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Abstract

We discuss scalar conformal field theories (CFTs) that can be realized in structural phase transitions.

The Landau condition and Lifshitz condition are reviewed, which are necessary conditions for a structural

phase transition to be second order. We also review the perturbative analysis in 4 − ε expansion of the

corresponding Landau actions, which were already analyzed thoroughly in the 80s. By identifying the global

symmetries of these fixed points, it turns out that in perturbation theory only 6 different CFTs can be

realized by commensurate structural phase transitions. This is a lecture note based on a series of talks given

by the author. The goal of the lecture note is to bridge the gap between condensed matter physicists and

conformal field theorists. The note will be further updated in the future.
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I. INTRODUCTION

Structural phase transitions describe the change of crystal structure as the critical temperature

is crossed [1]. It is an interesting phenomenon that connects material science, statistical physics,

quantum field theory, and group theory. Given a crystal, there exist transformations (translation,

rotation, reflection with respect to a certain plane, etc) that leave the crystal structure invariant.

These transformations form a group structure, which is called the crystallographic “space group”.

Three-dimensional Euclidean space R3 is invariant under the so-called Euclidean group E(3). The

group E(3) contains the following group elements

Translation: xi → xi + ai, i ∈ 1, 2, 3,

rotation+reflection: xi →
3∑
j=1

Ri
jxj , Ri

j ∈ O(3), (1)

and their combinations. The matrix Rji is an 3× 3 orthogonal matrix, that is, Ri
j is an element of

the three dimensional orthogonal group O(3). Notice that the Euclidean group leaves invariant the

Cartesian distance
∑3

i=1(x
i − yi)2. A space group is a subgroup of E(3) than leaves the discrete

crystal structure invariant. The classification of space groups (and the study of their representa-

tions, group-subgroup relation and etc) is one of the most successful programs in mathematical

physics [2, 3]. The structural phase transitions can be understood through the theory of sponta-

neous symmetry breaking. At higher temperature, the crystal has a structure which preserves a

2



space group G. At a temperature below the phase transition temperature, the new crystal struc-

ture preserves a different space group H which is a subgroup of G 1. There exist two types of phase

transitions, the continuous and the discontinuous phase transitions. The term “continuous” and

“discontinuous” refers to whether the order parameter changes continuously (see Section II) when

the phase transition happens. One “surprising” result of a continuous phase transition is that it is

possible for completely different physical systems to have the same universal critical behavior near

the critical temperature Tc. For example, the liquid-gas phase transition at the critical point and

the lattice Ising model at its critical temperature have the exact same critical behavior (see Sec-

tion II C). Because of this, continuous phase transitions can be classified into so-called “universality

classes”, according to their critical behavior.

According to the modern theory of continuous phase transitions, the critical behavior near the

critical temperature Tc are completely fixed by the behavior of thermal fluctuations exactly at Tc.

The later can then be described by a special type of quantum field theories called the conformal field

theories (CFTs). As compared to regular quantum field theories, CFTs preserve extra symmetry

than the Euclidean group E(3). This gains field theorists extra mileage in studying them. In

particular, the critical behavior of many two dimensional phase transitions can be solved exactly

using CFT techniques [6]. Recently, the development of the conformal bootstrap technique [7] has

greatly improved our understanding of many conformal field theories in d ≥ 2, especially the CFTs

that can be realized by structural phase transitions (see Table I). Conformal bootstrap, together

with Monte Carlo simulation (see for example [8]), are currently among the most successful methods

in studying critical phenomena. Inspired by these new developments in CFT research, we review

here the early literature on structural phase transitions. There already exist nice textbooks and

reviews on structural phase transitions, such as [1, 9]. We will however give a brief review of the

subject, emphasising on the relation to conformal field theories so as to bridge the gap between

the two fields of research. In particular, for a structural phase transition to be second order, it

satisfies the following necessary conditions

• the group-subgroup relation,

• the Landau condition,

• the (weak) Lifshitz condition,

• and stability under renormalization group flow.

We will discuss these conditions in the following sections. We need to warn the readers that these

conditions are based on either mean field theory or perturbation theory arguments. When the non-

perturbative effect are taken into account, phase transitions violating these conditions may also be

second order. We will mention some counterexamples in the future sections. After examining the

early literature on structural phase transitions (which were conveniently reported in Table 12 of the

book [10]) and identify the global symmetry groups of the perturbative fixed points, it turns out

that in perturbation theory, only six different CFTs can be realized by structural phase transitions,

which are summarized in Table I. A fully non-perturbative result is still unavailable (see Section

III).

1 For some materials, the high termperature phase may have smaller symmetry than the low temperature phase.
Such exotic inverted transitions were observed in Rochelle’s salt [4, 5].
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No. Name Images

1 Ising A2a

2 XY B4a, B6b, B8a, B12a, B12b, B24a

3 N=3 Cubic C24a, C24c, C48a

4 XY2 D32e, D64a, D64b, D64d, D72b, D128a, D144a

5 N=4 Cubic D192a, D192c, D384a

6 XY3 E96k, E192j, E768b, E768c, E1536a

TABLE I: All perturbative critical universality classes which can be realized in structural phase transitions.

See Section III for details. We make this table by identifying the the symmetry groups of the perturbative

fixed points reported in Table 12 of the book [10]. The table is based on perturbation theory in 4 − ε

dimensions. Non-perturbative effect may change the result.

II. LANDAU THEORY FOR SPONTANEOUS SYMMETRY BREAKING

A. Invariant polynomials and the Landau condition

We will now explain Landau’s theory of spontaneous symmetry breaking. Let us start with the

Ising model. The Ising model is given by the following Hamiltonian

HIsing = −J
∑
〈ij〉

σiσj . (2)

Here 〈ij〉 denotes nearest neighbour sites on the lattice. On each site, σi = ±1. Clearly, the

Hamiltonian of the Ising model preserves the Z2 symmetry, under which all the spins flip sign

σi → −σi. (3)

The partition function of the Ising model is given by

Z(T ) =
∑
σi

e−βH , with β =
1

kBT
. (4)

Here kB is the Boltzmann constant, which we set to be equal to 1 for simplicity. The expectation

value of the spin operator is given by

〈σx〉T =

∑
σi
σxe
−βH

Z(T )
. (5)

Onsager’s famous solution the Ising model on two dimensional square lattice [11] tells us that the

FIG. 1: The phase diagram of the Ising model. T > Tc is the disordered phase, while the T < Tc is the

ordered phase with spontaneously broken Z2 symmetry.
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phase diagram is given by Fig. 1. When T > Tc, the Ising model is in the disordered phase, in

which

〈σx〉T = 0. (6)

When T > Tc, the Ising model is in the so called ordered phase, in which the Z2 symmetry is

spontaneously broken,

〈σx〉T = ±v. (7)

Here v is a constant that depends on the temperature. The system has two degenerate vacua,

〈σx〉T = ±v that are related to each other by the Z2 transformation. Even though the Hamil-

tonian of the Ising model is symmetric under Z2, the vacuum is not. This phenomenon is called

spontaneous symmetry breaking.

The Landau theory is a generic theory about spontaneous symmetry breaking. In general, the

theory depends on two factors, the symmetry group G and the irreducible representation that the

order parameter transforms in. (Here we assume a single order parameter.) Let us first consider

the simplest case, in which the symmetry group is Z2, which is also the symmetry group of the

Ising model. We can easily write down the free energy function that is invariant under the Z2

operation φ→ −φ,

F (φ) = aφ2 + λφ4 + λ6φ
6 + · · · . (8)

The coupling constants a, λ, and λ6, in general, depend on the temperature. In case of Ising model,

φ should be understood as the vacuum expectation value 〈σx〉T . The location of the minima of this

function depends on the sign of a (assuming λ > 0 and λ6 ≥ 0), see Figure 2. The phase transition

FIG. 2: The free energy F (φ) = aφ2 + φ4. The red, orange and blue curves correspond to a=1, 0 and -1

respectively.

happens precisely when a changes sign. The parameter a depends on the temperature. Near the

critical temperature, one can perform a linear expansion to get a ∝ (T − Tc). When T > Tc, the

minimum of the free energy potential is located at

φ = 0.
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When T < Tc, on the other hand, there are two minima located at

φ = ±v,

with the constant v depending on the temperature. The phase diagram of the Landau theory

therefore agrees with the Ising model. When T is slightly below the critical temperature Tc, the

spontaneous magnetization can be approximated by

φ ∝ (Tc − T )β. (9)

The specific heat has the following power law behavior

CP = −∂
2F

∂T 2
∝ |T − Tc|−α. (10)

The constants α and β are called critical exponents, which characterize the universality class that

the second-order phase transition belongs to. The Landau theory gives us the mean-field theory

value α = 0 and β = 1/2. In general, α and β will be different from their mean field theory values.

