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Abstract

Most granular packings possess shear moduli (G) that increase with the applied
external pressure, and bulk moduli (B) that increase or remain constant with
pressure. This paper presents “tessellated” granular metamaterials for which
both G and the ratio G/B decrease with increasing pressure. The granular
metamaterials are made from flexible tessellations forming a ring of closed cells,
each containing a small number of solid particles. For under-constrained tes-
sellations, the dominant contributions to G and B are the particle-particle and
particle-cell interactions. With specific particle configurations in the cells, we
limit the number of possible particle rearrangements to achieve decreasing G as
we increase the pressure difference between the inside and outside of the tes-
sellation, leading to G/B � 1 at large pressures. We further study tessellated
granular metamaterials with cells containing a single particle and many particles
to determine the variables that control the mechanical response of particle-filled
tessellations as a function of pressure.

Keywords: Granular metamaterials, mechanical metamaterials, atmospheric
diving suit

1. Introduction

Granular materials consist of collections of macroscopic particles that inter-
act with each other through contact forces, resulting in bulk mechanical be-
haviors that range from fluid-like to solid-like [1, 2]. At low densities, granular
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particles can flow past each other in a fluid-like state; at high densities, they
jam into a solid-like state. Even in their jammed state, particles in granular
media can rearrange by rolling and sliding past one another, thus changing the
contact network and the corresponding mechanical response of the system. The
mechanical properties of jammed packings, such as the bulk (B) and shear (G)
moduli, are dependent on these interparticle interactions and scale as power
laws with the packing fraction of the system [3].

The ratioG/B of the shear and bulk moduli quantifies the solidity of granular
materials. A liquid has G/B = 0 whereas solids have G/B > 0. Moreover, G
and B are within an order of magnitude of each other for most materials [4, 5].
For example, the shear and bulk moduli of iron are 77.6 GPa and 166 GPa [6],
respectively, with a G/B ≈ 0.47. Further, for most metals [7, 8, 9], as well as
ionic [10, 11] and non-ionic [12] crystalline solids, G and B increase as a function
of pressure. Most metals have a relatively constant value of G/B over a wide
range of pressures [13]. In contrast, granular packings with large numbers of
particles show an increasing G/B with increasing pressure above the jamming
transition, due to particle rearrangements within the packing [3, 14, 15].

This paper presents “tessellated” granular metamaterials with tunable elas-
tic moduli and G/B values dependent on pressure. The tessellated granular
metamaterials are made of an annulus that is radially tessellated into cells, each
of which is filled with particles in identical configurations that are close to the
onset of jamming. Notably, by filling the tessellated cells with a small number
of particles, we limit the number of possible rearrangements and thus increase
our control over B, G, and G/B. Our results show that the B of our tessellated
granular metamaterial does not always increase monotonically with pressure,
although does generally possess a positive correlation with pressure. Due to
the small number of possible local rearrangements in the cells, we also observe
a global decrease in G with increasing pressure. Combined, we find that G/B
for the tessellated granular metamaterials decreases with increasing external
pressure.

2. Methods

Tessellation Geometry

Our setup includes a flexible tessellation with walls that can rotate freely
about its joints to create a system with a large number of zero-energy modes.
According to Maxwell’s counting argument, a 2D tessellation with N nodes
and Nb bonds has (2N −Nb) zero energy modes, including three trivial modes
corresponding to translation and rotation [16, 17]. As shown in Fig. 1(a), our
tessellation design consists of 16 trapezoid cells that are connected together to
form an annulus. Fig. 1(b) shows the structure of a single cell. Each cell has
four joints on the vertices of the trapezoid, and two additional joints breaking
up the top wall into three parts. These extra joints add two more degrees of
freedom per cell to the system. When connected together in an annulus, the
tessellation has N = 64 nodes and Nb = 80 bonds, resulting in 45 zero-energy
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Figure 1: (a) Experimental setup. 3D printed tessellation with flexible joints filled with
particles. The particles as well as the tesselation are 3D printed out of Polylactic Acid (PLA).
Particles in each cell have the same configuration, referred to as configuration ‘6 particles
I’. (b) A single cell of the tessellation showing the edges and joints. The different particle
configurations studied in this work include: (c) A single cell with particles in configuration ‘6
particles II,’ (d) 7 particle configuration, (e) 25 particles per cell with each cell in a random
particle configuration, and (f) one particle in each cell with varying particle diameter.
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Figure 2: All unique 6 and 7 particle-filled cells obtained from the DEM simulations with
the particle sizes for each configuration. Lines originating from particle centers correspond
to particle-particle or particle-wall contacts. The configurations studied in the experiments
correspond to the largest packing fraction and are highlighted in yellow.

modes in the system. When built in an experiment, this structure is highly
flexible, can undergo large deformations, and is fully collapsible. We fill each of
the cells with particles in configurations that are derived via discrete element
method (DEM) simulations.

