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ABSTRACT

We present the Cardinal mock galaxy catalogs, a new version of the Buzzard simulation that has been updated
to support ongoing and future cosmological surveys, including DES, DESI, and LSST. These catalogs are based
on a one-quarter sky simulation populated with galaxies out to a redshift of z = 2.35 to a depth of mr = 27.
Compared to the Buzzard mocks, the Cardinal mocks include an updated subhalo abundance matching (SHAM)
model that considers orphan galaxies and includes mass-dependent scatter between galaxy luminosity and halo
properties. This model can simultaneously fit galaxy clustering and group–galaxy cross-correlations measured
in three different luminosity threshold samples. The Cardinal mocks also feature a new color assignment model
that can simultaneously fit color-dependent galaxy clustering in three different luminosity bins. We have de-
veloped an algorithm that uses photometric data to improve the color assignment model further and have also
developed a novel method to improve small-scale lensing below the ray-tracing resolution. These improve-
ments enable the Cardinal mocks to accurately reproduce the abundance of galaxy clusters and the properties
of lens galaxies in the Dark Energy Survey data. As such, these simulations will be a valuable tool for future
cosmological analyses based on large sky surveys. The cardinal mock will be released upon publication at
https://chunhaoto.com/cardinalsim.

1. INTRODUCTION

Over the past two decades, large galaxy surveys have sys-
tematically mapped hundreds of millions of galaxies with
unprecedented precision, allowing us to establish the stan-
dard cosmological model that describes the universe’s evolu-
tion over billions of years. However, analyzing these data to
their full potential requires advanced theoretical models and
excellent control of systematics. Achieving these require-
ments is challenging because most of the information lies in
the scales where the theory is highly non-perturbative. Fur-
thermore, one galaxy survey can be analyzed with multiple
cosmological probes, which could share the same sources of
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systematics. Consistently modeling these systematics in dif-
ferent cosmological probes is essential to yielding unbiased
cosmological constraints. Finally, developing accurate the-
oretical models is more challenging when considering blind
analyses, in which the data is transformed to obscure actual
cosmological signals during the development of the models.

Synthetic sky catalogs, also known as mock catalogs or
mocks, provide a valuable tool for quantifying systematics
and developing analysis techniques. They consist of plausi-
ble universes that can serve as a sandbox for researchers to
test and develop methods for analyzing survey data. Accom-
plishing this task places several requirements on the synthetic
catalogs. First, one wishes to use these catalogs to control
systematics so that they are much smaller than the statisti-
cal uncertainties of the data. Therefore, the volume of the
mocks has to be larger (ideally, much larger) than the vol-
umes probed by the targeted surveys. Second, the galaxies
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in the mocks should be realistic, although the level of re-
alism required depends on the specific surveys and analysis
techniques used. Third, fast generation of new mocks is de-
sirable. When analyzing survey data, new techniques might
be developed, and new systematics might be found. These
developments might require new mocks that meet newly de-
fined requirements. Further, fast mock generation allows the
creation of various plausible realizations, allowing one to
marginalize over uncertain physical processes.

Many techniques have been developed over the past two
decades to generate synthetic catalogs (see e.g. Wechsler
& Tinker 2018, for a review). Ideally, one would want to
simulate galaxies directly from numerical solutions of cou-
pled dark matter and baryon evolution to generate a realis-
tic galaxy catalog. Unfortunately, while significant progress
has been made over the past two decades, this method is still
too computationally demanding to produce synthetic galaxy
catalogs larger than the volume observed by galaxy surveys
(see e.g. Vogelsberger et al. 2020, for a review). On the
other hand, several practical alternative methods have been
developed to simulate galaxy formation processes using phe-
nomenological models. Ordered from least computationally
demanding to most computationally demanding, these alter-
native methods include:

1. the halo occupation model (HOD, Berlind & Wein-
berg 2002a; Zheng et al. 2005), where one adopts phe-
nomenological models to describe the statistical rela-
tions of galaxy properties and properties of the largest
dark matter halos hosting these galaxies;

2. the subhalo abundance matching model (SHAM,
Kravtsov et al. 2004; Conroy et al. 2006), where one
relates galaxy properties to subhalo properties via sim-
ple rankings;

3. semi-analytic models (SAMs, see e.g. Baugh 2006;
Somerville & Davé 2015, for reviews), where one
simulates galaxy formation physics using analytical
prescriptions and integrates galaxy properties through
halo merger histories.

Combinations of these alternative methods have led to a
blossoming of synthetic catalogs that meet the aforemen-
tioned requirements for galaxy survey cosmology analyses
(e.g. Fosalba et al. 2015; Potter et al. 2017; DeRose et al.
2019; Korytov et al. 2019). The most direct predecessor of
this work is the Buzzard simulations (DeRose et al. 2019),
which combine subhalo abundance matching (Lehmann et al.
2017) and low-resolution large volume N-body simulations
using a machine learning-based technique (Addgals, Wech-
sler et al. 2022). The Buzzard simulations produce realis-
tic galaxy properties, allowing one to run target selections
(such as redMaGiC galaxy selections, Rozo et al. 2016) on

the simulations in the same way as survey data. Further, the
simulations are relatively computationally inexpensive, mak-
ing it possible to generate large numbers of realizations of
survey data. Because of these features, the Buzzard simula-
tions have facilitated end-to-end validations of cosmological
analysis pipelines from main galaxy catalogs to cosmolog-
ical constraints (e.g. MacCrann et al. 2018; To & Krause
et al. 2021b; DeRose et al. 2022; White et al. 2022; Chen
et al. 2022).

While the Buzzard simulations and other catalogs built
with the Addgals 1 have facilitated analyses in multiple cos-
mological surveys (see Wechsler et al. 2022, and references
therein), the galaxy clustering on scales less than 1 h−1Mpc
in this simulation is smaller than the SDSS measurements
up to 50 percent. This suppressed galaxy clustering signif-
icantly impacts the properties of optically selected clusters,
where one relies on the overdensity of red-sequence galax-
ies at < 1 h−1Mpc scales to identify galaxy clusters. Specif-
ically, the number of redMaPPer galaxy clusters at a given
richness (λ) in the Buzzard simulation is a factor of three to
four smaller than the observed value in the Dark Energy Sur-
vey Year 1 data (DeRose et al. 2019; Abbott et al. 2020). The
lack of redMaPPer cluster problem is not unique in the Buz-
zard simulation. CosmoDC2 (Korytov et al. 2019), the only
alternative simulation that currently has been tested with its
redMaPPer cluster properties, also underpredicts the richness
of optically selected clusters unless one artificially boosts
red-sequence galaxies in cluster environments. While the
additional boosting solves the lack of clusters problem (Ko-
rytov et al. 2019), it creates discontinuities between galaxy
properties in cluster environments and in the field.

The unrealistic galaxy population in cluster environments
is a critical limitation for studies that use these simulations to
quantify the performance of optically selected clusters (Shin
et al. 2019; Abbott et al. 2020; Myles et al. 2021b; To &
Krause et al. 2021b; Wu et al. 2022; Zhang et al. 2022). This
shortcoming can be partly mitigated by abundance match-
ing: one compares the Nth richest clusters in the data to
those in the simulations. The abundance matching technique
makes the comparison of simulations and data sensitive only
to the rank of richness instead of its absolute value, thereby
reducing the problem of mismatched galaxy abundances in
clusters. However, these effects cannot be calibrated reliably
from simulations in which cluster richnesses are a factor of
two lower than observed values.

1 We note that there are two existing versions of Buzzard: the Buzzard
Flock containing 18 DESY1 realizations, and Buzzard v2.0, containing 18
DESY3 realizations. These catalogs are based on 18 realizations of the
Chinchilla N-body simulations, each of which is generated from a different
random seed. In the remainder of this paper, we use "the Buzzard simula-
tion" to refer to one of the Buzzard v2.0 mocks that shares the same N-body
simulation as the Cardinal.
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The exact reason for this lack of cluster galaxies in the
Buzzard simulation was previously unknown. DeRose et al.
(2019) and Wechsler et al. (2022) hypothesize that it arises
from artificial disruptions of subhalos that experience close
pericentric passages (van den Bosch & Ogiya 2018). Fol-
lowing this line, DeRose et al. (2021) developed a new
SHAM model that includes orphan galaxies to address this
problem. However, while the SHAM model with orphan
galaxies can fit the galaxy clustering measured in SDSS
in several stellar mass bins, no model was found to fit all
three stellar mass bins considered in that work simultane-
ously. Further, DeRose et al. (2021) also found that the
color assignment model used in Wechsler et al. (2022) and
DeRose et al. (2022) can lead to an underestimation of red
galaxy clustering in the lowest stellar mass bins (logM∗ ∈
[9.8, 10.2] h−1M�). Because red galaxies more likely reside
in cluster environments, this reduced red galaxy clustering
can also lead to a lack of cluster galaxies.

In this paper, we solve the lack of cluster galaxies prob-
lem in the Buzzard simulation by quantifying and address-
ing both contributing factors: (1) artificial subhalo disrup-
tion in the SHAM model and (2) the color assignment model.
Our new model can simultaneously fit galaxy clustering and
group–galaxy cross-correlations measured at three luminos-
ity thresholds and also fit color-dependent galaxy cluster-
ing. We propagate this model through the Addgals algorithm
(Wechsler et al. 2022) and generate the Cardinal simulations.
Figure 1 shows the flowchart that summarizes the key steps
of generating Cardinal. A list of improvements from Buz-
zard v2.0 to Cardinal is also presented in appendix K. Finally,
we compare properties of redMaGiC galaxies and redMaP-
Per clusters in Cardinal and DES-Y3 data (Sevilla-Noarbe
et al. 2021) and find excellent agreement.

This paper is organized as follows. In section 2, we de-
tail the construction of the new SHAM models that Cardinal
is based on. In section 3, we detail the steps of generating
Cardinal using the new SHAM model. Specifically, the im-
proved color assignment method is presented in section 3.4.
In section 3.6, we address the remaining problem in our color
assignment models, including the lack of redshift evolution
in training spectra and the inadequacy of summarizing colors
using current SED templates. In section 4, we compare the
properties of redMaGiC galaxies and redMaPPer clusters in
Cardinal and DES-Y3 data. Finally, we conclude in section
5 with a discussion on future improvements.

2. A SHAM-BASED GALAXY–HALO CONNECTION
MODEL

We use a modified subhalo abundance matching (SHAM)
algorithm to construct the training data for the galaxy–halo
connection model. We describe the data and simulations used
to construct the SHAM model below.

2.1. Calibrating Data

We use the NYU Value-Added Galaxy Catalog (VAGC,
Blanton et al. 2005a) constructed from SDSS DR7 (Abaza-
jian et al. 2009) main galaxy catalog to constrain the param-
eters in the SHAM model. We consider three volume-limited
galaxy samples: Mr < −19, Mr < −20, and Mr < −21 with
0.026 < z < 0.067, 0.026 < z < 0.106, and 0.026 < z <

0.106 respectively. We limit our analysis to the north galac-
tic cap (NGC) to avoid modeling differences in target selec-
tion between north and south galactic caps. From these three
volume-limited samples, we measure the projected correla-
tion function given by

wgg(r) = 2
∫ πmax

0
ξ(r, π) dπ, (1)

where π is the line-of-sight distance between pairs, r is the
distance between pairs perpendicular to the line-of-sight, and
πmax is 40 h−1Mpc. We measure ξ(r, π) using the Landy–
Szalay estimator (Landy & Szalay 1993), with 12 loga-
rithmically spaced bins between r = 0.13 h−1Mpc to r =

32.6 h−1Mpc and 40 linearly spaced bins in π. The small-
est scale is chosen to avoid systematics caused by the size of
SDSS fibers.

In addition to galaxy clustering (wgg), we also use the
cross-correlation between galaxy groups and galaxies (wcg)
to constrain the SHAM model. Berlind & Weinberg (2002b)
suggest that the group multiplicity function provides com-
plementary information of galaxy–halo connections relative
to galaxy clustering (see also Sinha et al. 2018). Given
the number densities of galaxies, group multiplicity func-
tions are simply integrations of galaxy–galaxy group cross-
correlations across spatial separations. Therefore, we in-
clude the galaxy–galaxy group cross-correlations to better
constrain SHAM parameters important to galaxy occupations
in cluster environments. We first measure galaxy groups
in VAGC catalogs using the Self-Calibrated Galaxy Group
Finder (Tinker 2020, 2021). We restrict the measurement to
galaxies with 0.026 < z < 0.067 and Mr < −19 to ensure the
completeness of galaxies. We remove all color information
used in the Self-Calibrated Galaxy Group Finder because this
information does not exist in the mock galaxy catalogs con-
structed from the SHAM model. This might degrade the per-
formance of the group finders, but it allows apples-to-apples
comparison between the measurements in data and mocks.
With the group catalogs, we select groups with mass greater
than 5 × 1013 h−1M�, the mass range of λ > 20 redMaPPer
clusters. We then cross-correlate the centers of these groups
with galaxies at 0.026 < z < 0.067 and Mr > −19, Mr > −20,
and Mr > −21, using equation 1.

We measure the covariance matrix of the data using the
jackknife resampling technique. We first employ a Kmeans
algorithm implemented in treecorr(Jarvis 2015) on random
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Method

Learn magnitude–dark matter density distribution and 
populate dark matter lightcones (Section 3.1, 3.2, 3.3).    

Conditional abundance match SDSS SEDs onto galaxies 
(Section 3.4).  

Abundance match galaxies to subhalos in high-resolution 
N-body simulations (Section 2).

Cut out survey footprints and apply observational effects, 
including  survey depth variations, lensing, photometric 
uncertainties (Section 3.5).

SDSS luminosity function

SDSS galaxy and galaxy–group clustering 

SED templates + SDSS coefficients PRIMUS red fraction 

SDSS color-dependent clustering 

Data

DES luminosity and color distributions

New luminosity evolution and SED parameters (Section 3.6). 

Method

2 iterations

1’

Figure 1. Flowchart of the algorithm. The left column shows the observational inputs, and the right column shows the algorithm. The algorithm
can be broadly categorized into five steps. First, we develop an extended Subhalo Abundance Matching (SHAM) model to populate galaxies on
N-body simulations with resolved structure (section 2). Second, we measure the statistical relations of galaxies’ luminosities and local density
tracer Rδ in the SHAM galaxy catalogs. We then paint luminosity onto particles of a lightcone simulation using the measured relation (section
3.3). Third, we use conditional abundance matching techniques to assign colors to galaxies in the mock using observed galaxy colors in SDSS
(section 3.4). Fourth, we apply observational effects in the mocks, including lensing, photometric uncertainties, and varying survey depths
(section 3.5). Finally, we use DES’s photometric galaxy catalog to fine-tune the galaxy colors (section 3.6).
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points to separate the sky into 128 uniform patches. We then
perform the measurements by excluding one patch at a time.
The covariance matrix is then estimated as,

cov(di, dj) =
N − 1

N

k=N∑
k=1

(
di,k − 〈xi〉

) (
dj,k − 〈xj〉

)
, (2)

where di is the ith element of the data vector, N is 128, di,k

is the ith element of the data from measurements that ex-
clude the kth patch, and 〈xi〉 is the mean of the element over
N = 128 patches. Jackknife estimations introduce noise in
the covariance matrix, which leads to biases in the inversion
of the covariance. Thus, one has to regularize the covariance
matrix before inverting it. Here, we adopt an approach simi-
lar to Behroozi et al. (2019). In short, we perform an eigen-
value decomposition of the jackknife-estimated covariance
matrix to obtain eigenvalues Dn and the associated eigenvec-
tors vn. Due to various possible sources of noise (such as
variations of sky backgrounds, variations of fiber assignment
efficiency, and systematics in galaxy photometry), we do not
expect the error estimated to be better than 10 percent. We
therefore rank order the eigenvalues and find the eigenvalues
whose square rooted values are below 0.1 of the data pro-
jected onto the eigenspace. We then replace those eigenval-
ues with 0.1 of the data projected onto the eigenspace and
multiply the new eigenvalues with the eigenvectors to form a
regularized covariance matrix.

