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We study the time evolution of a single qubit in contact with a bath, within the framework of
projection operator methods. Employing the so-called modified Redfield theory which also treats
energy conserving interactions non-perturbatively, we are able to study the regime beyond the scope
of the ordinary approach. Reduced equations of motion for the qubit are derived in a idealistic
system where both the bath and system-bath interactions are modeled by Gaussian distributed
random matrices. In the strong decoherence regime, a simple relation between the bath correlation
function and the decoherence process induced by the energy conserving interaction is found. It
implies that energy conserving interactions slow down the relaxation process, which leads to a zeno
freezing if they are sufficiently strong. Furthermore, our results are also confirmed in numerical
simulations.

I. INTRODUCTION

In the field of open quantum systems, the question of
whether or how a small quantum system evolves to a
steady state, when being coupled to a large bath, has at-
tracted significant attention and been studied extensively
in recent decades in various fields of physics [1–14].

On the route of the system evolving towards equilib-
rium state, decoherence and relaxation are two funda-
mental processes which often coexist and may in general
be correlated to each other. It is natural to ask in which
exact way decoherence and relaxation processes are re-
lated. Or more specifically, as focused on in this paper:
what is the impact of decoherence on the relaxation pro-
cess? The question has been discussed in the weak cou-
pling regime [15], as well as in case of the pure-dephasing
interaction [16, 17]. The effect of spatial decoherence on
the transport properties of particle(s) are investigated
in ordered [15] and disordered [17] tight-binding lattices.
In Ref. [16], based on the memory kernel approach, the
dynamics of the system is found to be slowed down by
decoherence, which leads to the transition towards zeno
freezing [18] in the strong decoherence regime. However,
not so much is known for more generic spin-bath cou-
pling.

The answer to this question relies on the knowledge of
the time evolution of reduced density matrix (RDM) of
the system of interest. However, for most open quantum
systems, which are not exactly solvable, it is too compli-
cated to obtain it without making approximations. The
standard procedure in theoretical treatments is to de-
rive closed approximate equations of motion of the sys-
tem, the quantum master equation (QMEQ) [1, 19, 20],
from the underlying time-dependent Schrödinger equa-
tion (TDSE) by eliminating the environmental degrees
of freedom.

One of the most important and commonly used meth-
ods to derive the QMEQ is the projection method
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(such as Nakajima-Zwanzig method [21, 22] or the time-
convolutionless method [23–26]). Another foundational
method is the Hilbert space average method [8], which es-
timates conditional quantum expectation values through
an appropriate average over a constraint region in Hilbert
space. Besides the usual master equation approach, there
are also other methods aiming to derive closed equations
of the system, e.g. approach based on resonance theory
[27, 28], linear-response theory [29], and Dyson Brownian
technique [30].

For weak system-bath coupling, the Redfield equation
[31] can be derived by keeping the perturbations to sec-
ond order and making use of the Born-Markov approxi-
mation. In this case, exact equations for relaxation and
decoherence process can be derived. To understand the
relation between these two processes better, it is desir-
able to go beyond the weak system-bath coupling regime,
which is always a challenging task. One possible method
to achieve this is to straightforwardly extent the pertur-
bation theory to higher orders. Another possible method
is to treat a certain part of the interaction Hamiltonian
non-perturbatively, as done e.g., in the Förster theory
[32, 33] and the modified Redfield theory [34].

In our paper, we study the problem in a idealistic sys-
tem where a single qubit is coupled to a bath modeled
by random matrix [7, 29, 30, 35, 36] via system-bath
interaction consisting of both energy-conserving (EC )
and energy-exchange (EX ) parts (with respect to sys-
tem energy). We employ the modified Redfield theory
[34, 37–40], where the EC interaction is also treated non-
perturbatively. Reduced equations of motion for the sys-
tem in the interaction picture is derived, which are valid
for arbitrary large EC interaction whenever the EX in-
teraction is weak compared to the unperturbed Hamilto-
nian. Employing further assumptions, we also derive the
equations for the time evolution of system’s RDM in the
Schrödinger picture. A simple relation is found between
the bath correlation function and the decoherence pro-
cess induced by the EC interaction, which implies that
relaxation process is slowed down by the EC interaction,
leading to a zeno freezing if it is sufficiently strong. The
paper is organized as follows. In Sec. II, we introduce
the general setup and in Sec. III the reduced equations
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of motion for the system are derived. In Sec. IV, we
apply our analytical results to a spin random matrix-
model, while the results are checked numerically in Sec.
V. Conclusions and outlook are given in Sec. VI

II. GENERAL SETUP

We consider a model where a single qubit is coupled
to a bath, the Hamiltonian of which reads,

H = HS +HB + V,

V =

2∑

m,n=1

λmn|m〉〈n| ⊗Hmn, (1)

where HS = ωσS
z (σS

z denotes the z-direction Pauli oper-
ator of the system), HB and V indicate system, bath and
interaction Hamiltonian, respectively. Eigenstates of HS

and HB are denoted by |m〉 and |Ek〉,
HS|m〉 = em|m〉, HB|Ek〉 = Ek|Ek〉, (2)

where m = 1, 2 correspond to spin down and up. Hmn

are some generic operators in the Hilbert space of the
bath satisfying

‖Hmn‖ = ‖HB‖ . (3)

‖ • ‖ indicates the norm of the operator which is defined
as (for a generic operator O)

‖O‖ ≡ Tr{O}O†). (4)

The Hermiticity of the interaction Hamiltion requires

(λmnHmn)† = λnmHnm (5)

holds for m,n = 1, 2. The interaction Hamiltonian can
be divided into a energy-conserving (EC ) part (denoted
by Vec) and a energy-exchange (EX ) part (denoted by
Vex)

V = Vec + Vex, (6)

where

Vec = λ11|1〉〈1| ⊗H11 + λ22|2〉〈2| ⊗H22,

Vex = λ12|1〉〈2| ⊗H12 + λ∗12|2〉〈1| ⊗H†12. (7)

The initial state considered here is a product state, writ-
ten as

ρ(0) = ρS(0)⊗ 1B

d
, (8)

where ρS(0) = |ψS(0)〉〈ψS(0)| and d denotes the Hilbert
space dimension of the bath. The initial state of the
bath can be regarded as a state at infinite tempera-
ture. To study time evolution of the RDM of the sys-
tem ρS(t) = TrB(ρ(t)), we divide the Hamiltonian into
an unperturbed part H0 and a perturbation part H int,

H = H0 +H int. (9)

As the key ingredient in the modified Redfield theory
[34], the unperturbed Hamiltonian

H0 = HS +HB + Vec, (10)

also comprises the EC interaction Vec, while the pertur-
bation

H int = Vex (11)

only consists of the EX interaction. In our paper, we
only consider the situation where ‖H int‖ � ‖H0‖. In
this case system’s eigenbasis |m〉 usually forms a good
preferred basis [4, 41, 42], or e.g., the stationary RDM is
approximately diagonal in |m〉. Thus in the rest of the
paper, whenever talking about decoherence, we refer to
decoherence in the eigenbasis of the system.