Discrete Element Method Simulations

To enumerate all possible jammed packings within a cell of the tessellation,
we employ discrete element method (DEM) simulations for N monodisperse,
frictionless disks in the geometry shown in Fig. 1(b). Endpoints of a cell are
held fixed while generating a jammed disk packing. Disks interact with each
other via the pairwise, purely repulsive linear spring potential energy:

Uppjk =
εpp
2

(
1−

rppjk
σjk

)2

Θ

(
1−

rppjk
σjk

)
, (1)

where εpp is the characteristic energy scale of the repulsive interactions, rppjk is
the distance between the centers of disks j and k, σjk is the sum of the radii of
disks j and k, and Θ(·) is the Heaviside step function. The interaction between
the ith side and the jth disk is also purely repulsive and given by:

Upbji =
εpb
2

(
1−

rpbji
Rj

)2

Θ

(
1−

rpbji
Rj

)
, (2)

where εpb is the particle-wall stiffness, rpbji is the shortest distance between the
center of disk j and the ith side, and Rj is the radius of disk j.
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We measure the stress tensor Σαβ in the system via the Virial expression.

Σαβ = Σppαβ + Σpbαβ includes two terms representing the particle-particle interac-

tions, Σppαβ ; and particle-boundary interactions, Σpbαβ .

The particle-particle stress Σppαβ is given by

Σppαβ =
1

A

N∑
j,k

fppjkαr
pp
jkβ , (3)

where A is the area of the confining boundary, fppjkα is the α component of the

force on disk j from disk k, and rppjkβ is the β component of the separation vector
from the center of disk k to the center of disk j.

The particle-boundary stress Σpbαβ is given by

Σpbαβ =
1

A

4∑
i

N∑
j

fpbjiαr
pb
jiβ , (4)

where fpbjiα is the α component of the force on disk j from side i of the boundary,

and rpbjiβ is the β component of the separation vector from the contact point
between side i and disk j to the center of disk j. From the stress tensor Σαβ ,
we obtain the pressure P = (Σxx+Σyy)/2, the shear stress Σ = −Σxy in simple
shear, and Σ = (Σxx − Σyy)/2 in pure shear.

To generate a jammed disk packing in the tessellation, we start with a dilute
system where disks are randomly placed in one cell and replicated in the rest of
the cells, with the packing fraction at φ < 10−3. We then increase the particle
sizes by ∆φ/φ = 2∆R/R = 2×10−3, followed by energy minimization using the
fast inertia relaxation engine (FIRE) algorithm [18]. After energy minimization,
we measure the internal pressure P = (Σppxx + Σppyy + Σpbxx + Σpbyy)/2 for any given
cell. Since all cells start with the same initial configuration, the pressure, P
in any cell is the same. If P is smaller than the target pressure, Pt = 10−7,
we grow the particles by ∆φ again and apply energy minimization. If P > Pt,
we then return to the disk and boundary configuration before the last growth
step and increase φ by ∆φ/2. We repeat this search procedure until we reach a
state with |P − Pt|/Pt < 10−4. We generate 105 jammed packings for each N
with different random initial configurations and find all the unique particle-filled
cells. The unique particle configurations for 6 and 7 particle systems obtained
from the simulations are shown in Fig. 2.

Experimental design

The experimental system is created by 3D printing the tessellation and parti-
cles. From the simulated jammed configurations, we choose the particle arrange-
ments with the largest packing fractions for 6 and 7 particles per cell, which are
highlighted in Fig. 2. Even when we directly translate these simulated configu-
rations to experiments, there are several differences between the simulations and
the experimentally recreated packings. Instead of growing particles inside a cell,
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we place them by hand, leading to differences in particle positions and geometry
of the cells. Additionally, due to the presence of a large number of zero-energy
modes, each cell can have a slightly different geometry. These slight deviations
from the designed configurations are enough to un-jam the whole system. When
we apply compressive or shear deformations to the system, we notice that the
initial response at small strains is dominated by frictional interactions, but as
we increase the strain, the system reaches a jammed state.

