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We investigate, using experiments and numerical simulations, the distortions and the alignment of
skyrmions in liquid crystal under external flows for a range of average flow velocities. The simulations
are based on the Landau-de Gennes Q tensor theory both for isolated as well as for systems with
many skyrmions. We found striking flow driven elongation of an isolated skyrmion and flow alignment
of skyrmions in the many-skyrmion system, both of which are also observed in the experiments. In
the simulations, particular attention was given to the dissipation rate and to the various dissipation
channels for a single skyrmion under external flow. This analysis provides insight on the observed
scaling regime of the elongation of isolated flowing skyrmions and revealed a surprising plastic
response at very short times, which may be relevant in applications based on the alignment of soft
structures such as liquid crystal skyrmions.

Liquid crystals (LCs) are unique soft materials that
exhibit facile responses to external electric and magnetic
fields. Additionally, the LC molecular orientation field,
the director, can be easily distorted by anchoring at solid
boundaries. These properties of LCs are the cornerstone
of modern display technologies [1]. In LC displays the
director field undergoes continuous transitions between
distinct topologically trivial configurations, i.e., config-
urations that can be morphed into a uniform structure
continuously. Topological point or line defects may be
spontaneously nucleated but these singular configurations
are usually short-lived transient structures.

Recently, a new type of topologically non-trivial non-
singular director configurations was realised experimen-
tally [2]. These solitonic structures are a soft matter ana-
logue of magnetic skyrmions, which are two-dimensional
solitons with localized winding of the magnetic moment
observed in hard condensed matter systems [3, 4], which
are relevant for technological applications such as spin-
tronics [5]. Likewise, LC skyrmions are localized topo-
logically protected distortions of the director field, which
in some realisations can even include knotted or linked
field lines [6, 7]. Additionally, skyrmions exhibit particle-
like behaviour, such as long-ranged effective interactions
between skyrmions and between skyrmions and colloids
[8, 9], self-assembly into spatially periodic structures [10],
and may acquire self-propelled motion when subject to

periodic time-dependent electric fields [11, 12].

As topological structures, skyrmions may be indexed
or classified in terms of the elements of homotopy groups
[6]. Experiments and numerical simulations revealed elec-
tric and magnetic transitions between skyrmionic tex-
tures with distinct topological indices [13]. It has been
suggested that this behaviour may be used to control
three-dimensional orientational structures of anisotropic
nanoparticles, aligned with the local LC director, and
drive them through transitions between different topolog-
ical configurations [14, 15].

Despite the extensive body of research on LC skyrmions,
their interaction with externally imposed material flow
fields remains poorly understood. In our recent paper [16]
we reported a numerical study, based on the Ericksen-
Leslie nematohydrodynamics, of the effect of external
flows on the structures and dynamics of LC skyrmions.
We found a configurational transition driven by the flow,
from skyrmionic distortions along the flow in weak flows
to skyrmionic distortions in the direction perpendicular
to the flow in strong flows.

Here, we extend that study and address explicitly the
reversibility of the flow induced skyrmionic distortions.
This analysis provides insight on the distortions observed
in skyrmions under flow and reveals the mechanisms of
their plastic response, which may be key in applications
based on the elongation and alignment of soft structures
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such as liquid crystal skyrmions.
We reformulate the problem in terms of the Landau-

de Gennes Q tensor theory and analyse the different
contributions to the dissipated energy. Our numerical
results for the flow-induced elongation of a skyrmion agree
qualitatively with experimental observations. We also
report on the collective behaviour of skyrmions driven by
external flows observed both in the simulations and in
experiments. The most significant many-body effects are
the hindering of skyrmionic elongations by the presence
of other skyrmions and the collective skyrmion alignment
by the external flow. see Fig. 1

flow
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FIG. 1. Schematic illustration of the simulation setup.
a) Initial configuration of the director field. b) Elongated
skyrmion as a result of the externally applied mass flow. The
arrows represent the director field while the colours stand for
its z-component (black for nz = −1 and yellow for nz = 1).

RESULTS

Flow-induced elongation of isolated skyrmions:
numerics

We start by describing the elongation of a single
skyrmion due to the externally imposed material flow.
In the simulations, the flow is driven by an external con-
stant force density field. The flow field rapidly reaches a
uniform steady state, due to the friction at the surfaces,
which enables an accurate description of the skyrmion
behaviour under controlled conditions.

Figure 2(a)-(f) illustrates the time evolution of the
shape of a single flow-driven skyrmion obtained at an

FIG. 2. Stretching of skyrmions by external flows.
Skyrmion configurations represented by colour coded |nz| at
〈u〉 = 4636.15µm/s (sample 2) at different times: (a) t = 0,
(b) t = 0.002s (t ≈ tch), (c) t = 0.02s (t ≈ 10tch), (d) t = 0.2s
(t ≈ 100tch), (e) t = 0.6s (t ≈ 300tch), (f) t = 1s (t ≈ 500tch).
Black corresponds to |nz| = 1 and yellow to |nz| = 0. The
flow field is directed from the top to the bottom of the panels
as is indicated by the white arrows. The scale bars correspond
to one cholesteric pitch p.

average flow velocity 〈u〉 = 4636.15µm/s (tch ≈ 0.002s).
Starting from a circular shape, Fig. 2(a), the skyrmion be-
comes axisymmetric with a small tail-like wake, Fig. 2(c),
and undergoes continuous elongation in the flow direc-
tion (from the top to the bottom of the panel) beyond a
characteristic time tch = p/〈u〉, where p is the cholesteric
pitch. tch is the time taken by the skyrmion to move by
one cholesteric pitch, which is roughly the skyrmion size
at t = 0. The skyrmion elongation regime is illustrated
in Fig. 2(d)-(f), where the configurations are calculated
at t = 100tch, 300tch, 500tch, respectively.