In the interaction picture, the density matrix of the
composite system at time t is written as

ρI(t) = exp(iH0t)ρ(t) exp(−iH0t), (12)

where

exp(−iH0t) = |m〉〈m| ⊗ Um(t), (13)

Um(t) ≡ exp(−i(H(m)
B + em)t). (14)

H
(m)
B can be regarded as an effective bath Hamiltonian

with respect to system state |m〉, defined as

H
(m)
B = HB + λmmHmm. (15)

The spectral density of H
(m)
B is denoted by Ωm(E), which

will be used later in Sec. IV . Denoting the eigenvalues

and eigenstates of H
(m)
B by E

(m)
k and |E(m)

k 〉, one gets

H0|m〉|E(m)
k 〉 = (E

(m)
k + em)|m〉|E(m)

k 〉. (16)

Similarly, one has

H int
I (t) = exp(iH0t)H

int
I exp(−iH0t),

=λ12|1〉〈2| ⊗ U†1 (t)H12U2(t) + h.c.. (17)

The RDM of the qubit in the interaction picture can be
written as

ρS
I (t) = TrB{ρI(t)}, (18)

where the matrix elements [ρS
I (t)]mn = 〈m|ρS

I (t)|n〉 can
be written as

[ρS
I (t)]mn =

{
ρS
mn(t) m = n

〈m|TrB{U†m(t)ρ(t)Un(t)}|n〉 m 6= n
.

(19)
Here ρS

mn(t) ≡ 〈m|ρS(t)|n〉 indicate the matrix elements
of RDM in the Schrödinger picture. One can see that,
in the modified Redfield approach, the diagonal elements
of RDM in the interaction picture are the same as in
the Schrödinger picture, while the off-diagonal elements
are very different. This is known to be a main draw-
back of this method, as the decoherence dynamics in the
Schrödinger picture can not be straightforwardly stud-
ied [37, 39, 40, 43–45]. In this paper, we will tackle this
problem by employing further assumptions.
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III. REDUCED EQUATIONS OF MOTION

In this section, we are going to derive the reduced equa-
tions of motion for the system in both interaction and
Schrödinger picture.

A. Time evolution of the system in the interaction
picture

Although the derivations of reduced equations of mo-
tion for system in the interaction picture using the mod-
ified Redfield theory are already known [39, 40], it may
be helpful to show the main steps here. More detailed
derivations can be found in the Appendix. As a guideline
of this section, we would like to mention here, that the
derivations given below are almost the same as the stan-
dard derivations of the quantum master equations based
on the Born-Markov approach, but with a different un-
perturbed Hamiltonian given in Eq. (10).

Let’s consider a projection superoperator P, defined as

Pρ = TrB{ρ} ⊗
1B

d
. (20)

Applying P to the density matrix in the interaction pic-
ture yields

PρI(t) = TrB{ρI(t)} ⊗
1B

d
= ρS

I (t)⊗ 1B

d
. (21)

Using the general method of projection operator tech-
nique, and keeping perturbation terms up to second or-
der, for initial states satisfying PρS

I (0) = ρS
I (0) one has

d

dt
ρS
I (t) = −1

d

∫ t

0

dsTrB

{
[H int

I (t), [H int
I (s), ρS

I (s)]]
}
.

(22)
To study the right hand side of Eq. (22), it is useful to

introduce a bath correlation function Fmn(τ) defined as

Fmn(τ) =
1

d
TrB

{
U†m(τ)HmnUn(τ)H†mn

}
. (23)

With straightforward derivations (see the Appendix for
details), by employing the Markovian approximation, the
time evolution of the RDM of the system can be written
as,

d[ρS
I (t)]11

dt
= −Γr([ρ

S
I (t)]11 − [ρS

I (eq)]11), (24)

d[ρS
I (t)]22

dt
= −Γr([ρ

S
I (t)]22 − [ρS

I (eq)]22), (25)

d[ρS
I (t)]21

dt
= −Γr

2
[ρS
I (t)]21, (26)

where

[ρS
I (eq)]11 = [ρS

I (eq)]22 =
1

2
. (27)

Γr indicates the relaxation rate, which can be written as

Γr = 4|λ12|2
∫ ∞

0

<[F12(τ)]dτ

= 2|λ12|2
∫ ∞

−∞
F12(τ)dτ. (28)

It should be mentioned here that, the Markovian ap-
proximation can only be applied under the condition that
the correlation function F12(τ) decays sufficiently fast on
a time τB (correlation time) compared to the relaxation
time of the system τR, that is,

τB � τR. (29)

From Eq. (24), one obtains the reduced equations of
motion of the system in the interaction picture,

[ρS
I (t)]11 − [ρS

I (eq)]11 = e−Γrt([ρS
I (t)]11 − [ρS

I (eq)]11),

[ρS
I (t)]22 − [ρS

I (eq)]22 = e−Γrt([ρS
I (t)]22 − [ρS

I (eq)]22),

[ρS
I (t)]21 = e−

Γr
2 t[ρS

I (t)]21. (30)

B. Time evolution of RDM in the Schrödinger
picture

After having derived the reduced equations of motion
for the system in the interaction picture, we continue to
consider the Schrödinger picture. As has already been
shown in Eq. (19), the diagonal elements of the RDM
in the Schrödinger picture are the same as in the inter-
action picture, so we only need to study the off-diagonal
elements.

