. (7)]
as a function of the applied bias. (c) The same as in (b) for
smaller voltages. The solid black, red dashed and blue dotted
curves for all panels are calculated for the different temper-
atures given in the legend in (c). The other parameters are
EF − E0 = 4Γ and W = 100Γ.

Here the first factor reflects the fact that the density of
states has a maximum at the Fermi energy of the order of
1/Γ caused by the many body correlations (Kondo peak),
so the difference of the occupancies in the leads sharply
affects the occupancies of the spin states in the QD. The
second factor is related to the interaction induced insta-
bility: once the spin up electron enters the QD, it sup-
presses the tunneling of the spin down electron, so the
spin polarization increases.

For comparison, the red dashed curve in Fig. 3(a)

shows the spin susceptibility χ
(0)
s calculated neglecting

the many body correlations (Hartree-Fock approxima-
tion) [58]. At high temperatures T & Γ it coincides with
the black curve. However, at low temperatures, T � Γ,
this approximation strongly underestimates the spin sus-
ceptibility and gives χs ∼ 1/(EF − E0).

To underline the role of many body correlations in the
effect of current induced spin accumulation, we plot the

ratio χs/χ
(0)
s in Fig. 3(b) as a function of scaled temper-

ature

Θ =
ln(T/TK)

ln(Γ/TK)
. (10)

This parameter equals zero when T = TK , equals unity
when T = Γ and logarithmically scales in between (note
that our approach is valid for Θ > 0 only). The black
curve in Fig. 3(b) is calculated for the same parameters
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FIG. 3. (a) The spin susceptibility as a function of temper-
ature calculated numerically (black solid curve), analytically
(gray dotted curve), and in the Hartree–Fock approximation
(red dashed curve) for the same parameters as in Fig. 2.
(b) The ratio of the spin susceptibilities calculated with and

without many body correlations, χs/χ
(0)
s , as a function of the

scaled temperature Θ [Eq. (10)] for the same parameters as in
Fig. 2 except for the larger ratios of the Fermi energy and the
band width (EF − E0)/W = 0.13 and 0.4 for the red dashed
and blue dotted curves, respectively.

as Fig. 3 and shows that the ratio χs/χ
(0)
s exceeds 10

when temperature approaches the Kondo temperature.
The red dashed and blue dotted curves are calculated
for the chiral quasi bound state located deeper below the
Fermi energy, i.e. larger (EF −E0)/W . For simplicity of
the numerical calculations, we tuned this dimensionless
parameter by decreasing the band width W . One can see
that the deeper the localization (or the larger the Fermi
energy, or the smaller the band width) the larger role of
the many body correlations. In particular, the increase
of the spin susceptibility due to them approaches 100 at
low temperatures, as shown by the blue dotted curve.
This is the main result of this work.

Discussion—Above we considered a completely chi-
ral quasi bound state (i.e. V−|k|,+ = V|k|,− = 0).
Generally, for arbitrary bias the results do not change
qualitatively for the weaker chirality, but the cur-
rent induced spin accumulation decreases. In par-

ticular case of small bias, the spin susceptibility is
simply proportional to the chirality, χs ∝ C =(
|V 2
k0,+
| − |V 2

k0,−|
)
/
(
|V 2
k0,+
|+ |V 2

k0,−|
)

[58].

As an outlook, we believe that the predicted enhance-
ment of the current induced spin accumulation by the
many body correlations is a general phenomenon. So it
would be important to apply other theoretical approaches
such as the numerical renormalization group method [59–
61], to establish scaling relations in the strong coupling
regime at temperatures below TK , and to study the man-
ifestations of the current induced spin accumulation in
the transport properties. Qualitatively, we note that the
completely chiral quasi bound state does not lead to the
back scattering of the particles in the quantum wire, be-
cause each spin state is coupled to the particles propagat-
ing only in one direction. Thus the increase of chirality
C leads to the disappearance of the Kondo resonance
in the differential conductivity. In addition, the current
induced spin accumulation in the QD can be probed op-
tically by means of the polarized photoluminescence and
spin induced Faraday rotation of the probe light, or elec-
trically using point contacts [62, 63] and scanning tunnel-
ing microscopy [64]. We note that the Onsager relations
also imply that the spin pumping of the QD by exter-
nal means would lead to the electric current along the
quantum wire.