2.2. Simulations and models

2.2.1. Simulations

To generate the training model, we use the Chinchilla-T1
dark matter simulation, which have volume (400 h−1Mpc)3

with particle resolution 5.9 × 108h−1M�. The simulation is
generated using L-GADGET2 (Springel 2005) with a ΛCDM
cosmology that has Ωm = 0.286,Ωb = 0.047, σ8 = 0.82, ns =

0.96, h = 0.7, and three massless neutrino species with
Neff = 3.046. Halo finding is performed using Rockstar
(Behroozi et al. 2013), and merger trees were generated using
Consistent Tree (Behroozi et al. 2012). We refer to Wech-
sler et al. (2022) for details of this simulation. Given that our
galaxy samples are selected at low redshift, we use the snap-
shot corresponding to z = 0 for the work described in this
section.

Evidence has shown that subhalos in dark matter-only sim-
ulations are susceptible to physical and unphysical disrup-
tions (Klypin et al. 1999; Weinberg et al. 2008; van den
Bosch & Ogiya 2018). We account for this effect using a
prescription similar to Behroozi et al. (2019), which adds
disrupted subhalos back to the simulation. We first iden-
tify subhalos that are no longer detected by Rockstar in each
snapshot. Then, we locate the host halos that contain these
subhalos within their virial radius and use the semi-analytic

model from Behroozi et al. (2019) to simulate the evolution
of the subhalos’ position, mass, and maximal circular veloc-
ity. These procedures produce a catalog containing standard
halos that can be found and tracked using Rockstar and dis-
rupted subhalos (also known as orphans) that have properties
calculated semi-analytically.

2.2.2. Models

Using the subhalo abundance matching technique, we pop-
ulate galaxies on subhalos (tracked subhalos and orphans).
Here, we first describe the general concept of this technique
and then describe the extensions we develop in this paper.
In the most basic form, subhalo abundance matching assigns
each subhalo with a luminosity by enforcing the relation,

n(L > x) = n(Xh > y), (3)

where n(L > x) represents the number density of galaxies
with luminosity greater than x and n(Xh > y) represents the
number density of subhalos with properties Xh greater than y.
Following Lehmann et al. (2017), we adopt Xh as vα defined
as,

vα = vvir

(
vmax

vvir

)α
, (4)

where vvir is the virial velocity of the halos, vmax is the maxi-
mum circular velocity, and α is a free parameter. These quan-
tities are evaluated at the epoch when the halo’s mass is at
the maximum to avoid complicated physics subhalos experi-
enced when falling into a big halo. The free parameter α al-
lows additional flexibility for the subhalo abundance match-
ing model. In particular,

(
vmax
vvir

)
can be viewed as a proxy of

halo concentration. The free parameter α controls the depen-
dence of galaxy luminosity on halo concentrations.

The n(L > x) in equation 3 is estimated by fitting a modi-
fied double-Schechter function with a Gaussian tail to the lu-
minosity function measured in SDSS DR7 galaxy catalogs.
For details of constructing n(L > x), we refer the readers to
appendix E.1. of DeRose et al. (2019). We cannot directly ap-
ply the estimated n(L > x) in equation 3 because the relations
between galaxy luminosity and halo properties are stochas-
tic. This stochasticity comes from observational uncertain-
ties, complicated astrophysical processes that affect galaxy
evolution within dark matter halos, and additional halo prop-
erties that are correlated with galaxy luminosities. One can
model these complicated processes as

n(L > x) =

∫
P(L|L′)n(L′ > x) dL′, (5)

where n(L > x) is the measured luminosity function. The
intrinsic galaxy luminosity L′ in the above expression is de-
termined solely by the selected halo properties Xh by com-
paring the number density of galaxies with luminosity above
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Name Lbox Mpart εplummer

SHAM galaxy catalogs generation and tests
Chinchilla-T1 400 h−1Mpc 5.9 × 108 h−1 M� 5.5 h−1kpc
SMDPL 400 h−1Mpc 9.6 × 107 h−1 M� 1.5 h−1kpc

Lightcone mock generation
L1 (z < 0.315) 1.05 h−1Gpc 3.3 × 1010 h−1 M� 20 h−1kpc
L2 (0.315 < z < 0.955) 2.6 h−1Gpc 1.6 × 1011h−1 M� 35 h−1kpc
L3 (0.955 < z < 2.35) 4 h−1Gpc 5.9 × 1011 h−1 M� 53 h−1kpc

Table 1. Descriptions of the simulations used for this analysis, including the size of the box (Lbox), the mass resolution of the particles (Mpart),
and the force softening length (εplummer).

L′, n(x > L′), to the number density of halos with the selected
property above Xh, n(x > Xh). In most of the subhalo abun-
dance matching work (e.g. Reddick et al. 2013; Lehmann
et al. 2017; DeRose et al. 2021; Contreras et al. 2021), one
parametrizes P(L|L′) as a log-normal distribution with mean
L = L′ and scatter σ. With this assumption, equation 5
can be viewed as a convolution problem and can be solved
using standard deconvolution algorithms. However, numer-
ous lines of evidence based on observations and simulations
have shown that the scatter in P(L|L′) might depend on halo
mass (see Wechsler & Tinker 2018, for review). Wechsler &
Tinker (2018) shows that the value of this scatter is a con-
stant at the high mass end and increases at the low mass end.
We therefore parametrize P(L|L′) as a log-normal distribu-
tion with scatter,

σ(L′) = max(σv + σvs(−2.5log(L′) + σvp), σv), (6)

where σv, σvs, and σvp are free parameters, and max(A,B)
represents the maximum of A and B. Further, observational
constraints based on galaxy groups (Tinker 2021) and satel-
lite kinematics (Lange et al. 2019) constrain this scatter to be
less than 0.4 with 95 percent confidence over the range of lu-
minosities considered here. We, therefore, set an additional
prior on σ(L′) to be below 0.4. With a functional form of
P(L|L′), we then estimate n(L′ > x) based on the measured
n(L > x) using the algorithm presented in appendix A.

When subhalos (tracked subhalos and orphans) fall onto
big halos, they might be tidally disrupted, the gas within them
could be stripped, and the galaxy living inside them might be
destroyed. Thus, we must allow additional flexibility in the
model to capture these physical processes. Previous work
has been done on mitigating these issues by applying cuts
in halo properties on tracked subhalos (Reddick et al. 2013),
orphans (Behroozi et al. 2019; DeRose et al. 2021), or both
(Contreras et al. 2021). In this paper, we treat tracked subha-
los and orphans equally. This approach has the benefit that
the result depends less on the resolution of the simulations.
We mitigate the issues of physical disruptions using a pro-
cedure similar to Behroozi et al. (2019) and DeRose et al.
(2021). For each subhalo, we compare the maximum cir-
cular velocity at the current time (vmax,now) to the maximum

circular velocity at the time when the halo mass is at the
maximum (vmax,Mpeak ). When vmax,now of a subhalo is much
smaller than vmax,Mpeak , the subhalo is likely tidally stripped
and is less likely to host a galaxy. We therefore set a thresh-
old of the ratio between vmax,now and vmax,Mpeak , below which
the subhalos do not host galaxies. Further, because galaxies
with different luminosities will have different time scales of
dynamical frictions and resilience to tidal disruptions, we al-
low this threshold to depend on vα, the combination of halo
properties used in subhalo abundance matching. With these
insights, our parametrization of the probability that a subhalo
is physically disrupted reads

P(disrupt) = Θ

(
Tdis(vα) − vmax,now

vmax,Mpeak

)
, (7)

Tdis(vα) = Tl + (Th − Tl)
(
0.5 + 0.5erf

(
log10 vα−vm
√

2σd

))
(8)

where Θ is the Heaviside step function. In the above expres-
sion, Tl and Th are free parameters, with Tdis(vα) interpolat-
ing between asymptotic behaviors at high and low vα ends,
vm governs where the transition from Tl to Th occurs, and σd

controls how steep the transition is. Although Equations 7
and 8 may appear complex, the underlying physical behavior
is simple. For halos with large vα, Th sets the threshold of
vmax,now/vmax,Mpeak to determine whether the halos are tidally
disrupted. Conversely, for halos with small vα, Tl determines
the threshold. Equation 8 ensures a smooth transition be-
tween small and large vα values, and two additional parame-
ters control the location and slope of the transition.

To summarize, our extended SHAM model has 8 free pa-
rameters, whose values are given in table 2. Given these pa-
rameters, we can generate a galaxy catalog using the follow-
ing procedure. We first employ equation 4 to calculate vα of
each subhalo in a halo catalog, including tracked subhalos
and halos identified by Rockstar and orphan subhalos gener-
ated using a semi-analytic model from Behroozi et al. (2019).
We then remove subhalos according to equations 7 and 8. For
each of the remaining subhalos, we populate a galaxy at the
position of the subhalo with luminosity determined by equa-
tion 5.

2.2.3. Measurements in simulations
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Parameter Prior Best-fit value Description Relevant equations
Halo properties for SHAM

α flat(0.0, 1.0) 0.16+0.12
−0.26 Halo properties used in SHAM Equation 4

Scatter in luminosity halo mass relation
σv flat(0.1, 0.25) 0.20 ± 0.017 Scatter in luminosity halo mass relation at Mr = σvp

Equation 6σcs flat(-0.01, 0.3) 0.17+0.05
−0.06 Luminosity dependence of the scatter

σvp flat(-20.5, -20.0) −20.39+0.07
−0.16 Pivot point of the scatter
Subhalo disruption

Tl flat(0.01, 1.0) 0.01 ± 0.082 Asymptotic value of Tdis at vα = 0

Equations 7 and 8
Th flat(0.2, 1.6) 0.78+0.17

−0.27 Asymptotic value of Tdis at vα = ∞

vm flat(1.9, 3.3) 2.00+0.23
−0.16 Value of log vα(km/s) when Tdis = 0.5(Tl + Th)

σd flat(0.1, 1.0) 0.47+0.17
−0.33 Steepness of the transition

Table 2. Parameters and priors of the extended SHAM model described in section 2.2.2
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Figure 2. Comparison of the data and the best-fit SHAM model. Different columns correspond to different magnitude cuts in galaxies. The top
row shows galaxy–galaxy group cross-correlations, and the bottom shows galaxy auto-correlations. Black dots are measurements using SDSS
data, while error bars show the 1σ uncertainties. Red lines show the best fit SHAM models based on the Chinchilla-T1 simulation. Shaded
regions show one-sigma uncertainties. The blue line shows the best-fit SHAM models based on the SMDPL simulations. For comparison,
orange lines show predictions of Lehmann et al. (2017)’s best-fit model, which does not consider mass-dependent scatter in luminosity–halo
mass relations and orphan subhalos. PTE value in the legend corresponds to the Probability to Exceed.

We select galaxies in simulations using the same luminos-
ity cut as the data. To account for the effect of redshift-space
distortions, we first transform the coordinates of halos along
the line of sight using the velocity of the halos. We then apply
the periodic boundary condition on the transformed coordi-
nates and calculate wgg(r) using the same radial binning as
the data. Finally, the wgg(r) is estimated using the natural es-
timator, with an analytic calculation of the random–random
pairs. To minimize cosmic variance, we repeat the above pro-
cess by choosing line-of-sight direction along x, y, and z axes

of the box and taking the average of the measurements. Fur-
ther, we minimize the stochasticities due to the Monte Carlo
nature of the SHAM model by repopulating the simulations
10 times with the same parameters.

Because the simulation box size is small, cosmic variance
cannot be ignored in the total error budget. We estimate this
cosmic variance using the jackknife technique similar to the
procedure described in section 2.1. The main difference is
that there is no survey mask in the simulations, so we gen-
erate 125 jackknife subsamples by equally partitioning the
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Figure 3. Posteriors of the extended SHAM model given SDSS galaxy clustering and group galaxy cross-correlations. Contours show 68
percent confidence region of the posteriors given wgg and wcg. Red lines show constraints based on Chinchilla-T1, and blue lines show
constraints based on SMDPL. Details of these simulations can be found in table 1. Descriptions of these parameters are given in table 2.

box. Further, the jackknife subsampling breaks the periodic
boundary conditions. One has to consider this when analyti-
cally estimating the random–random terms in the natural es-
timator. Here, we adopt the approach described in He (2021)
to estimate the random–random terms for each jackknife sub-
sample. We estimate the covariance matrix from this cosmic
variance using the best-fit parameters to the data presented
in section 2.3. This covariance matrix is then added to the
observed covariance matrix while performing the likelihood
inferences.

Regarding the galaxy group samples, we run the Self-
Calibrated Galaxy Group Finder (Tinker 2020, 2021) on the
simulated galaxies with the same setting as run on SDSS
data. As pointed out before, in both runs on simulations and
data, we remove steps that use color information to ensure an
apples-to-apples comparison.

2.3. SHAM result and discussions

We fit the model described in section 2.2.2 to the data de-
scribed in section 2.1 assuming a Gaussian likelihood with
the priors described in table 2. The challenge is that the fitting
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is hugely time-consuming because each step of the likelihood
inference requires populating halos 10 times and computing
the correlation function 30 times. We tackle this challenge
by first building an emulator of the SHAM model and using
it for likelihood inferences. We detail the procedure of con-
structing this emulator in appendix B. Then, the likelihood
inference are performed using an ensemble slicing sampling
method implemented in zeus (Karamanis et al. 2021; Kara-
manis & Beutler 2020).

Figure 2 compares the best-fit model and the data. The
minimum χ2 is 79.4 with the degree of freedom 64, yield-
ing a Probability-to-Exceed (PTE) 0.09. Table 2 shows the
best-fit parameters. Overall, our model describes the data
well, but a small difference can be seen at r < 0.3 h−1Mpc
of wcg for the faintest galaxy sample. We want to determine
whether the difference we have observed is due to limitations
of the N-body simulations, such as force softening or finite
resolution. To do this, we repeat the entire SHAM analysis
using the Small MultiDark Planck (SMDPL) N-body simu-
lation (Klypin et al. 2016), which has a higher resolution,
a different softening scale, and a different fiducial cosmol-
ogy than the previous simulation. This difference persists, as
shown in the blue line in figure 2. One possibility is that this
difference comes from tensions between wcg and wgg. Small-
scale wgg is dominated by the one-halo term, which has sig-
nificant contributions from galaxies in high-mass halos. In
figure 2, one can see that the small-scale wgg for the faintest
galaxy samples prefers a slightly smaller one-halo term than
the model, while the small-scale wcg prefers the opposite.
This mild tension might be related to the findings in Hearin
et al. (2013), where they find tensions between group multi-
plicity functions, which are an integrated version of wcg, and
galaxy clustering, under the assumption of the basic SHAM
model. This tension is much smaller in our extended SHAM
model, and the constraining power of the data cannot dis-
tinguish it from statistical fluctuations. We therefore leave
further investigations to future work.