To this end, instead of the mixed state in Eq. (8), it
is more convenient to consider a pure state |ψ(0)〉 as an
initial state, where

|ψ(0)〉 = |ψS(0)〉 ⊗ |ψB(0)〉. (31)

The bath initial state is written as

|ψB(0)〉 =
∑

k

ck|Ek〉, (32)

where ck are complex numbers, the real and imaginary
parts of which are drawn independently from a Gaussian
distribution. Based on the idea of dynamical quantum
typicality [46–48], the dynamics of the system starting
from the pure initial state employed in Eq. (32) is al-
most the same as that of the mixed initial state in Eq.
(8), if the dimension of the bath Hilbert space is large
enough. At time t the state of the composite system
in the interaction picture can always be written in the
following form,

|ψI(t)〉 = |1〉|ψ1
I (t)〉+ |2〉|ψ2

I (t)〉. (33)

The RDM of the system in the interaction picture can
then be written as

[ρS
I (t)]mn = 〈ψnI (t)|ψmI (t)〉. (34)
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Now we switch to the Schrödinger picture. At time t one
has

|ψ(t)〉 = e−iH0t|ψI(t)〉 = |1〉|ψ1(t)〉+ |2〉|ψ2(t)〉, (35)

where

|ψm(t)〉 = e−i(H
(m)
B +em)t|ψmI (t)〉. (36)

Then, the RDM of the system in the Schrödinger picture
can be written by making use of |ψmI (t)〉 as

[ρS(t)]mn = 〈ψnI (t)|ei(H
(n)
B +en)te−i(H

(m)
B +em)t|ψmI (t)〉.

(37)

As we consider a two level system here, there is only
one independent term in the off-diagonal elements

[ρS(t)]21 = e−2iωt〈ψ1
I (t)|eiH

(1)
B te−iH

(2)
B t|ψ2

I (t)〉. (38)

At any time t, one can always divide |ψ2
I (t)〉 into a branch

which is parallel to |ψ1
I (t)〉 and the other which is vertical

to |ψ1
I (t)〉, as

|ψ2
I (t)〉 = c(t)|ψ1

I (t)〉+ |ψ1⊥
I (t)〉, (39)

where

c(t) =
〈ψ1
I (t)|ψ2

I (t)〉
〈ψ1
I (t)|ψ1

I (t)〉 =
[ρS
I (t)]21

〈ψ1
I (t)|ψ1

I (t)〉 =
[ρS
I (t)]21

[ρS
I (t)]11

. (40)

Inserting Eqs. (39) and (40) to Eq. (38), one gets

[ρS(t)]21 =
[ρS
I (t)]21e

−2iωt

〈ψ1
I (t)|ψ1

I (t)〉 〈ψ
1
I (t)|eiH

(1)
B te−iH

(2)
B t|ψ1

I (t)〉

+ e−2iωt〈ψ1
I (t)|eiH

(1)
B te−iH

(2)
B t|ψ1⊥

I (t)〉. (41)

If we make the assumption that

|〈ψ1
I (t)|eiH

(1)
B te−iH

(2)
B t|ψ1⊥

I (t)〉| ≈ 0, (42)

[ρS(t)]21 can be related to [ρS
I (t)]21 as

[ρS(t)]21 = [ρS
I (t)]21e

−2iωtL12(t), (43)

where

L12(t) =
1

〈ψ1
I (t)|ψ1

I (t)〉 〈ψ
1
I (t)|eiH

(1)
B te−iH

(2)
B t|ψ1

I (t)〉,
(44)

which can be regarded as a kind of Loschmidt echo(LE).
We employ a further assumption which is

L12(t) ≈ Ltyp
12 (t) ≡ 〈ψtyp|eiH

(1)
B te−iH

(2)
B t|ψtyp〉

' 1

d
TrB{eiH

(1)
B te−iH

(2)
B t}, (45)

where |ψtyp〉 is a typical state in the Hilbert space of the
bath. In this way, we arrive at the equation of motion for

the off-diagonal elements of the RDM in the Schrödinger
picture, which reads

[ρS(t)]21 ' [ρS
I (t)]21e

−2iωtLtyp
12 (t). (46)

Properties of LE for weak perturbation (λmm � 1)
have been thoroughly studied(see [14] and Refs. therein).
It is found that, after a Gaussian decay at initial times,
the LE will follow a exponential decay

Ltyp
12 (t) = exp(−ΓLt), (47)

where

ΓL =

∫ ∞

0

TrB{eiHBτ Ṽ e−iHBτ Ṽ }dτ, (48)

with

Ṽ = λ11H11 − λ22H22. (49)

While in case of very strong perturbation(λmm � 1), one
has

Ltyp
12 (t) ≈〈ψtyp|eiλ11H11te−iλ22H22t|ψtyp〉

≈1

d
TrB{eiλ11H11te−iλ22H22t}. (50)

Making use of the eigenstates and eigenvalue of Hmm,
denoted by |Emmk 〉 and Emmk , respectively, Ltyp

12 (t) can
be written as

Ltyp
12 (t) =

1

d

∑

k

eiλ11E
11
k t〈E11

k |e−iλ22H22t|E11
k 〉. (51)

If the interaction Hamiltonian H11 and H22 are uncorre-
lated, based on quantum typicality, one has

〈E11
k |e−iλ22H22t|E11

k 〉 '
1

d
Tr{e−iλ22H22t}, (52)

which leads to

Ltyp
12 (t) ' 1

d2
Tr{eiλ11H11t}Tr{e−iλ22H22t}. (53)

C. Relation between relaxation and decoherence
process

In open systems, for generic system-bath coupling, de-
coherence is induced by both EC and EX interactions.
The behavior of these two different kind of decoherence
processes are usually different [28]. So we will study their
relation to the relaxation process separately. In our case,
the decoherence process induced by the EX interaction
is described by decoherence in the interaction picture,
while the decoherence process induced by the EC inter-
action is described by the Loschmidt echo introduced in
Eq. (44). Decoherence in the Schrödinger picture is a
joint effect of these two processes, which is described by
Eq. (46).
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The relation between decoherence induced by the EX
interaction and relaxation is quite simple, which can be
seen from Eq. (30): the decoherence rate induced by the
EX interaction is half of the relaxation rate. However,
the relation between decoherence induced by the EC in-
teraction and relaxation is not easily seen. Here we only
consider the case of very strong EC interaction λmm � 1.
In this case, the bath correlation function F12(τ) can be
written as