The proposed model allows for various generalizations,
which can be studied theoretically and experimentally.
For example, it would be interesting to take into account
interactions between the particles in the quantum wire
or consider a few QDs side coupled to the quantum wire.
The spin accumulation in the QD can be also induced by
the different temperatures in the leads similar to the spin
Nernst effect.

The typical parameters of the system for the experi-
mental realization of the current induced spin accumu-
lation are the lengths of the order of 100 nm and the
coupling strength Γ ∼ 10 µeV. Then, for example, for
the parameters used in Fig. 2 we obtain TK ∼ 50 µK,
which is quite low. We note however, that the many
body correlations significantly enhance the spin polar-
ization even at the temperatures smaller than, but com-
parable to Γ ∼ 100 mK, which is easier to reach.

Indeed, a very similar system was recently realized ex-
perimentally [65]. However, the QD was placed inside the
quantum wire, so the quasi bound state was not chiral
and the effect of the current induced spin accumulation
was symmetry forbidden. If QD is shifted along y di-
rection, our theory predicts significant spin polarization
increased by the Kondo effect in this system.

Conclusion—We have demonstrated that the Kondo
effect can be exploited to enhance the spin galvanic effects
such as the current induced spin accumulation. In par-
ticular, the many body correlations are shown to para-
metrically increase the degree of the spin polarization in
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chiral quasi bound state in the QD side coupled to the
quantum wire. The spin susceptibility to the electric cur-
rent can be enhanced by almost two orders of magnitude
for the realistic system parameters.
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S1. DERIVATION OF GREEN’S FUNCTIONS

Here we present for the completeness the derivation of
the retarded Green’s functions for the Anderson Hamil-
tonian. We follow the approach of Ref. S1, which is ex-
plained in more detail in Ref. S2.

We start from the Hamiltonian [Eq. (1) in the main
text]

H = E0

∑
±
n± + Un+n− +

∑
k,±

Eknk,±

+
∑
k,±

(
Vk,±d

†
±ck,± + H.c.

)
, (S1)

where E0 is the localization energy in the QD, n± =
d†±d± are the occupancies of the spin up and spin down

states in the quantum dot (QD) with d± (d†±) being the
corresponding annihilation (creation) operators, U is the
Coulomb repulsion energy in the QD, Ek is the spin inde-
pendent dispersion of the states in the quantum wire with
k being the wave vector along the wire, nk,± = c†k,±ck,±
are the occupancies of the spin up and spin down states
with the wave vector k in the wire with ck,± (c†k,±) being
the corresponding annihilation (creation) operators, and
finally Vk,± are the spin dependent tunneling matrix ele-
ments between the quantum wire and the QD. The time
inversion symmetry implies that

Vk,+ = V ∗−k,−. (S2)

We note that for the previously investigated case of the
hole in the complex valence band [S3], the subscript ± for
the states in the wire refers to the heavy holes with the
spin ±3/2 along the structure growth axis (perpendicular
to the plain containing the quantum wire and the QD),
and it refers to the light holes with the spin ∓1/2 in the
QD along the same axis.

The retarded Green’s functions can be obtained from
the following Heisenberg equations for the operators
(~ = 1):

i
dd±
dt

= E0d± + Ud±n∓ +
∑
k

V ∗k,±ck,±, (S3a)

i
dck,±

dt
= Ekck,± + Vk,±d± (S3b)

i
d(d±n∓)

dt
= (E0 + U)d±n∓ +

∑
k

(
V ∗k,±ck,±n∓

+Vk,∓c
†
k,∓d±d∓ − V

∗
k,∓ck,∓d

†
∓d±

)
, (S3c)

i
d(ck,±n∓)

