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Abstract

The COVID-19 pandemic has been a recent example for the spread of a harmful contagion in
large populations. Moreover, the spread of harmful contagions is not only restricted to an infectious
disease, but is also relevant to computer viruses and malware in computer networks. Furthermore, the
spread of fake news and propaganda in online social networks is also of major concern. In this study,
we introduce the measure-based spread minimization problem (MBSMP), which can help policy
makers in minimizing the spread of harmful contagions in large networks. We develop exact solution
methods based on branch-and-Benders-cut algorithms that make use of the application of Benders
decomposition method to two different mixed-integer programming formulations of the MBSMP: an
arc-based formulation and a path-based formulation. We show that for both formulations the Benders
optimality cuts can be generated using a combinatorial procedure rather than solving the dual
subproblems using linear programming. Additional improvements such as using scenario-dependent
extended seed sets, initial cuts, and a starting heuristic are also incorporated into our branch-
and-Benders-cut algorithms. We investigate the contribution of various components of the solution
algorithms to the performance on the basis of computational results obtained on a set of instances
derived from existing ones in the literature.

Keywords: Combinatorial optimization, Benders decomposition, stochastic optimization, spread minimiza-

tion

1. Introduction and motivation

The COVID-19 pandemic is a somber reminder of the danger of the spread of harmful contagions in
networks. It has infected over 759 million people and caused the death of almost 6.8 million people1. The
pandemic also caused serious economic damage, see, e.g., Magistretti and Pugacheva (2021). Moreover,
the spread of harmful contagions is not only restricted to an infectious disease, but can also occur as
computer viruses and malware in computer networks (Zimba and Chishimba, 2019). Furthermore, the
spread of fake news and propaganda in online social networks is also a very pressing issue (Lazer et al.,
2018).

In this work, we introduce the measure-based spread minimization problem (MBSMP), which can be
used to model the way how to optimally minimize the spread of harmful contagions in networks. Suppose
that we are given a directed graph G = (V,A) representing a network, a stochastic diffusion model for
the spread in the network, and a set of initially infected nodes I ⊂ V from which the spread of the
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contagion starts in the network according to the diffusion model. We also have a set of labels K for
the arcs, each of which represents a certain relationship (contact) type. While there can be parallel arcs
between a node pair, each arc is categorized with exactly one label. Blocking a label means taking a
measure that prevents the corresponding contact between every pair of nodes connected via an arc having
that label. In other words, there is a measure associated with each label, and taking a measure implies
removing the arcs with the corresponding label from the network. In the context of disease spread,
some possible measures could be closing of schools, closing of department stores, closing of restaurants,
and the lock-down of a certain area. The goal is to take measures (i.e., remove sets of arcs) in such a
way that the spread of the harmful contagion is minimized while respecting a given budget for taking
the measures. In this work, we focus on the independent cascade model (IC) as the stochastic diffusion
model. This is a popular diffusion model which has been used for many different optimization problems
related to spread or influence maximization/minimization in the context of (social) networks. In the IC
model, each infected node has a “one-shot” chance to spread the contagion. We discuss the IC model in
more detail in Section 3, where we also give a formal definition of the MBSMP.

The MBSMP is related to the spread blocking problems considered in Kuhlman et al. (2013) among
others. In Kuhlman et al. (2013), the authors consider a deterministic diffusion model and define various
problems based on different objective functions. Next to minimizing the spread, they also study the
objective of saving all non-seed nodes from infection while minimizing the cost of the needed blocking
actions. In terms of decisions, they deal with blocking of edges as well as blocking of labels or equivalently
actions. The authors prove the NP-hardness of both spread minimization via edge blockings and the
problem of saving all salvageable nodes via action blockings, under a complex contagion model. They
also show that the problem of saving all salvageable nodes via edge blockings is efficiently solvable.
For the two NP-hard problems, Kuhlman et al. (2013) present simple heuristics. Similar heuristics
are also developed for several variants of the spread-blocking problems based on edge/node deletion in
deterministic networks (Eubank et al., 2006; Kuhlman et al., 2010; Enns and Brandeau, 2015; Kimura
et al., 2009). In Gillen et al. (2018) a deterministic edge-based spread-blocking problem is studied and
integer linear programming (ILP) approaches to solve the problem to proven optimality are presented.
A more detailed review on previous related work can be found in Section 2.

Contribution and outline The contribution of our work consists of the following:

• We introduce the MBSMP, which extends the existing problem in the area of spread minimization
by considering i) a stochastic diffusion model, and ii) label-based blocking of arcs. This is a
combination which, to the best of our knowledge, has not been considered before in literature.

• We show that contrary to many other spread-related problems such as the influence maximization
problem, the objective function in our problem is neither supermodular nor submodular.

• We present two integer programming formulations for the MBSMP, which allow us to solve the
problem to proven optimality, while most of the work in the area focuses on heuristic approaches.

• We show how to apply Benders decomposition (BD) to both of our formulations. This gives rise
to obtain models with less decision variables, which allows for better scalability of our solution
algorithms.

• We show that the Benders optimality cuts in both BDs can be separated using a combinatorial
procedure, i.e., there is no need to solve linear programming subproblems to obtain the optimality
cuts.

• We discuss how the the second formulation can be strengthened by down-lifting inequalities present
in the ILP and how this strengthening can be incorporated in the BD.

• We design Branch-and-Benders-cut (BC) solution algorithms, where the Benders optimality cuts
are generated as needed. We also develop additional improvements to the solution algorithms,
which include using i) scenario-dependent extended seed sets, ii) initial cuts, and iii) a starting
heuristic.
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• We present a computational study on synthetic instances and benchmark network instances from
the literature. In the computational study, we analyze the influence of both the various components
of our solution algorithm and instance characteristics on the solution.

The remainder of the paper is organized as follows: In Section 2 we provide a discussion of previous
and related work. In Section 3 we give a formal problem definition, including a discussion of the IC used
to model the diffusion. We also show that the objective function in our problem is neither supermodular
nor submodular. Section 4 contains the compact arc-based formulation and the associated BD method
and Section 5 contains the path-based formulation and the associated BD method. In this section we
also describe how to down-lift the constraints of the path-based formulation, discuss the relationship
to the compact formulation from the previous section, and show that the Benders optimality cuts can
be separated in a combinatorial fashion. The details of our BC algorithms are explained in Section 6,
including a description of our proposed enhancements to the algorithms and implementation details of
the cut separation. Computational results are provided in Section 7. We conclude the paper in Section
8 with some remarks and suggestions for future research.

2. Previous and related work

In the literature there exist several works which study the spread of a harmful contagion in a network.
As already discussed in the introduction, there are several aspects which need to be taken into account
when dealing with such a problem. One of them is how to model the spread (i.e., in a deterministic or
stochastic fashion) and another is how to model the measures that need to be taken against the spread.
Moreover, there exist heuristic methods as well as exact solution approaches developed for problems
related to spread in networks. We start our literature review by discussing heuristics for spread blocking
considering deterministic spread models in Section 2.1, followed by exact solution approaches for the
same problem setting in Section 2.2. To the best of our knowledge, the only previous work which used a
stochastic diffusion model in the context of spread minimization is Tanınmış et al. (2022), where a bilevel
stochastic spread-blocking problem based on node-deletion is considered and solved using ILP. Thus, to
provide some context for stochastic diffusion models, in Section 2.3 we give an overview on influence
maximization problems (IMPs), where such diffusion models are often used. Another recently emerging
type of problems which is concerned with blocking nodes/edges in (social) networks are social network
interdiction problems, which are discussed in Section 2.4. However, while these problems make sense in
the area of social network analysis, their applicability in preventing the spread of harmful contagions in
networks is rather limited, as the resulting networks after interdiction can still be highly connected.

2.1 Heuristics for spread blocking considering deterministic spread models

A group of studies such as Eubank et al. (2006), Kuhlman et al. (2010, 2013), Wang et al. (2013), and Ju
et al. (2021) focus minimizing disease spread via edge/node deletion. They propose greedy algorithms
or heuristic methods while considering a deterministic model for the spread of the contagion. Some of
these methods are simply based on centrality measures of the nodes in the network. Enns and Brandeau
(2015) survey and compare several heuristics for minimizing disease spread in networks, while Holme
(2004) proposes a heuristic for vaccination in networks. Kimura et al. (2009) consider another heuristic
method for blocking links in networks using a “contamination degree” as the criterion. Interestingly,
these heuristic studies often give different recommendations regarding which strategies perform the best,
which arises from the fact that heuristics as opposed to optimal solution algorithms are employed, and
different underlying assumptions about the network are made.

2.2 Exact solution approaches for spread blocking considering deterministic
spread models

In Gillen et al. (2018), the authors study which arcs to remove to minimize the spread under a determinis-
tic linear threshold diffusion model and present ILP approaches for their problem. Another deterministic
node-deletion problem motivated by the spread of influenza-virus is investigated in Charkhgard et al.
(2018), but the developed ILP model which is obtained by linearizing a nonlinear formulation of the
problem can only handle small-scale problem instances with up to 200 nodes. In Gillen et al. (2021), a
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robust version of a node-deletion problem is considered and ILP models are presented for its solution. In
another class of such problems, the connectivity of the network is reduced instead of directly minimizing
the disease/influence spread. This is the case in Shen et al. (2012) where node deletions are used to
achieve this goal. A similar problem is also tackled with ILP approaches and heuristics in Arulselvan
et al. (2009). Although reducing connectivity could eventually help to reduce the spread, it is not a
true measure of the spread. Nandi and Medal (2016) define two “spread related” deterministic metrics
and develop ILP formulations to optimize these metrics through link removal. A recent survey about
node-deletion problems is given by Lalou et al. (2018).

2.3 Influence maximization problems

In the seminal work of Kempe et al. (2003), the influence maximization problem is introduced to study
the effect of viral marketing. In the IMP, we are given a network G = (V,A) with a stochastic diffusion
model and an integer number k. It involves finding a seed set S of size k in V to start the stochastic
diffusion process so as to maximize the expected number of influenced nodes when the process ends.
It is an NP-hard problem under several widely used stochastic diffusion models. The work of Kempe
et al. (2003) spurred a flurry of activity in the research community, which resulted in the study of many
different variants of the problem. In recent years, exact and heuristic solution approaches have emerged
to solve variants of the IMP that occur in the analysis of social networks.