F12(τ) =
1

d
TrB{eiH11τH12e

−iH22τH†12}, (54)

which in eigenstates of Hmm reads

F12(τ) =
1

d

∑

kl

ei(E
11
k −E

22
l )τ |〈E11

k |H12|E22
l 〉|2. (55)

If H12 is traceless and uncorrelated with H11 and
H22, 〈E11

k |H12|E22
l 〉 can be regarded as Gaussian ran-

dom numbers with mean zero. Then one can replace
|〈E11

k |H12|E22
l 〉|2 by its variance denoted by σ12, which

can be estimated in the following way

TrB(H12H
†
12) =

∑

kl

|〈E11
k |H12|E22

l 〉|2 ' d2σ12, (56)

yielding

σ12 '
1

d2
TrB{H12H

†
12}. (57)

As a result, one has

F12(τ) =
1

d2
TrB{H12H

†
12}

1

d
Tr{eiλ11H11τ}Tr{e−iλ22H22τ}.

(58)
Comparing with Eq. (53), one can see that, the bath
correlation function F12(t) is totally determined by the
decoherence process induced by the EC interaction, as

F12(τ) = KLtyp
12 (τ), (59)

where

K =
1

d
TrB{H12H

†
12}, (60)

which is the second moment of H12. Straightforwardly,
one gets

Γr = 4K|λ12|2
∫ +∞

0

Ltyp
12 (τ)dτ. (61)

Generally speaking a larger decay rate of Ltyp
12 (τ) results

in a smaller time integral which in turn yields a smaller
relaxation rate Γr. So it can be expected that the relax-
ation process will be slowed down by decoherence induced
by the EC interaction in case of λmm � 1. At the same
time, decoherence induced by the EX interaction is also
suppressed by decoherence induced by the EC interac-
tion.

Before ending the section, it should be mentioned here
that the simple relation between the relaxation and deco-
herence process induced by the EC interaction (at large
λmm) shown in Eq. (61) only exists under the assump-
tion of the interaction Hamiltonians to be uncorrelated,
which can hardly be the case in realistic systems. In re-
alistic systems, we expect certain relation between those
two processes still exists, but it may take a more compli-
cated form.

IV. RESULTS IN THE SPIN
RANDOM-MATRIX MODEL

In this section we are going to apply the results ob-
tained in Sect. III to a spin random-matrix model. The
Hamiltonian is written as

H = ωσS
z +HB + λdVd + λrVr, (62)

where

Vd =|1〉〈1| ⊗H11 + |2〉〈2| ⊗H22,

Vr =|1〉〈2| ⊗H12 + |2〉〈1| ⊗H†12, (63)

and Hmn and HB are modeled by random matrices, the
elements of which are drawn from Gaussian distribution
with zero mean and variance σ2

0 = 1
4d . Due to the Her-

miticity of the total Hamiltonian, HB and Hmm should
also be Hermitian , which means that they are actu-
ally drawn from Gaussian Orthogonal Ensemble(GOE).
Moreoever, λd and λr should be real. One can see that
the Hamiltonian we consider here is a special case of the
Hamiltonian defined in Eq. (1), where λ22 = −λ11 = λd,
λ12 = λ∗12 = λr, and EC and EX interactions are given
by

Vec = λdVd, Vex = λrVr. (64)

It should be mentioned here that this model is also very
similar to the spin-GORM model introduced in Ref. [35],
except that H12 considered here is not Hermitian.

A. Time evolution of diagonal elements of RDM

As shown in Eq. (28), the relaxation rate Γr is deter-
mined by the bath correlation function

F12(τ) =
1

d
TrB

{
ei(−ω+H

(1)
B )τH12e

−i(ω+H
(2)
B )τH†12

}
.

(65)

Expanding F12(τ) in the eigenbasis of H
(m)
B yields

F12(τ) =
1

d

∑

kl

ei(E
(1)
k −E

(2)
l )τe−2iωτ |〈E(1)

k |H12|E(2)
l 〉|2.

(66)
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As H12 is uncorrelated with HB and Hmm, the

〈E(1)
k |H12|E(2)

l 〉 can also be regarded as Gaussian ran-
dom numbers with variance 1

4d . As a result,

F12(τ) ' 1

4d2
e−2iωτTrB{eiH

(1)
B τ}TrB{e−iH

(2)
B τ}

' 1

4d2
e−2iωτ

∫
dE1Ω1(E1)e−iE1τ

·
∫

dE2Ω2(E2)e−iE2τ , (67)

where, as has already been defined, Ωm(E) indicates the

density of states of H
(m)
B . Recalling the definition of

H
(m)
B in Eq. (15), one has

H
(1)
B = HB + λdH11, H

(2)
B = HB + λdH22. (68)

As HB and Hmm are uncorrelated, H
(1)
B and H

(2)
B can

both be regarded as GOE random matrices, the elements
of which are drawn from the Gaussian distribution with
mean zero and variance σ1 =

√
1 + λ2

dσ0. Thus, one has

Ω1(E) ' Ω2(E) ' Ω0(E), (69)

where Ω0(E) has a semi-circle distribution [49]

Ω0(E) =





2d

π
√

1+λ2
d

√
1− E2

1+λ2
d

for |E| <
√

1 + λ2
d

0 otherwise
.