Universality means that there exist different physical systems, whose critical exponents at the

second-order phase transition are the same. For example, the critical point of the liquid-gas phase

transition and the Curie point of the magnetization phase transition belong to the same universality

class.

Landau argued that for a phase transition to be second order, the symmetry of the low-

temperature phase H must be a subgroup of the high-temperature group G. This also means

that for two phases preserving G and G′ respectively, if G is not a subgroup of G′ and vice versa,

the two phases can only be connected by a discontinuous phase transition. The “group-subgroup

relation” between phases is, therefore, a necessary condition for second-order phase transition 2.

Landau also argued that if a phase transition is second order, the free energy function can not

contain cubic (φ3) terms. This is sometimes called the Landau condition. An illustration is given

in Fig. 3. In most cases, the symmetry groups we will encounter in structural phase transitions are

FIG. 3: The free energy F (φ) = aφ2 + φ3 + φ4. The red, orange and blue curves correspond to a2=1, 1/4

and 0 respectively. At a=0, the barrier between the meta-stable (at φ = 0) and the true vacuum at φ < 0

disappears, the first-order phase transition happens.

2 Quantum phase transitions beyond the Landau(-Ginzburg-Wilson) paradigm has been proposed [12]. In these
cases, phases with two incompatible symmetries can be connected by second-order phase transitions.
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finite groups. To construct the Landau theory which preserves a finite group G, it will be nice to

know how many polynomial terms can appear in each degree. The Molien function does precisely

this job. For a finite group G, the Molien function of its representation ρ(g) is

M(z) =
1

|G|
∑
g∈G

1

Det[1− zρ(g)]
. (11)

It is a generating function that counts the number of invariant polynomials of a certain degree.

Here |G| is the order of the group G, ρ(g) is a matrix, which is also a representation of G. In the

Taylor expansion of the Molien function M(z) around z = 0, the coefficient of zn indicates the

number of invariant polynomials of degree n. See, for example, [10, 13], where the Molien function

was used to study effective actions. As explained in [10], the Molien function can be written as

M(z) =
β0 + β1z + . . . βmz

m

(1− z)α1(1− z2)α2 . . . (1− zn)αn
. (12)

A generic invariant polynomial of the group G can be written as

P =
m∑
j=1

P
(r)
j Kj(P

(b)
1 , P

(b)
2 , . . . P (b)

n ) (13)

The P
(b)
i polynomials with i = 1 . . . n are called the “basic” invariant polynomials. Basic invariant

polynomials contribute to the denominator of the Molien function (12). The numbers αn count

the number of basic invariant polynomials of degree n. The P
(r)
j polynomials with j = 1 . . .m

are called the “relative” invariant polynomials. Relative invariant polynomials contribute to the

numerator of the Molien function (12). For a finite group, the number of relative and basic invariant

polynomials is finite. The function Kj is itself a polynomial, with P
(b)
i ’s as its variables. Since basis

polynomials P
(b)
i ’s are invariant polynomials, Kj is also invariant. This explains the denominator of

(12). Compared to basic invariant polynomials, relative polynomials have a special property that

(P
(r)
j )n with n ≥ 2 is not independent, it can be re-expressed as linear combinations of terms in

(13). This explains the numerator of (12). Let us consider as an example the symmetric group S4.

The Molien function of the standard representation of S4 (the permutation group of four elements)

is

M(z) =
1

(1− z2)(1− z3)(1− z4)
= 1 + z2 + z3 + . . . . (14)

This data can be conveniently obtained using the following GAP [14] code:

grp:=SymmetricGroup(4);

tbl:=CharacterTable(grp);

psi:=Irr(tbl);

MolienSeries(psi[4]);

The first line of the code specifies which group we wish to consider. The second line cal-

culates the character table of the group. The third generates a list “psi” which contains all the

irreps of the group. The fourth line calculated the Molien function of the 4th irrep, which is the

standard representation. The GAP system has a library called “Smallgroup”, which allows us

to easily deal with finite groups with orders less than 2000. One can easily obtain the character

table, a matrix representation of the generators of the finite group and even the Molien functions
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using this library. To get an explicit form of the invariant polynomials, we need to first get a

matrix representation of the generators. The group S4 is generated by the permutation

(1, 2, 3, 4) and (1, 2). (15)

Here we are using the cycle notation for elements of the symmetric group. By typing “Irre-

ducibleRepresentationsDixon(grp, psi[4]: unitary);” in GAP, we get

(1, 2, 3, 4) =


0 − 1√

3
−
√

2
3

1√
3
−2

3

√
2
3√

2
3

√
2
3 −1

3

 , and (1, 2) =


1
2

1
2
√
3
−
√

2
3

1
2
√
3

5
6

√
2
3

−
√

2
3

√
2
3 −1

3

 . (16)

To calculate the explicit form of the invariant polynomials, we can use, for example, the built-in

functions of Mathematica. Take the degree three invariant polynomials as an example, we first

use “m1=KroneckerProduct[g1,g1,g1]” to construct a 3degree× 3degree matrix from the generators.

Here g1 is one of the generators, it is a 3× 3 matrix. The matrix “m1” tells us how the generators

act on the tensor product space V ⊗ V ⊗ V , suppose V is the standard irrep of S4. The command

“NullSpace[m1-IdentityMatrix[27]]” then calculates the 27-dimensional vectors corresponding to

the invariant tensors. One should then solve for linear combinations of these null vectors which are

also invariant under the action of “KroneckerProduct[g2,g2,g2]” (where g2 is the second generator).

Convert the vectors back to the tensorial basis we get the invariant tensors, which are equivalent

to the invariant polynomials.

The three basic invariant polynomials of the standard representation of the symmetric group

S4 with degree-two, three, and four are given by

I2(xi) = x2i , (17)

I3(xi) = − x
3
2√
2
− 3

2
x3x

2
2 + x33 +

3

2
x21

(√
2x2 − x3

)
, (18)

I4(xi) = dijmdklmxixjxkxl. (19)

(Summation over repeated indices are understood.) Here the invariant tensor dijk is defined as

dijk =
∂3I3

∂xi∂xj∂xk
. (20)

A lattice model that preserves the S4 symmetry is the 4-state Potts model, which is a generalization

of the Ising model, allowing the spins to take 4 values instead. The Hamiltonian is

HPotts = −J
∑
〈ij〉

δsi,sj . (21)

Here δsi,sj is the Kronecker delta function, which equals 1 when si = sj and 0 otherwise. The

spins si can take four values 0,1,2, and 3. The numerical simulation of this model shows a phase

diagram that is very similar to the phase diagram of the Ising model. The difference is that the

low-temperature phase is the symmetry-breaking phase of S4. Now we can write down the effective

action of the 4-state Potts model according to (13). The leading terms are

F (φ) = a2I2(φi) + a3I3(φi) + a4,aI4(φi) + a4,b (I2(φi))
2 + . . . (22)
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(For an explicit form of the effective action of N-state Potts models with generic N, see [15].)

Clearly, the effective action of the four-state Potts model contains a cubic term, this is consistent

with the z3 term in the Molien series. According to Landau’s argument, this transition should

be first order. This is indeed true in three dimensions (see for example [16]). In two dimensions,

however, the 4-state Potts model goes through a second-order phase transition, because the effect

of thermal fluctuation is stronger in two dimensions [17–19]. In particular, the cubic operator

I3(φi) gets strongly renormalized and becomes irrelevant, see Section II C.

The Molien function of the standard representation of A4, the alternating group on four ele-

ments, is

M(z) =
1 + z6

(1− z2)(1− z3)(1− z4)
. (23)

Notice the Molien function of S4 and A4 are exactly the same up to z5, the difference starts at

z6 order. The group A4 is a subgroup of S4, which consists only of the even permutations of four

elements. The standard irrep of S4, when branching into A4, remains irreducible. The group A4

shall preserve more invariant polynomials than S4. Suppose that we want to explicitly break the

global symmetry group of the Landau theory from S4 to A4. From the discussion above, this

means we will have to introduce φ6 terms. In two dimensions, this operator is irrelevant at the

4-state Potts model fixed point. This means that a UV model with A4 symmetry will also be in

the 4-state Potts model universality class. In general, the symmetry G of the second-order phase

transition point, which is described by conformal field theories (see Section II C), can be bigger

than the symmetry H of the lattice model. As long as all operators that are singlet of H but

carrying non-trivial quantum numbers of G are irrelevant.