Figure 2.2.2 shows the posteriors of SHAM parameter con-
straints based on Chinchilla-T1 (red) and SMDPL (blue).
Most of the SHAM parameters based on Chinchilla-T1 and
SMDPL are consistent, indicating the robustness of the re-
sult to details of N-body simulations, including cosmology,
resolution, and force softening. The only parameter that is
slightly inconsistent is σvp. Chinchilla-T1 (the lower reso-
lution simulations) prefers a brighter (more negative) value
than SMDPL (the higher resolution simulations). One possi-
ble explanation is that SMDPL has more low-mass halos than
Chinchilla-T1. For a given magnitude bin, the missing low-
mass halos in Chinchilla-T1 can be compensated by a larger
scatter. Thus, Chinchilla-T1 has a brighter pivot point for the
scatter. In both Chinchilla-T1 and SMDPL, the inclusion of
orphan galaxies is strongly preferred. For the galaxy sample

considered in this work, ∼ 20 percent are orphan galaxies for
Chinchilla-T1 and ∼ 15 percent for SMDPL. Another inter-
esting result is that both Chinchilla-T1 and SMDPL prefer a
varying scatter in the luminosity-vα relation at the 1σ level.
The positive value of σcs indicates that the scatter increases
for lower mass halos. This is consistent with results based
on group finders (Tinker 2021), satellite kinematics (Lange
et al. 2019), and galaxy clustering (Xu et al. 2018).

3. POPULATING GALAXIES IN LOW-RESOLUTION
SIMULATIONS

The SHAM model presented in section 2 allows us to
create high-fidelity galaxy catalogs based on high-resolution
simulations. However, the high-resolution simulations typi-
cally have a volume much smaller than the volume accessible
with current and upcoming galaxy surveys, making them in-
sufficient to validate models with the required accuracy. In
this section, we describe the formalism to transfer the knowl-
edge learned in the SHAM catalogs to populate galaxies in
large simulations with low resolution. This way, one can
generate multiple realizations of mock galaxy catalogs with
a modest computational expense.

3.1. Simulations

We use lightcones with an area 10, 313 square degree con-
structed from the L1, L2, and L3 simulations detailed in table
1. These simulations are generated with the same cosmolog-
ical parameters as Chinchilla-T1. Details of the lightcone
construction were presented in appendix B1 of DeRose et al.
(2019).

3.2. Targets

We aim to generate mock that support sciences in large
galaxy surveys, such as the Dark Energy Survey (DES) and
Vera Rubin Observatories’ Legacy Survey of Space and Time
(LSST). The various science cases in these surveys place
stringent constraints on the galaxy properties in the simula-
tions. In this paper, we mainly focus on the two main samples
in DES: redMaPPer clusters (Rykoff et al. 2014, 2016) and
redMaGiC galaxies (Rozo et al. 2016). As shown in DeRose
et al. (2019), these two samples place the most stringent con-
straints on the galaxy models using DES data. We provide a
brief description of these two samples below.

3.2.1. redMaPPer clusters

In optical surveys, galaxy clusters appear to be spatial
and redshift concentrations of red-sequence galaxies. The
relatively tight color–absolute magnitude relations of red-
sequence galaxies enable one to identify galaxy clusters us-
ing galaxies without redshift information. The primary al-
gorithm used by Dark Energy Survey collaboration(Rykoff

et al. 2016) and the LSST Dark Energy Science Collaboration
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(Kovacs et al. 2022) to select clusters is redMaPPer (Rykoff

et al. 2014), which employs a matched filter algorithm to se-
lect overdensities of red-sequence galaxies. Here, we briefly
summarize the algorithm. First, the redMaPPer algorithm
uses spectroscopic data to construct a red sequence template
empirically. It then computes the redshift of each galaxy
by matching its color to the template. Second, redMaPPer
identifies bright and red galaxies as cluster centers and deter-
mines the probability of each galaxy being a member (pmem)
by comparing its spatial distribution, color, and luminosity
to a model. Third, the algorithm removes clusters that have
pmem > 0.5 of another cluster and repeats the above pro-
cesses. Finally, redMaPPer assigns a richness value (λ) to
each cluster, calculated by summing pmem of each member
galaxy. This richness value is used as a primary cluster mass
proxy (McClintock et al. 2019; Abbott et al. 2020; To &
Krause et al. 2021a) in cosmological analyses given their ex-
pected tight relation to halo masses (Rozo & Rykoff 2014;
Rozo et al. 2015a). redMaPPer also provides the most prob-
able redshift of each galaxy cluster (zλ) based on the colors
of its member galaxies.

3.2.2. redMaGiC galaxies

The red-sequence model derived from the redMaPPer clus-
ters can be used to select galaxy samples with excellent pho-
tometric redshift uncertainties (σz ≈ 2 percent). To achieve
this, one first constructs a color model using redMaPPer
member galaxies with high membership probabilities (pmem).
The redshift of each galaxy can be estimated by maximiz-
ing the consistency of galaxy colors and color models. One
can then select bright galaxies with colors consistent with
the color model. The galaxy samples selected in this way
are called redMaGiC (Rozo et al. 2016) and are one of the
primary lens samples in the Dark Energy Survey cosmology
analyses (Abbott et al. 2018, 2022). Based on the consistency
with the color model, each redMaGiC galaxy is associated
with a redshift probability distribution p(zredmagic).

3.3. Painting galaxy luminosities onto dark matter particles

We use the Addgals algorithm to populate the dark mat-
ter lightcones presented in DeRose et al. (2019) and Wech-
sler et al. (2022) with galaxies. The algorithm is detailed in
Wechsler et al. (2022). Here, we briefly summarize the gen-
eral formalism and highlight modifications.

Addgals populates galaxies in low-resolution N-body sim-
ulations based on three distributions:

1. The distribution of dark matter overdensities around
galaxies given their absolute r-band magnitude Mr and
redshift z, P(Rδ|Mr < x, z). The local dark matter over-
density is estimated using Rδ, distances to k nearest
dark matter particles such that the enclosed dark mat-
ter mass is 1.3 × 1013 h−1M�,

Mr < 21.8 Addgals Model
SHAM Measurement
Centrals
Satellites
Buzzard v2.0

Mr < 20.5

10 1 100 101

Mr < 19.3

R [h 1 Mpc]

p(
R

)

Figure 4. Distribution of Rδ, the radius that encloses a dark matter
mass of 1.3 × 1013 h−1 M�, at z = 0. Each panel shows a magnitude
cut, with the brightest samples on the top and the faintest samples
on the bottom. Black dots show measurements in SHAM catalogs
with error bars showing 1σ Poisson error. Red lines show mea-
surements of Rδ using mock galaxies in lightcone simulations. We
further break the Rδ distributions in mocks into centrals (blue) and
satellites (orange). As a comparison, the previous version Buzzard
v2.0 (Wechsler et al. 2022) is shown as gray lines.

2. A galaxy luminosity function φ(Mr, z), and

3. The distribution of central galaxy absolute magnitudes
given their host halos’ virial mass (Mvir) and redshift,
P(Mr|Mvir, z).

In this work, the galaxy luminosity function is the same as
the one used to create SHAM models at z = 0. At z > 0, the
Schechter function’s characteristic luminosity (L∗) is shifted
based on a third-order polynomial. The parameters of this
polynomial are constrained based on DES-Y1 data (Abbott
et al. 2018). Details of constructing this luminosity function
are given in DeRose et al. (2019).

Given the redshift-dependent luminosity function, we pop-
ulate galaxies on each snapshot of Chinchilla-T1 simulations
using the best-fit SHAM model presented in section 2. We
then use these galaxies to determine P(Mr|Mvir, z) for central
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galaxies in resolved halos, defined as halos containing more
than 200 particles, and P(Rδ|Mr < x, z) for satellite and cen-
tral galaxies in unresolved halos.

To determine the distribution of central galaxy absolute
magnitudes at fixed host halo virial mass Mvir and redshift,
we assume that P(Mr|Mvir, z) is a Gaussian distribution with
a mass-dependent scatter. The mass dependency of the scat-
ter is determined by fitting a straight line to the measured
Mr scatter of Mvir > 1013 h−1M� halos in the SHAM galaxy
catalogs. The mean of the Gaussian distribution is given by

〈Mr(Mvir)〉= A − 2.5
(
a log

( Mvir

b

))
(9)

−
1
c

log
(
1 +

( Mvir

b

)(c×d))
, (10)

where A, a, b, c, d are free parameters determined at each
snapshot of the SHAM galaxy catalogs. Using the best-fit
function, we populate central galaxies on resolved halos in
the low-resolution lightcone simulations.

Similar to P(Mr|Mvir, z), we determine P(Rδ|Mr < x, z)
in the SHAM galaxy catalogs at each snapshot. We model
P(Rδ|Mr < x, z) as a log-normal and normal distribution
sums, given by

P(Rδ|Mr < x, z) = (1 − p)
e−(ln(Rδ)−µc)2/2σ2

c

Rδ

√
2πσc

+ p
e−(Rδ−µ f )2/2σ2

f

√
2πσ f

,

(11)
where p, µc, µ f , σc, σ f are free parameters and are measured
in each snapshot of the SHAM galaxy catalogs at grids of
magnitude thresholds from Mr = −18 to Mr = −24. Note
that σ f has length units, and σc is dimensionless. The ad-
ditional Rδ in the denominator of the first term ensures the
consistency of the units. We then build a Gaussian process
emulator of these parameters to enable accurate interpola-
tions. We detail the emulator construction in appendix C.

With P(Mr|Mvir, z) and P(Rδ|Mr < x, z), we paint r-band
luminosities onto dark matter particles in the lightcone sim-
ulations. For the resolved halos, we paint luminosities at the
center of each halo using the learned P(Mr|Mvir, z). The re-
solved halos are defined as halos with Mvir > 6× 1012 h−1M�
for the L1 and L2 boxes and Mvir > 1×1013 h−1M� for the L3
box. These choices of halo masses were justified in Wechsler
et al. (2022). For unresolved galaxies, we paint luminosities
onto dark matter particles. We first generate random real-
izations of galaxies’ redshifts by inverse transform sampling
the measured redshift distributions of dark matter particles in
the lightcone simulations. Next, we generate random real-
izations of galaxies’ r-band luminosities (Mr) from the lumi-
nosity function φ(x, z) after subtracting the number densities
of resolved halos. By doing so, we avoid double-painting
central galaxies. We then convert the cumulative conditional
probability P(Rδ|Mr < x, z) to P(Rδ|Mr, z) using finite differ-

ence estimation:

P(Rδ|Mr = x, z) =
N(x+δx)P(Rδ |Mr<x+δx,z)

M −
N(x)P(Rδ |Mr<x,z)

M ,(12)

where M is a normalization constant and N(x) =
∫ x
−∞

φ(x, z),
the cumulative luminosity function. Each galaxy is ran-
domly assigned an Rδ based on its Mr and z by inverse trans-
form sampling of P(Rδ|Mr, z). We arrive at a list of galaxy
(Rδ,Mr, z) values. The remaining task is to put galaxies in the
correct positions. In the N-body lightcones, we measure Rδ

for each dark matter particle. We then divide the dark matter
lightcone and galaxy samples into ∆z = 0.01 bins. For each
redshift bin, we assign galaxies to dark matter particles using
the closest match of Rδ in orders of galaxies’ brightness.

Figure 4 shows the comparison of Rδ distributions of the
painted galaxies (red line) onto those measured in the SHAM
model (black dots). The agreement between the red line and
the black dots indicates that equation 11 provides a reason-
able description of the measurement and the galaxy assign-
ment algorithm works reasonably well. Similar to Wechsler
et al. (2022), the Rδ distributions show double bump features
for the two faintest galaxy thresholds. Central galaxies dom-
inate one bump, and satellite galaxies dominate the other.
This double bump feature of Rδ distributions indicates the
effectiveness of Rδ on separating centrals and satellites at a
given luminosity. We further compare the Rδ distribution in
this work with the previous version (Buzzard v2.0; Wechsler
et al. 2022). We find that Rδ is shifted to smaller values at a
given luminosity than Buzzard v2.0, indicating a more signif-
icant satellite fraction at a given luminosity. This is likely be-
cause we include orphan satellites in the SHAM model while
Buzzard v2.0 did not.

3.4. Painting colors onto galaxies

So far, we have generated a galaxy mock with a realis-
tic spatial distribution and rest-frame r-band luminosity dis-
tribution. This section describes an algorithm for assigning
colors to these galaxies.

3.4.1. Overall color distribution

Following Wechsler et al. (2022), we assume that galaxy
SEDs can be described by the product of five coefficients
and five KCORRECT spectral templates (Blanton et al. 2003;
Blanton & Roweis 2007). One can then directly assign the
measured KCORRECT coefficients in real data to galaxies
in the simulations. This approach has a couple of benefits.
First, the small number of coefficients for each galaxy re-
duces the requirements of memory and computational power
to generate and store mock catalogs. Second, the product
of coefficients and KCORRECT templates provides full SED
information for each galaxy, from which one can compute the
observed magnitude by applying band shifts and the observed
bandpasses without regenerating galaxy SEDs. Third, the
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Figure 5. Comparison of color-dependent clustering measured in Cardinal (line) and data (dots with error bars, Zehavi et al. 2011). Errorbar
shows 1σ uncertainties. Red lines and dots correspond to red galaxies, while blue lines and dots correspond to blue galaxies. Different columns
correspond to different magnitude bins in galaxies. For comparison, results from Buzzard v2.0 are shown in gray.

direct assignment from data guarantees reasonable matches
between mocks and data. However, this approach requires
a pool of measured KCORRECT coefficients representative
of the targeted survey data. Generating this pool of KCOR-
RECT coefficients requires representative spectroscopic red-
shifts down to the photometric survey depths. This is usually
unachievable.