The surveys Sun and Tang (2011), Li et al. (2018), and Banerjee et al. (2020) provide an overview
of the developments in heuristic solution approaches for the IMP. There is a less amount of work on
solving this problem exactly. In Wu and Küçükyavuz (2018) an ILP-based approach which exploits the
submodularity of the objective function is proposed. Güney (2019) considers a Lagrangian relaxation
approach based on an ILP-formulation for the IMP, while Güney et al. (2021) develop a BD algorithm
to solve the same problem. A robust version of the IMP is introduced and tackled by ILP approaches in
Nannicini et al. (2020). In the least cost-influence maximization problem, the goal is to find the minimum
number of seeds to influence the complete network. Exact ILP approaches for this problem were designed
in Fischetti et al. (2018) and Günneç et al. (2020). The weighted target set selection problem studied in
Raghavan and Zhang (2019) can be seen as a deterministic variant of the IMP in which the spread is a
function of the number of influenced individuals at the previous time step rather than being dependent
on the spread probability.

2.4 Social network interdiction problems

In the context of social networks, interdiction-type problems that focus on interdicting cliques or clique-
like structures have been considered recently. For example, Furini et al. (2019) are concerned with
removing nodes so as to minimize the maximal clique size in the remaining graph, whereas Furini et al.
(2021) study the same problem with edge removals. The weighted versions of such problems are studied
in Nasirian et al. (2019) and Pajouh (2020).

3. Problem definition and theoretical results

In this section, we first give an overview on stochastic diffusion models and show how we use the IC
model in the context of our problem. Next, we present a formal problem definition of the MBSMP. We
then show that contrary to many other influence-spread problems in networks, the objective function of
the MBSMP is neither submodular nor supermodular.

3.1 Stochastic diffusion models

A stochastic diffusion model allows to model the spread of harmful contagions in networks with prob-
abilistic infection between nodes. The diffusion process proceeds in time steps, and at each time step
additional nodes may get infected. There exist two stochastic diffusion model types frequently consid-
ered in the literature: cascade models and threshold models (see, e.g., Kempe et al. (2003), Kempe et al.
(2015), Wu and Küçükyavuz (2018), Han and Li (2018), Tanınmış et al. (2019), Güney et al. (2021),
Kahr et al. (2021), and Tanınmış et al. (2022)). In cascade models, each arc (i, j) ∈ A is assigned a
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probability pij which represents the chance that node i is successful in infecting node j. Each node i has
a single attempt at activating (infecting) node j during the diffusion process, which occurs immediately
after node i gets activated itself. In threshold models each node is assigned a (probabilistic) threshold
value and each arc (i, j) is assigned a certain influence value. A node j gets infected during the diffusion
process if the sum of the influence values on the arcs incoming from the already infected neighboring
nodes exceeds the threshold value of node j.

In this work, we use a special case of cascade models that has received considerable attention in the
literature, namely the IC model in which each activation probability is constant. Following other works
in the literature (see, e.g., Kempe et al. (2003), Kempe et al. (2015), Wu and Küçükyavuz (2018), Güney
et al. (2021), and Kahr et al. (2021)) we use a discrete set of scenarios Ω to model the stochastic diffusion
process caused by the IC model. Each scenario ω ∈ Ω can then be represented using a so-called live-arc
graph Gω = (V,Aω), where the presence of (i, j) ∈ Aω indicates that node i is successful in activating
node j in scenario ω. This result follows from the equivalence between the IC and triggering set models
as shown by Kempe et al. (2003). The set Ω is obtained by Monte-Carlo sampling based on the given
probabilities pij for the arcs (i, j) ∈ A, i.e., for each scenario ω ∈ Ω, (i, j) ∈ Aω is determined by a
(biased) coin flip according to probability pij . Note that, although we focus on the independent cascade
model, the methods we propose admit the usage of any diffusion model for which an equivalent triggering
set model exists, i.e., the scenarios can be represented via live-arc graphs.

Let Ak be the set of arcs with label k ∈ K. Given a seed set I ⊂ V and a set K ′ ⊂ K of blocked labels,
the quantity Φω(I,K ′) represents the number of nodes affected by the harmful contagion in scenario ω.
Formally, it is defined as

Φω(I,K ′) =
∣∣{v ∈ V : ∃ a path from at least one node i ∈ I to v when considering Aω \ ∪k∈K′Ak}

∣∣,
(IC-S-ω)

i.e., the cardinality of the set of nodes which can be reached from the seed set I using the non-blocked
live-arcs for the considered scenario. We note that Kempe et al. (2003) showed that the linear threshold
model which is a special case of threshold models can also be represented using live-arc graphs.

3.2 Problem definition

A formal definition of the MBSMP using the IC model with a discrete set of scenarios is given in the
following. In the remainder of this paper, we consider this variant of the MBSMP, and for the ease of
readability, we keep the abbreviation MBSMP.

Definition 1 (Measure-based spread minimization problem (MBSMP)). Let G = (V,A) be a directed
graph and K be a finite set of labels. For each k ∈ K, we are given a measure cost ck ≥ 0, and an
arc set Ak, i.e., arcs having the label k, that are disjoint and satisfy ∪kAk = A. We are also given a
set of initially infected nodes I ⊂ V , and probabilities pij for each (i, j) ∈ A indicating the probability
that node i is successful in activating (influencing) node j. Let Ω be a set of scenarios obtained by using
Monte-Carlo sampling based on probabilities pij. Let Φω(I,K ′) denote the number of nodes to which the
harmful contagion spreads in scenario ω for the seed set I ⊂ V and a set of blocked labels K ′ ⊂ K as
defined in equation (IC-S-ω). The measure-based spread minimization problem consists of finding a set
of measures to take (labels to block) within a budget B so that the expected number of nodes where the
harmful contagion has spread from the given seed set I is minimized. Mathematically, it is defined as

min
K′⊂K:c(K′)≤B

f(K ′) =
∑
ω∈Ω

1

|Ω|
Φω(I,K ′) (P)

where c(K ′) =
∑

k∈K′ ck ≤ B is the budget constraint.

Remark 1. The graph G = (V,A) can have parallel arcs with the same head and tail nodes with different
labels. Suppose that there are p arcs from i ∈ V to j ∈ V with labels k1, . . . , kp. Thus, node i can spread
the contagion to node j via one of the p arcs, i.e., contact types, independently. In order to prevent
i from spreading the contagion to j in a scenario, each of the labels k1, . . . , kp of the live-arcs in that
scenario needs to be blocked. By allowing parallel arcs, different relationships between a pair of nodes
can be modeled via distinct arcs which can be treated independently as the IC model requires.
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The MBSMP is a generalization of the simple contagion variant of the small weighted critical edge
set problem (SWCES), which is an NP-hard problem studied in Eubank et al. (2006) and Kuhlman et al.
(2013). In the SWCES a deterministic diffusion model is considered. Moreover, there are no edge labels
and each edge can only be directly blocked, i.e., each edge has a unique label.

In Figure 1, a small instance of the MBSMP on a graph with six nodes is given, together with a
solution. In this instance I = {1, 4}, |K| = 4, ck = 1, for all k ∈ K, B = 1 and |Ω| = 3. The arc-labels
are given as numbers next to the arcs in the figure. In the considered solution, label 2 is blocked, i.e.,
K ′ = {2}, which is indicated with a dashed line for the arcs with this label in the live-arc graphs for the
scenarios. The objective values for the scenarios are Φ1(I,K ′) = 5 (nodes 1, 3, 4, 5, 6 can be reached),
Φ2(I,K ′) = 4 (nodes 1, 3, 4, 6 can be reached), Φ3(I,K ′) = 5 (nodes 1, 2, 3, 4, 5 can be reached), resulting
in f(K ′) = 1

3 · 5 +
1
3 · 4 +

1
3 · 5 = 14

3 = 4.66. The optimal solution for this instance is to block label 0.
For this optimal solution, we have Φ1(I,K ′) = 4 (nodes 1, 4, 5, 6 can be reached), Φ2(I,K ′) = 3 (nodes
1, 4, 6 can be reached), Φ3(I,K ′) = 4 (nodes 1, 2, 4, 5 can be reached) resulting in f(K ′) = 3.66
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(a) Instance graph
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(b) Scenario 1
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(c) Scenario 2
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(d) Scenario 3

Figure 1: An instance of MBSMP with six nodes and four arc labels, seed set I = {1, 4} (shown in light
grey) and |Ω| = 3. For the scenarios, the live-arcs are shown in 1b, 1c and 1d. The budget allows to
block at most one label. The solution K ′ = {2} is illustrated, with the blocked arcs shown as dashed
arrows. The nodes reached by the spread in each scenario (excluding the seed set) are displayed in dark
grey.

An example of how blocking labels affects the final spread is displayed in Figure 2 on a collaboration
network instance whose details are explained in Section 7.

Proposition 1. The objective function f(K ′) of (P) is neither submodular nor supermodular.

Proof. We show this by means of a counterexample given in Figure 3 where arc labels are shown next to
the arcs. We assume that all the influence probabilities being equal to one, i.e., there is only one possible
live-arc scenario, and all the arcs are live in that scenario. In this special case, it is enough to evaluate
the number of nodes reachable from the seed set on the original graph to compute the expected spread.

Let I = {1, 4} be the seed set. For f to be submodular, it needs to satisfy f(X ∪ {i}) − f(X) ≥
f(Y ∪{i})−f(Y ) for all X ⊆ Y ⊆ K and i ∈ K\Y . For supermodularity −f should be submodular. As a
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(a) No blocking (b) Four labels blocked

Figure 2: The final spread on HepPh collaboration network with 12,008 nodes and 118,521 edges, (a)
when no labels are blocked and (b) when four labels are blocked. There are 50 seed nodes, 50 diffusion
scenarios and 21 labels. The filling of the nodes depends on the number of scenarios each node is activated
in. The darkest blue filling corresponds to the seed nodes, i.e., nodes which are activated in each of 50
scenarios. Arcs with blocked labels are removed from the graph in (b).
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Figure 3: A small directed network with four labels.

counterexample, consider the setsX = {3} and Y = {2, 3}. It is easy to compute f(X) = 6 and f(Y ) = 5.
If we choose i = 1, then we get f(X ∪ {i}) = f({3, 1}) = 6 and f(Y ∪ {i}) = f({2, 3, 1}) = 3, which
violates the inequality we need for supermodularity. Now, suppose that we choose i = 6 which yields
f(X ∪ {i}) = f({3, 6}) = 4 and f(Y ∪ {i}) = f({2, 3, 6}) = 4. These numbers violate the submodular
inequality. We conclude that f is neither submodular nor supermodular, as the requirements are not
satisfied in the given counterexample.