dt
= Ekck,±n∓ + Vk,±d±n∓

+
∑
q

(
−Vq,∓ck,±c†q,∓d∓ + V ∗q,∓ck,±d

†
∓cq,∓

)
, (S3d)

i
d(c†k,∓d±d∓)

dt
= (2E0 +U −Ek)c†k,∓d±d∓+V ∗k,∓d±n∓

+
∑
q

(
V ∗q,±c

†
k,∓cq,±d∓ + V ∗q,∓c

†
k,∓d±cq,∓

)
, (S3e)

i
d(ck,∓d

†
∓d±)

dt
= Ekck,∓d

†
∓d± + Vk,∓ (d± − d±n∓)

+
∑
q

(
−Vq,∓ck,∓c†q,∓d± + V ∗q,±ck,∓d

†
∓cq,±

)
. (S3f)

These equations allow one to calculate in the steady state
the correlation functions of the operators A and B like

〈A,B〉R (t) ≡ −i 〈A(t)B +BA(t)〉 θ(t) (S4)

with θ(t) being the Heaviside step function from the
equations

d

dt
〈A,B〉R (t) = −i 〈AB +BA〉 δ(t) +

〈
dA

dt
, B

〉R
(t),

(S5)
where δ(t) is the Dirac delta function.

Our aim is to calculate the retarded spin dependent
Green’s functions

GR±(t) ≡
〈
d±, d

†
±

〉R
. (S6)



S2

Thus we consider B = d†± in Eq. (S5) and different oper-
ators A from Eqs. (S3).

In the Hartree–Fock approximation one uses
Eqs. (S3a—S3c), truncates the system using the
approximations

ck,±n∓ = ck,± 〈n∓〉 , c†k,∓d±d∓ = ck,∓d
†
∓d± = 0,

(S7)
and uses the following correlators〈

d†±d± + d±d
†
±

〉
= 1,

〈
d†±ck,± + ck,±d

†
±

〉
= 0,〈

d†±d±n∓ + d±n∓d
†
±

〉
= 〈n∓〉 , (S8)

where 〈n±〉 are the steady state occupancies of the spins
states of the QD, which should be calculated self consis-
tently. In this way, we obtain the Green’s functions in
the limit of strong Coulomb interaction (U →∞) [S2]

G
R(0)
± =

1− 〈n∓〉
ω − E0 − ΣR0 (1− 〈n∓〉)

, (S9)

where the self energy

ΣR0 =
∑
k

|V 2
k,±|

ω − Ek + i0
(S10)

is spin independent due to Eq. (S2).
The Hartree–Fock approximation does not capture the

Kondo effect, therefore, it is necessary to go beyond
Eq. (S7) and consider additional Eqs. (S3d—S3f). To
truncate the system one uses the approximations

c†k,∓d±cq,∓ = −δk,qfkd±, ck,∓c
†
q,∓d± = δk,q(1−fk)d±,

ck,±c
†
q,∓d∓ = ck,±d

†
∓cq,∓ = c†k,∓cq,±d∓ = ck,∓d

†
∓cq,± = 0,

(S11)

where (kB = 1)

f|k| =
1

1 + exp
[
(Ek − ELF )/T

] (S12a)

and

f−|k| =
1

1 + exp
[
(Ek − ERF )/T

] (S12b)

are the spin independent occupancies of the states with
the wave vector |k| (−|k|) in the quantum wire with ELF
(ERF ) being the Fermi level in the left (right) lead. One
also uses the following additional approximations for the
correlation functions:〈

d†±c
†
k,∓d±d∓ + c†k,∓d±d∓d

†
±

〉
=
〈
d†±ck,∓d

†
∓d± + ck,∓d

†
∓d±d

†
±

〉
= 0. (S13)

In this way, we obtain the Green’s functions in the limit
of large U [S1]:

GR± =
1− 〈n∓〉

ω − E0 − ΣR0 − ΣR1,±
, (S14)

where

ΣR1,± =
∑
k

fk|V 2
k,∓|

ω − Ek + i0
. (S15)

These expressions take into account the many body cor-
relations in the minimal approximation, which allows one
to account for the Kondo effect.