Following DeRose et al. (2019), we adopt a hierarchical
approach to associate KCORRECT coefficients of a SDSS
galaxy to a simulated galaxy. We first generate a represen-
tative sample at z < 0.2 down to DES survey depth using
galaxies with z = (0.005, 0.2) in the SDSS DR7 VAGC cata-
log (Blanton et al. 2005b). Each galaxy has five KCORRECT
coefficients according to Blanton et al. (2003) and Blanton
& Roweis (2007). We then use PRIMUS (Coil et al. 2011)
galaxies to quantify the redshift evolution of this coefficient
pool. Specifically, we employ PRIMUS galaxies to calcu-
late the ratio wr(Mr, z) of the probability of being red at z to
the probability at z < 0.2. We define galaxies as red when
0.1g− r > 0.15−0.03Mr. With wr(Mr, z) at hand, we can gen-
erate KCORRECT coefficients for each simulated galaxy us-
ing a rejection sampling algorithm. We first bin SDSS galaxy
samples and simulated galaxies using their rest-frame r-band
luminosities (Mr) with widths ∆Mr = 0.1(22.5 + Mr). For
each simulated galaxy in the ∆Mr bin, we first remove the

SDSS galaxy samples in the same bin if

rand>wr(Mr, z)p
(

0.1g − r > 0.15 − 0.03Mr|Mr ∈ ∆Mr

)
,

p =
N

(
0.1g − r > 0.15 − 0.03Mr ∧ Mr ∈ ∆Mr

)
N (Mr ∈ ∆Mr)

, (13)

where rand is a random number drawn from a uniform distri-
bution from 0 to 1, p is an empirically measured red fraction
in SDSS galaxy samples, and z is the redshift of the simu-
lated galaxy. We associate the KCORRECT coefficients of
a galaxy in the remaining SDSS galaxy sample to the sim-
ulated galaxy by selecting the one with the closest value of
Mr. If there is no SDSS galaxy in the ∆Mr bin, we expand
the width of the bin to ∆Mr = 0.1(22.5 + Mr)2 and repeat
the rejection sampling step. By doing so, we paint KCOR-
RECT coefficients to each simulated galaxy. With KCOR-
RECT coefficients for each simulated galaxy, we can com-
pute the galaxy’s rest-frame g − r color by convolving the
SED generated from these KCORRECT coefficients and the
SDSS’s bandpass. The simulated galaxies will have the same
color–Mr relation in the SDSS galaxy samples and the same
red fraction–redshift relation as constrained by the PRIMUS
galaxy samples. These steps have been validated in Wechsler
et al. (2022) and DeRose et al. (2019).

3.4.2. Environmental dependent galaxy color distribution

Once we create mock galaxies with realistic overall color
distribution, we shuffle galaxy colors to create environmental
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dependencies of the color. We use the conditional abundance
matching technique (Masaki et al. 2013; Hearin & Watson
2013) and the rest-frame g− r color to perform the shuffling.
Specifically, we assign the SED that corresponds to the rest-
frame g− r color to a galaxy such that the following equation
is satisfied,

p(< rank(g − r)|Mr) = p(< rank(ep)|Mr), (14)

where ep is a proxy to quantify galaxy environments. DeRose
et al. (2021) have found that Rh, the distance to the near-
est massive halos, provides a good proxy of galaxy envi-
ronments. Using Rh and the conditional abundance match-
ing technique, they find comparable color-dependent galaxy
clustering to SDSS measurements (Wechsler et al. 2022;
DeRose et al. 2021). However, this proxy is inadequate for
galaxies in galaxy clusters. First, more massive halos are
bigger. On average, galaxies that live in a more massive halo
would have larger Rh than those living in small mass halos.
Therefore using Rh as a color proxy would make galaxies
bluer in more massive halos. Second, for galaxies living in
massive clusters, Rh is the distance to the central galaxy. Us-
ing Rh as a color indicator would create a strong radial color
profile in a massive halo that is independent of cluster mass.
This strong correlation breaks the self-similarity of galaxy
clusters of different masses and lacks observational support.
One hint of these problems shows in Wechsler et al. (2022)’s
comparison of red galaxy clustering at r < 1 h−1Mpc in the
faintest magnitude bin (see also the grey line in figure 5).
The ratio of red galaxy clustering amplitude to all galaxies is
low compared to the data. Since most of the pairs that con-
tribute to small-scale clustering are from galaxies residing in
large-mass halos, the small clustering ratio indicates that the
galaxies in clusters are too blue.

Given the aforementioned shortcomings of Rh, we define
a new galaxy environment proxy ehc. ehc is constructed with
two insights. First, assuming galaxy clusters with different
masses are self-similar, the distance to a cluster should be
measured in units of the cluster’s radius. In practice, we use
the ratio of the distance to a cluster and the cluster’s virial
radius (Rvir) to some power (c0) as the color proxy. The ad-
ditional power of the virial radius allows the possibility that
more massive halos are stronger at quenching galaxies. The
second insight is that the galaxy color gradient is shallower at
the inner part of the clusters compared to the outskirts (Ad-
hikari et al. 2021). Further, given the success of producing
reasonable large-scale red galaxy clustering using Rh (Wech-
sler et al. 2022), we would like the new environment proxy
ehc to be similar to Rh on large scales. Therefore, we design
a mapping from Rh to ehc such that ehc approaches Rh + c
when Rh is infinity and becomes independent of Rh when Rh

is zero. c is an arbitrary constant irrelevant to color assign-
ments because only the ranks of Rh are related to galaxy col-

ors (equation 14). Given these two insights, the environment
proxy has the following functional form,

x = dh/R
c0
vir

ehc = 0.5x + c1

 x − 1
2c1

erf

 x − 1
2c1

+

exp
(
−

(
x−1
2c1

)2
)

√
π


 ,(15)

where dh is the distance to the nearest massive halo with mass
greater than Mch, and Mch, c0, c1 are three free parameters.
c1 controls the sharpness of transition from dehc/dx = 0 to
dehc/dx = 1.

One remaining problem of equation 15 is that all central
galaxies with M > Mch have ehc = 0, making them the red-
dest galaxies at a given magnitude. Given that Mch is usually
1012.8 h−1M�, assigning all central galaxies with M > Mch

the reddest SEDs will contradict observations (e.g. Wetzel
et al. 2012). We must make some central galaxies living
in low-mass halos blue. The challenge is that our light-
cone has different resolutions at different redshifts, and sim-
ple mass cut might transfer this reshift-dependent resolution
onto galaxy colors. Fortunately, Rδ gives a nice separation
of centrals and satellites that is less sensitive to the reso-
lution of the simulations (see figure 4). Specifically, using
Chinchilla-T1, we find that none of the satellite galaxies in
M > 1012.8 h−1M� halos and none of the central galaxies
with M > 2 × 1013 h−1M� have Rδ greater than two. That
is, galaxies with Rδ > 2 are likely to be low-mass isolated
centrals whose color should be preferentially blue. Built on
these insights, we can increase the value of the environmen-
tal proxy ehc of a galaxy living in a low-density environment
(Rδ > 2) and likely to be red (ehc < 1) in the original algo-
rithm. In this way, these galaxies will be bluer because of
a larger environmental proxy value. We, therefore, increase
galaxies’ ehc by c2 if Rδ > 2 and ehc < 1.

Finally, we allow the possibility that color ranks (rank(g −
r)) and galaxy environment proxy ranks (rank(ep)) are not
perfectly correlated. Instead of implementing equation 14,
we implement

p(< rank(g − r)|Mr) = p(< ˜rank(ep)|Mr). (16)

In the above equation, ˜rank(ep) is constructed such that it is
an unbiased estimator of rank(g − r) and is correlated with
rank(g − r) with correlation coefficient rc. We construct

˜rank(ep) using halotools (Hearin et al. 2017). DeRose et al.
(2021) find that galaxies with different stellar mass prefer a
different rc using SDSS color dependent clustering measure-
ments (Zehavi et al. 2011). Motivated by their findings, we
parametrize rc to depend on Mr via

rc = cl + (ch − cl)
(
0.5 + 0.5erf

(
Mr − cm
√

2cσ

))
, (17)
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where cl, ch are free parameters that govern the asymptotic
behaviors at low and high Mr, and cm, cσ govern the transi-
tion Mr and the steepness of this transition. Equation 17 has
the same functional form as equation 8. Again the underlying
physical behavior is pretty simple. For bright galaxies (small
Mr), rc is determined by cl. Conversely, for faint galaxies, rc

is determined by ch. Equation 17 simply ensures a smooth
transition from bright to faint objects, and two additional pa-
rameters control the location and slope of the transition.

In summary, our color assignment model has eight param-
eters:

1. Mch: a parameter defines the mass threshold of halos
to which we calculate distances (dh) of each galaxy.

2. c0 and c1: two free parameters control the mapping of
dh to the environment proxy ehc.

3. c2: a parameter is added to ehc of low-mass centrals to
make it bluer.

4. cl, ch, cm, cσ: parameters control luminosity depen-
dence of the correlation between colors and environ-
ment proxies.

We use color-dependent clustering measured in Zehavi et al.
(2011) to constrain these parameters. Specifically, to sepa-
rate the uncertainties of the color model and the galaxy clus-
tering model, we use the ratio of galaxy clustering of red and
blue galaxies to all galaxies to constrain the color model pa-
rameters. A simple downhill simplex algorithm is used to
find the best-fit parameters. At each step of the downhill
simplex algorithm, we shuffle the galaxy SEDs in the mocks
using equation 16, regenerate galaxy colors using SEDs and
SDSS filters, select galaxy samples according to Zehavi et al.
(2011), calculate galaxy clustering using Corrfunc (Sinha &
Garrison 2020), and compare the measurements with the data
assuming a Gaussian likelihood. Finally, our best-fit model
has χ2 = 84.9 with degree-of-freedom 58, corresponding to
a PTE value of 0.01. In Figure 5, we compare the best-fit
model to the measurement. We find that our best-fit model
can accurately describe the data where the predicted clus-
tering differs from that of Buzzard v2.0. The differences be-
tween our model and Buzzard v2.0 are especially pronounced
for the lowest luminosity sample.

3.5. Observational effect

3.5.1. Photometric noise

So far, we have generated a quarter-sky galaxy lightcone
with realistic color, luminosity, and spatial distributions. We
add galaxy shapes and sizes following methods described in
DeRose et al. (2019). Finally, we apply lensing effects using
the ray tracing code Calclens (Becker 2013). Specifically,
we apply deflection, rotation, shear, and magnification for all
galaxies to alter their positions, shapes, and photometry.

We cut out two DES-Y3 regions from this lightcone and
rotate them into the DES-Y3 footprint (Sevilla-Noarbe et al.
2021). We then apply several observational effects on the
mock catalogs. First, we apply the survey masks on the
mock using the DES-Y3 survey mask that is in the form of a
healpix map with Nside=4096, corresponding to a resolution
of 0.73 arcmin2. For each healpix pixel, we randomly select
galaxy samples according to the FRACGOOD value, which
describes the amount of masking within the healpix pixel.
Second, we add photometry noise to each galaxy, a process
that will be detailed later. This step is essential because mag-
nitude noise can drastically affect the number of galaxies near
survey depth limits due to Eddington biases. For analyses
that use galaxies near survey depth limits, which is the case
for most weak lensing analyses, properly modeling noise is
essential. Finally, we cut out galaxies with observed magni-
tude fainter than the survey depth.

The remaining task is to add a realistic magnitude error
on each galaxy. We follow the prescription described in
(DeRose et al. 2019; Wechsler et al. 2022) that uses the effec-
tive exposure time (teff) and 10σ limiting magnitudes (mlim)
from survey data. Here, we briefly summarize the prescrip-
tions. First, we assume that the observed total number of
photons of a galaxy comes from two contributions: photons
from galaxies Igal and photons from the noise, such as sky,
readout noise, etc. Isky. The Igal can simply be related to
galaxy magnitude (mgal) via,

Igal = 10−0.4(mgal−ZP) × teff , (18)

where ZP = 22.5. Following Rykoff et al. (2015), Isky can
be empirically determined from data. Sevilla-Noarbe et al.
(2021) provides the 10σ limiting magnitudes (mlim) and the
effective exposure time (teff) in the form of healpix maps with
a resolution of 0.73 arcmin2. Using this information, we cal-
culate Isky for each healpix pixel by

Isky =
10−0.8(mlim−ZP) × teff

100
− 10−0.4(mlim−ZP). (19)

We assume the observed number of photons follows a Pois-
son distribution. The noisy observed flux Fobs is then given
by

Fobs =
Poisson(Igal + Isky) − Isky

teff

, (20)

where Poisson denotes a random draw from Poisson distri-
bution. The second term in the above equation is to mimic
the process of sky background subtractions in observations.
We note that this implementation is different from DeRose
et al. (2019) and Wechsler et al. (2022), where the authors
performed a random draw from a Gaussian distribution with
a scatter as the square root of the mean. The Gaussian ap-
proximation is valid for high signal-to-noise galaxy samples
but could lead to a bias for low signal-to-noise galaxies. The
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Figure 6. Mean ∆Σ profiles measured around halos with Mvir >

2 × 1014 h−1 M� and z = [0.6, 0.62]. The x−axis is measured in
physical coordinates. The green dots are derived from dark mat-
ter particle–halo cross-correlations. The orange dots are calculated
from ray-tracing shapes (and are similar to previous catalog ver-
sions). The blue dots show our improved model, calculated from
corrected ray-tracing shears. Error bars are estimated with 10000
bootstrap resampling. The black vertical dashed lines show ten
times the pixel size for ray-tracings.

noise of the observed flux σflux is given by
√

Igal + Isky/teff .
The associated magnitude and error are

mobs = ZP − 2.5log10Fobs

merr,obs =
2.5

log(10)
σflux

Fobs
. (21)

3.5.2. Gravitational lensing

The matter along the line of sight will distort the light from
galaxies. This distortion will modify the position of galax-
ies, distort their shapes, and magnify their brightness. We
include these effects by performing full-sky multi-plane ray-
tracings using Calclens (Becker 2013). This step has been
detailed in appendix C of DeRose et al. (2019). Here, we
provide a brief summary. First, we decompose the full-sky
particle lightcones into healpix maps with nside = 8192, cor-
responding to a resolution of 0.46 arcmins. Next, for each

pixel, we divide the particle lightcones into equally-spaced
lens planes from z = 0 to z = 2.4 with separations of
25 h−1Mpc. Then, for each of the simulated galaxies, we cal-
culate the deflection angle and distortion matrix of the light
at each lens plane. To achieve this, we first calculate the
lensing potential from integrated dark matter density fields
by solving a two-dimensional Poisson equation (Jain et al.
2000). Next, we calculate the deflection angle using the lens
equation (Teyssier et al. 2009), which relates the deflection
angles to the first derivative of the lensing potential. Then,
the distortion matrix is calculated using the second derivative
of the lensing potential (Jain et al. 2000; Hilbert et al. 2009;
Becker 2013). Finally, these deflection angles and distortion
matrices at each plane are combined to produce the final total
deflections, shears, and magnifications (equations 10 and 12
of Becker 2013).

We validate the ray-tracing shears by computing the tan-
gential shear γt around halos with Mvir > 2 × 1014 h−1M�
and z = [0.6, 0.62]. This tangential shear can be related to
the excess surface density (∆Σ) of the matter around halos,
which can be measured directly using particles in the simula-
tion. We relate the tangential shear to ∆Σ using the estimator
presented in Sheldon et al. (2004), which reads

∆Σ(r) =

∑Nhalos
i

∑NSources
j γ

i, j
t Σ

i, j
crit∑Nhalos

i
∑NSources

j

(
Σ

i, j
crit

)2 , (22)

where Nhalos is the number of halos in the bin, NSources is the
number of galaxies around halos at distance r, γi, j

t is the tan-
gential shear of of galaxy j around halos i. To avoid contam-
ination, we only use galaxies with a redshift of 0.1 greater
than the redshift of the halos. In the above equation Σ

i, j
crit is

given by

Σ
i, j
crit =

c2

4πG
Ds

DhDhs
, (23)

where Dh,DS , and Dhs are angular diameter distances to
halos, galaxies, and between halos and galaxies. The ∆Σ

can also be calculated from the matter-halo cross-correlation
functions ξhm using

∆Σ(r) = ρ̄
4
r2

∫ r

0
x dx

∫ ∞

0
dχ ξhm

(√
x2 + χ2

)
−2ρ̄

∫ ∞

0
dχ ξhm

(√
r2 + χ2

)
. (24)

Figure 6 shows the comparison of ∆Σ measured via ray
tracing (equation 22, orange dots) and via direct measure-
ments of particles (equation 24, green dots). We find that
the ray tracing and particle calculations agree well on large
scales but deviate on small scales. This deviation has been
shown in literature (Kovacs et al. 2022; Takahashi et al. 2017)
and likely comes from the finite angular resolution of 0.46 ar-
cmins when we calculate the lensing potentials for ray trac-
ing. This resolution problem in lensing can be problematic
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for cluster lensing analyses when most of the signal lies be-
low 1 h−1Mpc. Because of the resolution problem, cluster
lensing studies have relied on the dark matter particle–halo
cross-correlation (Wu et al. 2022; Abbott et al. 2020). How-
ever, Wu et al. (2019) points out that while the particle–
halo cross-correlation produces the right mean ∆Σ, it signifi-
cantly underestimates the halo-to-halo variance of ∆Σ at large
scales. This is because particle–halo cross-correlations ig-
nore the line-of-sight structure’s contributions in the lensing
profile 2.