4. An arc-based compact formulation

In this section, we first present an arc-based compact formulation, and then show how BD can be applied
to this formulation.

4.1 The compact formulation

For a scenario ω, let Aω
k denote the set of arcs with label k in the live-arc graph. Let binary variable

xk, k ∈ K be one iff label k is blocked. Moreover, let binary variable yωi , i ∈ V , ω ∈ Ω be one iff the
spread of the harmful contagion reaches node i in scenario ω. Using this notation, a formulation of the
MBSMP can be given as follows, which we denote as (ABF).
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(ABF) min
1

|Ω|
∑
ω∈Ω

∑
i∈V

yωi (ABF.OBJ)

s.t. ∑
k∈K

ckxk ≤ B (ABF.BUD)

yωi ≥ 1 i ∈ I, ω ∈ Ω (ABF.SEED)

yωj ≥ yωi − xk (i, j) ∈ Aω
k , k ∈ K,ω ∈ Ω (ABF.SPR)

xk ∈ {0, 1} k ∈ K

yωi ∈ {0, 1} i ∈ V, ω ∈ Ω

Proposition 2. The formulation (ABF) models the MBSMP.

Proof. The objective function (ABF.OBJ) minimizes the sum of the nodes to which the harmful contagion
spreads over all scenarios, which is the objective function of MBSMP. Constraint (ABF.BUD) ensures
that the budget for taking the measures is not exceeded. What now remains to show that the formulation
correctly models MBSMP is that for each scenario ω ∈ Ω the spread of the harmful contagion is modeled
correctly, considering the blocked labels indicated by variables xk. Recall from definition (IC-S-ω) that
the contagion spreads to a node v ∈ V in a scenario ω (which means yωv needs to have the value one),
iff there exists a non-blocked path from a seed node i ∈ I to v in the live-arc graph with arc set Aω.
Constraints (ABF.SEED) set the correct value of the y-variables for all the seed nodes (we model this
with an inequalitiy instead of an equality to simplify the dualizing-step we need for the BD formulation
below). Constraints (ABF.SPR) model the spread of the harmful contagion: if in a scenario ω the
contagion has spread to node i (i.e., yωi is one) and there is an arc between i and j with label k in the
live-arc graph with arc set Aω, then the contagion will also spread to node j (i.e., yωj needs to have the
value one to fulfill the constraint) unless label k is blocked (i.e., xk is one).

We note that the number of variables in the formulation (ABF) is in O(|V ||Ω|) and the number of
constraints is in O(|A||Ω|). Thus, while the formulation is compact, for large-scale graphs or a large
number of scenarios, the size of the formulation can become prohibitive to be solved directly. To deal
with this issue, we next present a BD approach.

4.2 Benders decomposition formulation

It is easy to see that in formulation (ABF) the y-variables can be relaxed to be continuous (i.e., yωi ≥ 0),
as long as the x-variables are binary. Due to the constraints (ABF.SPR) and the minimization-objective,
the y-variables will also take binary values in a solution, for a fixed binary x. This allows us to apply a
scenario-based BD to formulation (ABF). Let θω, ω ∈ Ω be a continuous variable to measure the spread
of the harmful contagion in scenario ω. The BD reformulation of (ABF) is given as follows.

(BEN) min
1

|Ω|
∑
ω∈Ω

θω (BEN.OBJ)

s.t. ∑
k∈K

ckxk ≤ B (BEN.BUD)

θω ≥ Θω(x) ω ∈ Ω (BEN.OBJ2)

xk ∈ {0, 1} k ∈ K

Inequalities (BEN.OBJ2) provide a lower bound on the number of nodes which are reached by the
spread of the harmful contagion for a given scenario ω ∈ Ω and any x ∈ {0, 1}K . Benders optimality
cuts can be derived to model the function Θω(x) for each ω ∈ Ω and a fixed x̄, using linear programming
(LP) duality. Note that for any fixed solution x̄ of (BEN), the remaining subproblem in y is always
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feasible, thus no Benders feasibility cuts are needed. Let αω
i and βω

a be the dual variables associated
with constraints (ABF.SEED) and (ABF.SPR). Let δ+ω (i) and δ−ω (i), respectively, be the set of outgoing
and incoming arcs of node i in the live-arc graph of scenario ω. We obtain the following dual for a
particular scenario ω ∈ Ω.

(DSABF) max
∑
i∈I

αω
i −

∑
k∈K

∑
a∈Aω

k

βω
a x̄k (DSABF.OBJ)

s.t.

αω
i −

∑
a∈δ+ω (i)

βω
a +

∑
a∈δ−ω (i)

βω
a ≤ 1 i ∈ I (DSABF.SEED)

−
∑

a∈δ+ω (i)

βω
a +

∑
a∈δ−ω (i)

βω
a ≤ 1 i ∈ V \ I (DSABF.NONSEED)

αω
i ≥ 0 i ∈ I

βω
a ≥ 0 a ∈ Aω

k , k ∈ K

For a solution (α̂ω, β̂ω) of (DSABF), the resulting Benders optimality cut is

θω ≥
∑
i∈I

α̂ω
i −

∑
k∈K

∑
a∈Aω

k

β̂ω
a xk (BOC.ABF)

As (DSABF) is a compact LP formulation, for the given scenario ω and the value of x̄, (BOC.ABF)
can be separated by solving (DSABF) as an LP. However, as an alternative method, the cuts can also be
generated in a combinatorial and exact way, without solving the LP formulation of (DSABF). Let Gω(x̄)
denote the live-arc graph Gω where the length of each arc (i, j) ∈ Aω

k is equal to x̄k for all k ∈ K. We
also define dωi (x̄) as the length of the shortest path from the seed set I to i on Gω(x̄). In other words,
dωi (x̄) = minj∈I d

ω
ji(x̄) where dωji(x̄) is the length of the shortest path from j ∈ I to i on Gω(x̄).

Definition 2. Given a solution x̄ to (ABF) and a scenario ω, a node i ∈ V is called reachable (from
the seed set) if dωi (x̄) < 1 and not reachable otherwise.

Definition 3. The path that is associated with the shortest path distance dωi (x̄) from the seed set to the
reachable node i is the activation path of i and each reachable node has exactly one activation path (ties
are broken arbitrarily).

Example 1. Recall the instance in Figure 1 where the seed set is I = {1, 4} and the blocking decision
is x̄ = (0, 0, 1, 0). The length of an arc with label k is calculated as x̄k and the resulting shortest path
distances to each node from I in the first scenario are d1(x̄) = d3(x̄) = d4(x̄) = d5(x̄) = d6(x̄) = 0 and
d2(x̄) = 1 (see Figure 4). Thus, all nodes are reachable except node 2. The activation paths of 1 and 4
start and end at themselves as they are seed nodes (i.e., they are active initially), whereas the activation
paths of nodes 3, 5, and 6 are 1-3, 4-5, and 4-6 respectively. Notice that there are two paths to each of
nodes 5 and 6, one from node 1 and the other from node 4, and only the paths from node 4 have a length
of less than one. The reason is that there are no blocked arcs on those paths, so node 4 can reach and
activate them.

Theorem 1. Consider the solution (α̂ω, β̂ω) to (DSABF) where α̂ω
i is the number of activation paths

starting at node i ∈ I and β̂ω
a is the number of activation paths passing through arc a ∈ Aω. This solution

(α̂ω, β̂ω) is an optimal solution to (DSABF).

Proof. See Appendix A.

We note that the optimal solution (α̂ω, β̂ω) satisfying the condition in Theorem 1 can be computed
using a shortest path algorithm. In the cut obtained, the constant part

∑
i∈I α̂

ω
i corresponds to the

total number of nodes that are fully (yωi = 1) or partially (0 < yωi < 1) activated by I in scenario ω,

when x = x̄. The coefficients
∑

a∈Aω
k
β̂ω
a of each xk correspond to the maximum possible reduction in

the number of active nodes if label k is blocked. Being able to solve the subproblems to obtain Benders
optimality cuts in a combinatorial fashion by shortest path computations instead of solving LPs can be
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Figure 4: Reachable nodes and activation paths of a scenario for a given blocking decision

very useful. However, as we show in the next section, it is possible to obtain a different formulation,
which also allows for such combinatorial computation of Benders optimality cuts, and additionally allows
for lifting of these cuts. The drawback of the formulation of the next section is that it has exponentially
many constraints. Thus, compared to the compact formulation provided in this section, it is not possible
to give it directly to an ILP solver if one wants to solve the problem without implementing a BD, or
to solve the Benders subproblems as LPs. We describe how to handle this drawback in the following
section.

5. A path-based formulation

In this section, we first describe the path-based formulation, and then show that the LP-relaxations
of the path-based formulation and the arc-based formulation introduced in the previous section have
the same optimal objective value. Next, we present a pair of valid inequalities which are obtained by
down-lifting the constraints of the path-based formulation and show that these inequalities can improve
the LP-relaxation. We then discuss how to apply BD to the path-based formulation and show that
despite the exponential number of inequalities in the formulation, the Benders optimality cuts (based on
the non-lifted inequalities) can be obtained in a combinatorial fashion in polynomial time. Finally, we
discuss why the separation of Benders optimality cuts is not straightforward in the case of the path-based
formulation with the down-lifted version of the constraints.

5.1 Formulation

The path-based formulation is based on directly modeling the fact that the contagion reaches a node
i ∈ V in a scenario ω iff there exist an unblocked path from the seed set I to this node i in the live-arc
graph of the scenario (see equation (IC-S-ω) in Section 3.1 where this is stated in a cumulative fashion).
Let Pω(i) denote the set of all paths from the seed set to a given node i in scenario ω. For the ease of
notation, we assume that for a seed node i ∈ I this set contains an empty path (which by definition is
unblockable since there is no arc on it). Moreover, for a given path p ∈ Pω(i), let Kp be the set of labels
that is encountered on p and hp(k) be the number of times label k occurs on this path, i.e., the number
of arcs (i, j) ∈ p with label k. We obtain the following formulation:

10



(PBF) min
1

|Ω|
∑
ω∈Ω

∑
i∈V

yωi (PBF.OBJ)

s.t. ∑
k∈K

ckxk ≤ B (PBF.BUD)

yωi ≥ 1−
∑
k∈Kp

hp(k)xk i ∈ V, ω ∈ Ω, p ∈ Pω(i) (PBF.PATHS)

xk ∈ {0, 1} k ∈ K

yωi ∈ {0, 1} i ∈ V, ω ∈ Ω

Proposition 3. The formulation (ABF) models the MBSMP.

