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Abstract

In the framework of the theory of Dunkl-deformed bosons, Bose-Einstein condensation of two and three-

dimensional Dunkl-boson gases confined in the one-dimensional gravitational field is investigated. Using the

semi-classical approximation method, we calculate the expressions of the Dunkl-critical temperature T
D

c ,

the ground state population
N

D
0
N

and the Dunkl-mean energy and Dunkl-specific heat functions. Further nu-

merical calculation shows that the condensation temperature ratio
T

D
c

TB
c

increases with the increasing Wigner

parameter.

1 Introduction

Exactly a century ago, Einstein predicted a process in a state of matter, known as the Bose-Einstein condensation
(BEC) [1], by evaluating the quantum formulation given by Bose [2] via a personal letter to him. According
to this estimation, a finite fraction of the number of particles should start to condense into their lowest-
energy states below a particular temperature. After many decades this quantum-statistical phase transition is
observed experimentally in the laboratory firstly by Cornell, Wieman, and then by Ketterle for the rubidium [3]
and sodium atoms [4], respectively. The 2001 Nobel Prize in Physics was jointly awarded to these physicists
for their studies which expanded our understanding at the quantum scale and led to the observation of new
physical effects. Since then, an increasing number of studies have dealt with the BEC, both experimentally and
theoretically [5–24].

The role of external potential on BEC is widely discussed in the literature. For example, Bagnato et al.
employed a generic power-law potential energy form, and they estimated the critical temperature and ground
state population of an ideal Boson gas in three dimensions [25]. Later Kirsten et al. considered spin-0 particles
system and analyzed the BEC with isotropic and anisotropic harmonic potential traps [26]. The BEC of non-
relativistic systems under the isotropic harmonic oscillator potential were examined in one and three dimensions
by the Ketterle et al. [4], and in two dimensions by Mullin [27]. In literature, we observe many works that
took into account the uniform gravitational field effects. For instance, Gersch explored the thermodynamics
of the Bose-Einstein gas in the presence of gravitational field [28]. Widom demonstrated theoretically the
condensation of the ideal Bose liquid which is confined in the gravitational field [29]. Baranov et al. studied the
two-dimensional BEC of atoms trapped in a rectangular well under the influence of the gravitational field [30].
Rivas et al. obtained the condensation temperature of the particle system for two different trapping cases
and discussed the modifications in the derived temperature taking into account the homogeneous gravitational
field [31]. Liu et al. considered a non-interacting Bose gas system in the presence of a uniform gravitational
field in one dimension and they derived the condensation temperature and condensate fraction within the semi-
classical approach [32]. Later, Du et al. revisited the same problem within two and three dimensions [33], and
presented the extended results of [32].

On the other hand, in the middle of the last century, Wigner started an interesting discussion: ”Instead of
obtaining the equation of motions from the commutation relations, can we derive the corresponding commutation
relations from the equation of motions?” [34]. To answer this question, Wigner dealt with the free case and the
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classical harmonic oscillator problems, and he showed that the commutation relations of these two problems
can be obtained with a constant difference. Since the constant can take arbitrary values, he concluded that
the reverse case does not provide a unique answer. Just a year later, Yang handled the same question with
the quantum harmonic oscillator problem [35]. He showed that arbitrariness vanishes if a strict definition of
Hilbert space is taken into account with a rigorous series expansion. However, during his proof, he had to
introduce a reflection operator, R̂, where R̂ψ(x) = ψ(−x), by deforming the momentum operator in the spatial
space. Several decades later, mathematicians were investigating the relations between differential-difference and
reflection operators. For this context, Dunkl presented the Dunkl derivative of the form [36]

Dx =
d

dx
+
θ

x

(

1− R̂
)

, (1)

which slightly differs from Yang’s derivative by the second term of Eq. (1). Because of this historical connection,
θ is named the Wigner parameter. Basically, this real-valued parameter determines the parity effects and it has
a lower bound given by θ > −1/2. The Dunkl derivative aroused the interest of physicists as well as mathemati-
cians. At first, this interest was manifested in the use of the Dunk derivative in the Calogero-Sutherland-Moser
model [37, 38]. In the last decade, research with Dunkl-formalism has spread to the broad field of physics. For
example, in relativistic and non-relativistic quantum mechanics context two and three dimensional isotropic and
anisotropic Dunkl-oscillators are investigated in [39–42]. The relativistic oscillators, namely the Dunkl-Dirac
oscillator are examined in [43–45], while the Dunkl-Klein-Gordon oscillators are studied in [45–48]. Similarly,
the partial solution of the Dunkl-Duffin-Kemmer-Petiau oscillator is explored in [49]. Dunkl-Newton mechanics,
Dunkl-electrostatics, and Dunkl-Maxwell equations are constructed in [50, 51], respectively. Recent studies in
Dunkl-general relativity and Dunkl-black hole thermodynamics are given in [52, 53]. Dunkl- Boson statistic
mechanics are formed in [54]. The dynamics of electrons in a graphene layer which is under the effect of an
external magnetic field is derived in [55]. There are many more studies in the literature that takes into account
the Dunkl formalism as it allows itself to discuss parity-dependent solutions simultaneously [56–72].