We empirically correct the shears of each galaxy using the
measured particle–halo cross-correlations. We first bin the
halos in simulations with redshift from z = 0.18 to z = 0.67
and the virial mass Mhalo above 1013 h−1M� into ∆z = 0.02
and ∆log10(M) = 0.15 h−1M� bins. Next, we calculate ∆Σ

for halos in each bin using particle–halo cross-correlations
(∆Σp) using equation 24 and ray-tracing derived shears using
equation 22 (∆Σγ). We calculate the differences between the
two and apply a correction on the two shear components of
each galaxy γ1 and γ2. Specifically, our algorithm reads

for Galaxies with redshift z do
for Halos h with mass Mh > 1013 h−1 M�, redshift zh < z, and

distance to galaxies rh < 4.6 arcmins (10 times the resolution of
the ray-tracings) do

Σ
h,g
crit ←

c2

4πG
Dg

DhDhg

∆γt ← (∆Σp − ∆Σγ)/Σ
h,g
crit

∆γ1,h = ∆γt/ (cos(2φ) + sin(2φ) tan(2φ))
∆γ2,h = ∆γ1,h tan(2φ)

end for
γ1 ← γ1 +

∑
h ∆γ1,h

γ2 ← γ2 +
∑

h ∆γ2,h

end for

In the above algorithm, Dg, Dh, Dh,g are angular diameter
distances to galaxies, halos, and between halos and galax-
ies. Index h goes through haloes with mass greater than
1013 h−1M� along the line of sight with angular separations
less than 4.6 arcmins of the galaxies. The two equations re-
lating ∆γt to ∆γ1 and ∆γ2 are derived assuming ∆γ× = 0.
This is motivated by the fact that gravitational lensing due to
the localized mass distribution does not generate γ× modes.
The blue dots in figure 6 show the ∆Σ measurements using
the corrected galaxy shears. We find that it is consistent with
the derivation from particle–halo cross-correlations, indicat-
ing the effectiveness of our algorithm. In appendix E, we fur-

2 We note that one could include line-of-sight contribution into particle–halo
cross-correlations by calculating two-dimensional projected correlations as
implemented in Halotools (Hearin et al. 2017). However, as shown in Wu
et al. (2019), one must consider particles with distances to clusters much
greater than 100 h−1Mpc to avoid underestimating variances, which might
be computationally challenging.

ther show that this correction of galaxy shears has well below
0.1 percent impact on cosmic shear (ξ+/−) at large scales. At
small scales, ξ+/− based on corrected galaxy shears is more
consistent with theoretical predictions.

3.6. Conditional abundance matching color

In this section, we first diagnose mismatches between
modeled and observed color distributions. We then describe
our schemes for correcting these mismatches. This correc-
tion has several moving parts, but our tests (see figures 9 and
10) show that it has the desired effect.

Figure 7 compares the total magnitude distributions and
color–color distributions of galaxies in the mock (dashed
lines) and the data (solid black lines). In general, the galax-
ies in the mock have redder colors. This trend has also been
shown in figure 5 of DeRose et al. (2019), where the au-
thors compared Buzzard to COSMOS data. As described in
section 3.4.1, the overall color distribution is determined by
two different factors: (a) KCORRECT spectral templates in
(Blanton & Roweis 2007), and (b) SDSS KCORRECT coef-
ficients with redshift evolution controlled by PRIMUS’ red
fraction measurements. To identify the exact cause of this
mismatch of colors, we first test the effectiveness of KCOR-
RECT spectral templates in describing colors of high redshift
galaxies. We calculate KCORRECT coefficients of redMaP-
Per member galaxies in clusters with a richness greater than
20 measured in the DES-Y3 data. In this calculation, we
use the redshift of the host clusters to minimize the error
of photometric redshifts. We then reconstruct the magni-
tude of galaxies using these KCORRECT coefficients. Fig-
ure 8 compares the g − r color measured using the recon-
structed magnitudes to those measured with the input mag-
nitudes. We choose to show g − r for simplicity but find
that the trend is consistent between different colors. Figure
8 shows that the KCORRECT reconstructed color is unbi-
ased for the low redshift bin. However, for the high redshift
bin, while the reconstructed color of blue galaxies seems to
be mostly unbiased, the reconstructed color is increasingly
biased for redder galaxies. This indicates that summarizing
colors with KCORRECT spectral templates is valid for low
redshift galaxies but biases the colors of high redshift red
galaxies. We further test this finding using 31 COSMOS SED
templates (Ilbert et al. 2009), and find a similar result. Inter-
estingly, this bias makes red galaxies bluer, which contradicts
the trend in figure 7. Therefore, we conclude that the trend in
figure 7 is likely due to the insufficiency of the combination
of SDSS KCORRECT coefficients and PRIMUS’ red frac-
tion measurements for describing the colors of high-redshift
galaxies.

In summary, for red galaxies, two competing effects affect
their colors: the insufficiency of SDSS KCORRECT coef-
ficients and PRIMUS’ red fraction make them too red, and
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Figure 7. Comparison of apparent magnitude between Cardinal and DES Y3 data. The top left panel compares overall magnitude distributions,
and the bottom left panel shows the fractional differences. The top right panel compares g − r and r − i distributions, and the bottom right
compares g− r and i− z distributions. The black lines show measurements of DES Y3 data, the dashed lines show Cardinal before applying the
conditional abundance matching scheme (detailed in section 3.6), and the solid lines show Cardinal after applying the conditional abundance
matching scheme. Contours show 1σ and 2σ boundaries of the density distributions. The new conditional abundance matching scheme greatly
improves the consistency between mocks and data.

summarizing the color with KCORRECT spectral templates
makes them too blue. The cancellation of these two com-
peting effects on the colors of red galaxies can potentially
explain why the mean color of red-sequence galaxies in Buz-
zard (DeRose et al. 2019) is consistent with data. In contrast,
the overall colors of galaxies are biased red. Further, while
the cancellation of these two competing effects can make the
colors of red galaxies unbiased, it could boost the total num-
ber of red galaxies because blue galaxies are more abundant
than red-sequence galaxies. Figure 5 of DeRose et al. (2019)

shows that the number of red galaxies in Buzzard is larger
than in the COSMOS data. To further understand this hy-
pothesis, we present a toy model in appendix J, showing that
our hypothesis can qualitatively reproduce Buzzard’s g − r
color distribution shown in figure 5 of DeRose et al. (2019).

A more comprehensive and physical solution to these two
causes of color mismatches between mocks and data is im-
portant but requires further research. Here we provide an em-
pirical solution using DES-Y3 photometric data. The DES-
Y3 data constrain galaxies’ overall color and apparent magni-
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Figure 8. Color (g− r) residuals as a function of g− r color (cd). cm

is the g − r color constucted using k-correction templates and best-
fit coefficients. This calculation uses redMaPPer member galaxies
with redMaPPer run on DES-Y3 data. Each column corresponds
to a redshift slice using redshifts of host galaxy clusters. Top pan-
els: dots show the median cm − cd in each color bin, while error
bars show 68 percent scatter. Magenta lines show 1σ widths of red
sequence reported by redMaPPer. We split the samples into two
subsets: galaxies that are bright with mz < 18 (green), and galaxies
that best match redMaPPer’s red-sequence template (blue). Both
subsets are artificially shifted horizontally to improve clarity. Bot-
tom panels: histograms show the measured color distributions of all
galaxies in the calculation. Magenta lines show the mean (solid) and
width (dashed) of the red sequence reported by redMaPPer. For all
samples, the reconstructed color is mostly unbiased at z = 0.2-0.3.
At z = 0.4-0.5, the reconstructed color is biased for red galaxies and
mostly unbiased for blue galaxies.

tude distributions. Because DES-Y3 data do not have redshift
information for each galaxy, we must make some assump-
tions to calibrate our simulations with photometric data. We
make the following assumptions:

1. The ranks of galaxy colors given observed magnitude
in mocks are valid.

2. The relative colors of galaxies in different redshifts are
correct.

With these two assumptions, we can then employ the DES-
Y3 data to tune the multi-dimensional color and magnitude
distributions of galaxies in Cardinal using the conditional
abundance matching technique. We first match the observed
z band magnitude distributions in Cardinal and data because
the z band is the reference magnitude used to select red-
MaGiC galaxies and redMaPPer clusters. To achieve this, we

retune the third-order polynomial parameters that govern the
redshift evolution of L∗ by matching the luminosity functions
of the mock galaxy catalogs to the data. We use a downhill
simplex algorithm to minimize a Gaussian likelihood with
Poisson errors. Second, we match the color distributions by
enforcing the equality of the following probabilities between
mocks and data,

P(< ci|mz, c j<i), (25)

where ci = [g− r, r− i, i− z] denotes the three colors used for
lens galaxies and cluster selections. We use the method im-
plemented in halotools (Hearin et al. 2017) to perform this
matching. With this second step, we can ensure the matches
of overall color distributions between mocks and data. The
above algorithm has one important caveat. The red galax-
ies live in a tight color–magnitude space known as the red
sequence. Because we match overall galaxy colors and mag-
nitude, this process will widen the color–magnitude relations
of red galaxies. In appendix G, we present an algorithm that
uses redMaPPer to reduce this broadening.

So far, we have obtained galaxy catalogs with realistic
magnitude and color distributions. Unfortunately, this cat-
alog likely has incorrect environmentally-dependent galaxy
colors because of additional noise introduced in the vari-
ous conditional abundance matching processes. Despite this
problem, we can still use this catalog to generate a new color
template that captures the redshift dependence of color dis-
tributions more accurately than the original SDSS catalogs.
Naively, we could rebuild the SED template coefficients us-
ing the catalog. But, as shown in figure 8, we find that sum-
marizing galaxy colors using SED templates could lead to a
bias of colors for red galaxies up to 0.3 dex. We, therefore,
adopt a different approach. Instead of building new SED tem-
plate coefficients using the abundance-matched catalog, we
build an observed color table as a function of the galaxy’s
observed z-band magnitude mz and redshifts. We then use
this table and repeat steps starting from section 3.4.2 to build
a new mock catalog.

While we use a special treatment of red-sequence galax-
ies in the conditional abundance matching method (detailed
in appendix G), the additional noise caused by this process
makes the width of the red sequence too wide compared to
the data. This too-wide red sequence could lead to overly-
pessimistic estimations of photometric errors of red galaxies
and could cause massive background contamination of opti-
cal cluster identifications. To solve this problem, we further
improve the consistency of the red sequence in mocks and the
data using the algorithm presented in appendix H. The result-
ing red sequence in Cardinal is compared with DES-Y3 data
in figure 9. We find that the red sequences in simulations and
data are very consistent.

After the color adjustment, we add observational noise to
generate the new mock catalog using the method described in
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Figure 9. Comparison of red-sequence galaxies in Cardinal (red)
and DES Y3 data (black) estimated by redMaPPer. Three columns
correspond to g−r, r−i, i−z colors, respectively. The top row shows
the mean colors at mz = 19 as a function of redshift. The middle
row shows the slope of colors-mz relation as a function of redshifts
estimated by redMaPPer. The bottom row shows the scatter of red-
sequence colors. The largest discrepancy occurs at high redshift
g − r colors, where the data is particularly noisy.

section 3.5. The new mock catalog’s overall color and mag-
nitude distributions are shown as solid lines in figure 7. The
agreement between mocks and data is greatly improved. In
most bands, we achieve a fractional error in galaxy luminos-
ity functions ∼ 5 percent.

4. COMPARISON TO DES Y3 OBSERVATIONS

Now that we have a realistic galaxy catalog with observed
magnitudes down to survey depth limits, we now proceed
to select various cosmic structure tracers and compare their
properties with the DES-Y3 data.

4.1. redMaPPer clusters

In this section, we compare clusters in mocks and DES-Y3
data. As described in section 3.2.1, redMaPPer is the main
cluster sample in DES cluster cosmology analyses. Observa-
tionally, redMaPPer clusters are selected based on their rich-
ness (λ). For example, DES-Y1 cosmology analyses (Ab-
bott et al. 2020, To & Krause et al. 2021a) consider λ > 20
redMaPPer clusters as cosmological samples.

The simplest way to generate redMaPPer clusters in mocks
is to select dark matter halos containing more than 20 bright
red-sequence galaxies or some other value to match the ob-

served abundance. However, the richness value of redMaP-
Per clusters in the data contains significant components from
correlated large-scale structure along the line of sight due to
redshift uncertainties (Costanzi et al. 2019; Sunayama 2022).
Further Abbott et al. (2020), Sunayama et al. (2020), To &
Krause et al. (2021b), and Wu et al. (2022) show that these
projected components in richness can cause biases in the two-
point correlation functions of redMaPPer clusters, including
cluster lensing, cluster–galaxy cross-correlations, and cluster
clustering. Therefore, counting the numbers of red-sequence
galaxies within three-dimensional distance to halos in simu-
lations is not the same as redMaPPer richness, making com-
parisons with observed redMaPPer clusters hard to interpret.

Costanzi et al. (2019); Sunayama et al. (2020); Wu et al.
(2022) present an improved way to simulate redMaPPer
richness by counting the numbers of red-sequence galax-
ies within cylinders along the line of sight. This approach
provides a numerically efficient way to simulate redMaPPer
richness that does not require lightcone simulations. The
problem with this approach is that redMaPPer does not weigh
galaxies uniformly along the line of sight; instead, galaxies
that are further away from clusters along the line of sight
usually have smaller pmem. Thus, counting galaxies within
a cylinder is likely to overestimate the richness of clusters.
One way to remedy this problem is to measure the pmem

distributions of galaxies as a function of spectroscopic red-
shifts. However, obtaining spectroscopic redshifts for galax-
ies down to 0.2L∗ is challenging.

Finally, one could run redMaPPer algorithm on realistic
mock galaxy catalogs to ensure apples-to-apples comparison
of simulated and observed clusters. However, the richness
value of redMaPPer clusters depends on member galaxies’
colors, magnitudes, and positions, making it hard to repro-
duce in simulations. Therefore, redMaPPer has only been
applied to a limited number of mock catalogs (Korytov et al.
2019; DeRose et al. 2019).

