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We report the detailed analysis of temperature dependent neutron diffraction pattern of the
Cr2CoAl inverse Heusler alloy and unveil the magnetic structure up to the phase transition as well
as its fully compensated ferrimagnetic nature. The Rietveld refinement of the diffraction pattern
using the space group I4̄m2 confirm the inverse tetragonal structure over the large temperature
range from 100 K to 900 K. The refinement of the magnetic phase considering the wave vector k =
(0, 0, 0) reveals the ferrimagnetic nature of the sample below 730±5 K. This transition temperature
is obtained from empirical power law fitting of the variation in the ordered net magnetic moment
and intensity of (110) peak as a function of temperature. The spin configuration of the microscopic
magnetic structure suggests the nearly fully compensated ferrimagnetic behavior where the magnetic
moments of Cr2 are antiparallel with respect to the Cr1, and Co moments. Moreover, the observed
anomaly in the thermal expansion and lattice parameters at 730±5 K suggest that the distortion in
crystal structure may play an important role in the magnetic phase transition.

I. INTRODUCTION

In the field of spin filters and spintronics, the com-
pensated ferrimagnetic and spin gapless semiconductor
Heusler alloys emerge as potential candidates because of
their exotic physical properties elegantly controlled by
the conduction method of the electrons at the Fermi level
(EF) [1, 2]. More interestingly, a few Heusler alloys show
half-metallic (HM) nature with 100% spin polarization
where the conduction is only due to one spin channel
and there are no electrons present with opposite spin
at EF [3]. Leuken and de Groot [4] theoretically pro-
posed to realize HM antiferromagnets (AFMs) with full
spin polarization in Heusler alloys, which are defined as
zero net moments with the fully spin polarization, and
are also classified as the HM fully compensated ferrimag-
nets (FCF) [5, 6]. These type of HM-AFM/FCF ma-
terials have advantage due to their zero stray magnetic
field and therefore no energy losses during device oper-
ation for vaious applications [5]. In recent time, inverse
Heusler (X2YZ) alloys, where the atomic number of X is
smaller than Y and crystal structure changes from L21
to XA type, are predicted to show such vital magnetic
properties as well as spin gapless semiconducting nature,
and therefore are considered as potential candidates for
practical applications [7–13]. In this family, Cr2CoAl was
theoretically found to be stabilized in the inverse tetrag-
onal XA type structure having a negative formation en-
ergy [14, 15], which was later experimentally verified in
our recent report [16]. Interestingly, the theoretical stud-
ies did predict that the Cr2–based Heusler alloys possess
a fully spin-polarized band structure, which is highly de-
sirable in spintronics [1, 5]. On the other hand, Cr-based
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compound such as Cr3Al exhibits a ferrimagnetic (FIM)
nature with experimentally observed 84% spin polariza-
tion [17]. Moreover, Cr3Al films were investigated using
neutron diffraction to explore the magnetic moment of
the atoms at different sites [18]. In case of Cr2CoAl, the
appreciable amount of spin polarization 68% was real-
ized in the compensated ferrimagnetic (CF) state [14].
Theoretical studies predicted that the effect of compen-
sation leads to a decrease in the magnetic moment in the
Cr2CoAl sample where the Cr-Cr neighboring atoms have
an antiparallel coupling, and the individual magnetic mo-
ments for the nonsymmetric spin structure for the atoms
at different sites were found to be Cr1 (1.36 µB), Cr2
(-1.49 µB), and Co (0.30 µB) in this inverse Heusler al-
loy [14, 15, 19]. However, the full compensation is not
experimentally realized with zero moment in the Heusler
samples; for example, Mn3Ga has a magnetic moment of
0.65 µB/f.u, and MnCoVAl possesses 0.07 µB/f.u [20, 21].