Proof. The objective function (PBF.OBJ) and the budget constraint (PBF.BUD) are the same as in the
formulation (ABF). Constraints (PBF.PATHS) directly model the spread for each scenario ω following
its definition (IC-S-ω): they ensure that for a given x̄ the variable yωi needs to have the value one if there
exists at least one unblocked path from the seed set.

We note that there can be an exponential number of these inequalities (PBF.PATHS) since there can
be an exponential number of paths.

Next, we compare the LP-relaxations of (ABF) and (PBF). In these relaxations, the binary variables
xk, k ∈ K and yωi , i ∈ V, ω ∈ Ω are relaxed to 0 ≤ xk ≤ 1 and 0 ≤ yωi ≤ 1.

Theorem 2. The optimal objective function values of the LP-relaxations of (ABF) and (PBF) are the
same.

Proof. We note that constraints (PBF.PATHS) of the formulation (PBF) can be obtained by summing
up constraints (ABF.SEED) and (ABF.SPR) for all possible paths. Aside from these constraints, both
formulations are the same. Thus, the feasible region of the LP-relaxation of the formulation (ABF) is
at most as large as the feasible region of the LP-relaxation of formulation (PBF). Consequently, the
optimal objective value of the LP-relaxation of the formulation (ABF) is always greater than or equal
to the optimal objective value of the LP-relaxation of the formulation (PBF).

To show equality, we next show that the optimal solution (x̂, ŷ) of the LP-relaxation of the formulation
(PBF) is also feasible for the LP-relaxation of the formulation (ABF). Suppose this is not the case. This
means (x̂, ŷ) either violates one of the constraints (ABF.SEED) or one of the constraints (ABF.SPR).
We first note that (x̂, ŷ) cannot violate any of the constraints (ABF.SEED) as they actually are a special
case of constraints (PBF.PATHS) for i ∈ I. Thus, suppose (x̂, ŷ) violates a constraint (ABF.SPR) which
would mean ŷωj < ŷωi − x̂k for some ω ∈ Ω, k ∈ K, (i, j) ∈ Aω

k . Due to ŷωj ≥ 0 this is only possible
if yωi > 0. Due to the minimization objective and constraints (PBF.PATHS), there must be a path
p∗ ∈ Pω(i) with ŷωi = 1 −

∑
k′∈Kp∗

hp∗(k′)x̂k′ . Moreover, the path q∗ ∈ Pω(j) = p∗ ∪ (i, j) must also

exist as otherwise there would be no constraint (ABF.SPR) for the considered ω ∈ Ω, k ∈ K, (i, j) ∈ Aω
k .

For this path it must hold that ŷωj ≥ 1 −
∑

k′∈Kq∗
hq∗(k

′)x̂k′ due to constraints (PBF.PATHS). From

this we get ŷωj ≥ ŷωi − x̂k, which is a contradiction to our assumption ŷωj < ŷωi − x̂k. As a consequence
the solution (x̂, ŷ) is feasible, and thus optimal, for the LP-relaxation of the formulation (ABF).

Although the LP-relaxations of both (ABF) and (PBF) provide the same lower bounds, constraints
(PBF.PATHS) can be down-lifted as described in the following proposition, which could decrease the
lower bound obtained from the LP-relaxation of (PBF).

Proposition 4. Given a scenario ω ∈ Ω, node i ∈ V and path p ∈ Pω(i), inequalities

yωi ≥ 1−
∑
k∈Kp

xk (PBF.PATHSL)

are valid.
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Proof. For each ω ∈ Ω, node i ∈ V and path p ∈ Pω(i) a feasible solution (x̂, ŷ) must satisfy the
associated constraint (PBF.PATHS). The right-hand-side of this constraint is one iff all variables x̂k for
k ∈ Kp are zero, otherwise the right-hand-side of this constraint is zero or smaller than zero. As each yωi
can only take values zero or one, this means the constraint (PBF.PATHS) becomes redundant as soon as
one of the variables in x̂k for k ∈ Kp has the value one. It is easy to see that constraint (PBF.PATHSL)
behaves exactly the same.

Let (PBF.L) denote the lifted path-based formulation where inequalities (PBF.PATHSL) replace
inequalities (PBF.PATHS).

Proposition 5. There exist instances, where the optimal objective value of the LP-relaxation of (PBF.L)
is strictly greater than the optimal objective value of the LP-relaxation of (PBF).

Proof. Consider an instance with V = {a, b, c}, I = {a}, |Ω| = 1 and the following arcs exist in the
live-arc graph for the single scenario: (a, b), (b, c). Moreover, we have a single label ℓ (both arcs have the
same label), and blocking this label has a cost of two units. The budget B is one. Thus, we cannot block
the label ℓ, and in the optimal solution, the contagion spreads to all three nodes. Hence the optimal
objective value is equal to three. In the LP-relaxation of (PBF), we get an optimal value of 1.5, since
x̂ℓ = 0.5 is feasible, and we get ŷωa = 1, ŷωb = 0.5 and ŷωc = 0. In the LP-relaxation of (PBF.L), we get an
optimal value of two since for x̂ℓ = 0.5 we get ŷωa = 1, ŷωb = 0.5 and ŷωc = 0.5. The difference in the value
of ŷωc in both formulations is caused by the fact that in (PBF), we have −2xk on the right-hand-side of
the inequality (PBF.PATHS) for the path to c, while in (PBF.L), we have −xk on the right-hand-side
of the inequality (PBF.PATHSL).

5.2 Benders decomposition formulations

We first focus on BD for the formulation (PBF) and then extend it to BD for the formulation (PBF.L).
As a starting point, we observe that similar to the formulation (ABF), we can relax the y-variables to
yωi ≥ 0 in (PBF) (and also (PBF.L)), and still get binary y-values in an optimal solution for a fixed x̄.
The Benders master problem is the same as (BEN) and only the subproblem for a fixed x̄ changes with
the path-based formulations. For a given x̄, the number of nodes to which the contagion has spread in
scenario ω can be obtained via solving the following (primal) subproblem when considering (PBF).

(PSPBF) min
∑
i∈V

yωi (PSPBF.OBJ)

s.t.

yωi ≥ 1−
∑
k∈Kp

hp(k)x̄k i ∈ V, p ∈ Pω(i) (PSPBF.PATHS)

yωi ≥ 0 i ∈ V

Let γω
ip be dual variables associated with constraints (PSPBF.PATHS). The dual of the (PSPBF) is

given as follows.

(DSPBF) max
∑
i∈V

∑
p∈Pω(i)

(
1−

∑
k∈Kp

hp(k)x̄k

)
γω
ip (DSPBF.OBJ)

s.t.∑
p∈Pω(i)

γω
ip ≤ 1 i ∈ V (DSPBF.PATHS)

γip ≥ 0 i ∈ V, p ∈ Pω(i)

For a solution γ̂ω, the resulting Benders optimality cut is

θω ≥
∑
i∈V

∑
p∈Pω(i)

γ̂ω
ip −

∑
i∈V

∑
p∈Pω(i)

∑
k∈Kp

hp(k)γ̂
ω
ipxk. (BOC.PBF)
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The formulation (DSPBF) includes an exponential number of variables and solving it as an LP
requires the enumeration of all p ∈ Pω(i) for all i ∈ V \ I (for i ∈ I, the empty path is trivially the
best and thus the only one we need to include). Therefore, (PBF) is not a suitable formulation for a BD
method where the subproblems are solved as LPs. However, the structure of (DSPBF) allows obtaining
the cut (BOC.PBF) in polynomial time in a combinatorial way, using the characterization of an optimal
solution to (DSPBF) which is described in the following theorem.

Theorem 3. Let γ̂ω be a solution to (DSPBF) such that γ̂ω
ip is equal to one if i is reachable and path p

is the activation path of i, and equal to zero otherwise. Then, γ̂ω is an optimal solution to (DSPBF).

Proof. As can be readily seen, (DSPBF) decomposes into |V | subproblems for the nodes i ∈ V , where
each has the objective max

∑
p∈Pω(i)

(
1−

∑
k∈Kp

hp(k)x̄k

)
γω
ip. The value of

∑
k∈Kp

hp(k)x̄k is equal to

the length of the path p on Gω(x̄). For given i, let p′ ∈ Pω(i) be the path with the shortest length on
Gω(x̄) (ties broken arbitrarily). If p′ has a length less than one, i.e., i is reachable and p′ is its activation
path, setting γω

ip′ = 1 and γω
ip = 0 for all p ̸= p′ gives an optimal decision for the problem associated

with i as this results in the largest possible contribution to the objective function. If p′ has a length of
at least one, then the objective function coefficients of all γω

ip are non-positive and thus we need to have
γω
ip = 0 for all p ∈ Pω(i) in an optimal solution.

For an optimal value of γ̂ω as described in Theorem 3,
∑

i∈V

∑
p∈Pω(i) γ̂

ω
ip gives the number of nodes

that are reachable in scenario ω. The coefficient of xk in (BOC.PBF) represents the number of times an
arc with label k appears on the activation paths of all nodes, as in (BOC.ABF).

Remark 2. It is easy to observe that dωi (x̄) ∈ N for x̄ ∈ {0, 1}|K|. In this case, if the shortest path to
node i includes at least one blocked arc, i.e., some arc (i, j) ∈ Aω

k such that x̄k = 1, then dωi (x̄) ≥ 1
and node i is not reachable. Therefore, instead of the shortest path lengths, it is enough to have the
information if node i is accessible from the seed set I via the arcs in ∪k|x̄k=0A

ω
k . By Theorem 3, γ̂ω

ip = 0
for all paths p such that

∑
k∈Kp

x̄k ≥ 1. As a result, we get that the optimal solution value of (DSPBF)

in this case is
∑

i∈V

∑
p∈Pω(i) γ̂

ω
ip. This is equal to the number of nodes to which the contagion can spread

in scenario ω for given x̄, since a reachable node for a given x̄ corresponds to an activated node (yi = 1)
in the diffusion process.