The different particle configurations we study are shown in Fig. 1. We build
three designed configurations with 6 and 7 particles in each cell. Additionally,
we also compare these results to a system with a large number of particles (25
particles) in random configurations per cell, and systems with a single particle
per cell. For the single-particle systems, we study the effect of the variation of
particle size on the mechanical response of the tessellation. Fig. 1(a) shows the
tessellation filled with a configuration of 7 particles in each cell. Our experimen-
tal design is 2D, and both the tessellation walls and the disk-shaped particles
have a height of 10mm in the third dimension. The tessellation and particles are
made of Polylactic Acid (PLA), 3D printed using a Prusa i3 MK3S printer and
a print infill of 20%. The experiments are conducted with the tessellation on a
horizontal surface of Polyethylene terephthalate (PET). The PET sheet is cov-
ered with a thin layer of corn starch to minimize any frictional effects between
the particles and the substrate. The magnitude of frictional forces between the
experimental system and the substrate is estimated by measuring the minimum
force required to translate a filled tessellation across the substrate and is O(1N).
Details on the dimensions and geometry of the walls, as well as the particles,
are included in the SI.

3. Results

Bulk modulus

In the 2D tessellation, the bulk modulus is defined as B = − dP
dγarea

, where

P is the external pressure and γarea is the area strain. γarea = A0−A′

A0 , where
A0 is the initial area of the inner cavity of the tessellation and A′ is the internal
area after applying external pressure, P . The experimental setup to measure
the bulk modulus is shown in Fig. 3(a). To simulate external pressure, we run
a cord around the outer edge of the tessellation and apply a known tension
to the cord. This cord tension (T ) exerts a normal force on the outer edge of
the tessellation, which acts as a simulated external pressure (P ). The relation
between T and P is derived in the SI and is given by P = Tf

Rh , where f is the
fraction of the outer circumference that is in contact with the cord, R is the
outer radius, and h is the height of the tessellation in the third dimension.

The system responds to external pressure by decreasing its internal area. As
the external pressure increases, we see intermittent particle rearrangements in
the tessellation cells. One such rearrangement is shown in Fig. 3(a)i-ii. During
a rearrangement event, certain particle contacts that existed in a configuration
are broken and new contacts are formed. These rearrangements, which change
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Figure 3: (a) Bulk compression experiments in the configuration with 7 particles per cell. A
cord going around the tessellation is pulled under tension and the resulting change in area
gives the bulk modulus of the system. When under pressure, particles and cells rearrange
to create different contact networks. (i) System before a rearrangement event—yellow lines
show contacts that disappear after rearrangement. (ii) System after a rearrangement—blue
lines show new contacts formed after the rearrangement. (b) Cord tension vs. compressive
area strain of the annulus. The slopes of the curves give the bulk modulus. (c) Bulk modulus
at different external pressures. (d) Individual measurements and average for the 7 particle
configuration. Data highlighted in black to show two different behaviors: particle compression
(large slope) and rearrangements (small slope). (e) Measure of how much strain change in
the 7 particle system occurs from rearrangements. Bar chart derived from plot (d) shows the
average fraction of strain change that occurs due to particle compression at different pressures.
Bar chart is overlayed by the bulk modulus as a function of pressure. (f-h) Same plot for the
6 and 25 particle configurations.

7



particle-particle as well as particle-wall contacts, often modify the shape of
individual cells, which subsequently changes the internal area of the tessellation.

To measure the pressure response of the system, we quasi-statically increase
the applied tension in the cord and measure the change in the area of the
tessellation. Fig. 3(b) shows the cord tension in the system as a function of
compressive strain. As expected, higher tension in the cord leads to higher
compressive strains. The maximum compressive strain that the system can
undergo depends on the packing fraction (φ) of the configuration. Among the
configurations studied, φ increases slightly with increasing numbers of particles
in the cells (φ6p = 0.699, φ7p = 0.747, φ25p = 0.763). Since the tension in the
cord is proportional to external ‘pressure,’ the local slope of this curve at any
given value of pressure (tension) is a measure of the bulk modulus of the system
at that pressure. Fig. 3(c) shows bulk modulus as a function of external pressure.
Both pressure and bulk modulus are normalized by the average Young’s modulus
of the particles. Details on the estimation of Young’s modulus are in the SI.