In Fig. 3(a), we plot the time evolution of the skyrmion
aspect ratio or elongation ε, defined as the ratio of its
length (parallel to the flow) and its width (perpendicular
to the flow). We define the boundary of the skyrmion
as the set of points where |nz| = 0.5. The four curves
in Fig. 3(a), corresponding to different flow velocities
〈u〉, collapse (approximately) onto a master curve when
plotted against t/tch. The data collapse is better at
short times t . 10tch, which indicates that tch is the
relevant time scale in this regime. The circular skyrmion
shape starts to distort at t & 2tch (see Fig 2(b), and
configuration 2 in supplemental Figs. S1-S4). Significant
elongations, with ε > 1.5, are observed at t & 20tch
for the lowest 〈u〉 (orange diamonds in Fig. 3(a)), and
at t & 40tch for the other velocities (blue circles, green
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FIG. 3. Dynamics of the skyrmion’s elongation. (a)
Aspect ratio (length/width) of the flowing skyrmions as
a function of the reduced time. Different symbols corre-
spond to different values of the average flow velocity: sam-
ple 1 with 〈u〉 = 14671.36µm/s (tch ≈ 0.0007s), sample
2 with 〈u〉 = 4636.15µm/s (tch ≈ 0.002s), sample 3 with
〈u〉 = 1467.14µm/s (tch ≈ 0.007s), and sample 4 with
〈u〉 = 463.62µm/s (tch ≈ 0.02s). The time is scaled by
the characteristic time tch = p/〈u〉. The inset illustrates the
aspect ratio as a function of the total displacement divided
by the pitch. (b)-(e) Skyrmion configurations obtained at
t ≈ 10tch for different values of the average flow velocity: (b)
sample 4, (c) sample 3, (d) sample 2, (e) sample 1. (f)-(i)
Skyrmion configurations obtained at t ≈ 50tch for (f) sample
4; (g) sample 3; (h) sample 2; (i) sample 1. The flow field
is directed from the top to the bottom of the panels as is
indicated by the white arrows. The scale bars correspond to
one cholesteric pitch p.

triangles, and red squares in Fig. 3(a)). At intermediate
times of the order of 100tch the skyrmion evolves into a
commet-like shape as shown in Fig 2(e), configuration
7 in Fig. S1, and configuration 6 in Figs. S2-S4, where
ε > 2. Finally, at late times, we find, pearly string-like
shapes as shown in Fig 2(f), configuration 8 in Fig. S1
and configuration 7 in Figs. S2 and S3. This highlights
the complex non-monotonic dynamics of the skyrmion
distortions.

We observe that at t & 30tch when ε & 2.0 (compare
the orange diamonds with the other symbols in Fig. 3(a))
the scaling of the elongation ε starts to break down. In
particular, the data for sample 4 (orange diamonds) shifts
systematically upwards relative to the master curve, i.e.
the skyrmion elongation proceeds at a higher rate when
t & 30tch. Sample 3 follows the master curve until t ≈
70tch when ε ≈ 2.3, and then shifts upwards similarly to
the previous case. Finally, at t & 150tch, when ε ≈ 3.0,
the data for sample 2 (green triangles) departs from the
data for sample 1. This cascade of thresholds where
the scaling behaviour of the elongation breaks down can
be related to skyrmion shape changes as illustrated in
supplemental Fig. S5(a)-(c), for samples 4-to-2 at times
t = 30, 70 and 150tch, respectively. All the configurations
have a thin tail-like region on the left (Fig. S5(a)-(c)),
which after forming lags behind the head-like front on the
right, leading to effectively faster skyrmion elongations.
For comparison, we also show in supplemental Fig. S5(d)
the configuration for sample 1 at t = 150tch which lacks a
well defined tail-like feature. As a result this configuration
elongates more slowly.

With the aim of comparing the simulation results with
experiments we depict in the inset of Fig. 3(a) the aspect
ratio ε as a function of the skyrmion displacement r. The
latter is defined as the distance between the skyrmion’s
centre of mass at a given time and its initial position. We
recall, that the simulations stop for all samples at the
same absolute time, corresponding to different reduced
times and maximal skyrmion displacements. The curves
exhibit a quasi-linear behaviour and good data collapse is
observed for r . 10p, in line with the scaling of ε(t/tch)
discussed above.

The linear behaviour is clear at low velocities 〈u〉, or
large characteristic times (same pitch), see the orange
diamonds in the inset of Fig. 3(a). At higher velocities,
we find ε ≈ 1 + 0.009r/p for sample 2 (green triangles).
The breakdown of scaling of the elongation at r & 10p
(t & 10tch), and the observation that in this regime ε
grows faster at lower 〈u〉 (compare the orange diamonds
with the red squares in Fig. 3(a)) are related to differences
in the director field configurations at a given t/tch for
different flow velocities 〈u〉.

Figures. 3(b)-(e) depict the skyrmion configurations
under different flow velocities 〈u〉 at t ≈ 10tch, while
Figs. 3(f)-(i) depict the configurations at a later time,
t ≈ 50tch. The first four configurations exhibit sim-
ilar shapes and are in the scaling regime revealed in
Fig. 3(a). Significant shape changes, however, are ob-
served at t ≈ 50tch as illustrated by the last four con-
figurations in Fig. 3(f)-(i). Thus, the slowest skyrmion
(Fig. 3(f)) is already in the elongation regime, with well-
pronounced head- and tail-like regions. By contrast, the
fastest skyrmion (Fig. 3(i)) has a bullet-like shape with a
flat head (recall that the flow direction is from top to bot-
tom.) Furthermore, the skyrmion shape becomes fuzzier
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FIG. 4. Dissipation rate and Landau-de Gennes free
energy. (a) Dissipation rate D in Eq. 1 as a function of
time; (b) Landau-de Gennes free energy as a function of time,
for the flow field switched on at t = 0. Different symbols
correspond to different values of the average flow velocity:
sample 1 with 〈u〉 = 14671.36µm/s (tch ≈ 0.0007s), sample
2 with 〈u〉 = 4636.15µm/s (tch ≈ 0.002s), sample 3 with
〈u〉 = 1467.14µm/s (tch ≈ 0.007s), and sample 4 with 〈u〉 =
463.62µm/s (tch ≈ 0.02s).

as the flow velocity 〈u〉 increases. The differences between
the samples are particularly clear when we analyse the
flow field u(r) shown in supplemental Fig. S6(e)-(h). As
the flow velocity 〈u〉 increases, the structure of u(r) be-
comes irregular (see a wake-like feature in the rear of the
skyrmion in supplemental Fig. S6(h)), and the velocity
fluctuations from the average u(r)− 〈u〉 also increase.