(70)
Substituting Eq. (70) into Eq. (67) and carrying out the
integral, the bath correlation function can be written as

F12(τ) =
[J1(ατ)]2

(ατ)2
e−2iωτ , (71)

where α =
√

1 + λ2
d and J1(τ) indicates the first order

Bessel function of first kind. In case of ω � α (which
means the energy scale of the system is much smaller

compared to that of the effective bath H
(m)
B ), one can em-

ploy the rotating-wave-approximation (RWA). The phase
factor e−2iωτ can be approximated by 1 (for time τ . τB)
and F12(τ) is only dependent on the rescaled time ατ as

F12(τ) =
[J1(ατ)]2

(ατ)2
. (72)

Inserting Eq. (72) to Eq. (28) and carrying out the
integral, one has

∫ ∞

−∞
F12(τ)dτ =

8

3απ
=

8

3
√

1 + λ2
dπ
, (73)

which leads to

Γr ≈
16λ2

r

3π
√

1 + λ2
d

∝ λ2
r√

1 + λ2
d

. (74)

Thus one has

ρS
11(t)− ρS

11(eq) = e
− 16λ2

r

3π
√

1+λ2
d

t

(ρS
11(t)− ρS

11(eq)). (75)

It implies that relaxation is boosted by the EX interac-
tion and suppressed by the EC interaction.

It should be mentioned here that, with the traditional
approach where only the non-interacting part (HS +HB)
of the Hamiltonian is treated non-perturbatively, a sim-

ilar exponential decay ρS
11(t) − ρS

11(eq) ∝ e−Γ0
rt can be

derived. The different is that, in that case one has

Γ0
r = − 16λ2

r

3π , which is independent of the EC interac-
tion strength λd. This indicates that the traditional ap-
proach is unable to account for impact of decoherence on
the relaxation process. It is not surprising, as the tra-
ditional approach is only supposed to work in the weak-
coupling regime where not only the EX interaction but
also the EC interaction should be weak. In this regime
(λd � 1, λr � 1), one can easily see that Γr ≈ Γ0

r and
the results of the two approaches agree with each other.

After having derived the relaxation rate, we come back
to Eq. (29) to check under what condition it is fulfilled.
Here, for example we can define τB and τR to be the time
at which <[F12(τ)] and |ρS

11(t)− ρS
11(eq)| decay to 1% of

its initial value and never exceed that value afterwards.
Then with straightforward calculations one has

τB ≈
5.9√
1 + λ2

d

, τR =
2 ln 10

Γr
≈ 2.7

√
1 + λ2

d

λ2
r

. (76)

As a result, Eq. (29) can be approximately rewritten as

λr �
√

1 + λ2
d

2
, (77)

indicating that the Eq. (29) would be better fulfilled for
larger λd, if λr is fixed.

B. Time evolution of off-diagonal elements of RDM

As Γr has already been derived in Eq. (74), the time
evolution of off-diagonal elements of RDM in the inter-
action picture can be written as

|[ρS
I (t)]21| = e

− 8λ2
r

3π
√

1+λ2
d

t

|[ρS
I (0)]21|, (78)

from which one can see that decoherence in the interac-
tion picture (or decoherence induced by the EX interac-
tion) is also suppressed by the EC interaction.

In the Schrödinger picture, the time evolution of off-
diagonal elements of RDM is given in Eq. (46). As
|[ρS

I (t)]21| has already been given above, one only needs

to study Ltyp
12 (t) which characterizes the decoherence pro-

cess induced by the EC interaction. In case of λd � 1,
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one has Ltyp
12 (t) ≈ e−ΓLt. Defining Hd = H11 −H22, Eq.

(79) becomes

ΓL = λ2
d

∫ ∞

0

dτFdd(τ), (79)

where

Fdd(τ) ≡ 1

d
TrB{eiHBτHde

−iHBτHd}. (80)

Expanding Hd in the eigenbasis of HB, one has

Fdd(τ) =
1

d

∑

kl

ei(Ek−El)τ |〈Ek|Hd|El〉|2. (81)

As Hd is also a (GOE) random matrix, |〈Ek|Hd|El〉|2 can
be replaced by its variance 1

2d , which yields

Fdd(τ) =
1

2d2
|TrB{e−iHBτ}|2 =

2[J1(τ)]2

τ2
. (82)

Carrying out the integral in Eq. (79) exactly, one gets

ΓL =
8λ2

d

3π
. (83)

In case of λd � 1, one has

Ltyp
12 (t) '1

d
TrB{eiλdH11te−iλdH22t}

' 1

d2
TrB{eiλdH11t}TrB{e−iλdH22t}

' 1

d2
|TrB{eiλdH11t}|2 ' 4[J1(λdt)]

2

(λdt)2
, (84)

where the second line is obtained due to the fact that
H11 and H22 are uncorrelated. As we have discussed in
Sec. III C, by comparing Eq. (84) with Eq. (72), one
finds

F12(t) =
1

4
Ltyp

12 (t), for λd � 1, (85)

indicating that the bath correlation function F12(t) is de-
termined by the decoherence process induced by the EC
interaction. We stress here again that the simple relation
between F12(t) and Ltyp

12 (t) in Eq. (85) for λd � 1 relies
on the assumption that H12, H22 and H11 are all uncor-
related. To see what would happen if they are not fully
uncorrelated, here as an example one can relax one of the
restrictions, by considering the case H22 = −H11, while
still assuming they are uncorrelated with H12. With sim-

ilar derivations, one can see that F12(t) '
(
J1(λdt)
λdt

)2

which remains the same, while Ltyp
12 (t) ∝ J1(2λdt)

λdt
, dif-

ferent from the fully uncorrelated case. In this case al-
though F12(t) can not be directly written as a function

of Ltyp
12 (t), they are still strongly correlated. It is also

to be expected that a faster decay of Ltyp
12 (t) results in a

smaller relaxation rate Γr.

0 50 100 150 200 250 300 350 400

t
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−2.5

−2.0
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|ρ

S 11
(t

)
−
ρ

S 11
(e

q)
|

(a)

0 1 2 3 4

Γrt
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−4.5
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−2.5

−2.0
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−1.0
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|ρ

S 11
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)
−
ρ

S 11
(e

q)
|

(b)λd = 0.0

λd = 0.2

λd = 0.5

λd = 1.0

λd = 1.5

λd = 2.0

λd = 5.0

λd = 10.0

λd = 100.0

y(t) = −Γrt+ y0

FIG. 1: (a) ln |ρS
11(t)− ρS

11(eq)| as a function of (a) t
and (b) Γrt, for different λd, where Γr is given in Eq.
(74), for λr = 0.3, ω = 0.05, d = 214. The dashed line

indicates the analytical prediction
ln |ρS

11(t)− ρS
11(eq)| = −Γrt+ y0, where

y0 = ln |ρS
11(0)− ρS

11(eq)|.