As seen in Fig. 3(c), the bulk modulus of each particle configuration is dif-
ferent and the bulk modulus can change non-monotonically with pressure, al-
though it mostly increases with increasing pressure. To better understand the
relation between bulk modulus and particle rearrangements, we study the 7-
particle configuration as a sample system. Fig. 3(d) overlays the averaged data
(shaded region) and individual trials (curves with points) of pressure vs. com-
pressive area strain. One randomly chosen curve is highlighted in black. At
very small strains (γarea < 1%), almost no force is required to strain the system
because the particles are unjammed. At the onset of jamming, each experiment
presents in a staircase-like pattern, which captures compression regimes where
the particles compress against each other (vertical lines) and undergo rearrange-
ment events (horizontal lines). Studying each compression and rearrangement
event (Fig. 3(d) inset), we can quantify the contributions to the strain change
as coming from compression (γC) or rearrangements (γR). Fig. 3(e) shows the
strain from compression, <γC>

<γC>+<γR>
, as a function of pressure in the form of

a bar chart, where < γC > and < γR > are averages over 10 experiments.
Fig. 3(e) also shows the bulk modulus at corresponding pressures, which is
highly correlated with the rearrangement data. This correlation persists in all
the multi-particle configurations we studied, as shown in Fig. 3(f)-(h), imply-
ing that particle rearrangements decrease B locally. However, rearrangements
often lead to a more stable packing, which leads to an overall increase in B
with pressure. At higher pressures, the correlation between rearrangements and
bulk modulus goes down, as seen somewhat in the 7-particle case (Fig. 3(c))
but more acutely in the 25-particle case (Fig. 3(h)). We suspect that at very
high pressures, there are fewer rearrangements possible and that packings with
more particles find increasingly stable configurations that contribute to B.

Shear modulus

To measure the shear modulus of our tessellated granular metamaterial, we
fix the straight outer wall element of the bottom cell and apply a tangential force
on the straight outer wall of the top cell, as shown in Fig. 4(a). In a simple shear
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Figure 4: Force response to applied shear strain at different external pressures. (a) 7-particle
system, (b) 25-particle system with random configurations in each cell, (c) 6-particle configu-
ration I, (d) 6-particle configuration II, and (e) 25-particles per cell in random configurations.
(f) Shear modulus at different external pressures.

measurement of a continuum material, the horizontal displacement of the top
wall is proportional to the applied simple shear strain. In our system, simple
shear strain is difficult to measure because a tangential force on the top wall
rotates and deforms different parts of the annulus in different ways. Therefore,
we fit an ellipse to the inner cavity of the annulus and use its dimensions to
calculate the shear strain applied to the system. The shear strain in the system
is given by γshear = a−b√

2r
, where a and b are the major and minor axes of the

ellipse fitted to the inner cavity and r is the radius of the initial circular cavity.
The shear stress is given by σ = F

2R×h , where F is the applied shear force and
2R× h is the cross-sectional area of the system. Finally, we arrive at the shear
modulus, which is given by G = dσ

dγshear
. Just as for the bulk modulus, B, the

reported values of G are normalized by Young’s modulus of the particles. The
relations for shear strain, shear stress, and shear modulus are derived in the SI.

The shear response of our system has two distinct regimes, as shown in
Fig. 4(b-e). At small shear strains, the system is unjammed and the response
is dominated by particle-particle and particle-cell frictional interactions. Upon
shear-jamming, the tessellation requires substantially larger forces to further
shear. As expected, as the external pressure on the tessellation increases the
tessellation shear jams at smaller strains.

To estimate the shear modulus of each configuration, we measure the slope of
the curves in Fig. 4(b-e) in a strain regime where the system is shear jammed, at
force values between 2N and 10N. The lower force limit of 2N is to ensure that
the shear modulus measurement is in the shear jammed regime and larger than
the frictional forces between the tessellation and the substrate. Fig. 4(f) shows
the shear modulus for each configuration as a function of pressure, averaged
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over five measurements. The shear modulus for all of the studied configurations
decreases monotonically with pressure, which is uncharacteristic of granular
materials.

Prior work has shown that, for a given jammed packing, G decreases with
pressure until there is a change in the contact network [19, 20]. In our shear ex-
periments, the 6-particle configurations do not undergo particle rearrangements
once the system has been shear jammed. The 7- and 25-particle systems show
a few particle rearrangement events under high shear forces, but these minor
rearrangements do not change the contact network substantially. Thus, all of
the systems show a decrease in G as a function of pressure. Note that the 25-
particle system is unlike the 6- and 7-particle designed systems, as the initial
particle configurations are different in each cell and also different for each shear
experiment. We correlate this more random nature of the 25-particle system
with the larger variation in G (relative to the other systems with few particles
per cell), especially at lower pressures.

Single particle per cell

For a better understanding of our tessellated granular material, we inves-
tigate a simpler system with a single particle in each cell. This configuration
has minimal direction dependence and the only rearrangements that take place
involve the particle and tessellation walls. We study this one-particle-per-cell
system by varying a single parameter, the particle size. By increasing the par-
ticle size, we increase the packing fraction in each cell. As expected, we observe
that varying the packing fraction substantially changes the bulk and shear mod-
uli of the tessellation. By increasing the particle size and packing fraction, the
overall flexibility of the tessellation decreases, which then limits the maximum
compression or shear the system can undergo.