Very recently, we investigated the statistical mechanics of Dunk-ideal Bose gas and Dunk-blackbody radiation
in [73]. Since gravitational field effects are very crucial for the BEC, in this manuscript we intend to explore
the gravitational field effects on condensation with a semi-classical method. In particular, we consider two and
three-dimensional ideal Bose-gas and derive its critical temperature, condensation rate, and specific heat in the
Dunkl formalism. To this end, we construct the manuscript as follows: In sections 2 and 3, we study three and
two-dimensional Dunkl-Bose gases, respectively. In the next section, we discuss the findings graphically and
conclude the manuscript.

2 Three-dimensional system

Let us consider a system consisting of N bosons confined in the gravitational field along x direction, which can
be expressed as

V (x) =

{

mgx (x > 0)
∞ (x ≤ 0)

, (2)

Here, m is the mass of a boson particle, and g is the acceleration of gravity. In the grand canonical Dunkl-
statistics the total number of bosons, N , reads [73]

N = ND
0 +ND

e , (3)

where

ND
0 =

2

z−2 − 1
+

(1 + 2θ)

z−(1+2θ) + 1
, (4)

stands for the number of condensed particles, and

ND
e =

∑

i6=0

2

e2βEiz−2 − 1
+
∑

i6=0

(1 + 2θ)

eβ(1+2θ)Eiz−(1+2θ) + 1
, (5)

denotes the particles in excited states. Here, θ indicates the Wigner parameter, z = eβµ corresponds to the
fugacity, where µ symbolizes the chemical potential of a boson particle, and β = 1

KT is the inverse temperature
with the Boltzmann’s constant, K, and the temperature of the system, T . For very large numbers of particles,
it is hard to evaluate these sums analytically. One of the most appropriate methods for performing this analysis
is to change the sum with ordinary integrals weighted by a proper density of states, ρ (E). Within this approach
Eq. (5) becomes

ND
e = 2

∫ +∞

0

ρ (E) dE

e2βEz−2 − 1
+ (1 + 2θ)

∫ +∞

0

ρ (E) dE

eβ(1+2θ)Ez−(1+2θ) + 1
. (6)
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In the presence of a gravitational field, the density of states changes and the thermal behavior differs from that
of free gas. In the semi-classical approach, we can consider each quantum state to exist in a phase space cell
with volume Ω = h3. Then, we calculate the three-dimensional energy density of states by the standard method
with

ρ (E) =
1

h3

∫ ∫

d−→r d−→p δ (H − E) =

√
2mL2

3gπ2~
E3/2. (7)

By utilizing Eq. (7), we transform Eq. (6) into

ND
e =

L2
√
πm

8π2g~3
(KBT )

5/2 g5/2(θ, z). (8)

Here, we introduce the generalized Bose functions, gs(z, θ), which are defined by [73]

gs (θ, z) = gs(z
2)−

(

2

1 + 2θ

)s−1

gs(−z1+2θ), (9)

where the Bose functions, gs(z), are given with

gs(z) =
1

Γ (s)

∫ +∞

0

xs−1

exz−1 − 1
dx. (10)

Similar to the ordinary case, the BEC of a trapped Dunkl-boson system with a finite number of particles
should not have an evident critical temperature [22, 32, 33, 74]. However, one still can determine an effective
Dunkl-critical temperature, TD

c , via two methods [33]:

• By taking the chemical potential as zero, and assuming all particles are in the excited states.

• By considering the temperature at which the specific heat of the system reaches its maximum value.

Here, we prefer to use the first method because of its simplicity. After straightforward manipulations, we obtain
the Dunkl-BEC temperature of the ideal Bose gas.

