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Abstract

A foundational problem in topology and data is to determine the
topological type (e.g. the persistent homology groups) of the super-
level sets L(a) = f−1[e−a,∞) of a sum of Gaussian kernels f(x) =∑

i ai exp(−∥x−xi∥2/2h2) for {xi} ⊂ Rd. In this paper, we show that
each L(a) coincides with the union of a certain power-shifted covering
by balls, whose centers range over a closed subspace of the convex hull
S(a) ⊂ conv({xi}). We then present an explicit homotopy equivalence
p : L(a) → S(a), realizing S(a) as a continuous version of the alpha
shape. This leads to a prescription for modeling noisy point clouds
by density-weighted alpha complexes which, in addition to computing
persistent homology, give rise to refined geometric models. In order
to compute alpha complexes in higher dimension, we used a recent
algorithm due to the present authors based on the duality principle
[10].

1 Introduction

Let f : Rd → R+ be a sum of Gaussian kernels with uniform covariance
matrices, which after a linear change of coordinates takes the form

f(x) =
N∑
i=1

ai exp
(
−∥x− xi∥2/2h2

)
, (1.1)

where ai > 0, and h > 0 is the bandwidth, or scale parameter. We will
denote the superlevel sets of f by

L(a) = f−1[e−a,∞) =
{
x ∈ Rd : f(x) ≥ e−a

}
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using a in negative log coordinates so that the family of subspaces is increas-
ing. The following problem is well-studied [16, 35, 9, 25]:

Problem 1. Determine the topological type (for instance, the persistent
homology groups) of L(a).

One of the reasons to study this problem is that filtering by density gives
a rigorous alternative to simply removing outliers or noise by a subjective
criteria. For instance, the degree zero persistent homology can be taken as
a precise definition of hierarchical clusters [17]. Another is that it would
encode the landscape of a density function, which measures how the shapes
change with a minimum density threshold.

However, it has been proved difficult to compute. To illustrate some of
the difficulties that arise, consider the following simple algorithm:

Algorithm 1.1. Approximate the persistent homology groups of L(a).

1. Sample M points {x̃1, ..., x̃M} from the underlying distribution of f(x),
assumed to be sorted in increasing order of − log(f(x̃i)), so that x̃1 is
the densest.

2. Initialize S = ∅. For each x̃i in order, make the replacement S 7→
S ∪ {x̃i} if x̃i is at least distance ϵ to all existing points of S, for some
predetermined choice of ϵ > 0.

3. Construct a filtered family of simplicial complexes X(a) using a general
methods, such as weighted Vietoris-Rips, on the respective vertex sets
given by S ∩ L(a).

4. Calculate persistent homology.

Algorithm 1.1 seems intuitive, but it has undesirable propeties. One is
that while the homotopy type of the super-level sets L(a) is a function only
of the pairwise distances ∥xi−xj∥, the expected size of the vertex set S grows
rapidly by simply adding coordinates of zeroes to the end of every xi, as it is
proportional to the covering number super-level set L(a) by ϵ-balls. Another
issue is that the expected density of a sample point f(x̃i), which is used to
sort the points and filter homology, becomes small and dominated by noise
for d ≫ 0.

An alternate approach to producing a finite vertex set is simply to dis-
cretize space, so that one can apply cubical homology, but this is clearly only
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possible in very low dimensions. Another is to enumerate the critical points
of f(x) and compute the discrete Morse complex [26, 37], but this can in
general lead to a combinatorial explosion in the number of points, including
the case of sums of Gaussian kernels [21]. An intuitive fix is to use something
similar to Algorithm 1.1, but using the data set {x1, ..., xN} itself in place of
of the samples {x̃1, ..., x̃M} in item 1, so that the final answer is technically
independent of the dimension of the embedding. However, this is not a stable
solution; as long as the underlying density that produced the {xi} is nonzero
on all of Rd, a large enough sample will eventually fill out space, so that
we end up with the same poor scaling with the covering number as in the
original algorithm.

Once a density-weighted vertex set S has been chosen, there are a num-
ber of persistence constructions that are robust with respect to noise, as well
as statistically rigorous results about their output. Some of these methods
include explicitly removing those points, and calculating distance-based com-
plexes such as Vietoris-Rips or witness [39]; the aforementioned applications
of zeroth-dimensional persistence to clustering [17], in which one scans den-
sity values over connecting edges; the distance to measure filtration, which
is stable with respect to the 2-Wasserstein distance [15]; Other constructions
which study rigorous properties of persistent homology, in the specific con-
text of kernel density estimators [35, 7]; persistence landscapes, and studies
of spaces of persistence diagrams [2, 9, 5]; and multidimensional persistence,
which simultaneously filters by density and scale [12, 11, 33, 6].

1.1 Proposed method

Our method begins by replacing f by an modified function f̃ , whose sublevel
sets are topologically equivalent but better behaved. Let f(x) be as in (1.1),
and consider the transformed function f̃ : Rd → R+ given by

f̃(y) = inf
x∈Rd

f(x) exp(∥x− y∥2/2h2). (1.2)

By taking x = y, it is obvious that f̃(y) ≤ f(y), but it is not immediately
clear that f̃ is even nonzero. However, we show (Proposition 2) that one can
recover the original function by the formula

f(x) = sup
y∈Rd

f̃(y) exp(−∥x− y∥2/2h2) ⇐⇒
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− log(f(x)) = inf
y∈S

(∥x− y∥2/2h2 + α(y)) (1.3)

where α(y) = − log(f̃(y)), and S ⊂ Rd is the domain on which f̃ is nonzero.
This is seen this by first showing that for any f(x), the modified function
−h2 log(f(x)) + ∥x∥2/2 is convex. Equation (1.3) then follows from the
Fenchel–Moreau theorem, which states that any convex function satisfies
F = F ∗∗, where F ∗ = supy∈Rd(x · y − F (y)) is the Legendre transform.

We now observe that the last expression in (1.3) expresses L(a) as the
union of an infinite covering by closed balls,

L(a) =
⋃

y∈S(a)

Br(y), r =
√

2h2(a− α(y)) (1.4)

where S(a) = α−1(−∞, a] ⊂ S is the sublevel set. From this point of view,
Algorithm 1.1 is backwards because it is selecting the vertices of a simplicial
complex from the union of a cover, instead of selecting a subcover and taking
the nerve. In the case of (1.4), a subcover associated to a finite subset S ⊂ S

is known as a power diagram with power map p = −2h2α. Its nerve is
the alpha complex, whose geometric realization the alpha shape [20, 22].
Alpha complexes have a number of theoretical advantages beyond persistent
homology, namely that they are minimal in size, naturally embedded in space,
and can be used to generate to beautiful geometric models [23].