Nevertheless, even a single-particle-per-cell yields similar B and G trends to
what we observed for the multi-particle systems. As shown in Fig. 5(a), as we
increase the particle size the forces required to compress the system increase.
Looking again for a relation between B and particle rearrangements, we no-
tice that the single-particle systems undergo rearrangements by changing the
particle-wall contacts, as shown in Fig. 5(g-h). In the single-particle setup, as
we increase the packing fraction, the initial system becomes more tightly packed,
resulting in fewer possible rearrangements, and therefore a higher bulk modu-
lus. The bulk modulus measured from the slopes of the force vs strain curves in
Fig. 5(a) are shown in Fig. 5(e). We see that the system with the largest packing
fraction, φ = 0.763, which does not undergo any rearrangements, has the largest
bulk modulus. The system with intermediate packing fraction, φ = 0.746, does
undergo rearrangements, and the rate of increase of B with pressure notably
increases after the system has rearranged.

The shear response of single-particle systems (Fig. 5(b-d)) show that tessel-
lations filled with larger particles shear jam at smaller strains. The effect of
external pressure on the shear response also varies with particle size, as shown
in Fig. 5(f). For the smallest particle we tested (φ = 0.730), the shear modulus
decreases rapidly with increasing external pressure. For the largest particle we
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Figure 5: One particle system. (a) Force response to bulk compression for single particle
systems with different packing fractions. Force vs shear strain at different external pressures
for increasing packing fraction: (b) φ = 0.730 (particle diameter = 44mm) (c) φ = 0.746
(particle diameter = 44.5mm) (d) φ = 0.763 (particle diameter = 45mm). (d) Shear modulus
at different external pressures. (e) Bulk modulus as a function of external pressure. (f) Shear
modulus as a function of pressure. Rearrangement event in φ = 0.730 system. Images show
configurations (g) before a rearrangement (h) after a rearrangement. Dashed black line shows
new contacts and solid blue line shows the initial geometry of the cells.
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tested (φ = 0.763), varying the external pressure does not change the shear
response substantially. We surmise that, due to increased internal pressure (in
the cells) from increased packing fraction, the material system is less susceptible
to an externally applied pressure, and G thus remains constant over a range of
external pressures.

Ratio of Shear to Bulk Modulus (G/B)

Based on the B and G measurements in the previous sections, we calculate
the ratio of the two moduli, G/B, for different configurations. G/B values for
multi-particle systems are shown in Fig. 6(a). All of the multi-particle config-
urations studied have G/B = O(1) at zero external pressure and the value of
G/B decreases consistently with increasing pressure.

The relation between G/B and pressure in single particle systems, shown in
Fig. 6(b), varies with packing fraction. The response of low packing fraction
systems (φ = 0.730 and φ = 0.746) is similar to the multi-particle systems. In
the previous section, Fig. 5(e) and (f) show that for single particle systems,
G decreases while B increases as a function of pressure, leading to their ratio,
G/B decreasing with pressure. This response is different for the largest packing
fraction, φ = 0.763, which starts in a jammed state and leaves no opportunity for
particle rearrangements. Increasing the packing fraction of a given configuration
effectively increases the internal pressure in each cell. Thus, even when no
external pressure is applied, the system with φ = 0.763 is under pressure and
therefore has a small value of G/B.

Discussion

Most prior studies of jammed granular packings have focused on systems
with a large number of particles. In these systems, it is challenging to have the
packing maintain the same interparticle contact network. As a result, studies
with a large number of particles often focus on the ensemble averages of material
properties. We show that by creating a tessellated granular system with a small
number of particles in each cell, we can control the initial state, as well as limit
the possible rearrangements in the system. Not only has this allowed us to
create a material with a G/B lower than most materials, but we have been able
to reverse the typical pressure-dependent shear response in a granular material.

We were motivated to design a material with a low G/B for next-generation
atmospheric diving suits (ADS). ADS have traditionally been designed as hard-
shell submersibles, with complex anthropomorphic joints to allow articulation
while maintaining an internal pressure of 1 atm. Despite significant progress in
ADS, current designs are bulky and limit a diver’s mechanics of motion. Am-
bient pressure diving suits, such as scuba gear, allow for much greater diver
maneuverability, but cannot protect the diver from extreme pressures and from
the associated physiological problems. Therefore, new materials that are flex-
ible but resistant to pressure gradients are needed to develop new ADS. Such
material innovation would enable ADS that allow for free bending and twisting
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Figure 6: Ratio of shear to bulk modulus (G
B

) for different particle configurations. (a) G
B

as
a function of pressure for 4 different particle configurations. All of the configurations show
a monotonic decrease in the value of G

B
as a function of pressure. (b) G

B
as a function of

pressure for a single particle per cell with increasing size of particles (i.e., packing fraction).

at body joints, while simultaneously protecting the diver from the hydrostatic
pressures at large depths. This target application further motivated our annulus
tessellation design, as it is a 2D representation of what can later be developed
into a 3D wearable sleeve or joint.