In summary, one has

Ltyp
12 (t) '

{
exp(− 8

3πλ
2
dt), λd � 1

4[J1(λdt)]
2

(λdt)2 . λd � 1
. (86)

From the result in Eq. (86), one can see that in both

cases, the decay of Ltyp
12 (t), which characterize the deco-

herence process induced by the EC interaction, becomes
faster for larger λd. Substituting Eq. (86) into Eq. (46),
one derives the equation of motion for off-diagonal ele-
ments of RDM in Schrödinger picture

|ρS
12(t)| '





exp(− 8
3π (

λ2
r√

1+λ2
d

+ λ2
d)t)|ρS

12(0)|, λd � 1

exp(− 8
3π

λ2
r√

1+λ2
d

t) 4[J1(λdt)]
2

(λdt)2 |ρS
12(0)|. λd � 1

(87)
In both λd � 1 and λd � 1 cases, it can be seen that,
the decoherence time τD decreases with increasing EX
coupling strength λr. For λd � 1, one can actually ap-

proximate exp(− 8
3π

λ2
r√

1+λ2
d

t) by 1, and in this case

|ρS
21(t)| ' 4[J1(λdt)]

2

(λdt)2
|ρS

21(0)|, (88)
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λr = 1.0

y(t) = −Γrt+ y0

FIG. 2: Similar to Fig. 1, but results for varying λr
with fixed a λd, where λd = 5.0, ω = 0.05, d = 214.

which is a function of λdt. One can conclude that τD ∝
1
λd

. For λd � 1, |ρS
12(t)| follows an exponential decay,

with a decoherence rate Γd given by

Γd = − 8

3π
(

λ2
r√

1 + λ2
d

+ λ2
d). (89)

Expanding 1√
1+λ2

d

to the second order of λd, one finds

that Γd ∝ λ2
d(1 −

λ2
r

2 ), which is a monotonically increas-

ing function when λr <
√

2, and becomes a monoton-
ically decreasing function of λd when λr >

√
2. Com-

bining with the condition for the Markov approximation

λr �
√

1+λ2
d

2 in Eq. (29), one expects in situations where

the analytical result in Eq. (87) is applicable , Γd is a
monotonically increasing function of λd. In summary, we
find that in case of λd � 1 and λd � 1, decoherence in
the Schrödinger picture is boosted by both EX and EC
interactions.

V. NUMERICAL RESULTS

A. Main results on relaxation and decoherence
dynamics

In this section, we numerically checked our analytical
results on the relaxation and decoherence processes in

the spin Random-Matrix model, which are given in Eqs.
(75) and (87). In the numerical simulations, as in Eq.
(32), we consider a pure state as initial state, which is
written as

|ψ(0)〉 = |ψS(0)〉 ⊗ |ψB(0)〉. (90)

Here |ψS(0)〉 =
√

3
2 |1〉 + 1

2 |2〉, and |ψB(0)〉 is a random
state in the bath Hilbert space

|ψB(0)〉 =

d∑

k=1

ck|Ek〉. (91)

ck are complex numbers, the real and imaginary parts
of which are drawn independently from Gaussian dis-
tribution, and due to the normalization of |ψB(0)〉,∑d
k=1 |ck|2 = 1.
The time evolution of diagonal elements of RDM are

studied in Fig. 1 and Fig. 2, where the results are shown
for varying λd with a fixed λr and varying λr with a
fixed λd, respectively. One can see that, in both figures,
the resulting curves approximately overlap as functions
of Γrt (Γr is given in Eq. (74)), which also agrees with the
analytical prediction in Eq. (75), at least up to a certain
time scale. The relaxation rate is found to increase with
λr while it decreases with λd (Fig. 2(a) and Fig. 1(a)).
It indicates that the relaxation process is boosted by the
EX interaction, and suppressed by the EC interaction at
the same time.

We notice that, for extremely strong λd, e.g., λd = 100,
the numerical results only follow the analytical predic-
tion for very short time and then goes to a non-thermal
steady value. This is due to a finite-size effect. In sys-
tems with finite Hilbert space dimension d, for sufficiently
large λd, the off-diagonal elements of the EC interaction
λrVr in the eigenbasis of the unperturbed Hamiltonian
H0 = HS +HB +λdVd is not much larger, or even smaller
than the average level spacing of H0 . As a result, the
system can not thermalize to the infinite temperature
Gibbs state (which is just the unitary matrix), but to a
non-thermal steady state which usually depends on the
initial state. But as the off-diagonal elements of λrVr
scale as 1√

d
while the mean level spacing of H0 scales as

1
d , such finite-size effect will vanish if d is large enough.
Thus we expect that if we continue to increase d, the re-
sult for λd = 100 would follow the analytical prediction
for longer time.

Results for decoherence process in the Schrödinger pic-
ture are shown in Fig. 3. One can see from Fig. 3(a)
and Fig. 3(c) that, our semi-analytical predictions in
Eq. (46) works quite well in both cases. It implies that
the two assumptions we made in Eq. (42) and Eq. (45)
are reasonable. Moreover, the analytical prediction for
λd � 1 and λd � 1 in Eq. (87) are found to agree quite
well with the numerical results. Surprisingly, the analyt-
ical prediction for weak λd is even valid for intermediate
λd ≈ 1.0. For all values of λd we consider here, one can



9

0 20 40 60t

−5

−4

−3

−2

−1

ln
|ρ

S 21
(t

)|

(a)

λd = 0.1

λd = 0.2

λd = 0.3

λd = 0.4

λd = 0.5

λd = 0.7

λd = 1.0

0 1 2 3 4 5Γdt
−6

−5

−4

−3

−2

−1

ln
|ρ

S 21
(t

)|

(b)

λd = 0.1

λd = 0.2

λd = 0.3

λd = 0.4

λd = 0.5

λd = 0.7

λd = 1.0

y(t) = −Γdt+ ln |ρS
21(0)|

0 2 4 6 8 10

λdt

0.0

0.1

0.2

0.3

0.4

|ρ
S 21

(t
)|

(c)

λd = 1.0

λd = 1.5

λd = 2.0

λd = 3.0

λd = 5.0

λd = 10.0

λd = 100.0

y(t) = 4[J1(λdt)]
2

(λdt)2 ρS
21(0)

FIG. 3: Decoherence in the Schrödinger picture: (a)
ln |ρS

21(t)| versus t, (b) ln |ρS
21(t)| versus Γdt and (c)

|ρS
21(t)| versus λdt, for different λd. The dashed line in

(b) shows the analytical prediction for λd � 1,
ln |ρS

21(t)| = −Γdt+ ln |ρS
21(0)| ,where Γd is given in Eq.