B. Irreps of space groups and images

Bravais lattices are 3D lattices defined as a set of vectors

~R =
3∑
i=1

ni~ai, with ni ∈ Z. (24)

The three linearly independent vectors ~ai are called the primitive lattice vectors, and they define

the so-called unit cell. The volume of the unit cell is given by

Ω = εµνρa
µ
1a

ν
2a
ρ
3. (25)

We can define primitive reciprocal lattice vectors as

bµ1 =
2π

Ω
εµνρa

ν
2a
ρ
3, bµ2 =

2π

Ω
εµνρa

ν
3a
ρ
1, bµ3 =

2π

Ω
εµνρa

ν
1a
ρ
2. (26)

The reciprocal lattice consist of vectors given by ~K =
∑

i ni
~bi, with ni again integers. Primitive

lattice vectors and reciprocal lattice vectors satisfy

~ai ·~bj = 2πδij , and
∑
i

aµi b
ν
i = 2πδµν . (27)

The group that leaves the lattice invariant is called the space group G of the lattice. G is a subgroup

of the three-dimensional Euclidean group E(3). Clearly, translation by a primitive lattice vector
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leaves the lattice invariant. The set of all such translations form the transnational group T , which

is an Abelian normal subgroup of the space group. The group G also contains the subgroup of

rotations and reflections that leave the lattice invariant, which we will denote as P. P is also called

a crystallographic point group, which is a subgroup of the three-dimensional orthogonal group

O(3) 3.

For a Bravais lattice, all the lattice sites are made of the same type of atoms. It is also simply a

tiling of the three dimensional flat space with empty unit cells. We can fill these cells with atoms

that are different from the atoms living on the Bravais lattice sites. These new lattices will have a

space group symmetry which is the subgroup of the space group of the underlying Bravais lattice.

There are in total 32 three-dimensional crystallographic point groups, and in total 230 three-

dimensional crystallographic space groups. The “International Tables for Crystallography” [3]

collects the properties of these groups, with many introductory chapters explaining the classifi-

cation. Interested readers may refer to these chapters for further information. The book [2] is

also a nice reference to study this subject. As we mentioned, the Landau theory of spontaneous

symmetry breaking says that for a second order phase transition to happen, the symmetry H of

the low temperature phase must be a subgroup of the symmetry G of the high temperature phase.

To study structural phase transitions, it is therefore desirable to classify the “group-subgroup re-

lations” between crystallographic space groups. This has been done with the help of a computer,

and a book containing the results was published [10].

The irreps of the translation group T are labeled by a momenta point ~k in the unit reciprocal

lattice cell, which is alternatively called the Brillouin zone. Bloch’s theorem tells us that the

eigenfunctions of the translational group can be written as

ρ~k(~r) = ei
~k·~ru(~r), (28)

with u(~r) being a periodic function satisfying

u(~r + ~ai) = u(~r), for i = 1, 2, 3. (29)

Notice the periodic function can also be decomposed into Fourier modes of momenta belonging to

the reciprocal lattice u(r) =
∑

~K fKe
i ~K·~r. Under translations, the Bloch function picks a phase

ρ~k(~r + ~ai) = ei
~k·~aiρ~k(~r), for i = 1, 2, 3. (30)

Notice that the Bloch function with momentum ~k and ~k +~bi are in the same irrep of the transna-

tional group, due to (27).

Starting with a point ~k in the Brillouin zone, the action of the point group P brings ~k to other

points in the Brillouin zone. The set of all these points is called the star of ~k, denoted as ~k∗. For a

two dimensional square lattice, in general, ~k∗ contains 8 vectors. When ~k is located at some special

points, such as the edge of the Brillouin zone, the ~k∗ contains fewer vectors. This is because the

Brillouin zone is a torus, so that the vectors ~k and ~k +~bi are identical. See Fig. 4.

3 For a generic space group containing glide mirrors and screw axes, the definition of point group is more subtle. A
generic space group element is {g,~t}, which acts on a vector as

{g,~t}~r = g · ~r + ~t.

The point group P is the group of all g’s.
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FIG. 4: Example stars of ~k.

There are two types of structural phase transitions, the order-disorder transitions and the

displacive transitions [9]. In an order-disorder structural phase transition, the crystal consists of

different types of atoms. In the high-temperature phase, different atoms can occupy the sites of

the lattice sites with equal probability. Or in other words, the atoms are randomly distributed on

the lattice. In the low temperature phase, on the other hand, the atoms occupying the lattices

form certain structures, see Fig. 5. In a displacive structural phase transition, the location of

certain atoms changes from a more symmetrical position to a position which breaks the space

group symmetry, see Fig. 7.

For convenience, we will use two-dimensional structural phase transitions to illustrate their

difference. A type of phase transition in two dimensions that are analogous to the three dimensional

structural phase transitions is the order-disorder phase transition of mono-layer atoms of molecules

absorbed on the surface of certain substrate material [20–25]. The absorbed mono-layer atoms or

molecules can have different phases as temperature changes. The phase transitions are described

by the spontaneous breaking of the two-dimensional space groups, also called the wallpaper groups.

There are only 17 of them. As a simple example, let us consider the order-disorder transitions of

adsorbed monolayers [26, 27] on a square lattice. This is essentially the two-dimensional version

of the order-disorder structural phase transition in three dimensions. At high temperatures, the

absorbed atoms distribute randomly on the lattice. Below the critical temperature, the absorbed

atoms form commensurate super-lattice structures as in Figure 5. For simplicity, we now assume

the lattice constant a = 1. That is, the primitive lattice vectors are

~a1 = (1, 0), ~a2 = (0, 1). (31)

The primitive reciprocal lattice vectors are then

~b1 = (2π, 0), ~b2 = (0, 2π). (32)

The average density of the red atoms is

ρ(~r) = Cu(~r) + φei
1
2
(~b1+~b2)·~ru(~r). (33)

The function

u(~r) =
∑
~R

δ(~r − ~R). (34)
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a) b)

c)

FIG. 5: a) Disordered phase of adsorbed monolayer atoms on square lattice. b) Ordered phase. c) The

Brillouin zone. The momentum of order parameter is at the corner of the Brillouin zone.

is periodic and is invariant under the space group transformations. The high temperature phase

corresponds to

C =
1

2
, φ = 0. (35)

The low temperature phase, on the other hand, corresponds to

C =
1

2
, φ =

1

2
. (36)

In general, the coefficients of the two terms depend on the temperature. The first term is a space

group singlet, so that it does not play any role in the symmetry breaking. We treat the second

term

η(~r) = φ× ei
1
2
(~b1+~b2)·~ru(~r), (37)

as the order parameter of the phase transition. The momentum of the order parameter lives on

a special point of symmetry of the Brillouin zone, see Fig 5 c). At these points of symmetry, not

all the space group elements are represented faithfully, which means that some group elements act

trivially. The space group is generated by 90-degree rotations, reflection, and translation along the

horizontal direction. The 90-degree rotations and reflections bring the Brillouin zone point to a

new point which is equivalent to the original, therefore acts trivially. The translation, on the other

hand, flips the sign of the order parameter as

η(~r + ~a1) = φei
1
2
(~b1+~b2)·~a1ei

1
2
(~b1+~b2)·~ru(~r) = −η(~r), (38)
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so that

φ→ −φ. (39)

We have used (27). The subgroup of the space group which is faithfully represented (denoted as

Gi, which stands for “image group”) and the corresponding irrep of Gi that the order parameter

transforms in together are called the image of the space group. In our case,

Gi = Z2, (40)

and the order parameter is in the odd representation of Z2. The Landau effective potential is

F = aφ2 + λφ4 + · · · . (41)

Depending on the sign of λ, the phase transition can be either first order or second order, see Fig.

2 and Fig 11. If the transition is second order, it will be in the two-dimensional Ising universality

class.

The order parameter can be measured in low-energy-electron-diffraction (LEED) experiments 4.