This work opens further questions regarding the design and performance
of tessellated granular metamaterials. An exciting challenge is to design and
build such a system in three dimensions. Our results suggest further studies to
understand the limits of tessellated granular metamaterial tunability, cyclic sta-
bility, and reversibility. Herein, we focused on monodisperse packings of circular
disks with repeated configurations in each tessellated cell, but the behavior of
granular systems depends on particle properties [21, 22]. Future inquiries should
include additional particle parameters such as particle shape, stiffness, and poly-
dispersity, which would allow for further tuning of the mechanical response of
tessellated granular metamaterials.

Acknowledgements

This work was supported by the Office of Naval Research under Grant No.
N00014-20-1-2640.

13



References

[1] R. P. Behringer, B. Chakraborty, The physics of jamming for granular
materials: a review, Reports on Progress in Physics 82 (1) (2018) 012601.
doi:10.1088/1361-6633/aadc3c.
URL https://doi.org/10.1088/1361-6633/aadc3c

[2] J. G. Puckett, K. E. Daniels, Equilibrating Temperaturelike Variables in
Jammed Granular Subsystems, Physical Review Letters 110 (5) (2013)
058001. doi:10.1103/PhysRevLett.110.058001.
URL https://link.aps.org/doi/10.1103/PhysRevLett.110.058001

[3] C. S. O’Hern, L. E. Silbert, A. J. Liu, S. R. Nagel, Jamming at zero tem-
perature and zero applied stress: The epitome of disorder, Physical Review
E 68 (1) (2003) 011306. doi:10.1103/PhysRevE.68.011306.
URL https://link.aps.org/doi/10.1103/PhysRevE.68.011306

[4] N. W. Ashcroft, N. D. Mermin, Solid State Physics, Holt, Rinehart and
Winston, 1976.

[5] G. N. Greaves, A. L. Greer, R. S. Lakes, T. Rouxel, Poisson’s ratio and
modern materials, Nature Materials 10 (11) (2011) 823–837. doi:10.1038/
nmat3134.
URL https://www.nature.com/articles/nmat3134

[6] Online Materials Information Resource - MatWeb.
URL https://www.matweb.com/

[7] P. W. Bridgman, The Compressibility of Thirty Metals as a Function of
Pressure and Temperature, Proceedings of the American Academy of Arts
and Sciences 58 (5) (1923) 165–242. doi:10.2307/20025987.
URL https://www.jstor.org/stable/20025987

[8] J. Peng, F. Jing, D. Li, L. Wang, Pressure and temperature dependence
of shear modulus and yield strength for aluminum, copper, and tungsten
under shock compression, Journal of Applied Physics 98 (1) (2005) 013508.
doi:10.1063/1.1943510.
URL https://aip.scitation.org/doi/10.1063/1.1943510

[9] J. L. Brown, M. B. Prime, N. R. Barton, D. J. Luscher, L. Burakovsky,
D. Orlikowski, Experimental evaluation of shear modulus scaling of dy-
namic strength at extreme pressures, Journal of Applied Physics 128 (4)
(2020) 045901. doi:10.1063/5.0012069.
URL https://aip.scitation.org/doi/10.1063/5.0012069

[10] E. R. Cowley, Z. Gong, G. K. Horton, Theoretical study of the elastic
and thermodynamic properties of sodium chloride under pressure, Physical
Review B 41 (4) (1990) 2150–2157. doi:10.1103/PhysRevB.41.2150.
URL https://link.aps.org/doi/10.1103/PhysRevB.41.2150