Dissipation rate and Landau-de Gennes free energy

We proceed to relate the dynamics of the skyrmion
distortions to the energy dissipation rate as a function of
time. The work done by the external force density field
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FIG. 5. Plastic nature of the skyrmion’s elongation.
Top: Landau-de Gennes free energy as a function of time, for
the flow field switched on at t = 0 (red squares), and switched
off at toff . Triangles, circles and diamonds correspond to
toff = 0.05s(≈ 7tch), 0.2s(≈ 29tch) and 0.5s(≈ 71tch), respec-
tively. Data correspond to sample 3, with 〈u〉 = 1467.14µm/s.
The configuration on panel (a) is at t = 0, and was obtained
by minimizing the Landau-de Gennes free energy without flow.
(b)-(g) correspond to the data labeled by the same letter on
the top panel. The flow field is directed from the left to the
right of the panels as is indicated by the white arrows. The
scale bars correspond to one cholesteric pitch p.

(the term ρfα in Eq. 7) is dissipated predominantly via
the effective friction (the term −χuα in Eq. 7), which
mimics the effect of the cell surfaces. The dissipation due
to the friction has the form

∫
S
d2rχρu2, and as we show

below it varies little with time. Therefore, in what follows
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FIG. 6. Experimental realisation of a single flowing toron. (a)-(g) micrographs of the toron obtained at times: (a) 0s,
(b) 0.18s, (c) 0.32s, (d) 0.4s, (e) 0.58s, (f) 0.95s. The scale bar is 10µm and the flow is from top to bottom as is indicated by
the white arrows. (h) Aspect ratio and (inset) velocity against time for the two samples. (i) Aspect ratio against displacement
divided by the pitch. Error bars in (h) and (i) are smaller than the size of the symbols.

we discuss only the dissipation rate D(t) arising from
the liquid crystal flow and the director reorientation in
the bulk. As we will show below, D(t) sensitively probes
the dynamics of the skyrmion distortions, and provides a
better understanding of the failure of the scaling of the
elongation ε(t) at t ≥ 10tch.

First, we note that the scalar order parameter S hardly
changes in the course of the simulations, and thus we
use the Ericksen-Leslie theory to calculate the dissipated
energy. We follow Ref. [17] to relate the parameters of the
Beris-Edwards to those of the Ericksen-Leslie equations.
In the Ericksen-Leslie theory the dissipated energy by a
flowing liquid crystal is given by [18]:

D =

∫
S

d2r
[
α1(nαAαβnβ)2 + 2γ2NαAαβnβ + α4AαβAαβ

+ (α5 + α6)nαAαβAβγnγ + γ1NαNα

]
, (1)

where the αn’s are the Leslie viscosities, γ1 = α3 − α2,
γ2 = α6−α5 and the co-rotational time flux of the director
is defined as Nα = ∂tnα + uβ∂βnα −Wαβnβ . Diagonali-
sation of the Q tensor field yields the director field up to
a sign. Therefore, we carried out a standard procedure
of director vectorisation. The resulting vector field is
continuous and can be used to calculate the dissipated
energy using Eq. 1.

We verified that upon applying the constant external

force density, the fluid velocity away from the skyrmion
relaxes almost instantaneously, as compared to the relax-
ation of the director field. Next, due to the 2D nature
of this problem, this constant flow field away from the
skyrmion cannot perturb the director field which has
nz = 1 in that region of the simulation domain. There-
fore, the time dependence of all the contributions to the
total dissipation rate discussed below is due solely to the
director dynamics in the skyrmion proximal region.

We found that the most important contribution to D(t)
is due to the rotational viscosity term γ1NαNα in Eq. 1.
Supplemental Fig. S7, compares D(t) with the dissipation
rate D1−5(t) of the other five terms ∝ α1, γ2, α4, (α5+α6)
in Eq. 1. The conclusion is that the contribution D1−5
is an order of magnitude smaller than the dissipation
arising from the γ1 term. In the vicinity of the skyrmions
the local flow differs from 〈u〉 (see Fig. S6(e)-(h)), which
results in a weak temporal variation of the frictional
dissipation rate as shown in supplemental Fig. S8. The
quantity plotted is the reduced frictional dissipation rate
Df (t) =

∫
S
d2rχρ(u − 〈u〉)2, defined as the excess over

the frictional dissipation for a uniform flow 〈u〉. Df (t) is
two orders of magnitude smaller than D(t), and thus can
be safely ignored.

Figure. 4(a) illustrates D(t) as a function of the reduced
time t/tch for several values of 〈u〉. We find that the
three curves corresponding to the lower values of 〈u〉
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collapse approximately onto a single curve, while the
curve corresponding to the largest 〈u〉 stands apart. This
can be understood qualitatively by inspecting the average
velocity fluctuations ∆u(r) = (u(r) − 〈u〉), which is at
least three times larger than for the other three samples
(compare the colour bar in supplemental Fig. S6(h) with
those on Fig. S6(e)-(g)). Large velocity fluctuations |∆u|
enhance significantly the local velocity gradients, which
in turn couple to the director field and drive it locally
away from the preferred orientation. This is one of the
reasons why the dissipation rate for sample 1 (red squares
in Fig. 4(a)) lies markedly above the other three curves.
The regular symmetric flow pattern shows that the system
is not in the turbulent regime.