(89). Solid line in (a) and (c) indicates the
semi-analytical prediction in Eq. (46), where both

[ρS
I (t)]21 and Ltyp

12 (t) are calculated numerically as well
(shown in Fig. 4 and Fig. 5). The dashed line in (c)

indicates the analytical prediction for λd � 1,

|ρS
21(t)| ' 4[J1(λdt)]

2

(λdt)2 |ρS
21(0)|.

see that decoherence become faster if one increases λd,
indicating that decoherence process is always boosted by
the EC interaction, which is just what one would expect.

B. Additional results on the bath correlation
function and decoherence induced by EX and EC

interactions

Additionally, we study the decoherence process in-
duced by EX and EC interactions separately, the results
are shown in Fig. 4 and Fig. 5 . Results for decoher-
ence induced by the EX interaction (which is described
by decoherence in the interaction picture) are shown in
Fig. 4. A good agreement with the analytical prediction
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ln
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)]
21
|
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λd = 2.0

λd = 5.0

λd = 10.0

λd = 100.0

y(t) = −Γrt/2 + ln |[ρS
I (0)]21|

FIG. 4: Decoherence induced by the EX interaction
(decoherence in the interaction picture): ln |[ρS

I (t)]21| as
a function of (a) t and (b) Γrt/2, for different λd, where
Γr is given in Eq. (74). The dashed line in (b) indicates

the analytical prediction
ln |[ρS

I (t)]21| = −Γrt/2 + ln |[ρS
I (0)]21|. Here

λr = 0.3, ω = 0.05, d = 214.

ln |[ρS
I (t)]21| = −Γr

2 t up to a certain time scale can be
seen. Similar to the relaxation process, one finds in Fig.
4(a) that, the decoherence process induced by the EX
interaction is also suppressed by the EC interaction.

In Fig. 5, we show results for the decoherence process
induced by the EC interaction, which is described by
Ltyp

12 (t), for a wide range of λd. A good agreement with
the analytical prediction in Eq. (86) can be found, for
both λd � 1 and λd � 1. Based on the results shown in
Fig. 5, one finds that Ltyp

12 (t) decays faster for larger λd,
indicating that the decoherence process induced by the
EC interaction is always boosted by the EC interaction,
just as one expects.

The bath correlation function F12(τ) is also calculated,
and the results are shown in Fig. 6. F12(τ) for different

λd overlap as functions of
√

1 + λ2
d, which agrees with

the analytical prediction in Eq. (71) as well. A good

agreement between F12(τ) and 1
4L

typ
12 (τ) (for λd = 5) can

also be seen, which confirms the analytical result in Eq.
(85). It indicates that, in the spin Random-Matrix model
we consider here, the correlation function F12(τ) is de-
termined by the decoherence process induced by the EC
interaction. In the inset, the numerical results of infinite
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FIG. 5: Decoherence induced by the EC interaction:
(a) ln |Ltyp

12 (t)| versus ΓLt, (b) |Ltyp
12 (t)| versus λdt, for

different λd. The solid line in (a) shows the analytical

prediction for λd � 1, ln(|Ltyp
12 (t)|) = −ΓLt, where

ΓL = 8
3πλ

2
d. The dashed line in (b) indicates the

analytical prediction for λd � 1, |Ltyp
12 (t)| = 4[J1(λdt)]

2

(λdt)2 .

Here λr = 0.3, ω = 0.05, d = 214.

time intergral of F12(τ) fits perfectly with the analytical
prediction in Eq. (73), from which one concludes that
the relaxation rate Γr becomes smaller for larger λd.

In summary, our main results for the reduced equa-
tions of motion for the qubit in the spin Random-Matrix
model are confirmed in a wide range of coupling strength
λr and λd. A simple relation between the bath corre-
lation function and the decoherence process induced by
the EC interaction can also be seen. Moreover, we find
that, if one increases λd, decoherence induced by the EC
interaction becomes faster while relaxation as well as de-
coherence induced by the EX interaction become slower.

VI. CONCLUSIONS AND OUTLOOK

In this paper, by employing the modified Redfield the-
ory, we derived reduced equations of motion for the qubit
in a spin random-matrix model, which is also valid for
large EC interactions. The relation between the relax-
ation and decoherence process is discussed. We find a
simple relation between the bath correlation function and
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2

FIG. 6: The real part of correlation function F12(τ)

versus rescaled time
√

1 + λ2
dτ for different λd for

ω = 0.05 and d = 214. The solid line indicates the
analytical prediction in Eq. (71), and the dashed line

shows the Loschmidt echo 1
4L

typ
12 (t) for λd = 5. The

inset shows the infinite time integral
I12 =

∫∞
−∞ F12(τ)dτ where the dashed line indicates the

analytical prediction in Eq. (73)

the decoherence process induced by the EC interaction in
strong decoherence regime. It implies that the relaxation
process is suppressed by decoherence induced by the EC
interaction. The relaxation rate goes to zero, if the EC
interaction is sufficiently strong, which coincides with the
quantum zeno effect. Furthermore, decoherence induced
by the EX interaction is also found to be suppressed by
decoherence induced by the EC interaction.

As our main results are derived in a idealistic model
where all the interaction Hamiltonians are assumed to be
uncorrelated, it is interesting to ask whether or to what
extent our finding could be applied to realistic systems,
which will be investigated in our future work.
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tures of Chaos, Springer complexity (Springer, 2018).

Appendix A: Derivation of reduced motion of RDM
in the interaction picture

In this section we show detailed derivations of the re-
duced equations of motion for the system in the interac-
tion picture, where we start from Eq. (22) in the main
text,

d

dt
ρS
I (t) = −1

d

∫ t

0

dsTrB

{
[H int

I (t), [H int
I (s), ρS

I (s)]]
}
.