As an example, the work of [28–30] measured the intensity of the diffraction beam at the momentum

corresponding to the structure of the absorbed molecules. From the temperature dependence of the

integrated intensity, one can measure the critical exponents β of the second order phase transition,

see for example [29]. An idealized version of the pattern in the LEED experiment is given in

Figure 6. Blow the critical temperature, a new Bragg peak appears at the momentum of the order

parameter.

a) b)

FIG. 6: Idealized pattern of Bragg peaks observed in LEED experiment above and below the critical

temperature. The blue square corresponds to the first Brillouin zone. Measuring the integrated intensities

of the diffraction beam inside the red circle gives us the critical exponents of the transition. (The bright

white dots are the Bragg peak of modes that are at zero momentum.)

Recently, a two-dimensional displacive structural phase transition was predicted and subse-

quently realized in monolayer transition-metal dichalcogenides (TMDs) [31, 32]. For a review of

4 See [1] for a review on experimental measurements related to 3D structural phase transitions.
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a)

b)

c)

FIG. 7: A hypothetical displacive structural phase transition. a) In The high-temperature phase, the red

and blue atoms are randomly distributed. b) The low-temperature phase. c) The four degenerate symmetry-

breaking phases. The atom at block A can move in four directions when symmetry breaking happens.

the experimental realization of two-dimensional structural phase transitions, see [33]. To under-

stand the difference between displacive and order-disorder structural phase transitions, we consider

the hypothetical structural phase transition given in Figure 7. We again assume the lattice con-

stant to be a = 1. The red atoms, at low temperatures, change positions. The displacement of the

red atoms depends on the lattice sites, which can be written as

~d(~r) = φ1

(
1

0

)
eiπx + φ2

(
0

1

)
eiπy. (42)

The phase in Fig 7 b) corresponds to

φ1 = d, φ2 = 0. (43)
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By analyzing how the space group acts on the order parameter term, we can figure out how

coefficients (φ1, φ2) transform:

Translation Tx : φ1 → −φ1, φ2 → φ2,

Translation Ty : φ1 → φ1, φ2 → −φ2,
Four-fold rotation R4 : φ1 → φ2, φ2 → −φ1. (44)

The above transformations form the dihedral group D4. Notice certain elements of the space

group act trivially on these order parameters, such as (Tx)2. In other words, the space group is

not faithfully represented by these order parameters. From the above transformations, we get the

Landau effective potential

F = a(φ21 + φ22) + a4,1(φ
4
1 + φ42) + a4,2(φ

2
1 + φ22)

2 + · · · . (45)

The four configurations in Fig. 7 b) correspond to the four degenerate vacua of the effective

potential,

φ1 = ±d, φ2 = 0, and φ1 = 0, φ2 = ±d. (46)

The order of the phase transition depends on the choice of a4,1 and a4,2. In fact, there exists a

famous lattice model with D4 symmetry, which is called the Ashkin-Teller model [34]. The phase

diagram of the Ashkin-Teller model can be found in, for example, [35]. The phase diagram has

phases separated by a second-order phase transition line. Interestingly, the critical exponents of

the models vary along the line. This is because, in two dimensions, there is a family of c = 1

conformal field theories with D4 symmetry. A pedagogical introduction of conformal field theories

with c=1 and in particular the Ashkin-Teller models can be found in Section 8.4 of [36]. We will

not discuss the details here.

C. Fluctuations and renormalization

The Landau theory of phase transitions discussed above neglects the effect of thermal fluctua-

tions. To take the fluctuations into account, let us first discuss the hysteresis loop. The hysteresis

loop plots spontaneous magnetization when external magnetic field changes. It can be general-

ized to describe the phase coexistence phenomenon in generic first order phase transitions. Let us

first consider the mean field theory hysteresis loop neglecting thermal fluctuations. Consider the

following Ising action with external magnetic field

F = aφ2 + λφ4 − hφ · · · . (47)

In the low temperature phase (a <0), when h 6= 0, the depth of the two vacua are different. Let

us start with the h � 0 configuration, given in Fig. 8 a), and slowly increase h. The black dot

indicates the location of the vacuum. As h becomes slightly bigger than 0, the vacuum remains

stuck in the φ < 0 meta-stable vacuum, since in mean field theory approximation we have neglected

fluctuations that can help the system bypass the energy barrier to the true vacuum at φ > 0, see

Fig. 8 b). As h increase further, at a critical hc, the barrier between the meta-stable and the stable

vacua disappears: this is when the phase transition happens. Fig. 9 a) shows the hysteresis loop
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a) b) c)

FIG. 8: Without fluctuations, the state can stuck in meta-stable vacuums.

a) b)

FIG. 9: Hysteresis loop without and with fluctuations taken into account.

when thermal fluctuations are neglected. Notice the hysteresis loop contains sharp edges, which

get smoothed out when fluctuations are taken back into account. This is due to that fact that

fluctuations can cause the vacuum to tunnel from the meta-stable vacuum to the true vacuum.

Besides changing the hysteresis loop, the thermal fluctuations can also change the critical expo-

nents of a second-order phase transition. To understand this, we consider again the two dimensional

order-disorder phase transition discussed in the previous section, see Fig. 5. We now allow the crit-

ical mode to have spatially modulated fluctuations

η(~x) = φ(~r)× ei~k·~xu(~r), (48)

with u(~r) defined in (34). See Fig. 10 for an illustration of the spatially modulated critical mode.

We assume the scale of the spatial modulation is much larger than the lattice scale. For example,

taking φ(~x) = φ0 cos(δ~k · ~x), with |δ~k| � |~k|, the fluctuation becomes

η(~x) ∼ φ0ei(
~k+δ~k)·~x + φ0e

i(~k−δ~k)·~x + c.c.. (49)

Clearly, a large-scale spatial modulation corresponds to shift the momentum of the order parameter.

The Lifshitz condition (which will be explained in Section II D) makes sure that our order

parameter is stable against such a shift of momentum. Spatially modulated fluctuations φ(x) cost

more energy compared to the homogeneous configuration. Therefore the effective action should
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FIG. 10: The modulated critical mode η(x) = φ(x) × eikx, with φ(x) = cos(δkx). We choose k = π and

δk = 0.04π. The function is only evaluated on the one dimensional lattice x ∈ Z, as shown by the red dots.

Here k stands for the momentum of the critical mode, which depends on the UV details of the material.

The δk is the characteristic momentum of spatial modulated large-scale fluctuation. Typically, δk � k.

contain extra terms that tend to suppress these fluctuations, such as∫
dx3

1

2

(
~∇φ(~x)

)2
.

Since the scale of the fluctuations of φ(x) is much larger than the lattice scale, we can treat φ(~x)

as a continuous function in the Euclidean space R3. The ~∇ is simply the spatial derivative in the

continuum. The space group symmetry also restricts the possible derivative terms that can appear

in the effective action. Take the Ising model as an example, the full Landau action is

S =

∫
dx3

1

2

(
~∇φ(~x)

)2
+ aφ(x)2 + λφ(x)4 + . . . . (50)

Landau theory gives us the mean-field theory values of the critical exponents α = 0 and β =

1/2. When thermal fluctuations are taken into account, the critical exponents can deviate from

their mean-field theory values. From a modern point of view, second-order phase transitions are

described by a special type of quantum field theory called conformal field theories (CFTs). Different

universality classes correspond to different CFTs, for a review see [37]. Another important concept

of quantum field theory is the renormalization group. We will review the basic concepts of the

renormalization group theory, omitting many details. Interested readers should refer to [37–39].