Since the net moment of the samples is mainly gov-
erned by the magnetic atoms, in case of inverse Heusler
alloys the magnetic moment follows the Slater-Pauling
(SP) relation as Mt = (Zt − 24) µB, where Zt is the to-
tal number of valance electrons in the unit cell of the
alloy. Here, for the complete magnetization compensa-
tion, the value of Zt must be equal to 24 according to the
SP relation [22]. Recently, FCF behavior was reported
in Cr2CoAl and Cr2CoGa experimentally as well as by
ab-initio calculations [16, 19, 23, 24]. Our recent report
on Cr2Co(1−x)CrxAl indicates that the XA structure is
stable in the single-phase and we observed the signature
of the FCF state in the x = 0–0.4 samples [16]. At the
same time, the magnetization curves show a finite hys-
teresis loop and do not saturate with magnetic field at
a temperature of 50 K and 300 K. The magnetization
behavior as a function of temperature and magnetic field
has been classified as antiferromagnetic and/or compen-
sated ferrimagnetic [16]. However, the crucial fact about
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the Heusler alloys is the presence of antisite disorder,
which can decrease the spin polarization [25–27]. Using
neutron diffraction (ND) [28], Lázpita et al. determined
the atomic distribution in the NiMnGa alloy in the para-
magnetic (PM) region [29]. In the same way, an antisite
disorder was found in the Mn2VGa sample between V
and Ga atoms [30]. Recently, we have determined the
magnetic structure of Co2CrAl sample using powder ND
across the phase transition and found the perfect agree-
ment with magnetization behavior [31]. Umetsu et al.
also used powder ND to investigate the site occupancies
in few Co2 based full Heusler alloys both in the FM and
PM states [32]. Powder ND has also been used to study
the antisite disorder and magnetic structure in Co2 based
Heusler alloys [33, 34]. Interestingly, a structural tran-
sition, i.e., abrupt change in the lattice parameters was
observed by temperature dependent ND, which found to
be in agreement with the magnetic phase transition in
TbCo2 [35]. Also, ND is sensitive to the appearance of
AFM ordering, and the observed TN was found to be con-
sistent with the magnetization data of CuMnSb [36] as
well as in inverse Heusler alloys [37]. The magnetic phase
transition in Cr2CoAl is expected to be around 750 K
[38]; however, to the best of our knowledge there are no
reports on magnetization and/or ND measurements at
high temperatures. Therefore, it is of vital importance
to unveil the magnetic structure, phase transition and
structural disorder in the Cr2CoAl inverse Heusler alloy.

In this paper, we present a detailed analysis of the
ND patterns of the Cr2CoAl sample to determine the
crystal structure and the microscopic magnetic behavior
over the large temperature range from 100 K to 900 K
across the magnetic phase transition. The Rietveld re-
finement reveals the inverse tetragonal structure and no
measurable antisite disorder in the sample. The analy-
sis of the magnetic phase gives the value of net ordered
moment around 0.04(4) µB/f.u. at 100 K, which found
to decrease with temperature and reaches almost zero at
around 730 K [defined as the magnetic ordering temper-
ature TMO]. Also, the intensity plot of the (110) peak
shows a similar decrease with temperature till 730±5 K
and then become almost constant. Moreover, the lattice
parameters increase with an increase in temperature, and
the slope of the curve changes near the TMO. A similar
anamoly is observed in the thermal factor and thermal
expansion coefficient at around TMO. Interestingly, we
find a nearly FCF structure where the magnetic moment
of Cr2 shows antiparallel alignment with the Cr1 as well
as the Co spins. The FIM transition obtained from the
fitting of temperature dependence of the magnetic mo-
ment is found to be consistent with the intensity varia-
tion of the (110) peak with temperature.

II. EXPERIMENTAL DETAILS

Polycrystalline Cr2Co(1−x)CrxAl (x = 0, 0.2) samples
were prepared by arc melting (CENTORR, Vacuum In-

dustries, USA). The basic characterization of these sam-
ples has been reported in ref. [16]. Powder ND experi-
ments are performed at the high-intensity diffractome-
ter Wombat [39] and the high-resolution diffractome-
ter Echidna [40, 41] at the OPAL research reactor at
ANSTO, Australia, using a cylindrical sample holder.
A wavelength of λ = 1.633 Å and 1.622 Å were se-
lected with a Ge(113) and a Ge(335) monochromator
at the instruments Wombat (300-900 K) and Echidna
(100 K), respectively. The neutron diffraction patterns
were scanned at various temperatures on heating from
room temperature to 900 K in the vacuum furnace. The
step size was taken as 0.125o in the 2θ range between 25o-
135o at the Wombat diffractometer for the x = 0 sample.
The measured diffraction pattern is analyzed with the Ri-
etveld refinement method implemented with the FullProf
package [42] considering the fundamental aspects of full-
width and half maximum and other reliable parameters
of the diffraction peaks [43]. The magnetic configuration
is generated with neutron powder diffraction using the
basis irreducible representation (BasIreps) function.