Our main theorem states that the S(a) are continuous versions of alpha
shapes. Theoretically speaking, one useful property of this shape is that
S(a) is coordinate-free, in the sense that it is covariant under linear changes
of coordinates (including extra coordinates); practically speaking, as our ex-
periments will later demonstrate, this represents an attempt to address the
curse of dimensionality by “projecting” noise introduced by the kernel density
estimator back into the core “shape” of the original dataset.

Theorem A. We have

1. The total space S is an open subset of the convex hull of the Gaussian
centers D = {xi}, and each S(a) is a closed subset of L(a) ∩ S.

2. We have a surjective map p : L(a) → S(a), which takes the form of an
expectation:

p(x) =

∑
i exp(−∥x− xi∥2/2h2)xi∑
i exp(−∥x− xi∥2/2h2)

(1.5)
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3. The inclusion map i : S(a) ↪→ L(a) induces a homotopy equivalence
with homotopy inverse p. If additionally the {xi} affinely span Rd,
then p is a homeomorphism.

In Section 3.2, we use Theorem A to modify Algorithm 1.1 so that it
selects vertices from S(a) instead of L(a), which by item 3 has the same
homotopy type. Due to the explicit form of the inverse homotopy from
item 2, we may generate a sample from S by sampling x̃i as usual, and
setting ỹi = p(x̃i). It follows from basic properties of Gaussians that the
coefficients in (1.5) are independent of the embedding D ⊂ Rd, and therefore
so is the sampling procedure. Now the potential number of vertices is only
determined by the ϵ-covering number of S(a), which (unlike the covering
number of L(a)) has no dependence on the embedding dimension, because
S(a) is contained in the convex hull by part 1. We then build the alpha
complex of the corresponding shape instead of a general construction such as
Vietoris-Rips. An illustration of the results of is shown in the case of spatial
density estimation in Figure 1.1.1.

1.2 Examples

In Section 4, we present several constructions using this method, many using
the Metropolis algorithm to generate point clouds. One example is an inter-
esting energy landscape, whose persistent homology reveals a filtered version
of a configuration space. Another uses connected components to reveal lo-
cal basins in a loss functions in a nonlinear regression problem [38], using
Bayesian sampling. Also within Bayesian models, we obtain a geometric rep-
resentation of a simple singular model by two univariate Gaussian mixtures
[40]. These two examples illustrate how a varying metric may be replaced by
the Euclidean metric with more coordinates, as well as our assertions that
our constructions are stable in higher dimension. The next example follows
a similar setup as in as [28], in which the authors used the witness complex
and persistent homology to detect subspaces of the Klein bottle in random
3× 3 image patches from the van Hatern-Schaaf natural image data set [29].
Instead of calculating homology groups, we use alpha shapes to generate pre-
cise geometric models from a different type of patch taken from the MNIST
data set of hand-drawn digits. In the last one we model energy landscapes
of discrete simulations from the graphical Ising model, using spectral bases
on the underlying graph to generating appropriate Euclidean embeddings.
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Figure 1.1.1: An illustration of the pipeline from Section 3.2. In the top left,
we have a well-known geographical data set from [36]. Below that we have a
heat map of a kernel density estimator with a certain scale parameter, and
the result of sampling many points ỹi = p(x̃i) from the shape, colored by
the value of α(ỹi). On the right, we have the resulting alpha complex and
its shape, contained in the total space of a power diagram, which closely
resembles the density superlevel set by the sampling algorithm.

In order to compute alpha complexes, we used a recent algorithm due
to the present authors [10], based on the duality principle in optimization.
Unlike other mainstream constructions, that algorithm is suitable in higher
dimension because the dual variables are a function only of pairwise dot
products, and so have no explicit dependence on the embedding dimension
d. In every example in Section 4, computing the alpha complex took at
most a few seconds. On the other hand, the higher dimensional examples
could not have been calculated using standard methods, which almost always
begin by computing the full (shifted) Delaunay triangulation, which can be
astronomically large.

All our code for this paper was written in MAPLE, and is available on
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the first author’s website.
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2 Notation and preliminaries

We summarize some preliminary definitions and notation for kernel density
estimation and computational topology, including the power diagram and
alpha complexes.

2.1 Kernel density estimators

Let D = {x1, ..., xN} ⊂ Rd be a point cloud. A Gaussian kernel density
estimator is a sum of the form

f(x) =
N∑
i=1

aiKh(x− y), Kh(v) = exp(−∥v∥2/2), (2.1)

for ai > 0. We will be interested in the superlevel sets

L(a) = f−1[e−a,∞) =
{
x : f(x) ≥ e−a

}
(2.2)

For simplicity, we consider only finite sums, but our results apply to
the convolution of more general distributions by Gaussian kernels. We will
assume the the norm is always the standard L2-norm, as any other quadratic
form can be transformed in that way by a linear change of coordinates.
Moving (anisotropic) metrics are an interesting extension, which we hope
to study in future papers. For now, we remark that general Riemannian
metrics can often be approximated by Euclidean ones in higher dimensions,
for instance using spectral embeddings, which will be used in Section 4. A
more general setup might involve replacing (2.1) by the convolution of a
distribution on a Riemannian manifold by a heat kernel with respect to the
metric.
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2.2 Computational topology

By a simplicial complex on a vertex set S, we will mean a collection of
nonempty subsets of S that is closed under taking nonempty subsets. If the
vertex set comes equipped with a map to a vector space, for instance if it
is described as an explicit subset S = {p1, ..., pn} ⊂ Rd, then we have its
geometric realization defined by

|X| =
⋃
σ∈X

conv(σ), (2.3)

which is the union of the convex hulls of the vertices of all simplices, i.e.

conv({xi}) =
{∑

i

cixi : ci ≥ 0,
∑
i

ci = 1

}
(2.4)

The affine span, or affine hull aff({xi}) is the smallest affine subspace con-
taining it, which is the same as the convex hull but wihtout the condition
that ci ≥ 0.