S2. WIDE BAND APPROXIMATION

To obtain transparent expressions for the Green’s func-
tions we consider the wide band approximation, which is
given by the substitution

∑
k

|V 2
k,±|φ(k)→ Γ

π

W∫
−W

[
1± C

2
φ(|k|)

+
1∓ C

2
φ(−|k|)

]
dEk, (S16)

where φ(k) stands for arbitrary function, W is the band
width, Γ = πD(E0)(|V 2

k0,± + |V 2
−k0,±|)/4 is the spin in-

dependent width of the quasi bound state with D(E0)
being the density of states in the quantum wire includ-
ing spin and the two directions of the propagation and
k0 being the wave vector corresponding to the energy of
the quasi bound state so that Ek0 = E0 (k0 > 0), and

C =
|V 2
k0,+
| − |V 2

k0,−|
|V 2
k0,+
|+ |V 2

k0,−|
(S17)

is the chirality of the quasi bound state. The band width
W is assumed to be the largest energy scale (except for
U).

With this substitution one obtains from Eq. (S10) the
self energy

ΣR0 = −iΓ. (S18)

Then the Green’s function in the Hartree–Fock approxi-
mation, Eq. (S9), reads

G
R(0)
± =

1− 〈n∓〉
ω − E0 + iΓ(1− 〈n∓〉)

. (S19)

Further, another self energy, Eq. (S15), has the form

ΣR1,± =
Γ

2π

W∫
−W

(1∓ C)fL(E) + (1± C)fR(E)

ω − E + i0
dE

≡ ΣR,L1,± + ΣR,R1,± , (S20)



S3

where

fL/R(E) =
1

1 + exp
[
(E − EL/RF )/T

] (S21)

[Eq. (4) in the main text] and we have separated the

two contributions Σ
R,L/R
1,± related to the left/right leads.

One can see that these self energies logarithmically di-
verge for large W because of the contribution from the
low frequencies. This divergence determines the Kondo
temperature

TK = W exp(−π|EF − E0|/Γ) (S22)

in this model with EF = (ELF +ERF )/2, which should be
smaller than T to ensure the validity of the approach:
TK < T . The Green’s functions, Eq. (S14), then read

GR± =
1− 〈n∓〉

ω − E0 + iΓ− ΣR1,±
. (S23)

For relatively low temperatures, T � Γ the integrals
in Eq. (S20) yield

Σ
L/R
1,± =

Γ
L/R
∓
π

[
ln

∣∣∣∣∣ W

ω − EL/RF

∣∣∣∣∣+ g

(
|ω − EL/RF |

T

)
−iπfL/R(ω)

]
, (S24)

where

ΓL± =
1± C

2
Γ, ΓR± =

1∓ C
2

Γ, (S25)

and

g(x) =

∞∫
0

dy

y

[
sh(y)

ch(y) + ch(x)
− θ(y − x)

]
. (S26)

This dimensionless function is shown in Fig. S1 by black
solid line. For small x it has an asymptote

g(x) = ln(2x/π) + γ (S27)

with γ ≈ 0.58 being the Euler constant. For large x the
asymptote reads

g(x) = π2/(6x2). (S28)

These asymptotes are shown in Fig. S1 by red dashed
and blue dotted curves and cover almost the whole range
of x from zero to infinity.

At relatively high temperatures T ∼ Γ one has to use
Eq. (S20) to calculate the Green’s functions.
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FIG. S1. Function g(x) given by Eq. (S26) (black solid curve)
and its asymptotes Eq. (S27) (red dashed curve) and Eq. (S28)
(blue dotted curve).