Despite this difference, the curves exhibit similar quali-
tative behaviour: 1) A short time linear decay ≈ (C − t),
with C a constant, for t/tch . 1. 2) An intermediate time
effective power-law decay ∼ tα(t), for 1 . t/tch . t∗(〈u〉),
with estimated −5/3 . α(t) . −2/3. 3) A late time
quasi-constant regime, for t & t∗(〈u〉), with t∗/tch ≈
100, 20, 10, 2 for samples 1 to 4, respectively. Interest-
ingly, these values of the threshold time t∗ are an order
of magnitude smaller than the characteristic time scale
γ1p

2/L ≈ 1.3s (where p is the cholesteric pitch and L
is the average elastic constant) for the relaxation of the
director field.

We emphasize that this separation into three regimes
is only qualitative. For instance, we note a more complex
behaviour of D(t) within regime 2) for the three high-
est flow velocities, where we observed short plateau-like
features for 3 & t/tch & 5, see supplemental Figs. S1-S3.
The emergence of such features highlights the complex
skyrmion distortion dynamics even when the skyrmion
shape remains almost constant at short times, see the
skyrmion configurations labelled 2 and 3 in supplemental
Figs. S1-S3, for example. Interestingly, this stagnation
of the skyrmion elongation is accompanied by a burst
in the dissipation rate due to the coupling of the flow
gradients to the director field as shown in the bottom
panel of supplemental Fig. S7. This panel reveals that
the dynamical regime 1) t/tch . 1 is also observed in the
relaxation of the dissipation term D1−5.

In regime 1) the dissipation rate D(t) is reduced by a
factor of two, while the skyrmion maintains its circular
shape with ε ≈ 1, as shown by the configuration depicted
in Fig. 2(b) obtained at the end of this regime, see also
the configurations labelled 1 in supplemental Figs. S1-
S4. Next, in regime 2) the total dissipation rate D(t) is
further reduced by approximately an order of magnitude,
while the elongation is ε . 1.5 for samples 2, 3 and 4 as
shown in Fig. 2(c) and supplemental Fig. S2 (panel 5),
Fig. S3 (panel 4) and Fig. S4 (panel 3). By contrast, for
sample 1, we find a more significant skyrmion elongation
at the end of regime 2), as shown in supplemental Fig. S1
(panel 6).

At late times, in regime 3) the skyrmions start to elon-

gate and the total dissipation rate D(t) takes an almost
constant value (ca. 20 lower than the dissipation rate at
early times). This behaviour is illustrated in supplemental
Fig. S1 (panels 7, 8), Fig. S2 (panels 6, 7), Fig. S3 (panels
6, 7), and Fig. S4 (panels 5, 6). The elongation dynamics
is more pronounced at the highest flow velocity (sample
1), panels 7 and 8 in supplemental Fig. S1. The skyrmion
configuration 8 extends almost throughout the whole sys-
tem, reaching the limiting value of the aspect ratio. This
fact is reflected by the saturation of the Landau-de Gennes
free energy FLdG(t), as shown in Fig. 4(b) (red squares
for t & 1000tch). At shorter times, FLdG(t/tch) exhibits
a linear behaviour, and all the curves collapse when the
time is scaled by the characteristic time tch. A closer
inspection of the curves, at the three highest flow veloc-
ities, reveals the existence of plateau-like behaviour at
10 . t/tch . 20, where the skyrmion aspect ratio hardly
changes, as illustrated in supplemental Figs. S1-S3 (panels
4 and 5). Again, this observation emphasizes a complex
non-monotonic behaviour of the skyrmion elongation dy-
namics, which, among others, leads to the pearly string
shapes shown in Fig 2(f).

We now proceed to discuss the reversibility of the
skyrmion distortions induced by the flow. To this end, we
calculate the Landau-de Gennes free energy as a function
of time along two consecutive cycles when the flow field
is switched on and off. Figure 5 illustrates the results
for several values of the on-flow cycle. When the flow is
on, after a short transient, the Landau-de Gennes free
energy increases linearly with time (see open red squares
in Fig. 5)–the work of the external force density is stored
in the elastic distortions of the skyrmion. When the flow
is switched off, a fraction of the stored elastic free energy
is dissipated, and FLdG drops to a constant value, which
depends on the duration of the preceding on flow cycle
(see the open triangles, circles and diamonds in Fig. 5).
Somewhat unexpectedly, the free energy does not relax
to its pre-flow value even when the flow was applied for
periods as short as 7tch, as shown by the green triangles
in Fig. 5. Correspondingly, the flow-elongated skyrmions
(Figs. 5(b), (d), and (f)) do not return to their origi-
nal circular shape (Figs. 5(a)) and remain in distorted
metastable configurations (Figs. 5(c), (e), and (g)). This
reveals that flow-induced skyrmion distortions exhibit
surprising plastic behavior even at elongations as small
as 10%. A natural question arises whether one can design
spatio-temporal flow patterns which would result in some
pre-defined skyrmion shape?

Flow-induced elongation of isolated torons:
experiments

It is challenging to control the average flow velocity
in experiments due to the small size of the experimental
cells. Injection of air into a cell with a syringe results
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FIG. 7. Collective motion of flowing skyrmions. (a)-(d): Time evolution of the configurations of 30 skyrmions obtained
numerically at 〈u〉 = 4636.15µm. (a) 0, (b) 0.1s, (c) 0.6s, (d) 0.9s. (e) Average aspect ratio as a function of time for the system
with 30 flowing skyrmions depicted in (a)-(d). For comparison, the aspect ratio of a single skyrmion at the same flow velocity
(sample 2) is also shown. The error bars represent the standard deviation of the skyrmions aspect ratio. (f)-(i): Time evolution
of multiple torons in the experiments at (f) t = 0, (g) t = 2s, (h) t = 4s and (i) t = 6s. The scale bar is 20µm and the flow is
from left to right as is indicated by the white arrows. The yellow arrows indicate one structure (in the experiments and in the
simulations) which does not elongate due to the interaction with its neighbours.