If U = {Ux : x ∈ S} is a collection of (closed or open) subsets of Rd, then
the nerve of U is the complex

Nrv(U) = {σ ⊂ S : Uσ0 ∩ · · · ∩ Uσk
̸= ∅} . (2.5)

Generally speaking, nerve theorems state that if U satisfies certain conditions,
for instance if every k-fold union is contractible, then the nerve complex is
homotopy equivalent to the union

⋃
U =

⋃
x∈S Ux. [32, 27, 8]. Different

versions involve different realizations of the nerve as a topological space.
In one version, suppose that each Ux is convex, and choose representatives
xσ ∈ Uσ0 ∩ · · · ∩Uσk

. Then as in [4], we have a linear map Γ : | Sd(X)| → Rd

on the barycentric subdivision of the nerve, whose value on each vertex σ is
xσ. By convexity, it is clear that its image is contained in |U|. Theorem 3.1
from that reference states:

Proposition 1. If U is convex then Γ is a homotopy equivalence, specifically
the one from the nerve theorem.

Beyond giving an explicit geometric realization of the nerve, this version
gives an explicit form of the map that induces the nerve isomorphism.

In persistent homology, we will also have filtered families of simplicial
complexes.
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Definition 1. A filtered simplicial complex is a pair (X,w) whereX is a sim-
plicial complex, and w : X → R has the property that X(a) = w−1(−∞, a]
is a subcomplex of X for all a.

One source of filtered complexes comes from taking the nerve of a nested
family of covers U(a) = {Ui(a)}, where Ui(a) ⊂ Ui(b) for a ≤ b. For instance,
the Čech and alpha complexes arise in this way.

For any filtered complex, we may compute its persistent homology groups
[13, 11, 34, 24]. All barcode diagrams generated for this paper were calculated
using javaplex [1].

2.3 Alpha complexes

For a reference on this section, we refer to [3, 20, 24]. Let S = {p1, ..., pn} ⊂
Rd be a collection of points, and let π : S → R be a function with values
π(pi) = πi, called the powers. We have the weight map w = wS,π : Rd → R
defined by

w(x) = min
pi∈S

wi(x), wi(x) = ∥x− pi∥2 − πi. (2.6)

Then we can define a family of covers U = US,π by U(a) = {Ui(a)} for each
a ∈ R, where

Ui(a) = {x : wi(x) ≤ a} .
Then

w−1(−∞, a] =
⋃

U(a) (2.7)

Definition 2. The power diagram V = VS,π associated to (S, π) is the col-
lection of closed regions V(a) = {Vi ∩ Ui(a)} where

Vi =
{
x ∈ Rd : wi(x) ≤ wj(x) for all j

}
.

When πi = 0 for all i, the Vi are the cells of the usual Voronoi diagram.
More generally, the regions are still determined by linear inequalities, in
other words are separated by hyperplanes. In fact, for πi ≥ 0 they arise
the intersection of true Voronoi diagrams with a linear subspace, with the πi

representing the negative squared normal distances.

Definition 3. The weighted alpha complex is the nerve of the power diagram
X(a) = Nrv(V(a)). The alpha shape is the geometric realization |X(a)| ⊂
Rd, defined by identifying the vertices with S ⊂ Rd.
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Figure 2.3.1: A sequence of power diagrams with their corresponding alpha
shapes.

Written as a pair (X,w), the full alpha complex X is the nerve of the
shifted Voronoi diagrm {Vi}, and

w(σ) = inf
x∈Vσ

w(x) (2.8)

It follows from the nerve theorem that X(a) is homotopy equivalent to⋃
V(a). In [20], Edelsbrunner proved that |X(a)| ⊂ ⋃

V(a) is a homotopy
equivalence with an explicit deformation retraction. Figure 2.3.1 illustrates
the union of the cover and the corresponding shapes in the unweighted case.

3 Alpha shapes of Gaussian KDE’s

We present our main theorem, and our proposed algorithm for sampling finite
alpha complexes.

3.1 Main theorem

Let D = {x1, ..., xN} ⊂ Rd, and consider a sum f(x) of Gaussian kernels
as in (2.1). In order to define our main construction, consider the following
function:

f̃(y) = inf
x∈Rd

f(x)Kh(x− y)−1 (3.1)

While it is not obvious, this turns out to be a sort of “transform” of functions
of the same form as f , and in fact we can recover f from f̃ :
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f f̃

x y

Figure 3.1.1: A univariate Gaussian KDE f shown as the top curve, with
f̃ shown as the bottom curve. The Gaussians all have the same scale but
different scalar multipliers and centers. Proposition 2 shows that f and f̃
determine each other, and that y = p(x) for any pair (x, y).

Proposition 2. We have

f(x) = sup
y∈Rd

f̃(y)Kh(x− y). (3.2)

Moreover, for each x, the supremum in (3.2) is obtained at a unique value
y = p(x) where

p(x) =

∑N
i=1 aiKh(x− xi)xi∑N
i=1 aiKh(x− xi)

(3.3)

In other words, p(x) is the mean of a probability distribution µx on Rd

which is supported at the points of S, with normalized weights proportional
to aiKh(x− xi). An illustration of the proposition is shown in Figure 3.1.1.

Proof. We may assume that h = 1. We show that the auxiliary function

F (x) = − log(f(x)) + ∥x∥2/2

is convex. The first statement then easily follows from the fact that F ∗∗ = F ,
where

F ∗(y) = sup
x

(x · y − F (x))

is the Legendre transform.
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To see the convexity, it suffices to prove the convexity of the one-dimensional
function F (φ(t)) where φ(t) = x + tv is a path with ∥v∥ = 1. But the re-
striction of any sum of Gaussians to an affine subspace is just another sum
of Gaussians:

f(φ(t)) =
N∑
i=1

bi exp(−(t− ti)
2/2) (3.4)

where ti is the coordinate of the orthogonal projection x̄i = φ(ti) of xi,
and bi = ai exp(−∥xi − x̄i∥2/2). Thus, we have reduced the problem to the
one-dimensional case.

For the one-dimensional case, it suffices to show that the second derivative
is nonnegative. We check

f ′′ =

(∑
i

ai(x− xi)
2e−(x−xi)

2/2

)
− f.

Now write

F ′′ =
f ′′

f
−
(
f ′

f

)2

+ 1 = Eρ[(Xi − x)2]− (Eρ[Xi − x])2

where the expectations are over the random variables Xi − x defined on
the finite probability distribution ρ from (3.3). Since this is the expression
variance, we obtain the desired nonnegativity.