Renormalization theory tells us that physics at different length scales is controlled by a set of

equations called the renormalization group equations. Take the Ising model (50) as an example,

the couplings constants of the action depend on the length scale l through

l
da

dl
= β1(a, λ),

l
dλ

dl
= β2(a, λ). (51)

The length scale l can be understood as a cutoff scale. In the Wilsonian picture, we coarse grain

out all the microscopic physics smaller than this scale, by integrating out modes with momentum

higher than 1/L [38]. The beta functions are in general complicated, and can only be calculated

in certain perturbative limits [40]. The RG equations have fixed points, at which the coupling
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constants are scale invariant. This means

β1(a, λ) = β2(a, λ) = 0. (52)

At these fixed points, the quantum field theory invariant under the Euclidean group becomes also

scale invariant. Usually, the Euclidean symmetry and scaling symmetry get enhanced to a bigger

symmetry called the conformal group [41, 42]. The corresponding quantum field theory is therefore

a conformal field theory (CFT). The terms “fixed point” and “conformal field theory” are often used

interchangeably. Near these fixed points, one can linearize the equation by the ansatz a = a∗ + δa

and λ = λ∗ + δλ, to get

l
d

dl

(
δa

δλ

)
=

(
∂β1
∂a

∂β1
∂λ

∂β2
∂a

∂β2
∂λ

)
a=a∗,λ=λ∗

(
δa

δλ

)
. (53)

Here a∗ and λ∗ satisfies (52). We care about large-scale physics, therefore the l → ∞ limit. The

matrix in the above equations is sometimes called the stability matrix. These equations can be

solved by diagonalizing the stability matrix,

l
d

dl

(
δa′

δλ′

)
=

(
ω1 0

0 ω2

)(
δa′

δλ′

)
. (54)

Here δa′ and δλ′ are linear combinations of δa and δλ constructed from the eigenvectors of the

stability matrix. The solutions to these equations are

δa′ = c1l
ω1 , δλ′ = c2l

ω2 . (55)

Clearly, as l increases, coupling constants grow if ω > 0, while decay if ω < 0. The terms in the

action whose coupling constants grow (decay) as the scale increases are called relevant (irrelevant)

operators. The RG flow of the Ising model has two fixed points with no relevant terms. They are

the so called high temperature fixed point located at a = +∞ and λ = 0, and the low temperature

fixed point located at a = −∞ and λ = 0. For the Ising model in three dimensions, there is another

fixed point, which has only one relevant operator. This is the famous Wilson-Fisher fixed point [40]

describing the lattice Ising model at the critical temperature. The number of relevant operators

at the fixed point corresponds to the number of physical parameters that we need to tune to reach

the fixed point. The critical point at Tc can be reached by tuning the temperature alone, this is

because the critical Ising CFT has only one relevant operator (which preserves the Z2 symmetry).

We can deform the Ising model to study tri-critical phenomena. We first allow the Ising spins to

take value in σi = 0,±1, and then add a coupling that favors the σi = 0 state. The Hamiltonian

becomes

H = −J
∑
〈ij〉

σiσj + g
∑
i

(σi)
2. (56)

This is the famous Blume-Capel model. The Z2 symmetry that flipps all the spins are still pre-

served. A Monte Carlo study of this model was performed in [43]. Figure 12 is a schematic phase

diagram of this model. The tri-critical point is described by the tri-critical Ising CFT. As is clear

from the phase diagram, the tri-critical Ising CFT can only be reached by tuning two physical

parameters together, the temperature and g. This is because the tri-critical Ising CFT has two

18



relevant operators, ε and ε′, which are analogous to the φ2 and φ4 operators of free theory. Moving

from the tri-critical Ising point to the Ising critical point on the fixed line of the phase diagram,

corresponds to perturbing the tri-critical Ising point by the λε′, which triggers an RG flow to-

wards the Ising model if λ > 0. If λ < 0, on the other hand, the phase transition becomes first

order. This is shown schematically in Fig. 11. This phase diagram in Fig. 12 is not restricted

FIG. 11: The free energy F (φ) = aφ2 − φ4 + φ6. The red, orange, and blue curves correspond to a=1, 1/4

and 0 respectively. Notice that at a = 1/4, there exists a free energy barrier between the φ = 0 state and

the φ = ±v states. This is a sign of first-order phase transitions.

to the Blume-Capel model, see for example [44, 45]. The reason that the (tri-)critical Ising CFT

FIG. 12: A schematic phase diagram of the Blume-Capel model. The solid line corresponds to second-order

phase transitions, while the dashed line is first order. The red dot is a tri-critical point which is given by

the tri-critical Ising CFT.

appears in different lattice models is again deeply related to the concept of “universality”. Lattice

models with different ultra-violet (short distance) details, after renormalization, can flow to the

same infra-red (long distance) CFT. Since the critical behavior of a second order phase transition

is completely fixed by the corresponding CFT, their critical exponents will be the same.
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D. The Lifshitz conditions

In general, the mass order parameter a(T, P ) in the Landau theory

F = a(T, P )
∑
i

φiφi + . . . (57)

depends on physical parameters, where T and P stands for temperature and pressure. Here φi’s

denote a single faithful irreducible representation of the space group, as explained in Section II B.

The subscript i enumerates vectors in this representation. Notice the temperature T and the

pressure P do not explicitly break the space group symmetry of the material, we use them as

examples of such experimental parameters. In reality, instead of considering a single mode (irrep

of space group), one has to consider the effect of other modes nearby. In particular, the modes

with momentum close to the Brillouin zone point we consider are important. The mass of these

modes, in addition to the physical parameters, also depends on their momentum. That is

a = a(T, P,~k). (58)

For the transition to be driven by the critical mode at a specific momentum, we need

a(T, P,~k) = 0, and
∂a(T, P,~k)

∂k1
= 0,

∂a(T, P,~k)

∂k2
= 0,

∂a(T, P,~k)

∂k3
= 0. (59)

In the five-dimensional parameter space given by {T, P,~k}, we can at most find a one-dimensional

family of solutions. Projection of the one-dimensional solutions onto the (T, P ) plane gives us a

critical line so that we can reach the second-order phase transition by tuning a single parameter,

see Figure 13.

FIG. 13: Critical solution in the {T, P,~k} space and its projection on the T -P plane.

We discussed the Landau condition before, which says that for the phase transition to be

second order, the corresponding Landau effective action should not contain cubic terms. Suppose

the space group of the crystal is G and the order parameter that drives the phase transition lives

in the irreducible representation R. The Landau condition then simply means that the symmetric

product of three copies of R should not contain the singlet representation:

Landau condition: 1 /∈ [R⊗R⊗R]s. (60)
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The subscript “s” stands for the symmetric product. The symbol 1 stands for the singlet repre-

sentation, in which all the group elements of G act trivially. The number of singlet representations

contained in [R ⊗ R ⊗ R]s is sometimes called the Landau frequency. The Lifshitz condition is

another necessary condition for commensurate structural phase transition to be second order. Let

us denote the representation of G that the lattice derivative ~∇ transforms in as V, then the Lifshitz

condition is

Lifshitz condition: V /∈ [R⊗R]a. (61)

Here the subscript “a” stands for the anti-symmetric product. Notice that the lattice derivative
~∇ is invariant under spatial translations. The irrep V is also an irrep of the point group: it is the

representation of the point group in which the three-dimensional vector ~r transforms. The number

of V representations contained in [R⊗R]a is sometimes called the Lifshitz frequency. The Lifshitz

frequency counts the number of one derivative terms allowed by the space group symmetry in the

Landau effective action, such as ∫
dx3φi(x)∇kφj(x). (62)

Notice the above term is anti-symmetric with respect to an interchange of the i and j index. This

explains why the Lifshitz condition puts constraints on the anti-symmetric product representation

[R⊗R]a. Another way of understanding the Lifshitz condition is that it tells us that the mass of

the critical mode should be located at a local minimum in the momentum space. That is

∂a(T, P,~k)

∂k1
= 0,

∂a(T, P,~k)

∂k2
= 0,

∂a(T, P,~k)

∂k3
= 0. (63)

We leave the derivation to Appendix A. From a renormalization group point of view, the Lifshitz

terms of the form (62) are likely to be relevant operators for conformal field theories. If the space

group symmetry allows such terms, without fine-tuning their couplings to zero, critical points are

hard to reach. Clearly, the Lifshitz frequency is a property specific to the representations of the

space group. A complete list of the Lifshitz frequency of all space groups’ irreps is given in [10].

The points in the Brillouin zone are classified into so-called points of symmetry, lines of sym-

metry, planes of symmetry, and generic points. They denote a certain zero, one, two, and three-

dimensional domain of points respectively, see Fig. 14. For a point in the Brillouin zone, there

exists a subgroup H (the little group) of the space group G that leaves this ~k point invariant.

Within one domain, the subgroup H does not change. It can be proven that the Lifshitz con-

ditions are satisfied only by representations whose momentum is at “points of symmetry” of the

Brillouin zone. If we allow incommensurate structural phase transitions, the order parameter driv-

ing the phase transition is not restricted to the points of symmetry. The incommensurate phase

will have Bragg peaks whose momentum is located inside the Brillouin zone domains. The order

parameter forms a superstructure that is incommensurate with the lattice structure. The loca-

tions of these Bragg peaks change with temperature. One maybe worry about whether we should

still identify incommensurate crystals at different temperatures as a single phase since different

momentum points of the Brillouin zone clearly correspond to different irreps of the space group.