Based on Theorem 3 and Remark 2, we can make use of a simple graph search algorithm to separate
the cut (BOC.PBF) via computing an optimal dual subproblem solution γ̂ω, when x̄ ∈ {0, 1}|K|. In this
method, for a given scenario ω ∈ Ω, first the nodes that are accessible from I via paths consisting only
of the arcs in ∪k:x̄k=0A

ω
k are determined. There is a violated cut if the number of accessible nodes is

strictly greater than θ̄ω. In this case, we compute the cut coefficients
∑

i∈V

∑
p∈Pω(i) hp(k)γ̂

ω
ip for each

k ∈ K by tracking along the activation paths. However, using a single source shortest path algorithm,
an exact polynomial time separation of the cuts is also possible for any fractional solution x̄. We discuss
this separation algorithm in detail in Section 6.1.

For the BD of (PBF.L), we observe that the resulting dual subproblem, denoted as (DSPBF.L), is
almost the same as (DSPBF) in which only the objective function changes to

max
∑
i∈V

∑
p∈Pω(i)

(1−
∑
k∈Kp

x̄k)γ
ω
ip (DSPBF.L.OBJ)

and consequently, the Benders optimality cut changes to

θω ≥
∑
i∈V

∑
p∈Pω(i)

γ̂ω
ip −

∑
i∈V

∑
p∈Pω(i)

∑
k∈Kp

γ̂ω
ipxk. (BOC.PBF.L)

Note that, differently from (BOC.ABF) and (BOC.PBF), the coefficient of xk in (BOC.PBF.L) is
equal to the number of activation paths that include at least one arc with label k (and not the cumulative
number of occurences an arc with label k appears on the activation paths).

Similar to (DSPBF), (DSPBF.L) has an objective function that is decomposable in i. However, an
optimal solution to (DSPBF.L) cannot be found via computing shortest paths on Gω(x̄). Instead, it is
required to find the path p ∈ Pω(i) with the smallest value of

∑
k∈Kp

x̄k, for each i ∈ V . Note that

for binary valued x̄,
∑

k∈Kp
x̄k = 0 (for an optimal path) if dωi (x̄) = 0, and

∑
k∈Kp

x̄k ≥ 1 otherwise.
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Therefore, for binary valued x̄, the graph search approach still works for finding a path minimizing∑
k∈Kp

x̄k. This means for binary valued x̄, we can solve the separation problem for (BOC.PBF.L)
exactly in polynomial time. However, for fractional x̄, a shortest path approach is likely to fail because
once we determine the shortest path to a node i, it does not necessarily lead to the best path(s) via i for
its successors. For example, suppose node i can be reached by two different labels, say 0 and 1 from the
seed set I, with x̄0 = 0.4 and x̄1 = 0.5. Thus, the shortest path to i is achieved by taking the arc with
label 0. However, suppose now there is also a node i′, which is reachable from i with an arc, which has
label 1 again. The path to i′ continuing from the shortest path to i has the value x̄0+ x̄1 = 0.9, while the
path to i′ taking only label 1 has the value 0.5 and thus is better. Therefore, for solving the separation
problem for (BOC.PBF.L) in case x̄ is fractional we propose a heuristic method which is explained in
Section 6.1.

6. Algorithmic details

We propose solution frameworks for solving the Benders master problem (BEN) within a BC algorithm
and add the Benders optimality cuts on-the-fly as they are needed. We develop such a BD algorithm based
on the arc-based formulation (ABF), and another one based on the path-based formulation (PBF) and its
lifted version (PBF.L). In the BD algorithm based on the arc-based formulation, which serves as a baseline
in our computational experiments, the subproblem for obtaining the Benders optimality cuts is compact
and can be solved via linear programming. The one based on the path-based formulation is the main
algorithm considered in this work where we generate the Benders optimality cuts (BOC.PBF) (resp.,
(BOC.PBF.L)) with combinatorial algorithms, which we describe in Section 6.1. Moreover, this BD
algorithm also contains additional speed-ups such as scenario-dependent initial seed sets, cut sampling,
a starting heuristic and initial cuts. All these enhancements are also discussed in this section. In our
computational study, we do not only compare the performance of this enhanced BD algorithm against
the standard implementation of the BD algorithm based on (ABF), but also analyze the effect of the
individual enhancements.

6.1 Separation algorithms for Benders optimality cuts

Let (BEN) denote the problem to be solved at a node of the branch-and-cut tree. The problem (BEN)
is a restricted version of the LP-relaxation of (BEN), excluding the constraints (BEN.OBJ2), but (po-
tentially) containing previously obtained Benders optimality cuts and branching decisions. Let (θ̄, x̄)
be a feasible solution to (BEN). If the optimal objective value of the considered dual subproblem (i.e.,
(DSABF), (DSPBF) or (DSPBF.L) depending on the chosen algorithmic setting) is greater than θ̄ω

for any ω ∈ Ω, then a violated Benders optimality cut exists and (θ̄, x̄) needs to be cut off. For the
correctness of the algorithm, it is only required to check the existence of a violated cut for the solutions
that satisfy the binary constraint x ∈ {0, 1}|K|, as fractional solutions are handled via branching in any
case. However, separating fractional solutions can tighten the dual bounds and therefore improve the
efficiency of the BC algorithm. Thus, we also consider separating fractional solutions in some of our
algorithmic settings which are considered in our computational study in Section 7.

A basic separation algorithm As discussed above, in the basic implementation of the BD algorithm,
we solve (DSABF), which is a compact formulation, for each scenario ω ∈ Ω as an LP and use its optimal
solution to obtain the Benders optimality cut (BOC.ABF).

A combinatorial separation algorithm In order to solve the subproblem (DSPBF) in a combinato-
rial way for given ω and x̄ to obtain Benders optimality cuts (BOC.PBF), we use the following algorithm.
It works for both binary and fractional x̄. As explained in the proof of Theorem 3, we need to compute
the shortest path distances dωi (x̄) for each i ∈ V . Note that for all seed nodes i ∈ I, this distance is
trivially zero. Thus, we only need to focus on the nodes V ′ = V \ I. To do so, we use the priority
queue version of the Dijkstra’s shortest path algorithm, where we initialize the node distances as one
for i ∈ V ′ and as zero for i ∈ I, since dωi (x̄) has to be strictly less than one for node i to be reachable.
Furthermore, we stop the algorithm when the minimum distance in the course of the algorithm reaches
one, as it is not possible to find any reachable nodes (i.e., nodes with dωi (x̄) < 1) after that point. To
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compute the value of the cut coefficients (i.e., the value of the dual variables γω
ip), we backtrack on the

paths after the Disjktra’s algorithm terminates. The overall separation procedure is described in more
detail in Algorithm 1 which also has an option to heuristically solve the subproblem (DSPBF.L), i.e.,
to heuristically obtain the lifted Benders optimality cuts (BOC.PBF.L). This heuristic modification is
discussed later below.

In Algorithm 1 the option lift = N means that the heuristic-part is not invoked. For a given scenario
ω, Algorithm 1 starts with initializing a priority queue PQ with the seed nodes. For each node i ∈ V ′,
we denote by di the distance from the seed set, and by Kpi

the set of labels used on the path pi to node
i. We also initialize the variable dpi

(k), the number of times label k is encountered on pi, with zero.
If the new distance is smaller than the current one, it is updated as well as the path Kpi

and dpi
(k).

Once the priority queue is empty or the minimum distance is already one, we proceed to the last part
where we compute the cut coefficients cωk , ∀k, and the constant part of the cut Cω. In line 12, we add
a small disturbance factor ϵ > 0 to each newly calculated distance so that we avoid using unnecessarily
long paths (i.e., containing many arcs with labels k where x̄k = 0) which could lead to weaker cuts due
to double counting.

A modified combinatorial separation to heuristically obtain lifted optimality cuts In order
to obtain a lifted cut (BOC.PBF.L), we propose two heuristic enhancements which are obtained by
modifying the original separation algorithm in the distance calculation and path determination steps.
In the first enhancement which we call the posterior lifting, we calculate the node distances using x̄ as
before, and while determining the number of times that a label is used on a path pi we count each label
at most once. In other words, the maximum value that dpi

(k) can take is one (in line 18 of Algorithm
1). This lifting option will be indicated by lift=P. In the second version which we refer to as heuristic
lifting, we change the way we compute the path lengths in a way that can help finding a path p ∈ Pω(i)
with a smaller value of

∑
k∈Kp

x̄k, for each i ∈ V ′. To this end, when updating the distance of a node

v through another node u, we treat as if the length of arc (u, v) is zero if the label of (u, v) is already
visited on the path to u, independent of the value of x̄k where (u, v) ∈ Aω

k . Thus, we provide advantage
to the paths that use a smaller number of distinct labels. As in the case of posterior lifting, we count
each label at most once on a path, so that we obtain the lifted cut (BOC.PBF.L), not (BOC.PBF). We
denote this lifting approach by setting the parameter lift=H. Note that, as can be seen in line 14, under
this setting we do not punish the usage of long paths with the ϵ value since the length of the path does
not have a direct effect on the strength of (BOC.PBF.L).

Another characteristic of the implementation with option lift=H is that we carry out a pre-processing
step, where we enumerate all the seed-to-node pairs having a directed path, which we refer to as pure
label path, consisting of arcs with the same label. If there is a pure label path from some i ∈ I to
j ∈ V ′ with label k, then we add an extra arc (i, j) to Ak if it is not already present. This approach
supports the lifting procedure and facilitates finding better paths with respect to the objective function
(DSPBF.L.OBJ) although it does not ensure finding the optimal one.

6.2 Scenario-dependent extended seed sets

While implementing the BC algorithm, we explicitly consider the potential presence of some labels with
an extremely high blocking cost. These labels are not feasible to be blocked and therefore are treated as
unblockable labels. Under any feasible blocking decision x̄, the seed nodes can infect new nodes via arcs
with an unblockable label. Therefore, the nodes that are reachable from I on Gω via paths consisting of
arcs with such labels behave exactly in the same way as the seed nodes in scenario ω. Let Iω denote the
set of seed nodes extended with these seed-like nodes of scenario ω.