in accelerated motion of the torons. Figures 6(a)-(g) are
micrographs of toron configurations at different times as
the flow proceeds through the cell. The toron elongation
is similar to that observed in the simulations. Figure 6(h)
depicts the aspect ratio as a function of time for two toron
realizations and flow intensities, while the inset shows the
average toron velocity as a function of time. As the toron
velocity is not constant, the results plotted in Fig. 6(h)
can not be compared directly with those in Fig. 3(a).
However, by plotting the aspect ratio as a function of the
toron displacement, Fig. 6(i), we observe data collapse
similar to that found in the simulations (inset of Fig. 3(a)).
This observation suggests that, if the toron velocities were
constant, there would be a characteristic time for which
the curves for the elongation ε would collapse. It is
noteworthy that even with the varying toron velocity, ε
is approximately linear in the displacement. For the data
shown in Fig. 6(i) we find ε ≈ 1+0.17r/p, where the slope
is about 18 times larger than that found in simulations.
We speculate that this difference may be due to the 2D
approximation used in the simulations. Nevertheless, it
is encouraging that even a 2D model agrees qualitatively

with the experimental observations.

Collective effects of flowing skyrmions/torons

When many skyrmions are subject to a flow field, their
elongation may be hindered or even reversed as a result
of effective interactions mediated by distortions of the
LC director. In Ref. [16], two flowing skyrmions were
simulated, and the resulting elongation was found to be
smaller than that of an isolated skyrmion. The skyrmion-
skyrmion interaction becomes relevant at distances of the
order of the cholesteric pitch.

We simulated the flow and distortions of 30 skyrmions
initially placed at random on a square domain with
dimensions 200 × 200, for an average flow velocity
〈u〉 = 4636.15µm and periodic boundary conditions. Fig-
ures 7(a)-(d) illustrate the temporal evolution of the con-
figuration of the ensemble of skyrmions. Most of the
skyrmions elongate in the direction of the flow, with
irregular transverse shape distortions due to skyrmion-
skyrmion interactions. The elongation stops when the
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FIG. 8. Ordering of cholesteric fingers by the flow. (a) and (b), time evolution of the cholesteric fingers without flow. In
(a) the torons are stabilized by an applied sinusoidal voltage with the amplitude of 3.5V and the frequency 1000Hz. In (b) the
voltage is reduced and the torons destabilize forming cholesteric fingers of CF2 type [9]. The fingers elongate randomly until
the entire space is filled. (c) time evolution of the CF-2 fingers with an applied flow. Initially, the torons are stabilized by the
voltage as in (a), but then the voltage is reduced, and simultaneously an external flow is applied. This aligns the elongating
torons along a common direction, and when the flow is turned off after 3s of operation, the fingers keep elongating in the same
flow-imposed direction until they occupy the entire space (c). The scale bars in (a)-(c) are 50µm. (d)-(f) Preimages show the
schematic of a stretched toron of different sizes, where a preimage is the region in R3 which maps to a certain single point on
the target order parameter space,− real projective plane RP2. The colormap is shown in the inset of (d). (g) and (h) show
detailed director field in (x, z) and (y, z) cross-sections as marked by grey planes in (f). The director close to the cell surfaces
is slightly tilted due to the flow drive. The colormap of different orientations of the director is shown in the inset. (i) The
skyrmion number density Nsk = 1

4π
n ·

(
∂n
∂x
× ∂n

∂z

)
of the director field in (g); Nsk integrated over the whole cross-section in

(g) equals unity. The colour scale for Nsk is shown on the right. (j) Experimental (top) and computer-simulated (bottom)
polarized optical micrographs of several aligned stretched torons. Light propagates along the z−direction. (k) Experimental and
(l) computer-simulated three-photon excitation fluorescence polarizing microscopy images, the polarization of excitation light
along the y−directions marked by p. Scale bars in (j) and (k) correspond to 10µm.

skyrmions fill the entire domain. We also observed that
some skyrmions shrink as they are caged by neighbouring
skyrmions, as shown by the arrows in Fig. 7(a)-(d).

We calculated the average skyrmion aspect ratio and
compared it with the single skyrmion case in Fig. 7(e).
Initially, the two curves evolve similarly, but at t ≈ 0.2s

they start to deviate indicating that a skyrmion in the
ensemble elongates less than an isolated skyrmion. This
occurs as the interactions with neighbouring skyrmions
hinder the elongation of an isolated skyrmion. The error
bars that increase with time indicate that the skyrmion
distortions become more heterogeneous, as illustrated
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in Fig. 7(a)-(d). Similar behaviour was observed in ex-
periments with ensembles of flowing torons as shown in
Fig. 7(f)-(i). The toron indicated by the arrow initially
elongates and then shrinks back to an almost circular
shape as the result of interactions with the elongating
neighbours.

Clearly, the elongation of flowing skyrmions discussed
in the previous section occurs only if they are isolated
or if their elongation proceeds along a common direction.
The time dependence of the free energy of the system
with 30 skyrmions is similar to that of the average aspect
ratio (see supplemental Fig. S9). At short times it is
similar to that of an isolated skyrmion, flowing at the
same average velocity, and it exhibits many-body effects
beyond t ≈ 0.2s as the interactions between the elongated
skyrmions become relevant. At late times the free energy
increases more slowly in line with the suppression of the
average elongation of the skyrmions.

DISCUSSION

We investigated, using experiments and numerical simu-
lations, the distortions and the alignment of liquid crystal
skyrmions under external flows for a range of average flow
velocities.

We performed extensive simulations based on the
Landau-de Gennes Q tensor theory both for isolated as
well as for systems with many skyrmions. The most
striking effects were the flow driven elongation of single
skyrmions and their alignment along the flow direction
in the many skyrmion system, both of which were also
observed in the experiments.

The simulations were run for different flow velocities 〈u〉
and the results revealed a characteristic time scale tch =
p/〈u〉, which controls the elongation of single skyrmions,
leading to data collapse or scaling of ε as a function of
t/tch.