Given the realistic red-sequence galaxies in Cardinal, we
adopt this last approach to generate redMaPPer clusters.
We select galaxy clusters using redMaPPer v0.8.4 3, which
includes several improvements relative to its predecessors
(Rykoff et al. 2014, 2016; McClintock et al. 2019). This in-
cludes a complete adaptation of the code from IDL to python
and improved models of red-sequence galaxies. This addi-
tional improvement will affect the richness of redMaPPer
clusters; therefore, we run the same redMaPPer on both Buz-
zard v2.0 (DeRose et al. 2022) and publicly available DES-
Y3 data (Sevilla-Noarbe et al. 2021) to ensure apples-to-
apples comparisons. Figure 10 compares the cluster abun-
dances as a function of richness in four different redshift bins

3 https://github.com/erykoff/redmapper

https://github.com/erykoff/redmapper
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Figure 10. Comparison of cluster number density in Cardinal and DES-Y3 data. The top left plot shows redMaPPer cluster abundances per
deg2 as a function of richness (λ) and redshift (zλ). The top right plot shows the relative cluster number density of each realization relative to
Buzzard v2.0. Four different rows in the top two panels show four redshift bins based on zλ, the most probable redshifts of clusters estimated by
redMaPPer. The black lines correspond to the DES-Y3 data, and the blue lines correspond to Buzzard v2.0 (DeRose et al. 2022). We note that
in both cases, we re-run redMaPPer using the same version of redMaPPer as used in Cardinal to ensure apples-to-apples comparisons. The red
lines show the number of redMaPPer identified clusters in Cardinal. Evidently, one can see that the cluster abundances in Cardinal are much
more consistent with the data. The green and orange lines show two different realizations that are intermediate steps from Buzzard v2.0 to
Cardinal. Specifically, the orange line corresponds to a realization where the only difference to Buzzard v2.0 is including orphans in the SHAM
model (detailed in section 2). The green line represents one step forward by changing the galaxy color assignment models detailed in section
3.4. Error bars show the Poisson noise. For further comparison, the bottom panel shows the richness ratio as a function of cumulative cluster
abundance between simulations and DES-Y3 data. The top x-axis shows the corresponding richness of DES-Y3 data at a given cumulative
number density. Error bars are estimated with 50 jackknife resampling.
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Figure 11. Stacked surface densities of galaxies around redMaP-
Per clusters with λ > 20 and redshift 0.2 to 0.55. Errorbars show
1σ uncertainties estimated using 64 jackknife resampling. Black
dots show measurements for DES-Y3 galaxies and red dots show
measurements for Cardinal.

measured in Cardinal and DES-Y3 data. We find that the
data and Cardinal generally agree except for the lowest red-
shift bins. This might indicate differences between the red-
shift evolution of the richness–mass relations in Cardinal and
the data. In comparison, the blue lines in figure 10 show
the cluster abundances measured in Buzzard v2.0. Cardinal
demonstrates a much better agreement with the data in all
redshift bins. There are three main differences between the
Cardinal model and the Buzzard model, which are

1. The training SHAM model in Cardinal includes orphan
subhalos as detailed in section 2.

2. The color assignment model that produces
environment-dependent galaxy color distributions is
improved. We detailed this step in section 3.4.

3. We include an additional abundance matching step to
address the remaining color inconsistencies due to the
insufficient training spectra and SED templates. We
detailed this step in section 3.6.

To better understand how these steps affect the cluster abun-
dances, we run redMaPPer on two additional realizations.
First, we only update the training SHAM model in Cardinal
but fix other color assignment models the same as Buzzard
v2.0. The redMaPPer clusters identified in this realization are
shown as the orange line in figure 10. We can then compare
this with clusters in Buzzard v2.0 to see the impact of SHAM
models on the redMaPPer cluster abundances. We note that
this comparison depends on redshift and richness. For the
simplicity of the argument, let us focus on the λ = [30, 40]
and zλ = [0.4, 0.5] bin. We find that including orphan models
can boost cluster abundance with richness λ > 20 by roughly

50 percent, which is insufficient to account for the factor of
three differences in cluster abundances between Buzzard v2.0
and data. Second, we update the training SHAM and color
assignment models for environment-dependent galaxy color
distributions. The redmapper clusters in this realization are
shown as the green lines in figure 10. Combining the color
assignment models and the SHAM model can boost the rich-
ness by ∼ 100 percent. Finally, comparisons of the full Car-
dinal model and the green lines show that the additional color
abundance matching step can boost the richness by another
∼ 100 percent, making the cluster abundances in Cardinal
agree with the DES-Y3 data. We, therefore, conclude that
all three modifications of the Buzzard v2.0 model are needed
to reproduce the observed cluster abundances. In appendix
F, we further compare the conditional luminosity functions
of satellites and centrals of redMaPPer clusters in Cardinal,
Buzzard v2.0, and DES-Y3 data.

Figure 11 further compares the stacked galaxy surface den-
sity around redMaPPer clusters in DES-Y3 data and Cardi-
nal, calculated using the method detailed in appendix I. We
find decent agreements between Cardinal and DES-Y3 data.
Compared to Buzzard v2.0 (e.g. figure 8 in Wechsler et al.
2022), the one-halo regime agrees with the data much bet-
ter. This is likely due to the better match of richness val-
ues for a given cluster number density in Cardinal. On the
other hand, the consistency on large scales is very interest-
ing. As shown in To & Krause et al. (2021a,b), redMaPPer–
redMaGiC cross-correlations in Buzzard has a much larger
large-scale bias compared to DES-Y1 data. If this excess of
large-scale bias is related to galaxy cluster samples, figure 11
suggests that Cardinal will not have this problem. We leave
further investigations on this aspect in future work.

4.2. redMaGiC galaxies

As described in section 3.2.2, redMaGiC galaxies are one
of the main galaxy samples in the DES cosmological anal-
yses (Abbott et al. 2018, 2022). Given the realistic galaxy
cluster properties in Cardinal, we apply the redMaGiC al-
gorithm on Cardinal galaxies in the same way as redMaGiC
run on the DES-Y3 data. Specifically, redMaGiC galaxies
are selected using redshifts of redMaPPer clusters instead
of the true redshifts in the simulations. This allows us to
have realistic galaxy selection-related systematics in Cardi-
nal. Following the DES-Y3 cosmology analysis, we fur-
ther bin redMaGiC galaxies into five tomographic bins with
edges, [0.15, 0.35, 0.5, 0.65, 0.8, 0.9], using zredmagic, the red-
shift that maximizes p(zredmagic). We then Monte-Carlo sam-
ple p(zredmagic) for each redshift bin to estimate their redshift
distributions.

Figure 12 compares the redshift distributions of redMaGiC
galaxies in Cardinal and the data. We find that the red-
MaGiC estimated redshift distributions are very similar to
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Figure 12. Comparison of redshift distributions. The top panel
shows redshift distributions estimated by redMaGiC in Cardi-
nal (dashed) and data (solid). The bottom panel compares true
(solid) and photometric redshift distributions estimated by red-
MaGiC (dashed) in Cardinal. Different colors show different to-
mographic bins.

those in DES-Y3 data. This agreement is non-trivial. Al-
though the same algorithm produces both samples, this algo-
rithm is applied to two different galaxy catalogs. This simi-
larity in redshift distributions demonstrates the realism of red
galaxy properties in Cardinal. In the bottom panel of figure
12, we compare the redshift distributions estimated by red-
MaGiC and the true redshift distributions in the simulation.
While the redshift distributions estimated by redMaGiC are
slightly narrower compared to the true redshift distributions,

the overall shapes of redshift distributions are very consistent
between redMaGiC’s estimations and the true distributions.

We proceed to access the clustering properties of red-
MaGiC in Cardinal. We first measure the galaxy correla-
tion functions w(θ) using the weighted version of the Landy-
Szalay estimator (Landy & Szalay 1993),

w(θmin < θ < θmax) =
∑
i, j

wiw j∑
i wi(

∑
j w j − 1)

− 2Σi,R
wi∑

i wiNR

+
∑
RR

1
NR(NR − 1)

, (26)

where i, j goes through each galaxy pair that have angular
speparation θmin < θ < θmax. The wi and w j are systematic
weights associated with galaxies to remove spurious correla-
tions of galaxies and survey depths. We detail the construc-
tion of these weights in appendix D. The index R corresponds
to randoms that describe the survey footprint. In this analy-
sis, we make the number of randoms (NR) 10 times greater
than the number of galaxies in each tomographic bin to re-
move additional shot noise caused by the randoms. The i,R
and RR in equation 26 go through each galaxy–random and
random–random pairs that are separated by θ. We compare
the measured w(θ) of Cardinal, Buzzard v2.0, and DES-Y3
data in figure 13. To avoid cosmic variance, we compare Car-
dinal and Buzzard v2.0 generated with the same dark matter
simulation. In the lower two redshift bins, the redMaGiC
clustering in Cardinal has a stronger one-halo term than Buz-
zard v2.0. This is likely due to the combination of changes
in the color assignment and the inclusion of orphan galax-
ies. This is consistent with the finding compared to SDSS
galaxies, which are galaxies at z ' 0.1 (figure 5). For all red-
shift bins, the clustering in Cardinal is somewhat smaller than
that of the DES-Y3 data. To better understand the origin of
this inconsistency, we compare the clustering of redMaGiC
in Cardinal, and Buzzard v2.0 generated with the same dark
matter simulation. We find that for the first and second red-
shift bins, the clustering of redMaGiC in Cardinal is consis-
tent with Buzzard v2.0. For the third redshift bin, the deficit
of clustering is likely due to the slightly worse photometric
redshift performances in Cardinal compared to Buzzard v2.0.
For the fourth and fifth redshift bins, we find that the red-
MaGiC samples in these redshift ranges are slightly fainter
than Buzzard v2.0 and data, which could potentially explain
the differences in clustering.

5. CONCLUSIONS AND OUTLOOK

Large simulations with realistic galaxies are increasingly
essential in precision cosmological analyses based on large
surveys. One of the widely-used multi-purpose simulations
is the Buzzard simulation, which produces DES, DESI, and
LSST-like mock catalogs out to z = 2.35 to a depth of
mr = 27 (DeRose et al. 2019, 2022; Wechsler et al. 2022).
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Figure 13. Comparison of redMaGiC clustering in Cardinal (red lines) and DES Y3 data (black lines). Five different panels show the five
tomographic bins based on zredmagic, with edges at [0.15, 0.35, 0.5, 0.65, 0.8, 0.9]. Error bars show 1σ confidence region. For comparison, blue
lines show the galaxy clustering of Buzzard v2.0 using the same dark matter simulations as Cardinal. The magenta lines show galaxy clustering
of Buzzard v2.0 averaged over 18 DES-Y3 realizations (DeRose et al. 2022).

This simulation played an essential role in the core cosmol-
ogy analyses for DES and in planning and methodology de-
velopment for several other surveys. In this paper, we in-
troduce several model improvements to the Buzzard catalogs
and generate a new set of mock catalogs, the Cardinal mocks.
The main improvements are listed below, with a more de-
tailed list in appendix K.

1. We update the subhalo abundance matching model
(SHAM) used to generate the Buzzard simulation.
The new SHAM model considers orphan galaxies and
a flexible disruption model and incorporates mass-
dependent scatter between galaxy luminosity and halo
properties. For the first time, the SHAM model can
simultaneously fit galaxy clustering and group–galaxy
cross-correlations in three different luminosity thresh-
olds measured in SDSS (Section 2).

2. A new color assignment model is developed to pro-
duce the environmentally dependent galaxy colors ac-
curately. For the first time, the color assignment model
can simultaneously fit color-dependent galaxy clus-
tering in three different luminosity bins measured in
SDSS (Section 3.4).

3. We identify two causes of the discrepancy between the
color distribution in mocks and data. These include the
need for redshift evolution in the spectroscopic train-
ing data and the insufficiency of summarizing galaxy
colors using current SED templates. We provide a so-
lution that uses photometric data and conditional abun-
dance matching techniques. Applying this conditional
abundance matching scheme, the apparent magnitude
and color–color distributions are much more consistent
with the DES-Y3 data (Section 3.6).

4. We address the lack of lensing shear due to limited ray-
tracing resolution. We develop a novel method that
uses dark matter particle–halo cross-correlations to fix
this problem. We find that the ∆Σ around massive halos

is more consistent with expectations after this correc-
tion is applied (Section 3.5.2).

We incorporate these improvements into the Addgals algo-
rithm to generate the Cardinal mock, a one-quarter sky sim-
ulation out to z = 2.35 to a depth of mr = 27. We further
cut out one DES-Y3 footprint and apply realistic DES-Y3
photometric errors and sky backgrounds. The latest redMaP-
Per cluster finding algorithm and redMaGiC lens galaxy al-
gorithm are also run on the catalogs to produce realistic
DESY3-like cluster and lens samples (summarized in figure
1).

We compare the Cardinal mocks with DES-Y3 and SDSS
data. These comparisons include the abundance of redMaP-
Per clusters, the projected galaxy density profiles around
redMaPPer clusters, the redshift distribution of redMaGiC
galaxies, and galaxy clustering for various samples. In the
cluster abundance comparison, we find that the Cardinal clus-
ters have a much more consistent number density to the data
as a function of richness and redshift than those identified
in the Buzzard simulation (Figure 10). We further make the
comparison by changing one model component at a time. We
find that two main factors contribute to the long-standing is-
sue of lower cluster number densities in the Buzzard simula-
tion, where the cluster abundance in simulations is 10-25 per-
cent of the cluster abundance in the data at the same richness.
One of these is the previously postulated lack of orphans in
the SHAM model (Wechsler et al. 2022; DeRose et al. 2019),
and another is the galaxy color assignment model. We further
find galaxy profiles around redMaPPer] clusters in Cardinal
are in excellent agreement with the data (figure 11). As for
the redMaGiC galaxy comparison, we find that the Cardi-
nal algorithm produces reasonable redMaGiC galaxy prop-
erties compared to the DES-Y3 data. These include the red-
shift distributions of the lens samples and galaxy clustering in
each tomographic bin. Finally, we compare color-dependent
galaxy clustering between Cardinal and SDSS data and find
excellent consistency.
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With the updated model, which includes more realistic
small-scale galaxy clustering and lensing properties, we ex-
pect many applications using the Cardinal mock. We list a
few potential applications below.

1. Optically-selected cluster cosmology: Cardinal is a
valuable tool to quantify the selection bias in opti-
cally selected clusters, which affects observables such
as weak lensing profiles because cluster selection is
based on richness. This bias has been identified as
the dominant systematic in optical cluster cosmology
(Sunayama et al. 2020; To & Krause et al. 2021a,b;
Wu et al. 2022). Cardinal is one of the very few mocks
that the redMaPPer cluster finder can be run on, and it
is so far the only mock that yields realistic redMaPPer
clusters as a function of richness and redshift without
artificially boosting cluster member galaxies. Future
work will use Cardinal simulations to understand the
selection functions of redMaPPer clusters and the level
of selection biases and to motivate a flexible model to
mitigate these biases.