14

https://doi.org/10.1088/1361-6633/aadc3c
https://doi.org/10.1088/1361-6633/aadc3c
https://doi.org/10.1088/1361-6633/aadc3c
https://doi.org/10.1088/1361-6633/aadc3c
https://link.aps.org/doi/10.1103/PhysRevLett.110.058001
https://link.aps.org/doi/10.1103/PhysRevLett.110.058001
https://doi.org/10.1103/PhysRevLett.110.058001
https://link.aps.org/doi/10.1103/PhysRevLett.110.058001
https://link.aps.org/doi/10.1103/PhysRevE.68.011306
https://link.aps.org/doi/10.1103/PhysRevE.68.011306
https://doi.org/10.1103/PhysRevE.68.011306
https://link.aps.org/doi/10.1103/PhysRevE.68.011306
https://www.nature.com/articles/nmat3134
https://www.nature.com/articles/nmat3134
https://doi.org/10.1038/nmat3134
https://doi.org/10.1038/nmat3134
https://www.nature.com/articles/nmat3134
https://www.matweb.com/
https://www.matweb.com/
https://www.jstor.org/stable/20025987
https://www.jstor.org/stable/20025987
https://doi.org/10.2307/20025987
https://www.jstor.org/stable/20025987
https://aip.scitation.org/doi/10.1063/1.1943510
https://aip.scitation.org/doi/10.1063/1.1943510
https://aip.scitation.org/doi/10.1063/1.1943510
https://doi.org/10.1063/1.1943510
https://aip.scitation.org/doi/10.1063/1.1943510
https://aip.scitation.org/doi/10.1063/5.0012069
https://aip.scitation.org/doi/10.1063/5.0012069
https://doi.org/10.1063/5.0012069
https://aip.scitation.org/doi/10.1063/5.0012069
https://link.aps.org/doi/10.1103/PhysRevB.41.2150
https://link.aps.org/doi/10.1103/PhysRevB.41.2150
https://doi.org/10.1103/PhysRevB.41.2150
https://link.aps.org/doi/10.1103/PhysRevB.41.2150


[11] T.-H. Kwon, Pressure variation of the elastic constants of
NaCl, Solid State Communications 95 (4) (1995) 255–257.
doi:10.1016/0038-1098(95)00182-4.
URL https://www.sciencedirect.com/science/article/pii/

0038109895001824

[12] H. A. Ludwig, W. H. Fietz, F. W. Hornung, K. Grube, B. Wagner,
G. J. Burkhart, C60 under pressure-bulk modulus and equation of state,
Zeitschrift für Physik B Condensed Matter 96 (2) (1994) 179–183. doi:

10.1007/BF01313282.
URL https://doi.org/10.1007/BF01313282

[13] Y. Partom, Change of shear modulus and yield stress with pressure and
temperature, AIP Conference Proceedings 1793 (1) (2017) 110018. doi:

10.1063/1.4971681.
URL https://aip.scitation.org/doi/abs/10.1063/1.4971681

[14] C. P. Goodrich, A. J. Liu, S. R. Nagel, Solids between the mechanical
extremes of order and disorder, Nature Physics 10 (8) (2014) 578–581.
doi:10.1038/nphys3006.
URL https://www.nature.com/articles/nphys3006

[15] T. Still, C. P. Goodrich, K. Chen, P. J. Yunker, S. Schoenholz, A. J. Liu,
A. G. Yodh, Phonon dispersion and elastic moduli of two-dimensional disor-
dered colloidal packings of soft particles with frictional interactions, Phys-
ical Review E 89 (1) (2014) 012301. doi:10.1103/PhysRevE.89.012301.
URL https://link.aps.org/doi/10.1103/PhysRevE.89.012301

[16] M. F. Thorpe, Continuous deformations in random networks,
Journal of Non-Crystalline Solids 57 (3) (1983) 355–370. doi:

10.1016/0022-3093(83)90424-6.
URL https://www.sciencedirect.com/science/article/pii/

0022309383904246

[17] J. C. Maxwell, L. On the calculation of the equilibrium and stiffness
of frames, The London, Edinburgh, and Dublin Philosophical Maga-
zine and Journal of Science 27 (182) (1864) 294–299. doi:10.1080/

14786446408643668.
URL https://doi.org/10.1080/14786446408643668

[18] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, P. Gumbsch, Structural
Relaxation Made Simple, Physical Review Letters 97 (17) (2006) 170201.
doi:10.1103/PhysRevLett.97.170201.
URL https://link.aps.org/doi/10.1103/PhysRevLett.97.170201

[19] K. VanderWerf, A. Boromand, M. D. Shattuck, C. S. O’Hern, Pressure
Dependent Shear Response of Jammed Packings of Frictionless Spherical
Particles, Physical Review Letters 124 (3) (2020) 038004. doi:10.1103/

