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Abstract. The monotonicity of the scalar curvature of the state space
equipped with the Bogoliubov-Kubo-Mori metric under more mixing a
state is an important conjecture called the Petz conjecture. From the
standpoint of quantum statistical mechanics, the quantum exponential
family, a special submanifold of the state space, is central rather than the
full state space. In this contribution, we investigate the monotonicity of
the scalar curvature of the submanifold with respect to temperature for
transverse-field Ising chains in various sizes and find that the monotonic-
ity breaks down for the chains in finite sizes, whereas the monotonicity
seems to hold if the chain is non-interacting or infinite-size. Our results
suggest that finite-size effects can appear in the curvature through mono-
tonicity with respect to majorization.
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1 Introduction

Investigating the state space of a physical system is often useful for considering its
physical properties. A physically important example of this is the Riemannian-
geometric or information-geometric formulation of thermodynamics and statisti-
cal physics[3,11]. In information geometry[15], the Gibbs distribution in classical
statistical physics belongs to the exponential family, and a set of macroscopic
variables or parameters in a statistical model can be viewed as a coordinate
system of the statistical manifold. The scalar curvature induced from the Fisher
metric of the manifold is considered to be a physically significant quantity be-
cause it is related to thermal phase transitions and correlation[12,13]. Also in the
quantum setting, a few works discuss the scalar curvature from the viewpoint of
physics and suggest its physical significance[16,17].

The Bogoliubov-Kubo-Mori (BKM) metric or the canonical correlation is
one of the distinctive monotone metrics on the finite-dimensional quantum state
space[6,9,10]. The scalar curvature induced from the metric attracts interest in
the mathematical context due to issues around the so-called Petz conjecture.
The conjecture states the monotonicity of the scalar curvature of the state space
under majorization[1,4,5,9]. In other words, it is conjectured that the scalar
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curvature shows entropy-like behavior. However, the monotonicity of the scalar
curvature of the quantum exponential family, a submanifold of the state space,
is little discussed though the Gibbs state is central in quantum statistical me-
chanics. The curvature tensor of a manifold is usually different from that of a
submanifold of the manifold (e.g., a sphere in Euclidean space), hence one may
wonder whether the scalar curvature of the quantum exponential family has the
monotonicity and how it can be related to thermodynamic entropy.

The purpose of this study is to investigate the monotonicity property of the
scalar curvature of the quantum exponential family with simple physical systems,
transverse-field (TF) Ising chains in various sizes. This is motivated by Ref. [2],
which discusses finite-size effects on the scalar curvature.

This paper is organized into three sections: preliminaries, results, and dis-
cussion and conclusions.

2 Preliminaries

This section is devoted to introducing the concepts used here and fixing their
notations.

2.1 Scalar Curvature of the Quantum Exponential Family

Let the Hilbert space of a quantum system be H. The quantum state of the
system is generally described by a density operator on H. The set of all density
operators is denoted by S(H) := {ρ̂ | Tr ρ̂ = 1, ρ̂ ≥ 0}.

Our concern is a quantum statistical manifold, a parametric family of density
operators

{ρ̂(x) ⊂ S(H) | x ∈ X ⊂ Rn}, (1)

where x = (x1, x2, ..., xn) denotes a set of the parameters forming a coordinate
system whose domain denoted by X is a subspace of Rn. In this context, the

Gibbs state at an inverse temperature1 β = 1/T for a Hamiltonian Ĥ, e−βĤ/Z,

where Z := Tr
[
e−βĤ

]
is the partition function, belongs to the following quantum

exponential family

ρ̂(θ) = exp
[
θiÔi − ψ(θ)

]
(2)

with the potential function

ψ(θ) := ln Tr
[
exp
[
θiÔi

]]
= lnZ(θ). (3)

Here θ = (θ1, θ2, ..., θn) and {Ôi}ni=1 denote a set of the natural parameters form-
ing an e-affine coordinate system and a set of self-adjoint operators representing
some physical observables, respectively. We here assume that the self-adjoint
operators are linearly independent of each other. Note that this manifold is an
n-dimensional submanifold of S(H)

1 Here we set the Boltzmann constant to unity



If density operators of a quantum system of interest are modeled in this way,
the components of the BKM metric on the manifold can be given by the Hessian
of the potential:

gij(θ) = ∂i∂jψ(θ), (4)

where ∂i denotes ∂/∂θi[7,8]. The Christoffel symbols Γijk and the Riemannian
curvature tensor Rijkl induced from this metric can be calculated as[8]

Γijk(θ) =
1

2
ψijk(θ), (5)

Rijkl(θ) =
1

4
gab(ψaikψbjl − ψailψbjk), (6)

where ∂i∂j∂kψ(θ) is abbreviated as ψijk(θ). Here we define the Riemannian
curvature tensor as the curvature of a sphere becomes negative, in accordance
with Ruppeiner[11,12,13]. For the two-dimensional quantum exponential family,
the scalar curvature can be calculated by this formula[8]

R(θ1, θ2) =
2R1212

det g
=

∣∣∣∣∣∣
ψ11 ψ12 ψ22

ψ111 ψ112 ψ122

ψ112 ψ122 ψ222

∣∣∣∣∣∣
2

∣∣∣∣g11 g12g21 g22

∣∣∣∣2
. (7)

2.2 TF Ising Chains

The Hamiltonian of the TF Ising chain[14] with nearest-neighbor interactions
composed of N qubits is given by

ĤN = −J
N−1∑
i=1

σ̂zi σ̂
z
i+1 − Γ

N∑
i=1

σ̂xi , (8)

or when we impose the periodic boundary condition σ̂zN+1 = σ̂z1 for N ≥ 3, it
can be also given by

ĤN = −J
N∑
i=1

σ̂zi σ̂
z
i+1 − Γ

N∑
i=1

σ̂xi , (9)

where Pauli matrices σ̂zi and σ̂xi are represented as

σ̂zi :=

(
1 0
0 −1

)
, σ̂xi :=

(
0 1
1 0

)
. (10)

J and Γ represent an interaction and a transverse field, respectively. The natural
parameters are (θ, x) := (βJ, βΓ ).