For the second statement, suppose y is any value that obtains the supre-
mum in (3.2) for a given x, and let g(z) = c exp(−∥z − y∥2/2) be the corre-
sponding Gaussian centered at y with c = f̃(y). Then we have that g agrees
with f to first order at x:

g(x) = f(x), ∇g(x) = ∇f (x). (3.5)

Dividing the second second expression by the first and solving for y, we obtain
(3.3), which also establishes the uniqueness.

Thanks to Greg Kuperberg, who proposed using the Legendre transform
to simplify an earlier version of this argument.

We then make the following definition, which actually applies to the con-
volution of any distribution with a Gaussian kernel, not just discrete ones:
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Definition 4. The alpha shape of the kernel density estimator f(x) is the
filtered family of regions

S(a) =
{
x : f̃(x) > e−a

}
(3.6)

In other words, S(a) = α−1(−∞, a] where where S consists of all x for which
f̃(x) ̸= 0, and α : S → R is the function α(x) = − log(f̃(x)).

We now have our main theorem, which roughly speaking says that S(a)
is a continous version of the the alpha shape.

Theorem 1. Let L(a) be the superlevel set of a sum of Gaussians f(x)
centered at D = {xi} as in (2.1). Let (S, α) and p : Rd → S be as above, with
S(a) = α−1(−∞, a].

1. We have that L(a) =
⋃

US,π(2h
2a), where US,π is the filtered covering

by weighted balls with vertex set S and power map π = −2h2α. In other
words, −2h2 log(f) = wS,π, using an infimum in (2.6).

2. The shape is an open subset of the convex hull S ⊂ conv(D) on which
α is a continuous map. Each S(a) is a (closed) subset of L(a)∩ S, and
the restriction p|L(a) : L(a) → S(a) is surjective.

3. For any a we have S(a) ⊂ L(a), and the inclusion map induces a
homotopy equivalence with homotopy inverse p|L(a). If aff(D) is all of
Rd, then p is a homeomorphism.

We start with the final statement.

Lemma 1. Suppose the affine span of D is all of Rd. Then the restriction
of p to the level set gives a homeomorphism L(a) ∼ S(a).

Proof. Proposition 2 implies that p is surjective, so we must check that it is
also injective, and that its inverse is continuous. We may again assume that
h = 1.

Starting with the one-dimensional case, it suffices to check that the deriva-
tive p′(x) is positive, so that p is increasing and has a continuous inverse by
the inverse function theorem. Using the quotient rule, we find that the nu-
merator in the expression for p′ is∑

1≤i<j≤N

aiaj(xi − xj)
2 exp

(
(x− xi)(x− xj)− (xi − xj)

2/2
)
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which is positive. The denominator is f 2 which is also positive.
In the general case, suppose that p(x) = p(x′) for x ̸= x′ ∈ Rd. Then

the restriction of f to the line φ(t) = x+ tv for v = (x′ − x)/∥x− x′∥ is the
one-dimensional sum of Gaussian kernels in (3.4). Then we have

(p(x+ tv)− p(x)) · v =

∑
i biti exp(−(t− ti)

2/2)∑
i bi exp(−(t− ti)2/2)

(3.7)

The ti must also affinely span R (which just means they are not all the same
point), so taking t = ∥x′ − x∥ contradicts the one-dimensional case.

Therefore p is bijective, and it remains to show that its inverse is con-
tinuous. For this, we have that vtJp(x)v is the derivative of the right hand
side of (3.7) at t = 0, where Jp(x) is the Jacobian matrix. Then using the
first paragraph, we find that the Jacobian is positive definite for all x, so p is
locally invertible by a continuous function by the inverse function theorem.
Since p is globally invertible, its inverse must agree with each local inverse,
so p−1 is continuous.

We can now prove Theorem 1.

Proof. Part 1 follows immediately from Proposition 2.
Suppose that the affine span of D is a lower-dimensional affine subspace

aff(D) ⊂ Rd. Then the superlevel sets of the KDE associated to the re-
striction of f to aff(D) are homotopy equivalent to those of f . Moreover, p
factors as the orthogonal projection onto aff(D) composed with a map p′ on
aff(D) that takes the same form as p. Thus, the remaining statements are
reduced to the case in which D affinely spans all of Rd.

In the case that D spans, we have that p is a homeomorphism by Lemma
1. The statement that S ⊂ conv(D) follows from the explicit form of p. The
statement that α is continuous follows from the expression

α(y) = − log(f(p−1(y))) + ∥y − p−1(y)∥2/2h2.

The statement that S is open in the convex hull follows since it is the union
of the open sublevel sets.

The only remaining statement is that the inclusion map i : S(a) ⊂ L(a)
is homotopic to p−1, or equivalently that ip : L(a) → L(a) is homotopic to
the identity map. We define a family ht : Rd → Rd by

ht(x) = tx+ (1− t)p(x).
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Since p(x) sends x to the center of a closed ball Uy ⊂ S(a) contacting x along
the boundary, it follows from part 1 that ht carries each L(a) into itself, and
therefore gives the desired homotopy.

Remark 1. In [20], Edelsbrunner gave an explicit deformation retraction
of the union of balls onto the shape. However, while S(a) ⊂ L(a) induces
a homotopy equivalence, the reverse map p does not act as the identity on
S(a), so it is not a deformation retraction.

3.2 Subsampling and finite alpha complexes

We now explain our method for choosing finite subsets S ⊂ S, correspond-
ing to finite subcovers. Taking the nerve, we obtain finite alpha complexes
filtered by the negative log of density.

Algorithm 3.1. Generate a finite alpha complex from S.

1. Sample {x̃1, ..., x̃M} from the underlying distribution of f(x).

2. Let ỹi = p(x̃i), where p : Rd → S is the map from Theorem 1, and
suppose {ỹ1, ..., ỹM} are sorted in increasing order of α(ỹi).

3. Generate a vertex set as follows:

(a) Initialize S = ∅. Fix 0 < s < 1, and let ϵ = −2h2 log(s).

(b) For each ỹi in order, make the addition S 7→ S∪{ỹi} if the squared
distance of ỹi from all existing points in S is at least ϵ.

4. Return the weighted alpha complex with vertex set S, and power map
π = −2h2α.

Definition 5. We denote the alpha complex resulting from running Algo-
rithm 3.1 byX = X(f, s), separately specifying the number of sampled points
M . We will let X(f, s, d0) be the result of stopping upon reaching a minimum
density cutoff of f̃(ỹi) ≥ d0 in step 3.