(A1)

For the convenience of the discussions below, we divide
d
dtρ

S(t) into four terms as,

d

dt
ρS
I (t) = S1 + S2 + S†1 + S†2, (A2)
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where

S1 = −1

d

∫ t

0

dsTrB

{
H int
I (t)H int

I (s)ρS
I (s)

}
, (A3)

S2 =
1

d

∫ t

0

dsTrB

{
H int
I (t)ρS

I (s)H int
I (s)

}
. (A4)

Here and in the rest of the section, we omit the subscript
I for simplicity.

First we start from S1, which can be written as

S1 = −1

d

∫ t

0

dsTrB

{
H int(t)H int(s)

}
ρS(s). (A5)

Inserting Eq.(17), one has

S1 =

−1

d
|λ12|2|1〉〈1|

∫ t

0

dsTrB

{
U†1 (t− s)H12U2(t− s)H†12

}
ρS(s)

−1

d
|λ12|2||2〉〈2|

∫ t

0

dsTrB

{
U†2 (t− s)H†12U1(t− s)H12

}
ρS(s)

= −|λ12|2|1〉〈1|
∫ t

0

F12(t− s)ρS(s)ds

−|λ12|2|2〉〈2|
∫ t

0

F21(t− s)ρS(s)ds, (A6)

where Um(τ) = exp (−i(em +HB + λmmHmm)τ) and

Fmn(τ) =
1

d
TrB

{
U†m(τ)HmnUn(τ)H†mn

}
. (A7)

Based on the definition of Fmn(t), it is easy to see that

Fmn(τ) = F ∗nm(τ) = Fnm(−τ). (A8)

Expanding ρS(s) as

ρS(s) =

2∑

m,n=1

ρS
mn(s)|m〉〈n|, (A9)

and rewriting S1 in a more concrete form, one gets

S1 = −|λ12|2
[ ∫ t

0
F12(t− s)ρS

11(s)ds
∫ t

0
F12(t− s)ρS

12(s)ds∫ t
0
F21(t− s)ρS

21(s)ds
∫ t

0
F21(t− s)ρS

22(s)ds

]
,

(A10)
where [S1]mn = 〈m|S1|n〉. Similarly, one has

S2 = |λ12|2
[ ∫ t

0
F12(t− s)ρS

22(s)ds
∫ t

0
G12(t, s)ρS

21(s)ds∫ t
0
G21(t, s)ρS

12(s)ds
∫ t

0
F21(t− s)ρS

11(s)ds

]
,

(A11)
where

Gmn(t, s) =
1

d
TrB

{
U†m(t)HmnUn(t)U†m(s)HmnUn(s)

}
.

(A12)
Before moving forward, one need to estimate the corre-
lation function Gmn(t, s), where we consider G21(t, s) as
an example, which can be written as

G21(t, s) =
1

d
TrB {U12(s, t)H21U12(t, s)H21} , (A13)

where

Umn(s, t) ≡ Um(s)U†n(t). (A14)

Denoting the eigenstate of U12(s, t) and U12(t, s) by |k〉
and |k′〉 respectively, G21(t, s) can be further rewritten
as

G21(t, s) =
1

d

∑

kk′

〈k|U12(s, t)|k〉〈k′|U12(s, t)|k′〉

·[H21]kk′ [H21]k′k, (A15)

where

[H21]kk′ ≡ 〈k|H21|k′〉 (A16)

As H21 is not Hermitian, so in general cases [H21]kk′
and [H21]k′k don’t have strong correlations, thus Rkk′ ≡
[H21]kk′ [H21]k′k can be taken as random numbers with
mean zero and variance 1

d2 for k 6= k′. At the same time,

the diagonal elements Rkk scale as Rkk ∼ 1
d . Combining

with the fact that the diagonal elements of U12(t, s) and
U12(s, t) are of order 1, one has the following estimation
for G21(t, s)

G21(t, s) ∼ 1

d
(
∑

k

Rkk +
∑

k,k′

k 6=k′

Rkk′) ∼
1

d
. (A17)

Similarly one has

G12(t, s) ∼ 1

d
. (A18)

If the Hilbert space dimension of the bath is sufficient
large, the off-diagonal part of S2 in Eq. (A11) can be
neglected, which yields

S2 = |λ12|2
[ ∫ t

0
F12(t− s)ρS

22(s)ds 0

0
∫ t

0
F21(t− s)ρS

11(s)ds

]
.

(A19)
Inserting Eqs. (A10) and (A19) to Eq. (A2), one has,
for the diagonal elements

dρS
11(t)

dt
= −4|λ12|2

∫ t

0

<[F12(t− s)](ρS
11(s)− ρS

11(eq))ds,

dρS
22(t)

dt
= −dρS

11(t)

dt
, (A20)

as well as for off-diagonal elements,

dρS
21(t)

dt
= −2|λ12|2

∫ t

0

<[F12(t− s)]ρS
21(s)ds, (A21)

where

ρS
11(eq) = ρS

22(eq) =
1

2
. (A22)

Under the condition that the the correlation function
F12(τ) decay sufficiently fast on a time τB (correlation
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time) which is small compare to the relaxation time of
the system τR, that is,

τB � τR, (A23)

one can employ the Markov approximation. As a result,
one obtains the Markovian master equation in the inter-

action picture,

dρS
11(t)

dt
= −Γr(ρ

S
11(t)− ρS

11(eq)),

dρS
22(t)

dt
= −Γr(ρ

S
22(t)− ρS

22(eq)),

dρS
21(t)

dt
= −Γr

2
ρS

21(t), (A24)

which directly leads to

ρS
11(t)− ρS

11(eq) = e−Γrt(ρS
11(0)− ρS

11(eq))

ρS
22(t)− ρS

22(eq) = e−Γrt(ρS
22(0)− ρS

22(eq)),

ρS
21(t) = e−

Γr
2 tρS

21(0). (A25)

Here Γr indicates the relaxation rate, which is defined as

Γr = 4|λ12|2
∫ ∞

0

<[F12(τ)]dτ

= 2|λ12|2
∫ ∞

−∞
F12(τ)dτ. (A26)
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