Proposition 6. The objective function of (BEN) can be reformulated as

1

|Ω|
∑
ω∈Ω

|Iω|+ θω,

if the Benders optimality cuts are modified so that θω estimates the number of activated nodes that are
not in Iω.
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Algorithm 1: Separation(ω, θ̄, x̄,lift)

Input : An infeasible master solution (θ̄, x̄)
Output: A (possibly violated) cut θω ≥ Cω −

∑
k∈K cωkxk

1 Initialize a priority queue PQ← ∅;
2 Initialize Cω ← 0 and cωk ← 0, ∀k ∈ K;
3 Initialize the distance di ← 1, set of path labels Kpi

← ∅, and label counts dpi
(k)← 0,

∀i ∈ V, k ∈ K;
4 for each i ∈ I do
5 Set di = 0, insert (di, i) into PQ;
6 while PQ ̸= ∅ do
7 Choose a minimum distance unreached node u ∈ PQ , label u as reached;
8 if du ≥ 1 then
9 break;

10 for each outgoing arc of (u, v) ∈ Aω do
11 if v is not reached then

12 Determine the label k of arc (u, v) ∈ Aω
k , set d̂v ← du +max{x̄k, ϵ} ;

13 if lift=H and k /∈ Kpv
then

14 Set d̂v ← du ;

15 if d̂v < dv then

16 Set dv ← d̂v, Kpv ← Kpu ∪ {k} ;
17 if lift=N or dpv

(k) = 0 then
18 Set dpv

(k)← dpv
(k) + 1 ;

19 Insert the pair (dv, v) into the PQ;

20 for each reached i ∈ V ′ do
21 Set Cω ← Cω + 1;
22 for each label k ∈ Kpi

do
23 Set cωk ← cωk + dpi

(k) ;

16



To change the quantity that each θω estimates in the desired direction, we need to rewrite the objective
functions in our primal Benders subproblems as

∑
i∈V \Iω yωi and modify the dual subproblems and the

optimality cuts accordingly. This modification results in a possibly a smaller cut constant, which in turn
could lead to tighter cuts due to down-lifting the cut coefficients based on the cut constant. Note that
Iω is independent of x̄, and therefore it needs to be computed only once in a pre-processing step.

6.3 Cut sampling

In our basic algorithmic setting, we generate one Benders optimality cut for each scenario ω ∈ Ω. However
this is not mandatory for correctness of the algorithm as one violated cut is enough to cut off an infeasible
solution (θ̄, x̄). To take advantage of this flexibility, we include the option to sample a subset of Ω to
generate cuts, i.e., sample cuts from the set of all possible cuts. We denote by τ the ratio of the number
of scenarios for which we aim to generate a violated cut for a given solution (θ̄, x̄). We sort the scenarios
in non-decreasing order of the θ̄ω values (ties are broken arbitrarily) and following this order we generate
cuts until we have τ × |Ω| violated cuts or all scenarios have already been considered. The cut sampling
procedure is detailed in Algorithm 2.

Algorithm 2: CutSampling(θ̄, x̄,lift,τ)

1 Set the desired number of violated cuts countmax = τ |Ω| and count← 0 ;
2 Define Ω′ ← Ω ;
3 while count < countmax and Ω′ ̸= ∅ do
4 Choose ω′ = argminω∈Ω′ θ̄ω, set Ω′ ← Ω′ \ {ω′};
5 Obtain a cut BC ← Separation(ω′, θ̄, x̄,lift);
6 if BC is violated at (θ̄, x̄) then
7 Add BC to BMP, set count← count+ 1

6.4 Initial solution and initial cuts

We implement a greedy heuristic to generate an initial primal solution for our BC algorithms. In the
greedy algorithm, starting with no blockings, i.e. x = 0, at each iteration we determine the label k′

whose blocking causes the largest marginal reduction in the final spread and set xk′ = 1. We continue
until no more blocking is possible within the budget B.

In order to obtain an initial non-trivial dual (lower) bound, it is possible to initialize the Benders
master problem with a set of optimality cuts. To this end, we propose to use the greedy solution
and generate one cut of type (BOC.ABF), (BOC.PBF), or (BOC.PBF.L) (depending on the current
algorithm setting) for each ω ∈ Ω.

7. Computational results

The solution algorithm was implemented in C++ and IBM ILOG CPLEX 12.10 was used to solve the
MIP models. The computations were made on a single core of an Intel Xeon E5-2670v2 machine with
2.5 GHz and 3GB of RAM, and all CPLEX settings were left on their default values.

7.1 Instances

Our instances are based on two types of networks: real social networks and randomly generated ones.
We obtain the real social network data at https://snap.stanford.edu/data/#socnets. Two of them,
Twitter and Epinions are online social networks, Enron is a communication network, and HepPh is
a collaboration network. For random networks, we consider the Barabási-Albert (BA)(Barabási and
Albert, 1999) and Erdős-Rényi (ER)(Erdos and Rényi, 1959) models and use the R package igraph

to generate them (Csardi et al., 2006). The type of the underlying graphs (directed/undirected), the
number of nodes n and the number of arcs/edges m are provided in Table 1, together with the number
of parallel arcs, if any exist. As the MBSMP is defined on directed graphs, we consider below directed
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versions of the undirected graphs. More detail on the conversion procedure is given below, where label
creation is also discussed. We observe that most of the instances in Table 1 do not have any parallel arcs
and the instances with parallel arcs just have very few. We thus generate another set of instances based
on the instances in Table 1 by randomly adding (additional) parallel arcs. However, the computational
results for these instances are quite similar to the results obtained when considering the instances in
Table 1. Thus, the results for the instances with (additional) parallel arcs can be found in B for ease of
readability.

The node degree distributions of our instances are shown in Figure 5. The plots show that, except
ER graphs, all the graphs follow a power law distribution.

Table 1: Description of instances

n m Type Parallel Arcs

Twitter 81,306 1,768,135 Directed −
Epinions 75,879 508,837 Directed −
Enron 36,692 183,831 Undirected −
HepPh 12,008 118,521 Undirected −
BA.1 50,000 249,995 Undirected 310
ER.1 50,000 250,000 Undirected −
BA.2 50,000 499,990 Undirected 1807
ER.2 50,000 500,000 Undirected −

Assigning arc labels We consider nL ∈ {20, 30} labels in addition to one unblockable label k = 0.
We create two classes of instances using the networks described in Table 1. For a given network and
the value of nL, a label for each arc is generated following a negative binomial distribution with size
parameter (the number of targeted successes) equals to one.

• Class 1: The mean of the distribution is chosen as five if nL = 20 and eight if nL = 30,

• Class 2: The mean of the distribution is chosen as eight if nL = 20 and twelve if nL = 30.

Once we sample m numbers following the distribution we choose, we shift the resulting values by +1
and aggregate the ones that are larger than nL under label 0 so that we have K = {0, 1, . . . , nL}. We
assign each number in the resulting vector to the arcs, respectively. Note that as a consequence of this
procedure, Class 2 instances have smaller difference between label frequencies. If the underlying graph
of the original network is undirected, then we assign labels to the edges first, and then replace each edge
with two arcs having the same label as the original edge.

Seed set generation We consider |I| ∈ {10, 50, 100} as the size of the seed set I. The way we choose
I determines the magnitude of the expected spread without any blocking, and the difficulty of limiting
the spread. Therefore, we would like to have a seed set for which blocking the spread is not trivial. Since
the classical greedy approach (Kempe et al., 2003) is inefficient for moderate seed sizes like the ones we
consider, we apply a simplified version of the IMM (influence maximization with martingales) algorithm
proposed by Tang et al. (2015). Differently from the original version of the algorithm, where there is a
dedicated sampling phase, we sample a fixed number of 1000 reverse reachable sets (this number is based
on preliminary experiments), and then proceed to the node selection phase. Although the algorithm
lacks an approximation guarantee with this modification, it still produces good solutions.

Sampling the live-arc scenarios For our computational study, we assume that the diffusion follows
the IC model. Live-arc equivalents of the IC scenarios are obtained by treating each arc (i, j) indepen-
dently and labelling it as live with a probability equal to the arc probability pij (Kempe et al., 2003).
We end up with a set of live-arcs for each scenario ω yielding the graph Gω = (V,Aω). We consider
three methods while setting up the arc probabilities. In the first and the second one we assume constant
probability, pij = 0.1,∀(i, j) ∈ A and pij = 0.05,∀(i, j) ∈ A, respectively, as these are commonly used
values in related works such as Kempe et al. (2003), Wu and Küçükyavuz (2018), Güney et al. (2021),
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(a) Twitter (b) Epinions (c) Enron

(d) HepPh (e) BA.1 (f) BA.2

(g) ER.1 (h) ER.2

Figure 5: Degree distributions of the instances

and Kahr et al. (2021). In the last one we set pij = 1/indegree(j), which is proposed by Kempe et al.
(2003) and assigns a larger weight to a link if its end node does not have many connections.

In order to determine the number of scenarios to sample, we consider the works on the quality of the
approximations via sample average approximation (SAA) and the strategy applied to choose the best
sample size. We will briefly mention some of the most significant properties relevant for our case (see,
e.g. Homem-de Mello and Bayraksan (2014) for more details on SAA). Let z∗ and z∗Ω be the optimal
objective values of the original problem and the approximation problem (MBSMP), respectively. Also,
let x∗ and x∗

Ω be the optimal solutions (set of labels) provided by the two formulations. Finally, let
(x∗)ϵ and (x∗

Ω)ϵ represent the set of all ϵ-optimal solutions to the original and approximation problems,
respectively. Since we have a discrete solution set consisting of a subset of all labels and a linear objective
function, the following conditions hold for the MBSMP:

1. The expected value of the optimal objective value of the MBSMP is a lower bound on the true
optimal objective value, i.e., E[z∗Ω] ≤ z∗

2. z∗Ω → z∗ and x∗
Ω → x∗ with probability one as |Ω| → ∞.

3. The probability of having the optimal SAA solution x∗
Ω as the true optimum solution x∗ converges

to one exponentially fast as |Ω| → ∞.