As explained by Michelson in [46], even though the momentum of the order parameter changes

as temperature varies, the corresponding space group of this symmetry-breaking phase does not

change so that they can still be identified as a single phase. In case of incommensurate structural
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FIG. 14: The Brillouin zone of a square lattice. The Brillouin zone consists of points of symmetry, lines of

symmetry, planes of symmetry, and generic points.

phase transitions, the Lifshitz conditions can be slightly relaxed. A weaker condition called the

weak Lifshitz condition was introduced by Michelson [46], which will be discussed in Appendix B.

In general, the irreps from points of symmetry, lines of symmetry, planes of symmetry, and

even generic points may compete with each other. Each of these “critical” mode correspond to a

“critical” line in the (T, P ) plane. The actual mode that drives the phase transition is the critical

line at the highest temperature. This is shown schematically in Fig. 15. The intersection of these

lines may give us tri-critical points which correspond to CFTs with order parameters from different

irreps of the space group coupled together. As far as the authors are aware, no such fixed points

have been observed yet in structural phase transitions. They are, however, natural predictions of

Landau’s theory. Recently, such tri-critical CFTs have been studied using both 4 − ε expansion

FIG. 15: Schematic form of the “critical” lines from different irreps of the space group. The segments at the

highest temperature correspond to where the 2nd phase transition happens. The intersection of these pre-

critical lines may give us tri-critical points which correspond to CFTs with order parameters from different

irreps of the space group coupled together.

and conformal bootstrap techniques [47–50].
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E. A useful handbook and the “ISOTROPY” Software Suite

The 230 crystallographic space groups have 4777 irreps whose momentum are on points of

symmetry of the Brillouin zone (so that they can potentially satisfy the Lifshitz condition). The

corresponding Landau theories, which are often called images, were classified in [51]. Surprisingly,

there are only 132 in-equivalent images. In the book [10], the images of all representations were

listed, together with the generators of the image group Gi (see Table 2), the Molien function

(see Table 11), and the invariant polynomials of the corresponding Landau potential (see Table

10). The book also contains the “group-subgroup relations” among the 230 crystallographic space

groups. That is, given an irrep of a space group, the book lists all the possible subgroups (of the low-

temperature phases) that this irrep can break the symmetry into. This information is given together

with the Landau and Lifshitz frequencies of the irrep (See Table 1). Much more recently, a software

suite called “ISOTROPY” collecting all above was introduced [52]. The software is also available

through an online interface (https://iso.byu.edu/iso/isowww.php). By specifying successively

the space group, the location of the momentum in the Brillouin zone, the representation of the

space group at this momentum, the software automatically generates the corresponding Landau

effective action. One can also easily check the Landau frequency and the Lifshitz frequency of this

representation. For further details, the readers should consult the user manual.

III. CRYSTAL UNIVERSALITIES

As we mentioned, there are only 132 inequivalent images, which can describe commensurate

structural phase transitions. The corresponding Landau actions are scalar field theories with N

scalars coupled together. There are images with N = 1, 2, 3, 4, 6, 8, 12, 16 and 26. We will follow

the convention of [10] to name the images. Take the image “B4a” as an example. The letter B

tells us the number of scalars, or the dimension of the representation of the image group (A=1,

B=2, C=3, D=4, E=6, F=8, G=12, H=16, J=24). The number 4 in “B4a” is the order of the

image group Gi. The letter a in “B4a” is used to distinguish images with the same N and the

same order. The image group Gi of “B4a” is generated by the following matrix,

B2 =

(
0 1

−1 0

)
. (64)

This group is isomorphic to the cyclic group Z4. The Landau action of the image “B4a” is

F (φ) = a(φ21 + φ22) + λ(φ21 + φ22)
2 + λ′(φ41 + φ42) + λ′′(φ31φ

2 − φ1φ32) + · · · . (65)

Define χ = φ1 + iφ2, then the potential can also be written as

F (χ) = aχχ∗ + λ(χχ∗)2 + λ′
1

8

(
χ4 + χ∗4 + 6(χχ∗)2

)
− λ′′ 1

4
i(χ3χ∗ − χχ∗3) + · · · (66)

The first two terms preserve the O(2) symmetry, the third term breaks O(2) to D4, and the last

term then breaks the D4 group to Z4. For a representation, if both the Landau and the Lifshitz

condition are satisfied, the representation is called “active”. For a certain image, if there exists

a representation satisfying both the Landau and Lifshitz conditions that maps to this image, one

also calls the image “active”. See Table 8 of [10] for images and whether they are active or not.
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After knowing the images and the Landau theories, one can then study these scalar field theories

in 4 − ε dimension, to analyze the renormalization group flow of these theories. The results are

conveniently summarized in Table 12 of the book [10], where the images were listed together with

whether there is a perturbatively stable fixed point. To be more precise, the table lists the possible

subgroups of the image groups that the Landau potential (truncated to quartic order) with proper

coupling constants can break the symmetry into. If the subgroup also lives in the attractor basin

of a stable fixed point, then this phase transition is second order 5, at least perturbatively. These

are the universality classes we can get from structural phase transitions.

To have a better understanding of the results, we will review how they was obtained. It turns

out that there are no active N > 8 images [10]. This means that the corresponding N > 8 Landau

theories can never give us to a second-order structural phase transition. We will focus on N ≤ 8

images.

For images with N = 8, only four of the images are active. The corresponding 4− ε fixed points

with N = 8 were studied in [54], and it turns out that none of these fixed points are RG stable.

This means that the corresponding N = 8 Landau theories cannot be second-order structural phase

transitions either.

For N ≤ 6 images, we start to have stable fixed points that can be realized in structural phase

transitions. We list them in Table I.

1. Perturbative fixed points

We will now explain the perturbative fixed points in Table I.

• The fixed point No. 1 is the Ising CFT, which is the Wilson-Fisher fixed point of

L =
1

2
(∂φ)2 + λφ4. (67)

The global symmetry of the CFT is the Z2 group. See also Chapter 3 of [37].

• The fixed point No. 2 is the XY model fixed point, which is the Wilson-Fisher fixed point

of the following Lagrangian

L =
1

2

2∑
i=1

(∂φi)
2 + λ(φ21 + φ22)

2. (68)

The global symmetry of the CFT is the O(2) group. See also Chapter 4 of [37].

• The fixed point No. 3 is the stable fixed point of the following N = 3 Cubic model,

L =
1

2

3∑
i=1

(∂φi)
2 + u(φ21 + φ22 + φ23)

2 + v(φ41 + φ42 + +φ43). (69)

The global symmetry of the CFT is the Cubic group (Z2)
3 o S3. The three Z2 symmetries

flips the sign of φ1, φ2 and φ3 respectively. The permutation group S3, on the other hand,

5 These subgroups are denoted with a double asterisk “**” in Table 12 of [10]. For a recent discussion about the
structural transition of perovskites, in particular, the role of attractor basin of CFT fixed points, see [53].
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permutates the three scalar fields. The 1-loop renormalization group flow equations of the

above Lagrangian have four fixed points, corresponding to zero solutions of the beta functions

of the two coupling constants,

l
d

dl
u = βu(u, v) = 0,

d

dl
v = βv(u, v) = 0. (70)

Among them, only one is stable, that is the CFT which has only one relevant operator∑
i φ

iφi. In other words, one have to make sure that the stability matrix(
∂βu
∂u

∂βu
∂v

∂βv
∂u

∂βv
∂v

)
(71)

has no positive eigenvalues, so that there is no relevant operator coming from the φ4 terms.

See also Chapter 11.3 of [37].

• The fixed point No. 4 is a fixed point given by two copies of XY models coupled together,

which we will denote as “XY2” fixed point. It is the stable fixed point of the following

Lagrangian

L =
1

2

4∑
i=1

(∂φi)
2 + u(

4∑
i=1

φ2i )
2 + v

(
(φ21 + φ22)

2 + (φ23 + φ24)
2
)
. (72)

The global symmetry of the CFT is the group O(2)2 oZ2. The first copy of the O(2) group

rotates (φ1, φ2), while the seconds O(2) rotates (φ3, φ4). The Z2 symmetry, on the other

hand, does

φ1 ←→ φ3, φ2 ←→ φ4. (73)

Similarly, the RG flow equations of the above Lagrangian have four fixed points. At the

critical temperature, only the stable fixed point is realized.

• The fixed point No. 5 is the N = 4 Cubic fixed point, which is also the stable fixed point of

L =
1

2

4∑
i=1

(∂φi)
2 + u(

4∑
i=1

φ2i )
2 + v(

4∑
i=1

φ4i ). (74)

The global symmetry of the CFT is the Cubic group (Z2)
4 o S4.