III. RESULTS AND DISCUSSION

In Fig. 1 we present the high resolution ND pattern
of the Cr2Co(1−x)CrxAl (x = 0, 0.2) samples measured
on the Echidna diffractometer in the broad angle range
20o-150o at 100 K. At first glance, we clearly observe the
tetragonal distortion in the principal reflections for both
the samples, which is consistent with the x-ray diffrac-
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FIG. 1. Rietveld refinement (black line) of the powder ND
pattern (red symbols) (a, b) with a nuclear Bragg peaks at
higher 2θ angles, and (c, d) with both nuclear and magnetic
Bragg reflections at lower 2θ angles, measured at 100 K for
both the x = 0 and 0.2 samples. The difference profile (blue
line) and Bragg peak positions (short vertical bars green for
the nuclear and magenta for the magnetic) are shown in each
panel. These high resolution patterns were recorded at the
Echidna diffractometer (λ = 1.622 Å).
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tion (XRD) patterns reported in ref. [16]. The mea-
surement temperature of 100 K was chosen to be in the
magnetic region, as confirmed in the magnetization data
[16]. In order to extract the information from the data
at 100 K, we refine the ND pattern following the simi-
lar procedure as reported in ref. [44]. First, the neutron
powder-diffraction patterns at a higher angle (2θ: 80–
150o) have been refined as the magnetic form factor gen-
erally is negligible at higher angles above ≈80o [30, 44].
The refined pattern using the tetragonal structure with
the space group I4̄m2 considering the nuclear contribu-
tion only [45] are shown in Figs. 1(a, b) for the x = 0 and
0.2 samples, respectively. We find the lattice parameters
for the x = 0 sample; a = 4.051 Å and c = 5.665 Å, and
for the x = 0.2 sample; a = 4.075 Å and c = 5.680 Å,
which are consistent with the reports in Refs. [16, 38].

The ND data in the AFM state either show new Bragg
peaks, which appear towards lower 2θ angle in the mag-
netically ordered state (below Néel temperature) or with
the primitive lattice where the magnetic atoms arrange in
such way that their multiplicity is higher than one, hav-
ing a wave vector (k=0) [46–48]. However, in the present
case, the magnetic atoms arrange in the multiplicity of
two, which is higher than the multiplicity of the atoms
in the primitive lattice. Since no additional Bragg peaks
appear in the magnetically ordered state in our ND pat-
terns, an AFM structure can be ruled out. This indicates
either ferromagnetic (FM) or ferrimagnetic (FIM) order-
ing in these samples [25, 31, 46]. The magnetic contri-
bution is associated with the (110) peak as the intensity
of this peak increases at lower temperatures due to the
presence of magnetic ordering [31]. In order to reveal the
magnetic structure, the low angle diffraction patterns are
analyzed incorporating the magnetic contributions and
using the lattice structure obtained from the high angle
patterns, as shown in Figs. 1(c, d) for the x = 0 and 0.2
samples, respectively. The extracted net ordered mag-
netic moments of the x = 0 and x = 0.2 samples are found
to be 0.04(4) and 0.05(4) µB/f.u. at 100 K, respectively.
These values are reasonably in agreement with the gen-
eralized SP rule considering the total number of valence
electrons in the unit cell [49, 50] as well as the value re-
ported in Ref. [51] using the band structure calculations.
The antiparallel alignment and the different magnitude
of the magnetic moment vectors of Cr and Co atoms in-
dicate a nearly FCF structure (discussed later), which
is consistent with the reported physical nature of FCF
for the Cr2CoAl sample in Ref. [51]. All the extracted
parameters for the x = 0 sample are listed in Table I of
the Supplementary Information [52]. Notably, neutron
diffraction was also used to study the FCF nature in the
Mn2V1−xCoxGa Heusler alloys [53].