2. Photometric reshifts: given the more consistent galaxy
color distributions to the data (figure 7), Cardinal is a
valuable tool to assess the uncertainties of photometric
redshifts (Myles et al. 2021a). For example, one could
use Cardinal mock to perform controlled experiments
to quantify and develop programs to mitigate various
photometric redshift calibration systematics (see e.g.
Newman & Gruen 2022, for a review). This includes
(a) how heterogeneous selections of spectroscopic red-
shift samples and redshift errors in deep fields of cos-
mological surveys can affect photometric redshift cal-
ibrations of wide-field galaxies, (b) how astrophysi-
cal systematics can affect the effectiveness of cross-
correlation redshifts, such as lensing magnifications,
non-linear clustering, and bias evolutions, and (c) how
the sample variances due to limited area of deep fields
propagate to redshift uncertainties of wide-field galax-
ies.

3. Quantify small-scale lensing systematics: the new em-
pirical correction of the ray tracing algorithm (sec-
tion 3.5.2) makes Cardinal accurately produce one-
halo term lensing profiles. Cardinal can then serve
as a tool to study systematic effects of the small-scale
galaxy–galaxy and cluster lensings. This includes (a)
developing methods to quantify boost factor measure-
ments of cluster lensing (Varga et al. 2019) using dif-
ferent photometric redshift estimations and (b) validat-
ing small-scale galaxy–galaxy lensing and clustering
models based on halo occupation distribution (HOD)
or conditional luminosity function (CLF).

4. End-to-end tests of multi-probe analyses: with realistic
clusters, galaxies, and lensing properties in the same
simulation, Cardinal is the ideal mock to develop a
combine-probe analysis pipeline that aims to perform
joint analyses of auto- and cross-correlations of these
observables (MacCrann et al. 2018; To & Krause et al.
2021a,b; DeRose et al. 2022).

5. Defining optimal galaxy samples for clusters, galaxies,
and lensing joint analyses: one of the limitations of
forward modeling multi-probe analyses is that differ-
ent cosmological probes rely on different galaxy sam-
ples. Under the framework of HOD models, differ-
ent galaxy samples require a different set of galaxy–
halo connection parameters, making parameter infer-
ences harder and diluting cosmological signals. One
interesting question is whether it is possible to define a
common galaxy sample that serves as lens and source
galaxies as well as can be used to identify galaxy clus-
ters. Cardinal can serve as a sandbox to develop this
project.

Cardinal can be further improved in the following direc-
tions. First, the current model for generating the colors and
magnitudes of galaxies that are dependent on their environ-
ment only considers information measured in the same snap-
shot, even though the formation history of a galaxy plays an
important role in determining its colors and brightness. The
reason for this choice is purely computational: accurately
determining the formation history of halos requires simula-
tions with a high level of resolution, which in turn requires
significant computing resources. However, recent develop-
ments in the hybrid Lagrangian perturbation theory model
can help bypass this problem. For example, Modi et al.
(2020); Kokron et al. (2021) show that using the local density
of dark matter with proper weights based on initial conditions
can model galaxy clustering of mock galaxies generated us-
ing the halo occupation model down to k = 0.7 h−1Mpc.
The success of these models in producing small-scale galaxy
clustering indicates a significant amount of information about
galaxies encoded in the initial conditions beyond the dark
matter density measured in the same snapshot. Further-
more, Lucie-Smith et al. (2022) find that the initial con-
ditions play an essential role in determining the inner part
of the dark matter profiles. Thus, we expect that combin-
ing initial conditions and local density will significantly im-
prove the accuracy of the color and magnitude assignment
models. Moreover, incorporating initial conditions does not
place additional requirements on simulation resolution, and
thereby does not require significant additional computational
power. Second, we find that the SED templates cannot sum-
marize galaxy colors with uniform accuracy across colors.
In Cardinal, we use DES photometric catalogs to solve this



Cardinal 25

problem empirically. However, by doing this, we lose some
ability to generate mock catalogs with arbitrary photometric
bands. Future work will expand the SED templates using ad-
vanced stellar population synthesis models and the Dark En-
ergy Spectroscopic Instrument (DESI) data. Third, we em-
pirically address the lack of redshift evolution in the training
spectra using the photometric data. Although this method
works well in the end, it requires significant tuning to remove
additional noise that broadens the red sequences. The main
problem is that cluster finders require accurate red galaxy
colors down to 0.2L∗, which is mz = 21.8 at z = 0.6. The
spectroscopic training samples must go down to the same
magnitude with uniform selections. This data is unavailable
even with Stage-4 spectroscopic surveys (e.g., DESI). How-
ever, the Cardinal algorithm only requires a small area cov-
erage for these spectroscopic samples. These requirements
align well with the need for training spectra for photometric
redshift calibrations. We anticipate future campaigns to ob-
tain photometric redshift training spectra will be helpful for
generating more accurate simulations.

Finally, the current approach of generating simulations is
bottom-up. We first obtain a decent luminosity-dependent
galaxy clustering and group–galaxy cross-correlations. We
employ conditional abundance matching techniques to paint
colors to ensure reasonable color-dependent galaxy cluster-
ings. We then perform several conditional abundance match-
ing steps to fix problems in the color model when matching to
photometric datasets. This approach has been successful but
may not be scalable with the increasing amount of data. A
top-down approach might scale better with a plethora of data
coming in. With all the datasets and targeted summary statis-
tics in hand, one can optimize a galaxy–dark matter connec-
tion model. Here, we specifically chose galaxy–dark matter
connections instead of galaxy–halo connections because halo
finding and halo definitions could suffer from limited resolu-
tion. For this top-down approach to perform well, work has
to be done to avoid overfitting the data with an overly flexible
model and to increase the interpretability of the constrained
model. For the latter, one can derive conditional probabili-
ties from the constrained model and combine that with the
bottom-up approach to gain physical insights. We leave this
interesting direction for future work.

Although Cardinal was primarily developed for validat-
ing cosmological analyses, the method has the potential for
broader applications. The ultimate goal of the program is to
learn the physics of the universe from the vast amounts of
data collected by cosmological surveys and use this knowl-
edge to create a mock universe with higher fidelity. How-
ever, to achieve this goal, it is necessary to have high reso-
lution to resolve important physical processes and sufficient
volumes to leverage the full constraining power of the data,
making the program computationally demanding. One of the

critical features of Cardinal is connecting galaxy properties
between high-resolution, small-volume simulations and low-
resolution, large-volume simulations. While the current con-
nection in Cardinal is limited to galaxy luminosity, one can
extend this to other properties, such as rest-frame galaxy col-
ors, sizes, ellipticities, gas densities, and temperatures. Using
improved connections, replacing the SHAM training model
with first principle-driven models (e.g. SAMs or hydrody-
namical simulations), and employing emulator techniques,
one can constrain physics of the baryonic component of our
universe, the expansion histories of the universe, the growth
of cosmic structures, and the interplays between these mod-
els using the full power of the survey data. At the same time,
one can use this learned physics to create mocks with rich
information to facilitate multi-wavelength and multi-probe
cosmology analyses. However, significant challenges remain
in making the first principle-driven models of baryons com-
putationally efficient, identifying relevant physics, and judi-
ciously selecting informative observational data or summary
statistics derived from them.

Finally, although we have been focusing on optical sur-
veys, the Cardinal simulations can also inform many multi-
wavelength studies. The dark matter halos in Cardinal are
resolved down to M200m = 1013 h−1M�, making the simula-
tion sufficient to paint SZ and X-ray signals. Future work will
generate realistic SZ and X-ray groups and clusters, making
Cardinal useful for combined probe analyses of SZ, X-ray,
and optical observations.
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A. VARYING SCATTER IN THE SUBHALO ABUNDANCE MATCHING MODEL

This section describes an algorithm to incorporate varying scatter in the Subhalo Abundance Matching Model. Given an
observed luminosity function φ̂(L) and a halo mass function N(M), one can relate the two functions via,

φ̂(L) = Poisson
(∫

P(L|L′)N(L′) dL′
)
,

N(L′) :=
∫

D(L′,M)N(M) dM, (A1)

where Poisson(x) represents a realization from the Poisson distribution with mean x, and D(L,M) represents the mapping such
that N(> L) = N(> M). This mapping (D(L,M)) can be understood as assigning the brightest galaxy to the most massive
halos. In equation A1, L′ is the luminosity without scatter, and P(L|L′) represents the relations between L′ and the observed
luminosity of galaxies L. In most of the Subhalo Abundance Matching Models, P(L|L′) is assumed as a Gaussian distribution
with a constant scatter. Under this assumption, equation A1 can be considered a convolution problem. One can then obtain N(L′)
from the observed φ̂(L) using the Richardson-Lucy algorithm (Lucy 1974).

However, much evidence has shown that the scatter in P(L|L′) varies according to halo masses (see Wechsler & Tinker 2018
for a review). Thus, we want to incorporate this modeling flexibility into our model. We adopt P(L|L′) as a Gaussian distribution
with a scatter σ(L′) defined as,

σ(L′) = A + B(−2.5 log(L′) + C), (A2)

where A, B, and C are free parameters. With this parameterization, equation A1 remains linear. The linearity allows one to solve
it using the same Richardson-Lucy algorithm, even though it cannot be phrased as a convolution problem.

Figure 14 compares the performance of our implementation of the Richardson-Lucy algorithm to a widely used abundance
matching code AbundanceMatching. Evidently, our implementation reaches a better accuracy than the existing code. Further, we
evaluate the performance of our algorithm in the case of non-constant scatter. We find that our algorithm can achieve an accuracy
of 10 percent for the best-fit model of this paper.

B. SHAM EMULATOR

We build an emulator for the SHAM model to facilitate the likelihood inference. We first generate the training data by Latin
hypercube sampling of the priors described in table 2. We then generate the data vector at each sample following the procedure
described in section 2.2.2. We build an emulator for each radial bin of the data vector. Specifically, given the training data and
the associated data vector at a given radial bin, we construct the model using the Polynomial Chaos Expansion implemented in
Chaospy (Feinberg & Langtangen 2015). In short, we first model the objective function that maps training data to the associated
data vector as

f =
∑
α

cαmα, (B3)

where cα are free parameters and mα is a set of orthogonal polynomials up to a certain degree constructed using the discretized
Stieltjes procedure (Stieltjes 1884). We determine cα by minimizing the mean squared error of the input data vector. Because
mα are polynomials, this minimization can be done analytically. In practice, we find that using 1000 training data and including
polynomials up to the third degree are sufficient to achieve accuracy so that the uncertainties associated with the emulator are
subdominant of the error budget.

To assess the accuracy of the emulator, we perform the leave-one-out test: iteratively removing one training point off the training
sets, training an emulator, and calculating the differences between the removed training point and the emulator’s prediction.
Figure 15 shows the result of the leave-one-out test. The mean of the error is shown as white dots. Evidently, the error is much
smaller than the total error budget. We, therefore, ignore the emulator errors in the likelihood inferences.

C. GAUSSIAN PROCESS OF P(Rδ|Mr < X,Z) MODEL

Following Wechsler et al. (2022), we employ a Gaussian process model to interpolate parameters θ(Mr, z) of P(Rδ|Mr < x, z)
model determined from SHAM simulation. We first generate the training sample by measuring θ(Mr, z) on 18 evenly spaced
magnitude bins from Mr = −22.5 to Mr = −18 at each snapshot of Chinchilla-T1. We then interpolate the training data using the
Gaussian process algorithm implemented using george (Ambikasaran et al. 2015). That is, we model the joint probability of the
targeted θp at parameter space x = (Mr, z), and the training set θt as,θp

θt

 ∼ Gaussian

0, K(x,x) + σ2
nI K(x,xt)

K(xt,x) K(xt,xt),

 (C4)

https://github.com/yymao/abundancematching
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Figure 14. Performance of the algorithm. The y-axis shows the relative error caused by the Richardson-Lucy process, evaluated as
conv (deconv (φ(L))) /φ(L) − 1, where conv shows the process in equation A1, deconv shows the Richardson-Lucy process, and φ(L) shows
the original luminosity function. If P(L|L′) is a Gaussian distribution with a constant scatter, conv is a convolution operation and deconv is a
deconvolution operation. The x-axis shows −2.5logL. In the first panel, we perform the process on a constant scatter (0.2 dex), where we can
compare the performance of our implementation (blue line) to other existing codes (orange). In the second panel, we perform the process on
varying scatter using the best-fit parameters in this paper.
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Figure 15. Accuracy tests of the SHAM emulators. The top row corresponds to galaxy–galaxy group correlations in each magnitude bin and
the bottom row shows galaxy auto correlations. Each panel shows emulator errors relative to the total error budget. Shaded blue regions are
constructed by performing the leave-one-out test: removing one training data, training emulators, and calculating the error of the emulator at
the removed point. The mean of the distribution is indicated by white dots and the black line shows 25 to 75 percent quantiles. Evidently, the
emulator errors are much smaller than the total error budget in all radial bins and can therefore be ignored in the likelihood inferences.



Cardinal 29

1

2

p(
M

r,z
) z=0.00 z=0.48 z=1.19

1

0

c(M
r,z

)
0.0

0.5

1.0

c(M
r,z

)

2

3

f(M
r,z

)

2221201918
Mr

0

1

f(M
r,z

)

Figure 16. Parameters of P(Rδ|Mr, z) model. The line shows the Gaussian process models for the redshift and magnitude dependence.

where θt = (θ1, θ2, . . . , θn) is the measured θ atxt = ((Mr, z)1, (Mr, z)2, . . . , (Mr, z)n), I is an identity matrix, σn are free parameters
to prevent overfitting. One can then find the θp that maximizes the probability and use it as the interpolated value of θ at
x = (Mr, z). The remaining task is then to determine K and σn. We model K(x1, x2) combination of exponential kernel and
Matérn kernel that has the following forms,

K = exp
−‖x1 − x2‖

2

l21

 +

1 +

√
3‖x1 − x2‖

l2

 exp
− √3‖x1 − x2‖

l2

 , (C5)

where l1, l2 are free parameters. We can then determine l1, l2, σn by maximizing equation C4 evaluated on the training set θt.
Once l1, l2, σn is determined, we can make a prediction of θt at other parameters by maximizing equation C4 analytically.

Figure 16 shows the Gaussian process interpolations of the training data on grids of test points as well as the training data. We
find that the Gaussian process model agrees with the training data and does not show signs of over-fitting.

D. SYSTEMATIC WEIGHT

The observed galaxy densities can have spurious correlations due to varying observing conditions across the sky. While we do
not have most of the varying observing conditions in the simulations, such as dust reddening, seeing, and stars, we have spatially
varying survey depths in the simulation. These spatially varying survey depths will produce spurious correlations of galaxies.
We remove this signal following the methods described in Rodríguez-Monroy et al. (2022). First, we bin the galaxy density into
healpix maps with nside = 512 corresponding to a resolution of 0.11 degrees. Next, we measure the relation of galaxy number
density and the input survey depth s used to generate Cardinal. Finally, we fit a linear function to this relation. The fitted function
reads the form F = ms + c, where m and c are free parameters. The weight of each galaxy to remove the spurious correlations is
then given by 1/F. Figure 17 shows the performance of this algorithm. One can see that the weights significantly suppress the
correlations between galaxy density and survey depths.