• The fixed point No. 6 is given by three copies of XY models coupled together, which we will

denote as “XY3”. It is the stable fixed point of the following Lagrangian

L =
1

2

6∑
i=1

(∂φi)
2 + u(

6∑
i=1

φ2i )
2 + v

(
(φ21 + φ22)

2 + (φ23 + φ24)
2 + (φ25 + φ26)

2
)
. (75)

The global symmetry of the CFT is the group O(2)3 × S3.

2. N=6

We now come back to the perturbative RG analysis of the images. The images with N = 6 were

studied in [55] up to 1-loop order in the 4 − ε expansion. A careful analysis of the results shows

that the only stable fixed point is the XY3 model.
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3. N≤4

In [56], all irreducible subgroups of O(4) were classified. Irreducible subgroups are groups

under which the four-dimensional vector representation of O(4) remains irreducible. This also

means that the corresponding Landau theory has only one quadratic mass term. This constraint

is related to the requirement that the potential second-order transition can be reached by tuning

a single physical parameter. In other words, if the Landau action has more than one quadratic

polynomial, all of them need to be tuned to zero to reach criticality. The corresponding CFTs can

at most be tri-critical points.

Based on this result, the paper [57] studied the perturbative RG flow of these Landau theories.

The RG flows were studied up to two-loop order. It was found that there are only four stable fixed

number of scalars fixed points

1 Ising

2 XY

3 the O(3) vector model, the N=3 Cubic model

4 the O(4) vector model, XY2, the N=4 Cubic model, the (hyper)tetrahedral

TABLE II: The stable perturbative fixed point with up four scalars. (Tri-critical fixed points with two mass

terms are not considered.)

points. They are the

XY2, N=4 Cubic (76)

fixed points we already discussed, and two extra fixed points which will not be realized in structural

phase transitions.

• The first extra fixed point is the tetrahedron fixed point of the Lagrangian

L =
1

2

4∑
i=1

(∂φi)
2 + u(

4∑
i=1

φ2i )
2 + v

∑
ijklm

dijmdklmφiφjφkφl. (77)

The model was introduced in [15]. The invariant tensor dijk is an invariant tensor of the S5
group, which can be calculated using the procedure discussed in [15]. The global symmetry of

this CFT is the group S5×Z2. This is the symmetry group of a (hyper)tetrahedron with five

vertices, which can be embedded in the four-dimensional Euclidean space. In group theory

language, the symmetric group S5 has a four-dimensional irreducible representation, some-

times called the ”standard” representation. We denote the CFT “the (hyper)tetrahedral” in

Table II.

• The second extra fixed point is the O(4) vector model

L =
1

2

4∑
i=1

(∂φi)
2 + λ(

4∑
i=1

φ2i )
2. (78)

The global symmetry of the CFT is clearly O(4).
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In the paper [56], the possible Landau theories with N≤ 3 scalar fields were also listed, again based

on knowledge of irreducible subgroups of O(2) and O(3). One can similarly work out the possible

irreducible fixed points, which are also listed in II.

Notice even though the main topic of our paper is structural phase transitions, the classification

in [55, 56] applies to all phase transitions which can be described by up to four scalars coupled

together. Many of the irreducible subgroups and Landau theories may seem purely theoretical at

the beginning, but they later do appear in interesting condensed matter systems. As an example,

the group GL(2,Z3) (or [D3/C2;O/D2] in the convention of [55, 56]) is the symmetry group of the

effective action that describes a certain frustrated Ising model on the Kagome lattice [58].

4. Comments on non-perturbative results

Notice that the renormalization group flow analysis we discussed above is perturbative in ε =

4−D. The non-perturbative RG flow in three dimensions (ε = 1) can be different in many aspects.

For example, perturbatively stable fixed points can become unstable and vice versa. The attractor

basin of the stable fixed points may change. In general, non-perturbative physics is hard to attack.

However, certain methods such as Monte Carlo simulation (see for example [8]) and conformal

bootstrap [7] have greatly improved our understanding of non-perturbative RG flow.

Let us take the XY2 model as an example. For an RG space with O(2)2oZ2 symmetry, at two-

loop order, the perturbatively stable fixed point is the fixed point where two O(2) vector models

are interactively coupled. There exists another fixed point with

u = 0, v 6= 0 (79)

in (72). Notice since u = 0, the model can be written as two copies of XY models decoupled,

one involves the scalars φ1 and φ2, another involves φ3 and φ4. Even though this decoupled fixed

point is perturbatively unstable, the non-perturbative results from both Monte Carlo simulation

and conformal bootstrap suggest that it is non-perturbatively stable. Let us denote ε1 ∼ (φ21 +φ22)

and ε2 ∼ (φ23 + φ24) as the mass operators of the O(2) vector models. The ε operator of the O(2)

model has scaling dimension ∆ε = 1.51124(22) [59]. Since the two copies of the O(2) models

are decoupled, the operator O = I23 = ε1ε2 will not be re-normalized. We get ∆O = 2∆ε > 3.

This means that the decoupled fixed point is stable when perturbed by this operator. In fact, all

operators preserving the O(2)2oZ2 symmetry of the decoupled O(2) models are irrelevant (except

for the mass operator ε1 + ε2 whose coupling will be tuned to zero at the critical temperature).

The decoupled O(2) fixed point is non-perturbatively stable. Similarly, for the XY3 model, the

true stable fixed point is the three copies of decoupled XY CFTs.

The Ising and XY fixed points were known to be non-perturbatively stable for a long time. The

non-perturbative stability of the N=3 and N=4 Cubic fixed points is related to a recent conformal

bootstrap study in an interesting way. The model was first introduced in [60]. The relative stability

of two of the fixed points was under debate for a long time (see Section 11.3 of [37]). The model

can be generalized to an arbitrary number of scalar fields. The two competing fixed points are the

O(N) invariant fixed point, and the fixed point where with (Z2)
N o SN symmetry, which we will

call the N -state Cubic fixed point. As noted in [60], there exists a critical Nc, above which N -state

Cubic fixed point becomes more stable than O(N) invariant fixed point. To determine that Nc has

been the subject of many theoretical works, see [53] for a review of the early theoretical works. The
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bootstrap result of [61] proves non-perturbatively that Nc < 3, so both the 3-state and the 4-state

Cubic models should be non-perturbatively stable (see [62–65] for earlier works which attempts to

bootstrap the Cubic CFT directly).

Images with the same universality class can have different critical exponent ω, which controls

the leading correction to the critical behavior [37]. This critical exponent is related to the scaling

dimension of the leading irrelevant operator allowed by the image group Gi. The critical fixed

point can have an enhanced symmetry, which is bigger than the symmetry group of the RG flow,

the image symmetry group Gi. Take the B4a image (65) as an example, for which the image group

is Z4. At the critical point, the Z4 symmetry is enhanced to O(2). The quadratic polynomials

allowed by Z4 are

O1 = (χχ∗)2, O2 = Re[χ4], and O3 = iIm[χ4]. (80)

The operator O1 has scaling dimension ∆O1 = 3.794(8), while the operators O2 and O3 are the

leading charge-4 operator in the spectra, with scaling dimension ∆O2 = ∆O3 = 3.11535(73) [66].

A nice review of the conformal data of the O(N) vector models is [67]. Since the leading irrelevant

operators allowed by the image group Z4 are O2 and O3, the “B4a” image has ω = 0.11535(73).

The image group of “B6a” (whose image group is Z6), on the other hand, only allows the O1

deformation, which has ω = 0.794(8). Many of the universalities listed in Table I have small ω.

This makes this corresponding second-order phase transition “dirty”. For Monte Carlo simulation,

this means that the finite size effects are hard to get rid of. For real experimental measurements,

this means that one has to be very close to the critical temperature to observe a good scaling

behavior of the physical quantities.

IV. FUTURE DIRECTIONS

Incommensurate structure phase transitions universalities. We discussed briefly in Section II D

and Appendix B the incommensurate structural phase transitions. The order parameter of the

symmetry-breaking phase is incommensurate with the lattice structure. This has been observed in

materials such as Rb2ZnCl4 [68], and the transition was shown to be in the three-dimensional XY

model universality class. The irreps of the 230 crystallographic space groups satisfying the weak

Lifshitz condition and also the Landau condition are classified in [69]. It will be interesting to write

down the corresponding Landau effective action and then use the knowledge of three-dimensional

conformal field theory to determine the order of the phase transition, and which universality class

the phase transition is in. A full list of possible CFTs that can be realized in incommensurate

transitions will be interesting, which we leave for future work.