S3. CALCULATION OF SPIN SUSCEPTIBILITY

To calculate the current induced spin accumulation in
the QD, we write the electric current of the given spin
component to the QD from the left/right leads [S2]:

J
L/R
± = e

∫
dω

2π

[
iΓ
L/R
± G<± − 2fL/RΓ

L/R
± ImGR±

]
,

(S29)
where G<± are the lesser Green’s functions of the QD. In
the steady state, due to the spin and charge conservation
in the QD, we have

JL± + JR± = 0. (S30)

From this relation we obtain the occupancies of the spin
states of the QD in the form

〈n±〉 = −i

∫
dω

2π
G<±

= −
∫

dω

πΓ

[
fLΓL± + fRΓR±

]
ImGR±. (S31)

These occupancies define the spin polarization in the QD
even beyond the linear response regime.

We note that the lesser Green’s functions can be also
calculated using the analytical continuation method [S2,
S4, S5] following the approach of Refs. S6 and S7. How-
ever, the phenomenological truncation of the Heisenberg
equations using the relations (S11) and (S13) yields in
this way the Green’s functions G<± that do not coincide
with −2ifL/RG

R
± in the equilibrium. Therefore, for con-

sistency we prefer to determine the occupancies of the
QD states from the charge and spin conservation rela-
tions (S30).

From Eq. (S23) one can see that Eq. (S31) can be
rewritten as

〈n±〉 = I±(1− 〈n∓〉), (S32)
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where

I± = −
∫

dω

πΓ

[
fLΓL± + fRΓR±

]
Im

1

ω − E0 − ΣR0 − ΣR1,±
(S33)

do not depend on 〈n±〉 (here we take into account that
for finite W Eq. (S18) may be weakly violated). From
the solution of these equations we obtain the spin polar-
ization in the QD

P ≡ 〈n+ − n−〉
〈n+ + n−〉

=
I+ − I−

I+ + I− − 2I+I−
(S34)

and its occupancy

〈n+ + n−〉 =
I+ + I− − 2I+I−

1− I+I−
. (S35)

These expressions generally define the spin state of the
QD.

To calculate the spin susceptibility, we consider the
symmetrically applied bias eV : ELF = EF + eV/2, ERF =
EF − eV/2 and set EF = 0 to be specific. In the case of
eV = 0 one has I+ = I− = I0, where

I0 = −
∫

dω

π
Im

f0(ω)

ω − E0 − ΣR0 − ΣR1,0
(S36)

with

f0(E) =
1

1 + exp [(E − EF )/T ]
(S37)

and

ΣR1,0 = Γ

W∫
−W

dE

π

f0(E)

ω − E + i0
. (S38)

In the first order in eV we obtain

I+ − I− = −C
∫

dω

π
Im

[
fL(ω)− fR(ω)

ω − E0 − ΣR0 − ΣR1,0

− Γf0(ω)

(ω − E0 − ΣR0 − ΣR1,0)2

W∫
−W

dE

π

fL(E)− fR(E)

ω − E + i0

 .
(S39)

Then the spin susceptibility is given by

χs =
(I+ − I−)/(eV )

2I0(1− I0)
. (S40)

From Eq. (S39) one can see that it linearly depends on
the chirality C, so we focus on the case of C = 1 in what
follows and in the main text.

S4. ESTIMATION OF SPIN SUSCEPTIBILITY

To obtain a qualitative understanding of the current
induced spin accumulation enhancement due to Kondo
effect, we derive an analytical approximation for the spin
susceptibility at low temperatures, TK < T � Γ and at
high Fermi level EF − E0 � Γ.

First of all, we note that in this limit 〈n+ + n−〉 ≈
1 because of the strong Coulomb interaction, so from
Eq. (S35) we obtain I0 ≈ 1. Then we note that the
denominator in Eq. (S40) is close to zero, so the spin
susceptibility χs is large. This is related to the fact that
for the large Coulomb interaction the system is a sort of
unstable: a small occupancy of one spin state strongly
suppresses occupancy of another at the same moment.