We have chosen to represent our minimum separation parameter ϵ in
terms of exponential coordinates s = exp(−ϵ/2h2), in other words as a mini-
mum ratio in density coordinates. We find this more useful since s is unitless,
and independent of the situation and scale. For instance, a value of s = .9
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will always result in a relatively dense vertex set, whereas s = .5 will be
relatively spread out. Similarly, it often makes more sense to refer to the
minimum density d0 in terms of the fraction of the data that falls under that
range. A minimum density d0 corresponding to %80 of the data would mean
the value at which %80 of the points satisfy f(xi) ≥ d0.

Notice that the union of the corresponding power diagram
⋃

VS,π(a) is
always contained in L(a). On the other hand, if we have chosen enough
samples, then we would also have that the union

⋃
V(a + ϵ) contains S(a).

This relies on the fact that we are proceeding in increasing order of α, so
that the shifted squared distance of any new point to an existing site pi ∈ S
is bounded above by the unshifted squared distance. In this case, we would
have

S(a) ⊂
⋃
pi∈S

Vi(a+ ϵ) ⊂ L(a+ ϵ) ∼ S(a+ ϵ). (3.8)

Algorithm 3.1 has several crucial scalability properties. First, the shape
is covariant under linear coordinate changes, so its covering number by balls
of radius ϵ is also unchanged, meaning we do not have the poor scaling associ-
ated with sampling from L(a) from the introduction. Furthermore, it follows
from properties of Gaussian samples and the form of p as an expectation that
the sampling procedure itself, in other words the resulting distribution on S

from which the ỹi are sampled, is independent of the embedding as well. To
illustrate, notice that increasing the dimension by adding extra zeros to the
end of each xi has no effect: the values along the new coordinates will be
sampled from independent Gaussians, and p will simply map those coordi-
nates back to zero, as it factors through the projection map to the affine span
of D. In particular, unlike the values of f(x̃i), the resulting real distribution
coming from the values of f̃(ỹi) or α(ỹi) is stable, and indeed it depends only
on the pairwise distances ∥xi − xj∥. We also point out that evaluating α(ỹi)
creates no extra computational cost because the the infimum defining (3.1)
is attained by the sample x̃i itself.

We will use the following variant of X(f, s). The alpha complex (or
Vietoris-Rips) necessarily creates“noise” in zeroth persistent betti number
when the vertices are well-spaced, due to the gap between a new point and
the main component. A tempting fix is to add “slack” by shifting the per-
sistence of higher-dimensional simplices back by a specified amount, similar
to what the Rips or lazy witness complex does to fill in higher simplices, but
this would add parameters and compromise objectivity. A far better solution
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is to modify the weight of each simplex according to the following definition:

Definition 6. Let X◦(f, s) be the result of replacing

w(σ) 7→ max(w(σ), α(σ0) + ϵ, ..., α(σk) + ϵ) (3.9)

for all simplices σ ∈ X = X(f, s), where ϵ = −2h2 log(s) is the spacing from
Algorithm 3.1.

This is equivalent to requiring that each element of the power diagram
appears only once its squared-radius crosses is at least ϵ. This maintains the
desirable property that the resulting complex is the nerve of a cover whose
union is contained in L(a), and also preserves (3.8) for sufficienty dense
samples.

4 Experiments

We construct the filtered complexes from Section 3.2 in several examples. To
compute alpha complexes in higher dimension we used a recent algorithm
based on dual programming to compute the corresponding alpha complexes
[10], which in all cases required only a few seconds to complete. In the
sampling step we usually used M = 10000, which took a couple of minutes,
coming from evaluating f at that many points.

4.1 Interesting energy landscapes

Consider the energy function for particle interaction for three points in the
plane (p1, p2, p3) ∈ R2, using the Lennard-Jones potential:

H(p1, p2, p3) =
∑
i<j

V (∥pi − pj∥), V (r) = 4

(
1

r12
− 1

r6

)
. (4.1)

The Lennard-Jones potential rewards pairs of particles that are approxi-
mately distance 1 apart, but strongly penalizes particles that are much closer
than that, and is neutral for far away points. Some typical points can be
represented as
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Figure 4.1.1: On the left, a graph of the Lennard-Jones potential. In the
middle and right, representations of a point cloud of samples using the two-
point normalization and Hopf map respectively.

where we have shown a dotted line when points are roughly distance one
apart. We estimate the sublevel set persistent homology of H by apply-
ing the density-based complex to a mean-centered point cloud of samples,
revealing an interesting the homology groups of a configuration space.

We sampled 100000 points from the distribution

ρ(p1, p2, p3) = exp

(
−β

(
H(p1, p2, p3) +

3∑
i=1

∥pi∥2/2R2

))
(4.2)

thought of as a density in R6, using the Metropolis algorithm. Here the
temperature parameter β was set to 3.0, and a radius of R = 3.0 was used
to keep particles from wandering off to ∞.

Some projections of point clouds are shown in Figure 4.1.1. In order to
visualize the point clouds, we used two different prescriptions to lower the
dimension. In the middle frame on the lower row, we reduced the dimension
to 2 by choosing a standard reference frame in which p1 is at the origin,
and p2 is on the x-axis, using a translation followed by a rotation. We then
normalized the sum of the norm squares, and plotted the remaining point
p3, which moves around a figure 8 shape. In the frame on the lower right,
we instead mean-center each sample (p1, p2, p3) ∈ R6, so as to have a point
in R4. We then normalized the rotational angle using the map

φ : R4 → R3, φ(v) = ∥v∥π(v/∥v∥) (4.3)

where π : S3 → S2 is a version of the Hopf fibration that respects conformal
structure, which is equivalent to the map SU(2) → SU(2)/T where T ∼=
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Figure 4.1.2: In the first frame, several samples {ỹi} from the shape using
Algorithm 3.1. In the second, the sampled landmark set S with s = .8. In
the final frame, the resulting alpha complex, using a heatmap to describe the
weights.

S1 ⊂ SU(2) is the torus. Unlike the two-point version, this preserves the
metric structure on the quotient, seen by the π/3 rotational symmetry in the
figure.

We then defined a kernel density estimator f on both the mean cen-
tered original point cloud D ⊂ R4, and its image D′ ⊂ R3 under (4.3). In
both cases, we chose a value of h = .3, and computed X(f, s, d0) using den-
sity cutoff d0 corresponding to the %60 of the data. We created resulting
filtered complex from D′ with s = .8, which had sizes (|X0|, |X1|, |X2|) =
(339, 1287, 1449). The outputs of Algorithm 3.1 are shown in Figure 4.1.2,
using color values to represent the simplex weights.