Specific features were observed depending on 〈u〉: the
larger the flow velocity 〈u〉, the larger the extention of
the scaling regime. This was related to a configurational
transformation where the skyrmion takes a comet-like
shape where the tail moves more slowly than the head.
In other words the skyrmion is pulled apart by the flow,
with distinct regions responding to the flow in different
manners.

Furthermore, due to finite size effects, observed at high
flow velocities and long times, the free energy flattens or
saturates and remains almost static as the flow induced
elongation is hindered by the image skyrmion that results
from the periodic boundary conditions.

We have also calculated the dissipation rate and the
various dissipation channels for a single skyrmion un-
der external flows. This analysis provided insight on
the observed scaling regime of the elongation of a single
skyrmion and revealed a somewhat surprising plastic re-

sponse at very short times. The plastic character of the
skyrmion elongation occurs even at small strains, where
one would expect an elastic response to the forcing. This
plastic behaviour is expected to be present also in the
many skyrmion system and may be relevant in applica-
tions based on the alignment of soft structures such as
liquid crystal skyrmions.

The experimental observations of the flow induced dis-
tortions and alignment of single and many-skyrmion sys-
tems agree qualitatively with the numerical results, de-
spite important differences between the model and the
real system. We single out the fact that the simulations
were carried out in 2D under controlled uniform flow con-
ditions, while the experiments are in 3D and the flow was
not uniform. Nevertheless the elongation and the align-
ment of the distorted skyrmions by external flows appear
to be robust and are qualitatively similar. The plastic
behaviour uncovered by our analysis of the dissipation
may also have an impact on experimental observations
and applications.

We finish by reporting an interesting experimental ob-
servation that is not reproduced by the 2D model. Under
certain experimental conditions, skyrmions have been
observed to de-stabilize and transform into cholesteric
fingers, which elongate in random directions. Preliminary
work suggests that applying a flow field for a short time re-
sults in orientational ordering of the elongated cholesteric
fingers, which persists when the flow is switched off.

Previous experimental work reported that torons were
stabilized by applying a weak voltage across the cell and
were observed to transform into cholesteric fingers [19]
when reducing this voltage. The fingers grow in random
directions triggered by a decrease of the voltage below
a certain threshold. Each toron (initially with a spheri-
cal shape in Fig. 8(a)) elongates in a random direction
(Fig. 8(b)) and continues to grow until filling the avail-
able space. Figures 8(c) shows growing fingers, but now
under an applied external flow that is switched on for
a short time just after the voltage reduction. We found
that it was sufficient to maintain the flow for 3s in order
to align all the fingers in the flow direction, as shown in
Fig. 8(c). Moreover, after switching the flow off, the fin-
gers continue to elongate along the same direction, filling
the entire space. This suggests that an external flow may
be effective to drive orientational ordering of cholesteric
fingers. Interestingly, this ordered texture of fingers re-
mains stable for days, although, some of the fingers shrink
back to their original circular shape under an effective
compressing action of the neighbouring fingers.

There exist several distinct types of cholesteric fingers
[9]. To determine the type of the fingers observed here,
we carried out a quasi-static numerical analysis of the
3D structure of the elongated torons, by minimizing the
Frank-Oseen elastic free energy. Several, examples of the
stretched toron configuration are presented in Figs. 8(d)-
(f), using colour coded director preimages, i.e., those
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spatial regions where the nematic director n has a given
fixed value. The vectorial representations of n(r), shown
in Fig. 8(g) and (h), reveals that the topology of this
extended structure remains unchanged, because the vec-
torized n(r) taken on the (x, z) cross section of this ex-
tended configuration covers the order parameter space S2
once. This finding is also confirmed by directly verifying
that the skyrmion number 1

4π

∫
n ·
(
∂n
∂x ×

∂n
∂z

)
dxdz = 1.

The corresponding skyrmion number surface density Nsk
in Fig. 8(i) highlights the existence of two nonsingular
λ−disclinations, or fractional skyrmions [20], at the top
and the bottom of the cross section. In fact, this configu-
ration is characteristic of a cholesteric finger of the second
type, CF-2, studied previously [21], and is often found as
a metastable configuration occurring spontaneously. The
director configuration in CF-2 shows how the fractional
values of the skyrmion number, two half skyrmions in this
case, can add up to unity in the finger, being embedded
into the uniform far field background.

Figures 8(j)-(l) compares computer-simulated and ex-
perimental polarized optical microscopy (POM) as well
as three-photon excitation fluorescence polarizing mi-
croscopy ((3PEF-PM) images for a system of aligned
extended torons. We observe very good qualitative agree-
ment, which demonstrates that the experimental elon-
gated structures are cholesteric fingers of the second type.
It is natural to assume that similar director configurations
are associated with the torons stretched by the flow, be-
ing subject to stabilising voltage at the same time. More
detailed numerical investigation of these 3D structures
and their interaction with the external flow is beyond the
scope of this study, which will be addressed in a future
work.

Other extensions of this study include the effect of a
time-dependent, e.g. step-like, flow field, the introduction
of local changes in the flow direction or the effect of flows
with non-zero vorticity.

METHODS

Beris-Edwards model for flowing skyrmions

The model used to describe the liquid crystal skyrmions
under mass flow is based on the Landau-de Gennes Q
tensor theory of nematics [22, 23]. For uniaxial ordered
phases, the tensor order parameter is Qαβ = S(nαnβ −
δαβ/3), where S is the scalar order parameter, which
equals to zero in the isotropic phase and unity in phases
with perfect alignment, and nα is the director field. The
free energy of the liquid crystal is F =

∫
V
d3r f , where

the free energy density f has three contributions:

fb =aQαβ
2 − b (QαβQβγQγα) + cQαβ

4, (2)

fel =
L1

2
(∂γQαβ)2 +

L2

2
∂εQνε∂γQνγ

+
4πL1

p
εαβγQαε∂βQγε, (3)

fw =
W

2

(
Qαβ −Q0

αβ

)2
. (4)

The first is the bulk free energy and a, b and c are positive
material constants. The second is the elastic free energy
with two elastic constants L1 and L2 [24, 25] and p is
the equilibrium cholesteric pitch. The last contribution
arises from the anchoring at the confining surfaces. As
the simulations are effectively 2D, one needs to apply this
anchoring everywhere (as a bulk term) to stabilize the
skyrmions [16, 26, 27]. The parameter W controls the
anchoring strength.