Two-dimensional structural phase transitions. We briefly mentioned the two-dimensional struc-

tural phase transitions of absorbed monolayers in Section II B. This type of phase transition is

controlled by the spontaneous breaking of two dimension space groups, which are also called wall-

paper groups. There are only 17 wallpaper groups. Classifying the irreps and analyzing the cor-

responding Landau theory is less laborious than in three dimensions. The order-disorder type of

phase transitions was classified in [26, 27]. The irreps of the wallpaper at points of symmetry, their

Landau and Lifshitz frequencies, and the subgroups that are preserved by these irreps were later

worked out in [70], which therefore include a classification of possible displacive type transitions.

The effective actions of all irreps of the wallpaper group satisfying both Landau and Lifshitz con-
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ditions were worked out in [71]. The effective actions appearing in these studies include the actions

of the two-dimensional Ising model, the three-state Potts model, the four-state Potts model, the

clock model, the three-state Cubic model and etc. One should, however, be careful when using the

Landau and Lifshitz conditions to infer the order of the transitions because of the strong thermal

fluctuations. Typical second-order phase transitions which violate the Landau condition include

the three-state and four-state Potts models. We believe the (weak) Lifshitz condition should also

be used with caution. It will be interesting to study more carefully these two dimensional Landau

actions more using the knowledge of two-dimensional CFTs in the future.

Magnetic Phase Transitions. Table I lists the conformal field theories than can be realized in

commensurate structural phase transitions. One can potentially do a similar analysis for magnetic

transitions. This type of phase transition can be analyzed using the representation theory of the

so-called “magnetic space group (Shubnikov groups)” [9], which describes magnetic phase transi-

tions through group-subgroup relations just like the crystallographic space group that describes

structural phase transition, see for example [72]. A full list of possible CFTs that can be realized

in magnetic phase transitions will be an interesting problem to attack in the future.

Quantum phase transitions. Recently, it was noticed that certain 2+1 dimensional scalar CFTs

can be realized in quantum phase transitions. These include the Ising model [73–75], the O(2) CFT

[76–78], the N = 3 Cubic CFT [79–82], and the O(4) CFT [83–85]. These quantum transitions

typically happen on two-dimensional lattices at zero temperature. The thermal fluctuations that

drive the phase transition are replaced by quantum fluctuations. The effective actions of these

transitions are also closely related to the representations of space groups, more precisely, projective

representations of the space group [58, 86]. The phase transitions are usually driven by an order

parameter charged under a U(1) gauge symmetry (or its subgroup). The order parameter will

experience a background gauge field on the lattice, which causes them to pick up a Berry phase

when moving on the lattice. This explains the appearance of the projective representations of the

space group. It will be interesting to study these phase transitions systematically using group

theory methods.
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Appendix A: The Lifshitz condition in momentum space

The Lifshitz condition is equivalent to the condition that the mass of the critical mode should

be located at a local minimum in momentum space, that is

∂a(T, P,~k)

∂k1
= 0,

∂a(T, P,~k)

∂k2
= 0,

∂a(T, P,~k)

∂k3
= 0. (A1)

We review here a derivation given in [9]. The free energy is a functional of the density function

F [ρ0 + δρ(~r)] = F [ρ0] +

∫
d~rd~r′G(~r, ~r′)δρ(~r)δρ(~r′). (A2)

The density fluctuation can be expand in irreps of the space group G (for small ~q),

δρ(~r) =
∑
~k∈~k∗

∑
R̃

dim(R̃)∑
i

∫
d~qφR̃i (~k + ~q)ηR̃

i,~k+~q
(~r). (A3)

In (33) and (42) we focused on a single mode in the expansion. The vector ~k is a point in the

Brillouin zone and ~q is a small deviation of the momentum. Here R̃ is the irrep of the little group

that keeps the vector ~k invariant. The dimension of the irrep of the space group equals dim(R̃)

times the number of vectors in ~k∗. We will drop the dependence on k∗ and R̃ for simplicity. The

second term in (A2) is therefore

F2 =
∑
ij

∫
d~qφi(~k + ~q)φj(−~k − ~q)Ai,j(~k + ~q), (A4)

with the kernel

Ai,j(~k + ~q) =

∫
d~rd~r′G(~r, ~r′)η

i,~k+~q
(~r)η

j,−~k−~q(
~r′). (A5)

The kernel can be expanded in ~q,

Ai,j(~k + ~q) = Ai,j(~k) + ~q · ~Bi,j(~k) + . . .

Ai,j(~k) =

∫
d~rd~r′

(
η
i,~k

(~r)η
j,−~k(

~r′) + η
i,~k

(~r′)η
j,−~k(~r)

)
G(~r, ~r′),

~Bi,j(~k) = −i

∫
d~rd~r′~r

(
η
i,~k

(~r)η
j,−~k(

~r′)− η
i,~k

(~r′)η
j,−~k(~r)

)
G(~r, ~r′). (A6)

We used the relation η
i,~k+~q

(~r) = ei~q·~rη
i,~k

(~r). Diagonalizing Ai,j(~k) and pick the lowest eigen-value

gives us the mass of the critical modes a(T, P,~k). To get vanishing derivative, we need

~Bi,j(~k) = 0. (A7)

This is possible if G(~r, ~r′) takes certain special forms. However, if the term vanishes due to

symmetry reasons, second order phase transitions have a better chance to happen. The function(
η
i,~k

(~r)η
j,−~k(

~r′)− η
i,~k

(~r′)η
j,−~k(~r)

)
lives in the [R⊗R]a representation. Notice also

~Bi,j(~k) = −i

∫
d~rd~r′(~r + ~t)

(
η
i,~k

(~r)η
j,−~k(

~r′)− η
i,~k

(~r′)η
j,−~k(~r)

)
G(~r, ~r′), (A8)

for arbitrary ~t. Requiring that ~Bi,j(~k) vanish for generic G(~r, ~r′) therefore gives us precisely the

Lifshitz condition,

Lifshitz condition: V /∈ [R⊗R]a. (A9)
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Appendix B: Incommensurate phase transitions and the weak Lifshitz condition

The incommensurate structural phase is controlled by a weaker version of the Lifshitz condition,

which was introduced by Michelson in [46]. The Brillouin zone contains points of symmetry,

lines of symmetry, planes of symmetry, and generic points. For incommensurate transitions, the

momenta of the critical mode are not located at points of symmetry. In general, the momentum

is irrational numbers times the reciprocal lattice constant vector. This means the order parameter

forms spatially modulated waves that are incommensurate with the lattice structure. Let us denote

the dimension of the symmetry domain that ~k lives in as m(~k). It can be proven that the number

of Lifshitz invariants at ~k is always bigger or equal to m(~k), with m(~k) = 0, 1, 2, 3 for points of

symmetry, lines of symmetry, planes of symmetry, and generic points respectively. Take a plane of

symmetry as an example, suppose the space group allows two Lifshitz invariants, the effective will

contain two terms of the form (62). The two coupling constants of these terms,

c1(T, P,~k), c2(T, P,~k), (B1)

need to be zero for the transition to be second order. The conditions c1(T, P,~k) = c2(T, P,~k) = 0

correspond to a line in the Brillouin zone, which might intersect with the plane of symmetry at

isolated points: let us denote the intersection point as ~k0. The location of ~k0 depends on temper-

ature and pressure (T, P ). We demonstrate the weak Lifshit condition for planes of symmetry in

Figure 16. The mass gap of this ~k0 model is therefore a function of (T, P ),

FIG. 16: Weak Lifshitz condition for planes of symmetry.

a(T, P ) = a
(
T, P,~k0(T, P )

)
. (B2)

The second order phase transition line corresponds to a(T, P ) = 0, which is a one-dimensional line

in the (T, P ) plane, therefore can be reached without fine-tuning. Unlike the points of symmetry

which allow no Lifshitz invariants, the lines of symmetries allow at most one Lifshitz invariant,

the planes of symmetry allow two Lifshitz invariants, and a generic momentum point allows three

Lifshitz invariants. In summary, the number of allowed Lifshitz invariants should be equal to

m(~k). The irreps of the 230 crystallographic space which satisfy these weak Lifshitz conditions are
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classified in [69].
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