15

https://www.sciencedirect.com/science/article/pii/0038109895001824
https://www.sciencedirect.com/science/article/pii/0038109895001824
https://doi.org/10.1016/0038-1098(95)00182-4
https://www.sciencedirect.com/science/article/pii/0038109895001824
https://www.sciencedirect.com/science/article/pii/0038109895001824
https://doi.org/10.1007/BF01313282
https://doi.org/10.1007/BF01313282
https://doi.org/10.1007/BF01313282
https://doi.org/10.1007/BF01313282
https://aip.scitation.org/doi/abs/10.1063/1.4971681
https://aip.scitation.org/doi/abs/10.1063/1.4971681
https://doi.org/10.1063/1.4971681
https://doi.org/10.1063/1.4971681
https://aip.scitation.org/doi/abs/10.1063/1.4971681
https://www.nature.com/articles/nphys3006
https://www.nature.com/articles/nphys3006
https://doi.org/10.1038/nphys3006
https://www.nature.com/articles/nphys3006
https://link.aps.org/doi/10.1103/PhysRevE.89.012301
https://link.aps.org/doi/10.1103/PhysRevE.89.012301
https://doi.org/10.1103/PhysRevE.89.012301
https://link.aps.org/doi/10.1103/PhysRevE.89.012301
https://www.sciencedirect.com/science/article/pii/0022309383904246
https://doi.org/10.1016/0022-3093(83)90424-6
https://doi.org/10.1016/0022-3093(83)90424-6
https://www.sciencedirect.com/science/article/pii/0022309383904246
https://www.sciencedirect.com/science/article/pii/0022309383904246
https://doi.org/10.1080/14786446408643668
https://doi.org/10.1080/14786446408643668
https://doi.org/10.1080/14786446408643668
https://doi.org/10.1080/14786446408643668
https://doi.org/10.1080/14786446408643668
https://link.aps.org/doi/10.1103/PhysRevLett.97.170201
https://link.aps.org/doi/10.1103/PhysRevLett.97.170201
https://doi.org/10.1103/PhysRevLett.97.170201
https://link.aps.org/doi/10.1103/PhysRevLett.97.170201
https://link.aps.org/doi/10.1103/PhysRevLett.124.038004
https://link.aps.org/doi/10.1103/PhysRevLett.124.038004
https://link.aps.org/doi/10.1103/PhysRevLett.124.038004
https://doi.org/10.1103/PhysRevLett.124.038004


PhysRevLett.124.038004.
URL https://link.aps.org/doi/10.1103/PhysRevLett.124.038004

[20] P. Wang, S. Zhang, P. Tuckman, N. T. Ouellette, M. D. Shattuck, C. S.
O’Hern, Shear response of granular packings compressed above jamming
onset, Physical Review E 103 (2) (2021) 022902. doi:10.1103/PhysRevE.
103.022902.
URL https://link.aps.org/doi/10.1103/PhysRevE.103.022902

[21] C. Brito, H. Ikeda, P. Urbani, M. Wyart, F. Zamponi, Universality of
jamming of nonspherical particles, Proceedings of the National Academy
of Sciences 115 (46) (2018) 11736–11741. doi:10.1073/pnas.1812457115.
URL https://www.pnas.org/doi/full/10.1073/pnas.1812457115

[22] A. G. Athanassiadis, M. Z. Miskin, P. Kaplan, N. Rodenberg, S. H. Lee,
J. Merritt, E. Brown, J. Amend, H. Lipson, H. M. Jaeger, Particle shape
effects on the stress response of granular packings, Soft Matter 10 (1)
(2013) 48–59. doi:10.1039/C3SM52047A.
URL https://pubs.rsc.org/en/content/articlelanding/2014/sm/

c3sm52047a

16

https://doi.org/10.1103/PhysRevLett.124.038004
https://link.aps.org/doi/10.1103/PhysRevLett.124.038004
https://link.aps.org/doi/10.1103/PhysRevE.103.022902
https://link.aps.org/doi/10.1103/PhysRevE.103.022902
https://doi.org/10.1103/PhysRevE.103.022902
https://doi.org/10.1103/PhysRevE.103.022902
https://link.aps.org/doi/10.1103/PhysRevE.103.022902
https://www.pnas.org/doi/full/10.1073/pnas.1812457115
https://www.pnas.org/doi/full/10.1073/pnas.1812457115
https://doi.org/10.1073/pnas.1812457115
https://www.pnas.org/doi/full/10.1073/pnas.1812457115
https://pubs.rsc.org/en/content/articlelanding/2014/sm/c3sm52047a
https://pubs.rsc.org/en/content/articlelanding/2014/sm/c3sm52047a
https://doi.org/10.1039/C3SM52047A
https://pubs.rsc.org/en/content/articlelanding/2014/sm/c3sm52047a
https://pubs.rsc.org/en/content/articlelanding/2014/sm/c3sm52047a

	1 Introduction
	2 Methods
	3 Results