The dynamics is governed by the Beris-Edwards, the
continuity and the Navier-Stokes [28] equations:

∂tQαβ + uγ∂γQαβ − Sαβ = ΓHαβ , (5)

∂βuβ = 0, (6)

ρ∂tuα + ρuβ∂βuα = −χuα + ∂β [2ηAαβ + σn
αβ + ρfα],

(7)

where ρ is the liquid crystal density and Γ is the system
dependent rotational diffusivity. Equation 5 describes
the time evolution of the order parameter Qαβ , which
depends on the velocity field uα. The dynamics of the
velocity field is given by Eq. 7, which depends on Qαβ .
The first term on the right-hand side of Eq. 7 stands for
the effective friction at the surfaces [16]. For Poiseuille
flow of a fluid with absolute viscosity η = ρν between two
surfaces separated by a distance L, the friction coefficient
in 2D that yields the same average velocity of the 3D
flow is χ = 12η/L2, where ν is the kinematic viscousity.
The fluid moves driven by an external force fα. In the
equations above, the shear rate and the vorticity are given
by Aαβ = (∂αuβ + ∂βuα)/2 and Wαβ = (∂βuα− ∂αuβ)/2
and the co-rotational term reads:

Sαβ = (ξAαγ +Wαγ)

(
Qβγ +

δβγ
3

)
+

(
Qαγ +

δαγ
3

)
(ξAγβ −Wγβ)

− 2ξ

(
Qαβ +

δαβ
3

)
(Qγε∂γuε), (8)

where ξ is the flow aligning parameter. The molecular
field is:

Hαβ = − δF
δQαβ

+
δαβ
3

Tr

(
δF
δQγε

)
(9)



11

and the nematic stress tensor is given by:

σn
αβ = −P0δαβ + 2ξ

(
Qαβ +

δαβ
3

)
QγεHγε

− ξHαγ

(
Qγβ +

δγβ
3

)
− ξ

(
Qαγ +

δαγ
3

)
Hγβ

− δF
δ(∂βQγν)

∂αQγν +QαγHγβ −HαγQγβ , (10)

with P0 the hydrostatic pressure.

Numerics

As discussed in Ref. [16], the time scales for changes
in the director and the velocity fields differ by six or-
ders of magnitude, rendering the simulations challenging.
The simulations reported in Ref. [16] use finite differ-
ences for both fields (nα and uα) and an adaptive time
step to speed up the convergence of the velocity field.
The dynamics of the director field was described by the
Ericksen-Leslie theory. It was also assumed that the fluid
relaxes instantaneously when compared to the director
field. Here, we use the Beris-Edwards equation for the
dynamics of the director field, which is solved using fi-
nite differences (predictor-corrector algorithm) while the
lattice Boltzmann method is used for the velocity field.
This approach results in slower but more reliable simula-
tions, since the dynamics of the two fields are solved with
the same time step. In addition, the lattice Boltzmann
method is conservative while the method based on finite
differences is not. Perhaps the major advantage of this
approach is that the simulations are stable for parameters
close to the experimental ones, which was not the case
for the Ericksen-Leslie theory [16].

Due to the different time scales, which require long
simulations, a compromise between the domain size and
the simulation time is required. We used 2D simulation
boxes, which provide useful insights into the dynamics of
skyrmions in feasible simulation times. However, a 2D
domain assumes invariance in the direction perpendicular
to the plane, which may be a strong approximation for the
velocity field. In addition, the skyrmion structure in the
experiments is not invariant in the direction perpendicular
to the plane. Thus, quantitative differences between the
simulations and the experiments are inevitable although
the qualitative behaviour is expected to be captured. For
instance, the flow velocities in the simulations of stable
skyrmions can be much higher than those in the experi-
ments, as shear flows in 2D are rather weak by comparison
to 3D where these strong flows destroy the skyrmions.

The parameters used in the simulations are provided in
Table S1 (in the supplemental material) both in simulation
and physical units. We assume the material parameters of
5CB at room temperature [11, 29, 30]. Some of these were

converted from the parameters of the Ericksen-Leslie the-
ory to the Beris-Edwards one using the expressions given
in Ref. [17] and the equilibrium nematic order parameter
SN = 0.65 (corresponding to the selected values of a, b
and c). For this set of parameters, corresponding to the
experimental parameters of 5CB, the simulations remain
stable at the cost of choosing a very small time step. The
simulation domain is LX ×LY = 112× 56 for the simula-
tions of a single skyrmion and LX × LY = 200× 200 for
the simulations of 30 skyrmions, with periodic boundary
conditions in both directions.

The initial configuration of each skyrmion is set as in
Ref. [16] using an Ansatz for the director field:

nx = sin(ã) sin
(
mb̃+ g

)
ny = sin(ã) cos

(
mb̃+ g

)
nz = − cos(ã), (11)

where

ã =
π

2

[
1− tanh

(
B

2
(ρ−R)

)]
(12)

b̃ = tan−1
(
x− Cx
y − Cy

)
(13)

ρ =
√

(x− Cx)2 + (y − Cy)2. (14)

The parameter R controls the size of the skyrmion, B
controls the width of the interface that separates the
inner and the outer regions, m is the winding number of
the skyrmion, g controls the direction of the skyrmion, r
measures the distance from the skyrmion centre and b̃ is
the polar angle. We set the values of these parameters
(in simulation units): m = 1, g = π/2, R = 0.7p, B = 0.5,
Cx = LX/2, Cy = LY /2. The velocity field is set to zero
while the Ansatz is relaxed until it reaches the steady
state.