Now, we mainly focus on the detailed analysis of pow-
der ND pattern of the x = 0 sample, collected at the
diffractometer Wombat in the large temperature range
from 300 K to 900 K, to reveal the magnetic structure and
transition temperature. Figs. 2(a-j) show the Rietveld
refined ND patterns considering magnetic plus nuclear
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FIG. 2. (a-j) The Rietveld refined neutron powder diffraction
pattern of the x = 0 sample, recorded on the diffractometer
Wombat (λ = 1.633 Å). Each pattern is fitted with magnetic
plus nuclear phases in the low temperature range 300–725 K,
and with the nuclear phase only in 750–900 K range. The
black asterisk tag indicates the peaks from the Niobium sam-
ple environment. The region 38o–43o has been removed from
the difference profile (blue line) for clarity in the presentation.

phases in the temperature range of 300–725 K, and with
only the nuclear phase from 750 K to 900 K range. There
are a few peaks associated with the Niobium sample envi-
ronment, between 2θ= 38o–42o, as well as at ≈81o, which
are present at all temperatures in Fig. 2. Therefore, for
the sake of accuracy of the fitting parameters, these re-
gions are excluded from the refinement by adjusting the
range limit in the Fullprof program [42]. Normally the
ND technique is more sensitive as compared to XRD to
quantify the antisite disorder due to the distinctly differ-
ent neutron-bound scattering amplitude of the elements
Cr (3.6 fm), Co (2.5 fm), and Al (3.5 fm) [31, 54]. There-
fore, we tried to find the antisite disorder between the Co
and Cr atoms as well as between the Co and Al atoms by
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refining the ND patterns, initially at 900 K (above TC)
with the nuclear phase only, as shown in Fig. 2(j). A
similar method was reported to quantify the antisite dis-
order in the Mn2VGa and Co2MnSi Heusler alloys with-
out affecting the stoichiometry where the atoms also have
different scattering factors [30, 34]. However, we find no
significant improvement in the refinement, which indi-
cates the absence of measurable antisite disorders. On
the other hand, the observed disorder between Cr and Al
by XRD analysis in Ref. [16] cannot be ruled out from
the ND analysis due to their similar neutron scattering
cross-sections [54]. We also note here that any disorder
between Cr and Al is not expected to affect the mag-
netic moment of these types of samples as predicted in
Ref. [55]. Therefore, the refined crystal structure inferred
from the ND pattern measured at 900 K is used for the
further analysis of the successive ND pattern at lower
temperatures, as in Ref. [29].

In order to analyze the neutron diffraction pattern
in the magnetic region (below ≈750 K), it should be
noted that there are no additional Bragg reflections in
the magnetically ordered state of Cr2CoAl Heusler alloy,
see Fig. 2. However, with decreasing sample tempera-
ture the scattering intensity of the (110) peak increases,
as plotted in Fig. 3(c), which suggests that the magnetic
structure is either FM or FIM at low temperatures and
excludes the possibility of a long-range AFM order in
this x = 0 sample [30, 46–48]. Thus, to understand the
magnetic structure and phase transition, we generate the
magnetic moment configuration output using BasIREPS
in the Fullprof program by considering the space group
I4̄m2 and the magnetic state of FM or FIM. There are
three magnetic atoms Cr1, Cr2, and Co and their corre-
sponding Wyckoff positions are 2b(0, 0, 0.5), 2d(0, 0.5,
0.75), and 2a(0, 0, 0), respectively [15]. The appropriate
magnetic propagation wave vector k = (0, 0, 0) is consid-
ered for the FIM state with the best value by using the k-
search option in the Fullprof program [42]. This method
provides the irreducible representation with only one ba-
sis vector Γ4, which is related to the FIM interactions
with real and imaginary positions as (0, 0, 1) and (0, 0,
0), respectively [56]. The basis function helps to reveal
the magnetic structure, where the arrangements of the
magnetic moments are parallel or anti-parallel [44, 46].
To extract the precise values of the magnetic moments
from the ND pattern, it must be noted that the refine-
ment is performed with the particular magnetic site of
the atoms rather than the individual sites of the disorder
positions [25, 29]. For example, the moment of the mag-
netic atoms with disorder gives the average moment of
that atom at different Wyckoff positions. In refining the
moment values at Cr1, Cr2, and Co sites, the sizable mo-
ment is found to be related to the (110) reflection only.
Also, within the experimental error bar the magnetic mo-
ments in ab−plane were too small to be determined.