We then applied the same procedure to the full dataset D, this time
using s = .7, and computing up to the 3-simplices, resulting in the sizes
(|X0|, |X1|, |X2|, |X3|) = (2298, 24582, 64896, 64674). The persistent homol-
ogy groups are consistent with a disjoint union of two circles turning into
a configuration space of 3 ordered points in the plane. This is because the
densest points are the ones forming an equilateral triangle, which come in
two types corresponding to he rotationally inequivalent permutations of the
labels. The points with two connections form the shape of a configuration
space, which has betti numbers of (β0, β1, β2) = (1, 3, 2) corresponding to the
arrows in the diagram [18].

The javaplex output of the persistent homology groups is shown in Fig-
ure 4.1.3.
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Figure 4.1.3: The barcode diagrams of the full density landscape com-
puted with javaplex. Before the threshold around 1.5 we see two con-
nected components and two betti 1 features. Beyond that threshold, we see
the homology of the ordered configuration space of 3-points in the plane,
(β0, β1, β2) = (1, 3, 2).

4.2 Multiple optimizers in nonlinear regressions

We next use alpha complexes to reveal local basins in the loss function of a
nonlinear regression, using the Metropolis algorithm and maximum likelihood
estimation. In order to produce a point cloud, we map each collection of
parameter values into into the Euclidean vector consisting of predicted values
at each training point. We find that this is a good candidate for density
estimation and the alpha complex, and that there is a natural choice of the
scale h in terms of the temperature parameter of the model β.

We follow Example 2.6 from [38], which deals with the catalytic isometriza-
tion of n-pentane to i-pentane in the presence of hydrone, based on an original
study by Carr [14]. The training data consists of 24 experimental runs, with
four columns labeled x1, x2, x3, r, measuring the partial pressures of hydro-
gen, n-pentane, and i-pentane, and the corresponding reaction rate r. The
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Figure 4.2.1: Scatter plot of the first two model parameters (θ1, θ2) from
modeling the Carr data. In the middle/right frames we have the plot of pre-
dicted value versus true value for a typical value from the positive/negative
values of θ1 groups respectively. The first group tend to be better fits.

modeling problem is to predict the last column using the model

r ∼ θ1θ3(x2 − x3/1.632)

1 + θ2x1 + θ3x2 + θ4x3

. (4.4)

We simulated 10000 samples of the θ-parameters using the Metropolis
algorithm, and a maximum likelihood with squared residual losses,

p(θ) = exp(−βL(θ)), L(θ) =
24∑
i=1

(ri − r̂i(θ))
2 (4.5)

and temperature of β = 3.0, resulting in a point cloud D ⊂ R4. One
finds that there was a near-symmetry in simulaneously sending θi 7→ −θi
for i = {2, 3, 4}, due to the fact that the parameters tended to dominate
the leading 1 in the denominator. Additionally, there were two local basins
of solutions corresponding to the sign of θ1, with the positive values having
better predictions. The results are shown in Figure 4.2.1.

A näıve next step would be to apply kernel density estimation to the
point cloud D ⊂ R4, with some choice of scale h. However, this would not
be meaningful, as it is depends on the parametrization of the model. A more
appropriate one is to define f(x) using a new data set D′ ⊂ R24 by mapping
each θ to the corresponding vector of predictions

θ 7→ (r̂1(θ), ..., r̂24(θ)). (4.6)

We then have a natural choice of the scale parameter, h = (β/2)−1/2 ∼ .816.
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(a) Alpha complex projected to 2 dimensions

(b) Zero-dimensional persistence barcodes

Figure 4.2.2: Alpha complex X(f, s, d0) built from the data set of prediction
vectors in R24 with s = .6 and d0 corresponding to %80 of the data, projected
into 2 dimensions using a PCA on the vertex set. The denser component on
the left represents the θ1 > 0 group. In the second frame, the barcode
diagram indicating the local basins

We built the alpha complex using a value of s = .6, with density cutoff
d0 corresponding to 80% of the data, shown in Figure 4.2.2. The map to R24

effectively collapses the symmetry arising from the sign changes, leaving only
the two connected components. The component corresponding to positive
values of θ1 gives better predictions, resulting in the denser component on the
left. The others lead to local basin which wider but less dense, corresponding
to higher values of the loss function. These are reflected in the betti-zero
persistence barcodes, also shown.
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Figure 4.3.1: Simple singular statistical model with two Gaussians. The
singularity arises because the second two frames correspond to different pa-
rameter values, but result in nearly equal distributions.

4.3 A simple singular learning model

We apply a similar method from the previous example to a singular statistical
model, which is Example 1.2 from [40], with thanks to Dan Murfet for the
suggestion. We see that the alpha complex exhibits interesting behavior as a
certain Riemannian metric related to the Fisher information matrix becomes
degenerate near the singularity.

Consider a simple one-variable Gaussian mixture model

p(x|a, b) = ae−t2/2 + (1− a)e−(t−b)2/2, 0 ≤ a ≤ 1, (4.7)

consisting of a weighted sum of Gaussian distributions with standard devi-
ation 1, and a varying mean in the second one. An illustration is shown in
Figure 4.3.1.

For any point cloud in R, we can use the Metropolis algorithm and Bayes’
rule to sample from a density proportional to

p(a, b|t) = p(t|a, b)p(a, b)
p(t)

,

starting with the uniform measure p(a, b) = 1. As usual, we do not need to
know p(t). If our point cloud is sampled from p(t|a, b) for a particular choice
of (a, b), we would expect the resulting distribution to be supported near
the ones we started with. This will indeed happen as expected if we chose
values giving a bimodal distribution as in Figure 4.3.1a. However, interesting
things happen if our point cloud comes from a single Gaussian centered at the
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Figure 4.3.2: On the left, scatter plot of samples of the model parameters
(a, b) using Markov chain Monte Carlo (MCMC) with respect to the distri-
bution e−t2/2. In the middle, samples from the shape displayed in R2 using
the coefficients of p(x̃i) and the original samples (ai, bi). On the right, the
corresponding alpha complex X◦(f, s, d0) for s = .8 and d0 corresponding to
%80 of the data. The red/blue colors correspond to positive/negative values
of b, respectively.

origin, because many values of (a, b) correspond to that same distribution,
as shown in Figures 4.3.1b and 4.3.1c.