3 Numerical Results of Scalar Curvatures

Once the potential for an equilibrium system with two parameters has been
obtained, the scalar curvature for the system can be numerically computed using
Eq. (7). In this section, we plot the graphs of scalar curvatures for TF Ising
chains in sizes of N = 1, 2, 3,∞ and check if they are monotone with respect
to temperature T = 1/β. It should be noted that, if the Petz conjecture is true
for the quantum exponential family, the scalar curvature here is expected to
monotonically decrease as temperature increases.

3.1 N = 1 TF Ising Chain: Non-interacting Case

This system consists of only one qubit, thus it can not have interactions. Instead,
we add contribution from a longitudinal field h into the Hamiltonian:

Ĥ1 = −hσ̂z − Γ σ̂x. (11)

This is often called the zero-dimensional TF Ising model and has correspondence
with the one-dimensional classical Ising model. We can regard this system as a
non-interacting chain just by arranging independent qubits in a line because the
two systems are essentially the same. The potential for the model is

ψ1(z, x) = ln(2 cosh r), (12)

where (z, x) := (βh, βΓ ) are the natural parameters, and r :=
√
z2 + x2. There-

fore, the scalar curvature can be analytically obtained as

R1 =
2r − tanh r

2r2 tanh r
cosh2 r − 1 + tanh2 r

2 tanh2 r
. (13)

Fig. 1 is a semi-log plot of this scalar curvature as a function of temperature.
As we can see, R1(T ) decreases monotonically with respect to temperature.
In fact, we can check directly from Eq. (13) that R1(T ) is a monotonically
decreasing function of temperature and hence R1(T ) ≥ 0.

3.2 N = 2 and N = 3 TF Ising Chains: Finite Size

Each potential is calculated as

ψ2(θ, x) = ln
[
2 cosh (θ) + 2 cosh

(√
θ2 + 4x2

)]
, (14)

ψ3(θ, x) = ln
[
2e−θ cosh(x) + 2eθ−x cosh

(
2
√
θ2 + θx+ x2

)
+2eθ+x cosh

(
2
√
θ2 − θx+ x2

)]
, (15)

where the periodic boundary condition σ̂z4 = σ̂z1 is imposed for N = 3. The
analytic expressions of the scalar curvatures R2, R3 are brutally complicated to
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Fig. 1. R1(T ) with J = 1 and different values of Γ

compute, and we just give numerical plots: Fig. 2 for N = 2 and Fig. 3 for
N = 3.

Surprisingly, these scalar curvatures wave and show three kinds of charac-
teristic behaviors, resulting in non-monotonicity. At higher temperatures, they
seem to decrease monotonically and converge to zero. In the middle, however,
they moderately decrease and then increase, and they can have negative values
during decreasing. This behavior seems to vary depending on Γ . Around zero
temperature is also different: they seem to spike up to infinity as T → 0.

3.3 N = ∞ TF Ising Chain: Thermodynamic Limit

In the thermodynamic limit N =∞, only the potential per site or the potential
density is meaningful because the potential itself has an extensive property. In
this case, we refer to the potential as the potential density.

The potential can be obtained as

ψ∞(θ, x) :=
1

N
lnZ =

∫ π

0

dk

π
ln(2 cosh f(k; θ, x)), (16)

where f(k; θ, x) :=
√
θ2 + x2 + 2θx cos k. Numerical plots of the scalar curvature

R∞(T ) for different Γ are shown in Fig. 4. Unlike R2(T ) and R3(T ), R∞(T )
decreases monotonically, which confirms the monotonicity property. In addition,
these exponential behaviors are similar to R1(T ) whereas Γ dependence seems
a little different. Note that Γ = J is the quantum phase transition point, hence
R∞(T ) may expect to follow a power law, which is also confirmed in Fig. 4.
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Fig. 2. R2(T ) with J = 1 and different values of Γ
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4 Discussion and Conclusions

We have studied numerically the scalar curvature of the quantum exponential
family for TF Ising chains in various sizes of N = 1 (this case can be regarded
as a non-interacting chain), 2, 3, and ∞ as a function of temperature, and
checked whether it is monotone with respect to temperature. We confirm the
monotonicity for N = 1 and ∞. However, in finite-size cases N = 2 and 3
with an appropriate strength of a transverse field, the scalar curvature no longer
possesses the monotonicity property and also can have negative values2. In any
size, behavior at high temperatures looks alike. Our results imply that

(i) R(T →∞) = 0 and R(T → 0) =∞ for an equilibrium system in any size,

(ii) the Petz conjecture for the quantum exponential family is true for non-
interacting or infinite-size (i.e., infinite-dimensional) quantum systems,

(iii) finite-size effects can appear in the non-monotonicity of the scalar curvature
with respect to majorization and may also cause negative curvature,

(iv) we might be able to utilize the scalar curvature to judge whether an inter-
acting quantum equilibrium system is in a finite size effectively.

Note that combining (i) and (ii) yields the non-negativity of the scalar curvature:
R(T ) ≥ 0. This is similar to thermodynamic entropy. The physical interpreta-
tions of those behaviors of the scalar curvature require further investigation.

2 Again the curvature tensor is defined here as that of a sphere becomes negative.
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