KBT
D
c =

(

32πg~3N

3L2
√
mζ
(

5
2

)

)2/5 [

1 +
2
√
2− 1

(1 + 2θ)
3/2

]−2/5

. (11)

Here, ζ(n) denotes the Riemann-Zeta function. It is worth noting that the Dunkl-critical temperature depends
not only on the total number of particles N , the length of the system L, and the mass of the particles m but
also on the Wigner parameter. If we consider the limit, θ → 0, then the Dunkl-critical temperature reduces to
the ordinary Bose critical temperature, TB

c , given in the form of

KBT
B
c =

(

16πg~3N

3L2
√
2mζ

(

5
2

)

)2/5

. (12)

By matching Eq. (11) and Eq. (12), we express the ratio

TD
c

TB
c

=





2
√
2

1 + 2
√
2−1

(1+2θ)3/2





2/5

. (13)

Now, let us to investigate the condensate fraction. For T ≤ TD
c , we first express the ground state population,

ND
0

N , according to Eq. (3) and Eq. (8)

ND
0

N
= 1−

(

T

TD
c

)5/2

. (14)

Then, by using Eq. (13), we obtain the ground state population for three dimensional system as follows:

ND
0

N
= 1− 1

2
√
2

(

1 +
2
√
2− 1

(1 + 2θ)
3/2

)

(

T

TB
c

)5/2

. (15)
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We find it interesting to investigate the thermodynamic quantities of ideal Bose gas in the presence of a
gravitational field in the framework of the Dunkl-statistics. At first, we focus on the internal energy, U ,
according to the following formula

U =
∑

i

NiEi. (16)

After converting the sum into an integral, we obtain the following expression for the internal energy.

U =
5L2√πm
32π2g~3

(KBT )
7/2

g7/2(θ, z). (17)

For the case T ≤ TD
c , one can set z = 1 and utilize Eq. (17) to obtain the internal energy of the system directly.

However, for the case T > TD
c , first we have to determine the value of z via Eqs. (3), (4) and (8). Then, by

substituting the value of z in Eq. (17), we can be able to express the internal energy function.
Next, we examine the specific heat function. For the condensate phase case, T ≤ TD

c , we put z = 1 and
derive the thermal quantity via, C = ∂U

∂T

∣

∣

N,V
, as follows:

C<

KBN
=

35

8

g7/2(1)

g5/2(1)





1 + 4
√
2−1

(1+2θ)5/2

1 + 2
√
2−1

(1+2θ)3/2





(

T

TD
c

)5/2

, (18)

or equivalently in terms of the usual condensate temperature as

C<

KBN
=

35

16
√
2

g7/2(1)

g5/2(1)

[

1 +
4
√
2− 1

(1 + 2θ)
5/2

]

(

T

Tc

)5/2

. (19)

For the gas phase case, T > TD
c , we have ND

0 = 0, and z 6= 1. By differentiate Eq. (17), we obtain

d

dT
U =

7KB

2

5L2√πm
32π2g~3

(KBT )
5/2

[

g7/2(z
2)−

(

2

1 + 2θ

)5/2

g7/2(−z1+2θ)

]

+
2

z

dz

dT

5L2
√
πm

32π2g~3
(KBT )

7/2

[

g5/2(z
2) +

(

2

1 + 2θ

)3/2

g5/2(−z1+2θ)

]

, (20)

where we employed the relation
d

dz
gs(z

n) =
n

z
gs−1(z

n). (21)

The quantity 2
z

dz
dT can be obtained by the total particle number N that is given by Eq. (3). Since it is a

constant, we have, d
dTN = 0, which leads to

2

z

dz

dT
= −5KB

2

1

(KBT )







g5/2(z
2)−

(

2
1+2θ

)3/2

g5/2(−z1+2θ)

g3/2(z2) +
(

2
1+2θ

)1/2

g3/2(−z1+2θ)






. (22)

We substitute the above expression into Eq. (20), and express the Dunkl-specific heat function of the gas phase
as:

C>

KBN
=

35

8











g7/2(θ, z)

g5/2(θ, z)
− 5

7

g5/2(θ, z) + 2
(

2
1+2θ

)3/2

g5/2(−z1+2θ)

g3/2(θ, z) + 2
(

2
1+2θ

)1/2

g3/2(−z1+2θ)











. (23)
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3 Two-dimensional system

In this section, we study the d = 2 case with the methodology followed in the previous section. We assume that
the gravitational field is toward the x direction, as it is given with Eq. (2) in the three-dimensional case. Here,
the density of state differs from Eq. (7), and appears in the following form:

ρ =
LE

2πg~2
. (24)

By using Eq. (24) in Eq. (6), we find the Dunkl-corrected number of particles in the excited states

ND
e =

L

4πg~2
(KBT )

2
g2 (θ, z) . (25)

Then, we derive the Dunkl-critical temperature by a direct calculation as performed in the d = 3 dimensions.