E. VALIDATION OF COSMIC SHEAR

In section 3.5.2, we present an algorithm to fix the small-scale lensing around halos (cluster lensing and galaxy–galaxy lensing)
using particle–halo cross-correlations. In this appendix, we verify that this correction has a negligible impact on large-scale
cosmic shears and makes small-scale cosmic shears less affected by ray-tracing resolutions. Figure 18 compares ξ+/− measured
in Cardinal using corrected and original shears from ray-tracing. The corrected and uncorrected ξ+/− are consistent on large
scales. However, on small scales, the corrected ξ+/− are much more consistent with the theories based on CAMB, and Cosmic
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Figure 17. Performance of systematic weights on removing spurious correlations. The plot shows the observed pixel number densities evaluated
on nside = 512 maps as a function of the limiting magnitudes of each pixel. The original redMaGiC number density is shown as the blue line,
and the weighted number density is shown as the orange dots. Error bars show the 1σ error estimated with 150 jackknife resamples.
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Figure 18. Comparison of ξ+/− calculated using original shear from ray-tracing (orange) and corrected shears (blue) of galaxies in Cardinal
with z = [0.6, 0.9]. Green lines show theory prediction using CAMB and Cosmic Emulator. Shaded regions show 1σ error estimated with 204
jackknife resampling. Bottom panels show fractional differences of ξ+/− measurements and theory. The shaded region shows 1σ error. The
vertical dashed line shows ten times the ray-tracing resolution.

Emu calculated using CCL (Chisari et al. 2019). This indicates that the ξ+/− calculated using corrected shapes is less affected
by the limited resolution of ray tracing. This finding is consistent with Takada & Bridle (2007), where the authors show that the
lensing effect from massive clusters (M > 1013M�) significantly contributes to the one-halo term of cosmic shear power spectra.

F. CONDITIONAL LUMINOSITY FUNCTION

We compare the conditional luminosity function in Cardinal, Buzzard v2.0, and DES-Y3 data. The measurements follow the
prescriptions detailed in To et al. (2020). Figure 19 shows the result. We find that for the lower two redshift bins, the central
galaxy luminosity distributions are consistent between Buzzard v2.0 and Cardinal. For the highest redshift bin, the central galaxy
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Figure 19. The conditional luminosity function for central galaxies (solid lines) and satellite galaxies (dashed lines) for redMaPPer clusters in
Buzzard v2.0 and Cardinal (blue and orange lines, respectively) and the DES-Y3 data (black lines). Different panels show the different richness
and redshift bins, as indicated in the legend in each panel. Richness increases from top to bottom, and redshift increases from left to right. Error
bars and shaded regions show the 1σ errors estimated from 50 jackknife resampling.

luminosity in Cardinal is somewhat fainter than Buzzard v2.0. However, the relative brightness of centrals and satellites in
Cardinal is more consistent with the DES-Y3 data than Buzzard v2.0. This is an important feature for the performance of cluster
finders, as indicated in Kovacs et al. (2022) and To & Krause et al. (2021b). In terms of the satellites, we find that the satellite
luminosity distributions in Cardinal are more consistent with the DES-Y3 data than Buzzard v2.0 on the faint end. On the bright
end, Cardinal and Buzzard’s satellite luminosity distributions are consistent but are fainter than the DES-Y3 data.
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G. ALGORITHM OF AVOIDING WIDENING RED SEQUENCE WITH CONDITIONAL ABUNDANCE MATCHING

Here, we present an algorithm that uses redMaPPer to avoid widening the width of the red sequence in the conditional abun-
dance matching step. First, we run the redMaPPer cluster finder in the mocks generated before applying the conditional abundance
matching. For each galaxy in the mock, we obtain a χ2, quantifying the consistency of the multidimensional colors with the em-
pirically constructed red-sequence model, and zred, the redshift that minimizes the χ2 (See details in Rykoff et al. 2014). For
the galaxies consistent with the red sequence (i.e., small χ2), zred provides a good estimator of galaxies’ redshift, with a typical
uncertainty ∼ 0.02. Second, we abundance-match this χ2 measured in mocks to χ2 measured in the data by enforcing the equality
of p(< χ2|mz). In this way, we can avoid the possibility that χ2 distributions in the mocks and data might differ. Third, we select
red galaxies in the data and mocks using the abundance-matched χ2. According to Rozo et al. (2015b), we select red galaxies
as χ2 < 20. Third, we perform abundance matching separately for blue and red galaxies. For blue galaxies with χ2 > 20, we
enforce the equality of equation 25 between mocks and data. For red galaxies with χ2 < 20, we use the zred information. To avoid
the possibility that zred distributions in mocks and data differ, we first compute za,red, the abundance matched zred in Cardinal by
matching p(< zred|mz) between Cardinal and data. We then match the overall color distributions of mocks and data by enforcing
the equality of the following equation,

P(< ci|mz, c j<i, za,red). (G6)

H. ALGORITHM OF MATCHING RED SEQUENCE IN MOCKS AND DATA

In this appendix, we describe an algorithm that matches red sequences in mocks and the data. We first run the redMaPPer
algorithm on mocks and data to obtain a red-sequence model. This model has the following functional form,

P(c|z,mz) ∝ exp(−0.5χ2),

χ2 = (c − 〈c|z,mz〉) (Cint(z) +Cerr(z))−1

(c − 〈c|z,mz〉)T , (H7)

where c = [g− r, r− i, i− z],Cint(z) is the intrinsic scatter of red sequence, andCerr(z) is the observational noise. The mean color
〈c|z,mz〉 is modeled as a simple power law c(z) + s(z)(mz −mp(z)), where c(z), s(z), and mp(z) are free parameters. With P(c|z,mz)
models for mocks and data, we can enforce the consistency of red sequence using the following algorithm,

for galaxies with redshift z and observed magnitudes mg,r,i,z do
mo

g,r,i,z ← noisy realizations of mg,r,i,z using equation 20.
Calculate χ2 using mo

g,r,i,z and Pm(c|z,mz)
if χ2 < 100 and Rn < R(z) and Mn > M(z) then

for c ∈ {g − r, r − i, i − z} do

c+ =
F(1− χ2

100 )
G(z)

(
(c − 〈c|z,mz〉m)

(
sd
sm

)2
+ 〈c|z,mz〉d − c

)
end for
mg ← cg−r + cr−i + ci−z + mz

mr ← cr−i + ci−z + mz

mi ← ci−z + mz

end if
end for

In the above algorithm, xd represents the model evaluated using DES-Y3 data, xm represents the model evaluated using mocks,
Rn is the distance to the nearest resolved halo whose mass is Mn, and s is the square root of the diagonal terms of Cint(z). The
(1− χ2

100 ) term is to ensure a smooth transition between red galaxies and blue galaxies. F controls the non-linear dependence of the

color shift and (1− χ2

100 ), which is given by F(x) = 0.5+0.5erf((x−0.1)/0.05), where erf is the error function. (sd/sm)2 term ensures
consistency of the scatter in the observed colors, which are proportional to the square root of the scatter of c due to the Poisson
draws. The G(z) removes additional noise in the red sequence introduced by the CAM method. This additional noise becomes
large when the galaxies’ magnitude approaches the survey depth limits. Therefore, G(z) must be larger at higher redshifts when
galaxies are fainter than their low redshift counterparts. We empirically find that G(z) = 2(0.5 + 0.5erf((z − 0.8)/0.3) + 1.2
produces reasonable galaxy properties. Further, shifting all galaxies with χ2 < 100 will produce too many red galaxies. We,
therefore, control the number of red galaxies and their clustering with two additional cuts Mn > M(z) and Rn < R(z). Again,
because the additional noise introduced by the CAM model becomes larger at higher redshifts, M(z) should decrease, and R(z)
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should increase with redshifts. If M(z) becomes too small, the clustering of red-sequence galaxies will become too small. We
increase R(z) to ensure enough red galaxies and strong enough clustering. Empirically, we find

R(z) = 6 (0.5 + 0.5erf ((z − 0.54) /0.1)) + 1.2 h−1Mpc

M(z) = 10−0.25(0.5+0.5erf((z−0.65)/0.05))+12.90 h−1M� (H8)

give reasonable red galaxy properties.

I. GALAXY RADIAL PROFILES AROUND CLUSTERS

This appendix details our analyses on constructing galaxy radial profiles around redMaPPer clusters. We construct radial
profiles for redMaPPer clusters in simulation and data using exactly the same algorithm to ensure an apples-to-apples comparison.
Our calculation pipeline is similar to the one presented in Chang et al. (2018) but has important differences in details. We
emphasize that it is necessary to recalculate the galaxy profile around redMaPPer clusters for data because redMaPPer has been
sufficiently changed.

We wish to measure galaxy density profiles around redMaPPer clusters using photometric data. This density profile (Σg) can
be related to correlation functions via the following equation,

Σg(R) = 〈Σg〉w(R), (I9)

where R is the comoving distance to galaxy clusters, 〈Σg〉 is the mean density of the galaxy samples, and w(R) is the correlation
functions between galaxies and clusters. Without knowing galaxy redshifts, we cannot evaluate equation I9 directly. For a
photometric dataset like DES, we must construct an estimator that gives equation I9 but does not require a knowledge of galaxy
redshifts. For the simplicity of the argument, let’s first assume galaxy cluster samples all have the same redshifts zc. We can then
define our estimator of Σg(R) as

Σ̂g(R) =

(
DDCT (θ)
DRCR(θ)

NR

NT
− 1

)
NT

A
, (I10)

where DDCT denotes the number of pairs between clusters and galaxy samples in photometric data, DDCR denotes the number
of pairs between clusters and random points describing survey footprints, NT is the total number of considered galaxies, NR is
the total number of randoms, and A is the survey area in the comoving unit at redshift zc. In the above equation, θ is the angular
separation of the pairs corresponding to a comoving distance R at redshift zc.

We now show that Σ̂g(R) is an unbiased estimator of Σg(R). The full galaxy sample (T ) can be divided into two groups: (1)
galaxies physically associated with galaxy clusters (g) and (2) other galaxies ( f ). Because pair counting is an additive process,
DDCT is then a sum of DDCg (pairs between clusters and associated galaxies) and DDC f (pairs between clusters and other
galaxies). Further, clusters and unassociated galaxies are not clustered, so DDC f is then NcN f ζ(θ), where N f is the number
of unassociated galaxies and ζ is some geometric factor that depends on angular separation. By the same argument DDCR is
NcNRζ(θ). With these, we have

Σ̂g(R) =

(
DDCT (θ)
DRCR(θ)

NR

NT
− 1

)
NT

A

=

(
DDCg(θ) + DDC f (θ)

DRCR(θ)
NR

Ng + N f
− 1

)
Ng + N f

A

=

(
DDCg(θ) + NcN f ζ(θ)

DRCR(θ)
NR

Ng + N f
− 1

)
Ng + N f

A

=

(
DDCg(θ)
DRCR(θ)

NR

Ng + N f
+

NcN f ζ(θ)
NcNRζ(θ)

NR

Ng + N f
− 1

)
Ng + N f

A

=

(
DDCg(θ)
DRCR(θ)

NR

Ng
− 1

)
Ng

A

=

(
DDCg(θ)
DRCR(θ)

NR

Ng
− 1

)
〈Σg〉, (I11)

In the above equation, we see the terms in the parenthesis are the Davis–Peebles estimator (Davis & Peebles 1983) of w(R). We
note that the above derivation is only exact when considering Davis–Peebles estimator. Using Landy–Szalay estimator (Landy &
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Figure 20. Color distributions of mock samples with the blue histogram representing the true color distribution. The red histogram corresponds
to the samples when colors are shifted by 0.1 magnitude. The black histogram shows the case when we summarize the color using SED
templates. To generate the black histogram, we apply the biases shown in the right panel of figure 8 to the galaxies in the red histogram.

Szalay 1993) to estimate Σg(R) like the one described in Chang et al. (2018) would include additional terms and potentially lead
to biases.

In survey data, not all clusters live at the same redshifts. We, therefore, follow the prescription described in Chang et al. (2018)
for the full survey data. We first divide the redMaPPer clusters with λ > 20 from z = 0.2−0.55 into ∆z = 0.025 bins. We estimate
galaxy density profiles around clusters for each redshift bin ( Σ̂g(R)i) using equation I11. We then estimate the Σg(R) using the
weighted sum of Σ̂g(R)i, with the number of clusters in each redshift bin as the weight. To avoid mixing galaxies with different
luminosities across the entire redshift range, we further make a cut on galaxy samples at each redshift bin Mr − 5 log(h) < −20.
The Mr is calculated assuming galaxies are at the same redshift as galaxy clusters.

In Cardinal, we repeat all the above calculations.

J. COLOR TEMPLATE BIAS SIMULATION

This section employs a simple simulation to offer valuable insights into the potential impact of the color biases presented in
figure 8 on galaxy color distribution. We accomplish this by generating mock galaxy samples through a combination of two
Gaussian distributions. Specifically, we draw 100k blue galaxies with a mean g − r color of 1 and a standard deviation of
0.3, followed by drawing 5k red galaxies with a mean g − r of 1.65 and a standard deviation of 0.05. The resulting galaxy
color distribution is presented as the blue histogram in figure 20, designed to mirror the cosmos samples’ color distribution at
z = 0.43−0.63, as depicted in figure 5 of DeRose et al. (2019). Next, we shift the color up by 0.1 magnitude, a typical value when
comparing the g− r color distribution between Buzzard and DES-Y3 data. The resulting color distribution is illustrated as the red
histogram in figure 20. Subsequently, we incorporate the color biases displayed in the right panel of figure 8, resulting in a galaxy
sample with the color distribution depicted as the black histogram in figure 20. Strikingly, the black histogram reproduces two key
features in figure 5 of DeRose et al. (2019). First, the red-sequence galaxies corresponding to the black histogram have a similar
mean color to those in the unaltered galaxy samples. Second, the color distribution of red-sequence galaxies is significantly more
peaked than those of unaltered samples. This simple yet compelling simulation further supports our hypothesis regarding the
color discrepancies’ origin between Buzzard and data.

K. DIFFERENCES BETWEEN CARDINAL AND BUZZARD V2.0

This section summarizes the main improvements from Buzzard v2.0 to Cardinal. We divide these improvements into four
categories, summarized below.

1. Subhalo abundance matching:

(a) We consider a luminosity-dependent scatter.

(b) Orphan subhalos are included, whose abundances are controlled by a specially-designed orphan model.

(c) The group–galaxy cross-correlation function is used in addition to the galaxy-galaxy correlation function to constrain
the model.



Cardinal 35

2. Environmentally dependent galaxy color model:

(a) We consider a luminosity-dependent correlation between galaxy color and distances to nearby massive halos at fixed
galaxy luminosity.

(b) When using distances to nearby massive halos as a local environment proxy, we normalize them by the halo size.

(c) We apply a nonlinear transform on distances to nearby massive halos to break the degeneracy of large-scale color-
dependent clustering and galaxy color gradient around massive halos.

(d) We introduce an additional parameter that controls the color of low-mass centrals.

3. Observational effects:

(a) We increase the fidelity of faint galaxy photometric uncertainties by swapping the Gaussian distribution used to
generate noise of galaxy fluxes to a Poisson distribution.

(b) We empirically correct artifacts in the raytracing shears due to limited resolution.

4. Afterburner:

(a) We demonstrate the limitations of kcorrect SED templates in describing red galaxy colors.

(b) To mitigate this problem, we develop a new algorithm that employs the conditional abundance matching technique
and a photometric dataset to correct galaxy colors empirically.

(c) We develop a new algorithm for matching the red sequence between mocks and data that takes into account the slope
of the color–magnitude relations.
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