We generated a scatter plot of 10000 values of the parameters (a, b) asso-
ciated to the singular Gaussian using 1000 training points in R. The results,
shown in Figure 4.3.2a, reveal the expected behavior at the singularity at the
origin (a, b) = (0, 0). As in the previous section, building an alpha complex
on the resulting point cloud in R2 would be arbitrary. We no longer have a
vector of predictions as in (4.6), and instead we use the vector of values of
the loss function

(a, b) 7→ (− log(p(t1|a, b)), ...,− log(p(t1000|a, b))). (4.8)

This map has the property that the pullback Riemannian metric on R2 is
a version of the Fisher information matrix near the true distribution. We
then reduced the dimension down to 50 using a PCA, in part to speed up the
sampling, but more importantly because rounding errors become a factor
when evaluating y = p(x̃i) at a sample. The second issue can easily be
fixed by representing components of the calculation in log coordinates. We
then considered the density estimator f : R50 → R+ corresponding to the
resulting point cloud D ⊂ R50, and chose a (this time arbitrary) value of the
scale parameter of h = .1.
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We then sampled from the shape using Algorithm 3.1, using the values
of s = .8, cutting off at a value corresponding to %80 of the data. By taking
the coefficients determining the expression p(x̃i) =

∑
j ci,jxj as a convex

combination of the xi and plotting the points
∑

j ci,j(ai, bi) ∈ R2 instead of

ỹi =
∑

j ci,jxj ∈ R50, we obtain a description of the shape in the original
2-dimensional plane. Instead of corresponding to the original singularity, the
points on the line b = 0 were all mapped to the same point near the origin,
creating the interesting pattern shown in Figure 4.3.2b. This is because all
those values become very close together when mapped to R50, resulting in a
degenerate metric at the origin. We then generated X(f, s) with s = .8, and
plotted the projection onto a unitary subspace in R50, showing the interesting
shape in Figure 4.3.2c.

4.4 Local patches in the MNIST data set

In [28], the authors studied the topology of a certain space of local 3 × 3
high intensity patches of the van Hateren data set of natural images, which
was investigated earlier by Lee, Mumford, and Pederson [29, 31]. They gave
quantitative evidence using the witness complex that those patches lie along a
sublocus of a parametrized Klein bottle, called the three-circle model. Using
a similar setup, we apply our construction to data sets of coordinate patches
taken from 28×28 images of handwritten digits from the MNIST data set [19].
Instead of using small 3× 3 patches, we project onto discrete versions of the
Hermite polynomials up to quadratic order. Using the alpha complexes, we
obtain surprisingly descriptive geometric models corresponding to different
regions in the Klein bottle as one varies the digit.

A “local image patch” will mean an l× l subimage of a larger one, which
in our case will be taken the MNIST data set of handwritten digits. We will
view local image patches as elements of the vector space V = Mat(l, l) using
its grayscale intensity value. We have a scalar product on V given by

(A,B) =
1

22(l−1)

l∑
i=1

l∑
j=1

(
l − 1

i− 1

)(
l − 1

j − 1

)
Ai,jBi,j (4.9)

This inner product has a number of advantages over the usual L2 product
in that the weights fall off gradually near the image border. It also has the
property of being nearly rotationally invariant for larger values of l, as the
binomial coefficient approximates the Gaussian. There is an orthonormal
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Figure 4.4.1: A typical digit, a random 11× 11 image patch, and its orthog-
onal projection onto V1 ⊕ V2.

basis given by Ha,b = Ha ⊗Hb, where the Ha ∈ Rl are a discrete form of the
Hermite polynomials. They can be obtained by applying the Gram-Schmidt
algorithm to the vectors of polynomial functions va = (ia)li=1, with respect
to the one-dimensional form of (4.9).

We have a decomposition

V = V0 ⊕ V1 ⊕ · · · , Vi = span{Ha,b : a+ b = i}
as well as orthogonal projections πi : V → Vi. We will be interested in the
images of image patches under the map π1,2 : V → V1 ⊕ V2

∼= R5, which
analogous to projecting onto low-frequency modes in Fourier analysis. One
such projection is shown in Figure 4.4.1. For any image patch we have its
norm squared r2 = r21 + r22 where ri is the norm of its image in Vi. Image
patches centered on the points of the digit would tend to have relatively high
r2 values, while points on the boundary would have higher r1 values, due to
the gradient. The patch in Figure 4.4.1 would both have relatively high r1
and r2 terms.

For 50 instances of each digit, we sampled all l × l patches using the
choice of l = 11, and projected those patches onto their linear and quadratic
components V1⊕V2, to obtain a point cloud of size 50·(28−l+1)2 = 16200 in
R5. We then chose only those images whose L2-norm is above a fixed number
of r ≥ .3, resulting in a subset of around 20% of the original size. This is
analogous to the step of selecting “high intensity patches” from [28]. We
then divided the remaining points by r to arrive at a point cloud Dk ⊂ S4 of
size a few thousand for each digit k ∈ {0, ..., 9}. We defined a kernel density
estimator f : R5 → R+ using h = .15, and built X◦(f, s, d0) using the same
choices of s = .5, and d0 corresponding to about %60 of the data for each
digit.
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(a) digit=1 (b) digit=7 (c) digit=0 (d) digit=8

Figure 4.4.2: Alpha complexes build out of the high-intensity image patches.

The results, shown for the numbers {1, 7, 0, 8} in Figure 4.4.2, exhibited
distinctive features, which can be understood in terms of the Klein bottle
model. Starting with the digit 1, we see two arcs connected by a connecting
region in the center. Analyzing the images associated to each point shows
that the arcs are the regions on either side of the digit, which have large
magnitude in linear terms r1. The strip lives on the digit, which has relatively
high quadratic norm r2. The digit 7 has a similar explanation but with two
different components. These linear terms fill out the entire periphery of a
circle in the the case of the digit 0, coming from both the interior and exterior.
In the center of the figure, we see the high r2 points twist and connect across
points on the digit, which are only dense enough on the left and right sides
because of the oval shape. The digit 8 shows no points dominated by second
order, except a small disconnected region corresponding to the two voids.

We then ran the experiment again, this time using r2 to determine inten-
sity, and dividing by r2 in place of r. This has the effect of making patches
with higher r2 denser, thereby accentuating the second order features. This
time we cut off at an intensity value of r2 ≥ .125, and chose d0 to correspond
to only %30 of the data, keeping the values of h = .15 and s = .5.