19



4. Given the desired significance levels ρ ∈ [0, ϵ) and α ∈ (0, 1), the probability P
{
(x∗

Ω)ϵ ⊂ (x∗)ϵ
}
≥

1 − α. This means that any ρ-optimal solution of the MBSMP is an ϵ-optimal solution to the
original problem with probability at least equal to 1− α when the sample size is given as

|Ω| ≥ 3σ2
max

(ϵ− ρ)2
log

(
|X|
α

)
. (SAA-SS)

In (SAA-SS), σ2
max is a measure of the maximal variance between the set of optimal solutions and

the remaining set of solutions. The parameter |X| shows the size of the set of all feasible solutions.
Thus, the theoretically required sample size |Ω| may be too large for practical purposes. Therefore,
various strategies are provided in the literature for implementing the SAA efficiently. The works Wu
and Küçükyavuz (2018), Han and Li (2018), Tanınmış et al. (2019), Güney et al. (2021), Kahr et al.
(2021), and Tanınmış et al. (2022) use a single batch of scenarios with a sample size as large as possible.
In this work, we follow a similar approach, which is also called the single replication procedure category
of the SAA method (Homem-de Mello and Bayraksan, 2014), and consider two values of the number of
scenarios, i.e., |Ω| ∈ {50, 100}.

In addition to the parameter values explained before, we consider two budget levels B ∈ {4, 6}
with unit blocking costs, i.e., a cardinality constraint on the blocking strategy. Overall, we obtain 1152
instances with 576 instances in each class.

7.2 Results

We consider the following settings in our computational study.

• LP: The basic implementation of the BD algorithm based on the arc-based formulation is carried
out, where an LP is solved for each scenario for separation.

• I: The combinatorial separation algorithm is used with the option lift = N, and only integer
solutions are separated.

• I+: Within setting I, extended seed sets Iω are computed, an initial primal feasible heuristic
solution is obtained and initial cuts are added to the Benders master problem, as described in
Section 6

• I+S: In addition to setting I+, we apply cut sampling as described in Section 6.3.

• I+SF: In addition to setting I+S, we separate fractional solutions with cut sampling.

• I+SFP: Differently from setting I+SF we execute the combinatorial separation algorithm with
lift = P

• I+SFH: Differently from setting I+SF we execute the combinatorial separation algorithm with
lift = H

We also consider the greedy algorithm described in Section 6.4 as a standalone option and denote
it by G. We set the time limit to one hour and run the algorithms until the time limit is reached or a
proven optimal solution is obtained.

Preliminary tests Before presenting the results under all settings mentioned above, we display in
Table 2 the results of our preliminary analysis to determine a good value for the cut sampling ratio
parameter τ . We use setting I+S which is the most basic setting involving cut sampling, and run
experiments on Class 1 instances. Notice that τ = 1.00 refers to no sampling, which makes I+S equivalent
to I+. The table shows the average solution time in seconds (t(s)), the optimality gap percentage (Gap),
the number of B&B nodes explored (nBB), number of optimality cuts added to separate integer solutions
(nIntCut), and the number of optimally solved instances out of 576 (nOpt). Due to better time efficiency,
we choose τ = 0.1 for our computational analysis.
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Table 2: Results for different cut sampling ratios

τ t(s) Gap nBB nIntCut nOpt

1.00 530.7 3.0 1877.5 17778.6 539
0.50 395.8 1.6 2305.1 12493.6 559
0.20 328.1 0.6 3015.5 8989.5 567
0.10 279.2 0.4 3639.2 7889.6 568
0.05 285.6 0.4 3710.4 7299.6 568

Main results The aggregated results over all Class 1 (Class 2) instances are shown in Table 3 (Table
4) for each of our settings. In addition to the measures displayed in Table 2, these tables display the
averages of the best known upper bounds (UB), the best known lower bounds (LB), lower bounds at
the B&B root node (LB0), and the numbers of optimality cuts added to separate fractional solutions
(nFrCut), respectively. It is understood from the tables that solving the Benders subproblems in a
combinatorial way decreases the solution times dramatically. Moreover, the lower bounds which cannot
be improved from a trial value within the time limit under setting LP, becomes much better under setting
I. This reflects on the optimality gaps and the number of optimally solved instances. We are able to
improve the average gaps further with the other enhancements such as cut sampling and initial cuts.
Another big improvement is due to separating fractional solutions which increases nOpt significantly,
especially for Class 2 instances. While both lifting options work very well on the overall, the heuristic
lifting performs similarly to the posterior cut lifting for Class 1 instances but significantly outperforms
it for Class 2 instances. For both instance sets, heuristic lifting yields tighter root bounds and smaller
nBB. We can see that setting I+SFH manages to solve all instances of Class 1 to optimality, while for
Class 2, 14 out of 576 instances remain unsolved with this setting. The numbers in the tables show that
Class 2 instances are more difficult to solve. This can be interpreted as it becomes more difficult to
determine the best labels to block when the label frequencies are close.

Table 3: Aggregated results for Class 1 instances

Method t(s) UB LB Gap LB0 nBB nIntCut nFrCut nOpt
LP 3586.0 3678.4 134.4 83.0 54.4 209.3 5299.6 0.0 6
I 511.1 3339.8 3004.5 2.8 222.9 1793.6 18857.7 0.0 542
I+ 530.7 3320.8 2961.8 3.0 311.2 1877.5 17778.6 0.0 539
I+S 279.2 3320.8 3248.9 0.4 323.0 3639.2 7889.6 0.0 568
I+SF 209.7 3320.8 3314.3 0.0 821.3 486.2 1720.6 4649.8 575
I+SFP 168.3 3320.8 3320.8 0.0 1009.8 345.8 1307.2 3271.1 576
I+SFH 167.2 3320.8 3320.8 0.0 1383.5 208.2 959.2 2932.7 576
G 29.5 3320.9

Table 4: Aggregated results for Class 2 instances

Method t(s) UB LB Gap LB0 nBB nIntCut nFrCut nOpt
LP 3599.5 5368.2 149.5 87.4 61.6 206.9 5533.4 0.0 1
I 1123.5 5152.4 3738.3 9.6 413.8 3013.1 34824.9 0.0 449
I+ 1101.9 5108.6 3763.2 9.3 712.0 3071.0 33405.1 0.0 454
I+S 848.3 5108.6 4263.2 5.2 716.1 6859.3 17944.2 0.0 487
I+SF 504.9 5108.6 4664.5 2.4 1793.3 1211.2 3055.4 8446.4 546
I+SFP 466.7 5109.0 4795.5 1.6 2065.0 1031.9 2357.4 6959.4 555
I+SFH 400.7 5108.6 4882.1 1.1 2414.3 736.2 1992.3 6047.9 562
G 36.9 5109.7

Next, we plot the cumulative distribution of the running time and final optimality gaps in Figure 6,
and of the root gaps in Figure 7, for all settings except G and LP. The reason is that G is a heuristic
and thus does not provide a final gap and takes very short to terminate compared to the exact methods,
as expected, and LP takes very long and yields a very large gap. We see that, the components with
largest marginal contribution in terms of runtime are cut sampling (setting I+S) and fractional separation
(I+SF), followed by posterior lifting (I+SFP). A similar situation is observed when we focus on the final
optimality gaps. In terms of root gaps, initialization (I+), fractional separation, and heuristic lifting
(I+SFH) cause the biggest marginal effect.
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(a) Class 1 running times (b) Class 1 final gaps

(c) Class 2 running times (d) Class 2 final gaps

Figure 6: Cumulative distribution of running times and final gaps for Class 1 and Class 2 instances

Impact of the seed set size Next, we investigate the effect of the seed set size |I| on the performance
of our algorithm and its impact on the final spread. We compare the average solution times, objective
values, and number of branch-and-bound nodes, as presented in Table 5. The results indicate that the
solution times are not significantly affected by increasing the seed set size, nor is the size of the branch-
and-bound tree. Moreover, the relative increase in the final spread between |I| = 10 and |I| = 100 is
around 23% for instances of Class 1 and 16% for Class 2.

Impact of the arc probabilities In this paragraph we provide an out-of-sample analysis, i.e., we
analyze the quality of an optimal solution (i.e., optimal set of labels to block) obtained for a given
scenario Ω when evaluated under another scenario Ω′. As explained in Section 7.1, our instances are
generated by starting with a given network and then using three different arc probability settings, which
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(a) Class 1 root gaps (b) Class 2 root gaps

Figure 7: Cumulative distribution root gaps for Class 1 and Class 2 instances

Table 5: Average results for low, medium, and large seed set size

Instances |I| t(s) UB nBB

Class 1

10 160.1 2943.5 179.5
50 177.2 3396.3 175.0

100 184.3 3622.7 165.0

Class 2

10 413.3 4704.2 765.5
50 389.2 5183.2 739.1

100 399.5 5438.4 704.0

are used to sample diffusion scenarios Ω to obtain three different instances. For a given size of |I|,
the seed set I of an instance are then determined greedily based on the generated scenarios Ω. Thus,
when the problem parameters other than the arc probability setting is fixed (i.e., blocking budget, label
distribution, size of the seed set, number of scenarios), we have three instances with different Ω and I
for each underlying network. For a given underlying network (with all parameters except arc probability
fixed) let Ωℓ denote the scenario set obtained for arc probability setting ℓ and Iℓ denote the resulting seed
set, for ℓ ∈ {1, 2, 3}. To do the out-of-sample analysis, once we solve MBSMP for a problem instance
with Ωℓ and Iℓ for a given ℓ ∈ {1, 2, 3}, we obtain the best blocking decision x∗

ℓ and then calculate
the spread zℓℓ′ (using Ωℓ′ , Iℓ′ , and x∗

ℓ ) for each ℓ′ ∈ {1, 2, 3} \ {ℓ}. Using these values, we calculate
∆ℓ =

1
2

∑
ℓ′∈{1,2,3}\{ℓ} 100× (zℓℓ′ − z∗ℓ′)/z

∗
ℓ′ where z

∗
ℓ′ is the best known objective value when the problem

is solved with Ωℓ′ and Iℓ′ . This value is the relative deviation of the spread obtained when using the
best solution obtained for ℓ with the two other arc probability settings, from the best obtained spreads
for these settings. A small value of ∆ℓ indicates that the solution found under setting ℓ performs well
for the other two probability settings as well.