KBT
D
c =

π2

6

√

2πg~2N

L

(

1 + 2θ

1 + θ

)1/2

. (26)

In the limit of θ → 0, it is demoted to the ordinary Bose condensation temperature,

KBT
B
c =

π2

6

√

2πg~2N

L
. (27)

Following these considerations, we easily get the existing relation between the Dunkl-condensation temperature
and the standard one:

TD
c

TB
c

=

(

1 + 2θ

1 + θ

)1/2

. (28)

By combining Eqs. (26) and (3), we get the Dunkl-corrected condensate fraction in the temperature region
T ≤ TD

c ,

ND
0

N
= 1−

(

T

TD
c

)2

, (29)

which can also be written as
ND

0

N
= 1−

(

1 + θ

1 + 2θ

)(

T

TB
c

)2

. (30)

Analogous to the previous section, we finally derive Dunkl-corrected internal energy and specific heat functions.
To this end, we use Eq. (16) and convert the sum into an integral. After the algebra, we obtain the internal
energy function in the form of

U =
L

4πg~2
(KBT )

3
g3 (θ, z) . (31)

After that with the help of the thermodynamic definition of specific heat function, we get

C

KBN
=











3
2

(

T
TB
c

)2
g3(1)
g2(1)

[

1 + 3
(1+2θ)2

]

for T ≤ TD
c

3
[

g3(θ,z)
g2(θ,z)

]

− 2

[

g2(θ,z)+
4

(1+2θ)
g2(−z1+2θ)

g1(θ,z)+2g1(−z1+2θ)

]

for T ≥ TD
c

(32)

4 Discussions and Conclusion

Now, we can display our results graphically. For this, we first need to show the behavior of the generalized Bose
functions. In Fig. 1, we depict g5/2(θ, 1) function versus the Wigner parameter.
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Figure 1: The variation of the function g5/2 (θ, 1) versus the Wigner parameter.

We observe that the generalized Bose function decreases monotonically for increasing values of the Wigner
parameter. Then, we plot g5/2(θ, z) function versus z in Fig. 2.
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θ=0

θ=0.2
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z

g
5
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,z
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Figure 2: The variation of the function g5/2 (θ, z) versus z for different values of Wigner parameter.

We observe that Dunkl’s correction increases the values of generalized Bose functions when the Wigner
parameter takes negative values, and decreases it when it takes positive values. Next, in Fig. 3 we show the
change of the condensation temperature ratio via the Wigner parameter in two and three dimensions.
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Figure 3: The variation of
TD
c

TB
c

as the function of the Wigner parameter in two and three dimensions.

We observe that in both dimensions this rate increases monotonically with the increasing Wigner parameter.
However, the value of the Dunkl-condensation temperature ratio in two dimensions is greater in the region
where the Wigner parameter is negative than in three dimensions. In the interval where the Wigner parameter

is positive, the rate in three dimensions becomes greater. Finally, we demonstrate the condensate fraction
ND

0

N

versus normalized temperature T
TB
c

for different values of the Wigner parameter in two and three dimensions.

d=3"θ=-#$%

d=&'θ=(

d=)*θ=+,-

d=2.θ=-/45

d=67θ=8

d=9:θ=;<=

>?@ ABC DEF GHI JKL

MNO

PQR

STU

VWX

YZ[

\]^

T

Tc
B

N
0D

N

Figure 4: The condensate fraction
ND

0

N as the function T
TB
c

for different values of θ for T ≤ TD
c in two and three

dimensions.

Here, we see that solid lines (three-dimensional), no matter the Wigner parameter values, are greater than
the dashed lines(two-dimensional) up to a ratio value of the normalized temperature. This ratio value depends
on the Wigner parameter. This shows that the parity symmetry of the particles is important on the BEC.

In this manuscript, we consider the BEC in the presence of the gravitational field in two and three dimensions
within the Dunkl-formalism. The semi-classical approach shows that the critical temperature increases with
increasing values of the Wigner parameter; so by using other Bose gases which have smaller Wigner parameter
values, we can obtain the Bose condensation at smaller temperatures.
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