The results are shown in Figure 4.4.3. In the digit 1, we see three con-
nected components, corresponding to points on the digit itself, and two others
which are not on the boundary, but slightly away from it on either side. For
instance the patch in Figure 4.4.1 would be such a point. Again, digit 7 has
the same explanation, with 6 components instead of 3. In the digit zero, we
have a complete Möbius strip as one traverses halfway around the digit itself.
The two additional components have the same meaning as with the digit 1,
appearing only on the sides because the digit is not a perfect circle. In the
digit 8, we actually see 5 connected components. The main one consists of
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(a) digit=1 (b) digit=7 (c) digit=0 (d) digit=8

Figure 4.4.3: Complexes built on the corresponding digits, normalizing only
the second-order coefficients.

points on the digit itself, whereas the second largest ones are points on either
side, as in the other digits. One of the remaining small clusters comes from
the voids inside either loop, while the other represents the crossing point in
the center.

4.5 The Ising model on a graph

In our final example, we consider density estimation on a simulated data set
consisting of trials of the Ising model [30] on a graph with d vertices, thought
of as a collection of real-valued vectors in {±1}d ⊂ Rd. Attempting to apply
kernel density estimation on the resulting point cloud directly would not yield
good results, and we would not even expect to be able to correlate kernel
based density at a particular state with the theoretical density determined
by the energy function. We show that we can create geometric models of the
density landscape as we did in Section 4.1, by using Laplacian operator L of
the underlying graph to obtain smooth versions of the spin vectors.

Let G = (V,E) be a graph with n vertices, represented by a symmetric
adjacency matrix J , with diagonal entries being zero. In our example we will
use

denoted int(n), circ(n), flares(n), where n is the number of vertices. For every
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Figure 4.5.1: The result of blending a typical state of the Ising model simu-
lation using the Laplacian operator. On the right, a plot of the energy level
versus negative log of kernel density.

discrete spin vector σ : V → {1,−1}, we have the Hamiltonian energy

HG(σ) = −
∑
i,j

Ji,jσiσj = Hmin + 2|{(i, j) ∈ E : σi ̸= σj}|. (4.10)

Those pairs i, j ∈ E for which σi ̸= σj are called transitions. For each choice
of β > 0, called the temperature parameter, one seeks to sample from the
Boltzmann distribution on {1,−1}d given by

Pβ(σ) =
1

Zβ

e−βH(σ), Zβ =
∑
σ

e−βH(σ) (4.11)

which is usually done using the single-flip Metropolis algorithm.
For the graphs G ∈ {int(30), circ(30), flares(43)}, we simulated N =

20000 states using a temperature value of β = 3.0, and interpreted the result-
ing collections of spin vectors {σ} as a point clouds DG ⊂ {±1}d ⊂ Rd where
d = n is the number of vertices. We then took a blended version of DG using
the left-normalized Laplacian operator I −D−1A, where A is the adjacency
matrix of G, normalized so that the diagonal entry Ai,i is the degree of vi, and
D is the row-sum of A. We then replaced DG by sending σ 7→ σ exp(−tLt)
with the value of t = 10, so that the vectors are no longer {±1}-valued, and
considered the corresponding kernel density estimator f : Rd → R+ with
h = 2.0. An illustration of the result of the convolution, and the distribution
of density versus Hamiltonian energy is shown in Figure 4.5.1.

We then computed X(f, s, d0) for s = .5, and d0 corresponding to %95
of the data. By taking a random 3D to 2D projection of the values in the
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(a) G = int(30) (b) G = circ(30) (c) G = flares(43)

(d) Barcodes associated to G = int(30)

Figure 4.5.2: Low dimensional projections of X(f, s, d0) for the graphs
int(30), circ(30), and flares(43). In the lower row, the persistence barcodes
in the case of the interval.

3 most dominant eigenvalues of L, we obtain a visualization of the energy
landscape as in 4.1, shown in Figure 4.5.2. In the first frame, associated
to the interval, we have two densest types of points with energy level zero,
corresponding to all spins equal to plus or minus 1, realized at the corners. We
then have two curved line segments consisting of energy states with exactly
one transition joining those points, starting from either side. The points
shown in green/yellow correspond to states with two transitions, filling in
the resulting circle to form a sphere. This is reflected in the persistence
barcodes, shown in the figure.
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espace localement compact et d’une application continue. J. Math. Pures
Appl, 9, 1950.

[33] Michael Lesnick. The theory of the interleaving distance on multidimen-
sional persistence modules. Foundations of Computational Mathematics,
15, 06 2011.

33



[34] Nina Otter, Mason Porter, Ulrike Tillmann, Peter Grindrod, and
Heather Harrington. A roadmap for the computation of persistent ho-
mology. EPJ Data Science, 6, 06 2015.

[35] Jeff M. Phillips, Bei Wang, and Yan Zheng. Geometric Inference on Ker-
nel Density Estimates. In Lars Arge and János Pach, editors, 31st In-
ternational Symposium on Computational Geometry (SoCG 2015), vol-
ume 34 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 857–871, Dagstuhl, Germany, 2015. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

[36] Steven J. Phillips, Robert P. Anderson, and Robert E. Schapire. Max-
imum entropy modeling of species geographic distributions. Ecological
Modelling, 190(3):231–259, 2006.

[37] Vanessa Robins, Peter John Wood, and Adrian P. Sheppard. Theory
and algorithms for constructing discrete morse complexes from grayscale
digital images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(8):1646–1658, 2011.

[38] G. Seber and C. Wild. Nonlinear Regression (1st ed.). Wiley, 2005.

[39] Vin de Silva and Gunnar Carlsson. Topological estimation using wit-
ness complexes. In Markus Gross, Hanspeter Pfister, Marc Alexa, and
Szymon Rusinkiewicz, editors, SPBG’04 Symposium on Point - Based
Graphics 2004. The Eurographics Association, 2004.

[40] Sumio Watanabe. Algebraic Geometry and Statistical Learning Theory.
Cambridge University Press, USA, 2009.

34


	Introduction
	Proposed method
	Examples
	Acknowledgements

	Notation and preliminaries
	Kernel density estimators
	Computational topology
	Alpha complexes

	Alpha shapes of Gaussian KDE's
	Main theorem
	Subsampling and finite alpha complexes

	Experiments
	Interesting energy landscapes
	Multiple optimizers in nonlinear regressions
	A simple singular learning model
	Local patches in the MNIST data set
	The Ising model on a graph