In Table 6 we report the average ∆ℓ values over all Class 2 instances that use the probability setting
ℓ, for each ℓ ∈ {1, 2, 3} and for each underlying network. We choose this instance set as the problems
in this set are more challenging. We see that the solutions are usually robust to changes in the arc
probabilities, i.e., in Ω. Especially when the problem is solved for ℓ = 1, i.e., pij = 0.1 for all (i, j) ∈ A,
the resulting solution is either optimal or near-optimal for ℓ ∈ {2, 3}. The two extreme cases are related
to BA.2 and ER.2 instances. In the former, the solutions remain optimal when Ω change, while in the
latter solutions for ℓ = 3 performs on the average 11% worse than the the best known objective value
for the probability settings ℓ = 1 and ℓ = 2.
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Table 6: Deviation of out-of-sample spread from the best known solution, under different arc probability
settings

Network ∆1 ∆2 ∆3

Twitter 0.72 0.69 0.74
Epinions 1.02 0.56 0.61
Enron 0.53 0.37 0.27
HepPh 1.27 1.80 0.78
BA.1 0.65 2.05 0.68
ER.1 1.50 5.44 2.73
BA.2 0.00 0.00 0.00
ER.2 1.12 7.29 10.98

8. Conclusions and outlook

In this paper, we introduce the measure-based spread minimization problem (MBSMP). The problem
is defined on a network with arc labels. It involves selecting a set of arcs labels subject to a budget
constraint. For a given selection of labels, all the arcs with these labels are removed from the network.
The goal is to select the labels in such a way as to minimize the spread of a contagion, which starts
from a given set of seed nodes. We adopt the independent cascade model which is a stochastic diffusion
model for the spread dynamics. The MBSMP extends the existing studies in the literature that focus
on the challenging problem of minimizing the spread of infections by link removal and node deletions
by considering a stochastic diffusion model instead of a deterministic one, and by considering removal of
labels and rather than single node/arc deletions. Moreover, as opposed to many studies, exact solution
algorithms are developed to provide a performance guarantee for quite large networks.

We present two integer linear programming formulations for the problem and based on them, we
develop Branch-and-Benders-cut solution algorithms. We show that the Benders optimality cuts can be
separated in a combinatorial fashion, i.e., without the need of solving linear programs. We also present a
set of valid inequalities for one of the formulations and show how these inequalities can be incorporated
in the Benders-based algorithms. Moreover, we develop additional enhancements for our algorithms,
namely using scenario-dependent extended seed sets, generating initial cuts, and implementing a starting
heuristic.

There can be several future research directions. First, the model could be extended to implement
measures on nodes types in addition to contact types represented by arc labels. For example, all the
nodes belonging to a population group could be blocked, which will remove all the associated nodes from
network. An example would be to impose a lockdown for people within a certain age interval. Another
research direction could be investigating the strategy of partial blocking of arc labels rather than the
case of complete blocking in this study. Partial blocking corresponds to allowing people continuing with
the contact type but with additional restrictions. For example, an authority may limit the time spent in
a restaurant rather than closing it. On the algorithmic side, it could be interesting to try to determine
additional valid inequalities. Moreover, a decomposition approach based on Lagrangian decomposition
instead of Benders decomposition could also be a fruitful avenue for further work.
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Furini, F., Ljubić, I., Martin, S., San Segundo, P., 2019. The maximum clique interdiction problem.
European Journal of Operational Research 277, 112–127.
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A. Proof of Theorem 1

Proof. We start with showing that (α̂, β̂) is a feasible solution to (DSABF). By their definitions, α̂ ≥ 0

and β̂ ≥ 0. We need to show that (α̂, β̂) satisfies (DSABF.SEED) and (DSABF.NONSEED). Consider
any i ∈ I. The constraint (DSABF.SEED) can be rewritten as

1 +
∑

a∈δ+ω (i)

βω
a −

∑
δ−ω (i)

βω
a ≥ αω

i . (1)

At (α̂, β̂), the right-hand-side of (1) is equal to the number of nodes that are reachable on Gω(x̄) with

an activation path starting at i, including itself. By definition of β̂,
∑

a∈δ−ω (i) β̂
ω
a = 0 since i is a seed

node. The value of the first term
∑

a∈δ+ω (i) β
ω
a on the left-hand-side is equal to the number of nodes

whose activation path contains one of the outgoing arcs of i, which is equal to the value of αω
i minus one

(note that each seed also activates itself and for this, no arc is needed). Thus, the constraint is satisfied.

Next, consider i ∈ V \I. We show that (DSABF.NONSEED) is satisfied at (α̂, β̂) by a case distinction.

• Case 1:
∑

a∈δ−ω (i) β̂
ω
a = 0. This means that the total number of nodes that are reachable on Gω(x̄)

via the incoming arcs of i, is zero. This implies that i is not reachable as well. Therefore, the
number of nodes that are reachable via the outgoing arcs of i is also zero, i.e.,

∑
a∈A+

iω
β̂ω
a = 0. The

value of the left-hand-side of (DSABF.NONSEED) becomes zero and the constraint is satisfied.

• Case 2:
∑

a∈δ−ω (i) β̂
ω
a > 0. In this case, at least one of the incoming arcs of i is on the activation

path of some node(s) and i is located on some activation path(s). The number of nodes that are

reachable via its outgoing arcs, i.e.,
∑

a∈δ+ω (i) β̂
ω
a , is exactly

∑
a∈δ−ω (i) β̂

ω
a −1 because one of the nodes

that are reachable via its incoming arcs is i itself. Thus, the left-hand-side of (DSABF.NONSEED)
is equal to one and the constraint is satisfied.

In order to prove the optimality of (α̂, β̂), we show that the objective value of (DSABF) at (α̂, β̂)
is equal to the optimal objective function value of the primal subproblem for the given scenario ω and
solution x̄ of (BEN). The primal subproblem reads as follows.

(PSABF) min
∑
i∈V

yωi (2)

s.t.

yωi ≥ 1 i ∈ I (3)

yωj ≥ yωi − x̄k (i, j) ∈ Aω
k , k ∈ K (4)

yωi ≥ 0 i ∈ V \ I (5)

It can be observed that the value of each yωi for i ∈ I in an optimal solution to (PABF) is equal to
one due to constraint (3) and it is max{0, 1 − dωi (x̄)} for i ∈ V \ I due to the cumulative impact of x̄k

in (4). This results in a total objective value that is equal to the number of i ∈ V such that dωi (x̄) < 1,
i.e., i is reachable on Gω(x̄), minus their total shortest path distances (recall that seed nodes i ∈ I

are trivially reachable). Now let us consider the objective value of (DSABF) for (α̂, β̂): While
∑

i∈I α̂i

accounts for the number of reachable nodes,
∑

k∈K

∑
a∈Aω

k
β̂ω
a x̄k accumulates x̄k for each node whose

activation path contains a and as a result keeps track of total shortest path distance. Therefore, we get
an objective value that is equal to the optimal objective function value of (PABF). Together with the
feasibility result, this completes the proof.

B. Results for instances with (additional) parallel arcs

As explained in Remark 1, the underlying graph of the problem instance is allowed to contain parallel
arcs between any pair of nodes, where these arcs have distinct labels. In order to observe the effect of
these arcs and also the impact of having denser graphs in general, we generate a second set of instances
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where we created new parallel arcs in addition to the (potentially existing) original ones. Towards this
end, we take the original instances (i.e., the ones discussed in Section 7.1) and for each existing arc we
create one or two copies of the arc with probabilities 0.10 and 0.05, respectively. Each newly created
arc is assigned a label randomly such that the original and additional arcs have different labels. The
resulting number of arcs are shown under column m′ in Table 1, next to the original number of arcs m.

Table 7: Description of instances with (additional) parallel arcs

m m′

Twitter 1,768,135 2,122,399
Epinions 508,837 610,720
Enron 183,831 220,719
HepPh 118,521 142,337
BA.1 249,995 300,375
ER.1 250,000 299,909
BA.2 499,990 599,876
ER.2 500,000 600,114

Table 8 (Class 1) and Table 9 (Class 2) present the average results of the algorithms over these
new instances. The columns are as explained in Section 7.2. We see that the overall solution times
are increased with the newly added arcs/edges. Similarly, the number of optimally solved instances is
slightly decreased for both classes. However, the performance of the algorithms with respect to each
other remains similar and I+SFP and I+SFH are the best exact algorithms among those we propose, in
terms of the running time, final gaps, and nOpt. The cumulative distributions of the running times and
final gaps are shown in Figure 8, and the cumulative distributions of the root gaps are shown in Figure
9, which are in line with the results of the original instances. Thus, we see that having a significant
number of parallel arcs does not seem to have a clear impact on the algorithms.

Table 8: Aggregated results for Class 1 instances with (additional) parallel arcs

Method t(s) UB LB Gap LB0 nBB nIntCut nFrCut nOpt
LP 3583.9 4891.0 140.6 84.4 53.0 211.5 5174.4 0.0 7
I 584.4 4395.8 3736.4 3.6 218.5 1624.1 18170.0 0.0 535
I+ 589.5 4333.7 3711.2 3.6 297.2 1692.2 17264.8 0.0 535
I+S 369.7 4333.7 4162.3 1.1 310.1 3349.6 8049.1 0.0 555
I+SF 244.1 4333.7 4264.9 0.7 912.0 455.4 1794.7 4484.1 571
I+SFP 207.6 4333.7 4333.7 0.0 1131.7 337.2 1390.7 3301.6 576
I+SFH 214.8 4333.7 4333.7 0.0 1716.3 193.4 982.9 2861.4 576
G 45.4 4333.9

Table 9: Aggregated results for Class 2 instances with (additional) parallel arcs

Method t(s) UB LB Gap LB0 nBB nIntCut nFrCut nOpt
LP 3599.9 6845.0 146.6 88.9 66.8 189.3 5178.5 0.0 1
I 1190.7 6526.7 4461.5 10.1 564.7 2694.8 34245.1 0.0 442
I+ 1191.5 6475.9 4467.6 10.0 918.6 2845.2 33116.8 0.0 443
I+S 940.5 6475.9 5203.9 6.1 922.4 6371.5 18890.0 0.0 477
I+SF 584.4 6475.9 5853.8 2.5 2312.3 1227.3 3207.7 8472.5 542
I+SFP 571.0 6475.9 6019.7 1.7 2669.4 1061.4 2422.9 7135.3 550
I+SFH 481.7 6475.9 6170.6 1.1 3096.9 760.4 2112.6 6177.4 559
G 51.1 6477.9

29



(a) Class 1 running times (b) Class 1 final gaps

(c) Class 2 running times (d) Class 2 final gaps

Figure 8: Cumulative distribution of running times and final gaps for Class 1 and Class 2 instances with
(additional) parallel arcs
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(a) Class 1 root gaps (b) Class 2 root gaps

Figure 9: Cumulative distribution of root gaps for Class 1 and Class 2 instances with (additional) parallel
arcs
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