To estimate 1−I0 we approximate Eq. (S36) as follows:

I0 ≈ −
EF∫
−W

dω

π
Im

1

ω − E0 + iΓ

=
1

π

[
arctg

(
W + E0

Γ

)
+ arctg

(
EF − E0

Γ

)]
. (S41)

Then we rewrite Eq. (S33) for the case of C = 1 as

I+/− = −
∫

dω

π
Im

fL/R

ω − E0 − ΣR0 − ΣR1,+/−
. (S42)

Further from Eqs. (S10) and (S20) we obtain

Im ΣR0 = −Γ, Im ΣR1,+/− = −ΓfR/L, (S43)

thus we arrive at

I+/− =

∫
dω

π

ΓfL/R(1 + fR/L)∣∣∣ω − E0 − ΣR0 − ΣR1,+/−

∣∣∣2 . (S44)

Next we separate the three contributions to the current
induced spin accumulation as follows [cf. Eq. (S39)]:

I+ − I− = ∆I1 + ∆I2 + ∆I3, (S45)

where

∆I1 =

∫
dω

π

Γ(fL − fR)∣∣ω − E0 − ΣR0 − ΣR1,0
∣∣2 , (S46a)

∆I2 =

∫
dω

π

2Γ3(fL − fR)f0(1 + f0)2∣∣ω − E0 − ΣR0 − ΣR1,0
∣∣4 , (S46b)

∆I3 =

∫
dω

π
2Γ2f0(1 + f0) Re(ΣR1,+ − ΣR1,−)

×
Re(ω − E0 − ΣR0 − ΣR1,0)∣∣ω − E0 − ΣR0 − ΣR1,0

∣∣4 . (S46c)
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In the first two contributions, we replace fL − fR with
eV δ(ω − EF ) and note that at ω = EF it follows from
Eqs. (S24) and (S27) that

ΣR1,0 =
Γ

π

[
ln

(
2W

πT

)
+ γ

]
− i

Γ

2
(S47)

and taking into account Eq. (S18) we obtain

∆I1 =
eV

π

Γ

a2 + (3Γ/2)2
, (S48)

∆I2 =
eV

π

9Γ3

4 [a2 + (3Γ/2)2]
2 , (S49)

where

a =

∣∣∣∣EF − E0 −
Γ

π

[
ln

(
2W

πT

)
+ γ

]∣∣∣∣ . (S50)

Finally, we estimate the last contribution as

∆I3 = h(W/T )− h(W/Γ), (S51)

where

h(x) =
2/π

(EF−E0)2

Γ2 + 4− 2(EF−E0)
πΓ ln(x) + ln2(x)

. (S52)

Now the analytical estimation for the spin susceptibility
is given by Eqs. (S40), (S41), (S45), (S48), (S49), and
(S51). It is shown by the gray dotted line in Fig. 3(a) in
the main text.

To find an order of magnitude estimation we note that

1− I0 ∼
Γ

EF − E0
, ∆I1,2,3 ∼

eV

Γ
. (S53)

So Eq. (S40) yields [Eq. (9) in the main text]

χs ∼
EF − E0

Γ2
. (S54)

For comparison, in the Hartree-Fock approximation we
obtain in the same way from Eq. (S19) that the occupan-
cies of the spin states obey the equations [S3]

〈
n+/−

〉
=

1

π

W∫
−W

Γ(1−
〈
n−/+

〉
)2fL/R

(ω − E0)2 + Γ2(1−
〈
n−/+

〉
)2

dω.

(S55)
These equations should be solved self consistently for
〈n±〉. They were used to calculate the spin susceptibility

χ
(0)
s for Fig. 3 in the main text.
In the wide band limit (W → ∞) and for the large

Fermi energy (EF−E0 � Γ, T ), Eq. (S55) can be written
in the form of Eq. (S32) with

I± = 1− Γ/π

EF − E0
± ΓeV

2π(EF − E0)2
. (S56)

Thus, using Eq. (S40) we find an estimation for the spin
susceptibility in the Hartree-Fock approximation:

χ(0)
s ∼

1

EF − E0
. (S57)

As discussed in the main text, it is parametrically smaller
than the spin susceptibility at low temperatures with ac-
count for the many body correlations [Eq. (S54)]. The
reason for this is the absence of the peak in the density
of states at the Fermi energy and underestimation of the
role of the Coulomb interaction.
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