Interestingly, the direction of the magnetic moment of
Cr2 is found to be opposite to the c-axis whereas the
moments of Cr1 and Co are parallel. It was theoretically
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FIG. 3. (a) The temperature dependence of the ordered mag-
netic moments of Cr1, Cr2 and Co sites. (b) The ordered net
moment in the temperature range of 300 K to ≈730 K, and
(c) temperature dependence of intensity of the (110) reflection
for the x = 0 sample. The blue solid lines are the fitted curves
of magnetic moment and intensity with the power law equa-
tion. (d) The intensity of peak (110) at 100 K and 900 K for
comparison, (e) the magnetic spin configuration with concor-
dant ordering wave vector k = (0, 0, 0) along the c-axis in the
magnetic unit cell for 100 K. Here, the ND pattern at 100 K
is recorded at the Echidna diffractometer (λ = 1.622 Å) and
at high temperatures between 300 K and 900 K are recorded
on the diffractometer Wombat (λ = 1.633 Å).

reported that the Cr atoms show the opposite polarity
owing to their mutual antiparallel configurations [14, 15].
For the refinement of the diffraction pattern below 750 K,
we have initially taken all the structural parameters ex-
tracted from high temperature (900 K) data, and then
refined the positions of the magnetic moment sites of the
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atoms to get the accurate microscopic magnetic moment
values at a particular site. However, due to the strong
direct interaction of d−states between the neighboring
atoms of nonequivalent Cr atoms, the antiparallel spin
configuration leads to an almost zero net magnetic mo-
ments [15, 19]. The reliability parameters obtained from
the refinement of the diffraction pattern at 100 K are χ2

= 2.9, Bragg R-factor = 1.4, RF-factor = 1.8, and mag-
netic R-factor = 4.1, which proves the good quality of the
refinement [57]. The obtained magnetic moment values
and lattice parameters from the refinement are plotted
in Figs. 3 and 4, and discussed in detail to understand
the magnetic properties and phase transition in Cr2CoAl
sample. The ordered magnetic moments of the Cr1, Cr2,
and Co sites obtained from the refinement of the powder
ND patterns are plotted in Fig. 3(a), and the ordered net
magnetic moment is shown in Fig. 3(b), which mimic the
magnetization behavior and that the magnetic ordering
disappear at high temperatures that suggests a transition
from paramagnetic to the commensurate FIM magnetic
structure at around TC = 730±5 K. We also note here
that the observed TC = 730±5 K value of Cr2CoAl us-
ing neutron diffraction is found to be consistent with the
magnetization study on a similar system, i.e., Cr2CoGa
thin films, reported in Ref. [58]. However, the authors
also observed a significant change in the TC value de-
pending on the annealing treatment to the thin films [58].

In Fig. 3(c), the intensity of the (110) peak is plot-
ted with temperature, which clearly increases below the
transition temperature and is nearly constant in the PM
region. The much higher intensity of the (110) peak ob-
served at 100 K manifests the enhancement in the mag-
netic ordering at low temperatures. The ordered net
magnetic moment and intensity of the (110) Bragg re-
flection versus temperature curves are analyzed by fitting