Frank-Oseen free energy for quasi-static analysis

We utilize the Frank-Oseen free energy to study the
3D director structures of stretched torons and CF-2s. For
chiral nematic LCs, the free energy can be expressed as

FFO =

∫
d3r

(
K11

2
(∇ · n)2 +

K22

2
(n · ∇ × n +

2π

p
)2+

K33

2
(n×∇× n)2 − ε0∆ε

2
(E · n)2

)
, (15)

where the Frank elastic constant K11, K22 and K33 deter-
mine the energy cost of splay, twist and bend deformations,
respectively, and p is the cholesteric pitch. The electric
field E is along z−axis (‖E‖ = U/d, with U being the
voltage across the cell and d the cell thickness), ε0 is the
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vacuum permittivity, and ∆ε is the dielectric anisotropy
of the LC. Torons and CF-2s emerge as local or global
minima of FFO, and a relaxation routine based on the
variational method is used to identify energy-minimizing
configurations. For elongated torons of elongated length,
we prepare initial structures by stretching the point de-
fects of the original toron and letting the whole struc-
ture to relax. The 3D computations are performed on
40×100×40 square grids with periodic boundary condi-
tions in the x− and y−directions and with fixed boundary
conditions at the bounding surfaces along the z−direction.
For all calculations, the following values of the model pa-
rameters are used: d/p = 1.5, K11 = 6.4×10−12N,K22 =
3× 10−12N,K33 = 10−12N,U = 0.85V and ∆ε = 13.8.

Simulated polarized optical microscopy images

The POM image is simulated by the Jones-matrix
method, using the energy-minimizing configurations of
n(r) for the periodic CF-2s. The cell is split into 40 thin
sublayers along the z direction, then we calculate the
Jones matrix for each pixel in each sublayer by identify-
ing the local optical axis and ordinary and extraordinary
phase retardation. The phase retardation arises from
the optical anisotropy of LC (no = 1.58 and ne = 1.77
for 5CB), where the optical axis is aligned with the lo-
cal molecular direction. The Jones matrix for the whole
LC cell is obtained by multiplying all Jones matrices
corresponding to each sublayer. We obtain the single-
wavelength POM by the respective component of the prod-
uct of the Jones matrix and the incident polarization. To
properly reproduce the experiment POMs, we produced
images separately for three different wavelengths span-
ning the entire visible spectrum (450, 550, and 650nm)
and then superimposed them, according to light source
intensities at the corresponding wavelengths.

Sample preparation and experimental methods

Chiral LCs are prepared by mixing 4-Cyano-4’-
pentylbiphenyl (5CB, EM Chemicals) with a left-handed
chiral additive, cholesterol pelargonate (Sigma-Aldrich).
To define the pitch (p) of the ensuing chiral LCs, the
weight fraction of the added chiral dopant is calculated
using Cdopant = 1/(hhtp), where the helical twisting power
hhtp = 6.25µm−1 for the cholesterol pelargonate additive.

The sample cells are assembled from indium-tin-
oxide (ITO)-coated glass slides treated with polyimide
SE5661 (Nissan Chemicals) to obtain strong perpendicu-
lar (homeotropic) boundary conditions. The polyimide
is applied to the surfaces by spin-coating at 2700rpm for
30s followed by baking (5 min at 90 ◦C and then 1 h at
180◦C).

The LC cell gap thickness is defined by silica spheres
as spacers between two surfaces to be 7 µm with the cell
gap to pitch ratio d/p = 1.25. The lateral sides of the
LC cell are sealed by epoxy except for the two entrances.
We use a homemade connection obtained by 3D-printing
with the Formlabs Form 2 resin 3D printer (purchased
from Formlab) to connect one entrance and tube, the
other end of the tube being connected to a syringe. Then
by pushing or pulling the plunger, the LC inside the cell
channel is driven forwards or backwards. Metal wires were
attached to ITO and connected to an external voltage
supply (GFG-8216A, GW Instek) for electric control.

We utilize a ytterbium-doped fibre laser (YLR-10-1064,
IPG Photonics, operating at 1064nm) to generate torons.
The torons are three dimensional topological solitons
where the skyrmion tube is embedded between the two
substrates along the perpendicular axis, terminated by
two point defects. We use a sinusoidal electric field with
the frequency of 1000Hz. Initially, we adjust the voltage
across the cell to be around U ≈ 3.5V where the LC
is uniform and unwound. Then we melt the LC locally
using a laser power around 30mW and switch off the laser
tweezers, with torons being spontaneously generated after
the LC quenching back. As we drive the LC flow forwards
or backwards, the torons follow the flow.

Polarizing optical microscopy images are obtained with
a multi-modal imaging setup built around an IX-81 Olym-
pus inverted microscope and charge-coupled device cam-
eras (Grasshopper, Point Grey Research). Olympus ob-
jectives 20x and 10x with numerical aperture NA=0.4
and 0.1 are used. The speed, length, and trajectories of
the torons are analysed by using ImageJ (freeware from
NIH).

Three-dimensional nonlinear optical imaging

3D nonlinear optical imaging of periodic CF-2 struc-
tures is performed using the three-photon excitation flu-
orescence polarizing microscopy (3PEF-PM) setup built
around the IX-81 Olympus inverted optical microscope in-
tegrated with the ytterbium-doped fibre laser [31]. We use
a Ti-Sapphire oscillator (Chameleon Ultra II; Coherent)
operating at 870nm with 140fs pulses at an 80 MHz rep-
etition rate as the source of the laser excitation light. An
oil-immersion 40× objective (NA = 0.75) is used to collect
the fluorescence signal. The fluorescence signal is detected
by a photomultiplier tube (H5784-20, Hamamatsu) af-
ter a 417/60nm bandpass filter. The 3PEF-PM imaging
involves a third-order nonlinear process, during which
LC molecules are excited via the three-photon absorp-
tion process and the signal intensity scales as ∝ cos6(β),
where β is the angle between the polarization of the exci-
tation light and the long axis (transition dipole) of the
LC molecule.
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