an empirical power law: M(T) = M0 (1 − T/TC)
β

to the
experimental data to determine the transition tempera-
ture [48, 59–61]. The FIM transition temperature (TC) is
found to be 730±5 K with a critical exponent β= 0.2±0.1,
which is well concordant with the critical exponent of the
standard universality classes, assists to get the transition
temperature where the intensity approach to zero with
increasing temperature. The magnetic scattering is pro-
portional to the square power of M [31, 62]. In Fig. 3(d),
the intensity of (110) peak at 100 K is observed ≈46%
higher than at 900 K, which manifests the magnetic or-
dering at low temperatures. Moreover, Fig. 3(e) shows
the orientation of the moment vectors of the individual
atoms in the magnetic unit cell at 100 K where the mag-
netic vectors of Cr2 are oppositely aligned with respect
to the c-axis as well as to the moment vectors of Cr1 and
Co atoms. This clearly reveals the nearly FCF order [63]
and is in good agreement with predictions from theoreti-
cal band structure calculations in Ref. [15] as well as with
other Cr based alloy [64]. It is interesting to note that
recently Xie et al. reported the FCF half-metallic nature
in the inverse Heusler alloys that shows a spin polarized
Weyl structure with quadratic nodal lines [51].
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FIG. 4. (a) The lattice parameters (a and c) obtained from
the Rietveld refinement and the solid brown (≤TC) and blue
(≥ TC) lines are the linear fit to the experimental data. (b)
The variation in volume of the unit cell, and (c) the tetrag-
onal ratio (c/a) as a function of sample temperature. (d)
The overall thermal factor (B) variation with the tempera-
ture obtained from the refinement. The black vertical dotted
line shows the boundary of the ferrimagnetic transition. The
error bars are standard deviations taken from the refinement.

Further, in Figs. 4(a–d), we show the obtained lat-
tice parameters (a and c), unit cell volume, c/a ratio,
and overall thermal factor (B) inferred from the refine-
ment of the ND patterns in the full temperature range
for the x = 0 sample. Fig. 4(a) shows a linear increase
in the lattice parameters with temperature. There is a
signature of change in slope at ≈730 K for both a and c.
These findings manifest the clear increase in the tetrago-
nal distortion at this temperature as reflecting from the
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c/a ratio shown in Fig. 4(c). The overall thermal factor
(B), i.e., the Debye-Waller factor is plotted in Fig. 4(d),
which also shows an increasing trend with temperature.
The value of overall thermal factor well concurs with re-
ported for Co2CrAl and Co2MnSi at room temperature
[31, 44]. We find that the thermal expansion in the lat-
tice parameters has two regions of variation where an
anomaly is observed at around 730 K. The lattice pa-
rameters follow the Bose-Einstein statistics for thermal
expansion; therefore, the obtained lattice parameters (a
and c) are fitted with a general straight line equation
in the two different regions below and above the phase
transition temperature. The linear thermal expansion
coefficient is calculated using the equation α = 1

a

(
∂aT
∂T

)
[62, 65, 66], where α represent the linear thermal expan-
sion coefficient and (∂aT∂T ) are the values of the slope for
the lattice parameters (a and c). The obtained values
of α (per K) for a are 0.9×10−5 and 0.7×10−5, and for
c are 1.2×10−5 and 1.7×10−5 below and above ≈730 K,
respectively. The value of α is found to be lower for a side
than for c side, which indicates the significant expansion
on the c axis. These values show an anomaly in α around
TC = 730±5 K, which is due to the different slope of the
lattice parameters as a result of the distortion in the in-
verse tetragonal crystal structure around TC. Here, the
α values for Cr2CoAl are well matched with the similar
Heusler alloys as reported in refs. [31, 62, 65, 66]. In gen-
eral, the value of α for the alloys and engineering metals
is positive and in the order of 4×10–5/K [67].

IV. CONCLUSIONS

In summary, we have investigated the magnetic struc-
ture and phase transition of the inverse Heusler alloys

Cr2CoAl using powder neutron diffraction measurements
in the large temperature range of 100–900 K. The Ri-
etveld refinement of the diffraction pattern manifests the
single-phase inverse tetragonal structure of both these
samples. We find no significant antisite disorder between
Cr and Co atoms. More importantly, the ferrimagnetic
(FIM) ordering is revealed by the refinement of the
magnetic sites using the space group I4̄m2 and the
magnetic wave vector, k = (0, 0, 0) in the magnetically
ordered state where the direction of the moment vectors
of Cr2 is opposite to the c-axis as well as the moments
of Cr1 and Co atoms. Interestingly, the net ordered
magnetic moment as a function of temperature reveals
the FIM ordering in the sample and the transition
temperature is found to be 730±5 K. Moreover, we find
the anomaly in the variation in the lattice parameters
and the thermal expansion factor around the transition
temperature, which can be attributed either to the
magnetostriction or to the role of structural distortion
in the magnetic phase transition in inverse Heusler alloys.
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