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Abstract

We investigate a system of four nearest neighbour bidirectional coupled phase oscillators of dissimilar
initial frequencies in a ring at the changeover into a synchronizing state. There are twenty four permutations
upon assigning the initial frequencies to the oscillators. The local interaction between the adjacent coupled
phase oscillators introduces details to the synchronization features. Therefore, for the four unalike local
coupled oscillators, we classify all possible arrangements into three classes, where each class contains eight
configurations. The synchronized state appears at the distinctive coupling when the oscillators transit to
synchrony having noticeable characteristics for each class. Also, the unison behaviour emerges when a well-
defined phase condition is developed. We utilize this conspicuous phase condition to obtain a mathematical
expression predicting the distinguishing coupling for each class once the oscillators have a common frequency.
The obtained expression is given in terms of the initial frequencies, at the minute the four local coupled
phase oscillators attain the same frequency. The analytic formula of the critical coupling allows us to obtain
expressions usable to determine the phase differences at the swop into a synchronization stage.
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I. INTRODUCTION

The dynamics of systems in physics, chemistry, computing, biology, engineering, social relation-
ships and environmental science are modelled by nonlinear coupled oscillators [1–6]. The shared
phenomenon among the previously mentioned wide spread areas of research, though they have
dissimilar dynamics, is the synchronization of the mutually interacting oscillators [7–12]. Thus
coupled oscillators, under the effect of increasing coupling strength, operate in harmony. The
Kuramoto model, a simple paradigmatic example of the non-identical coupled phase oscillators,
is a successful and an efficient model that can describe the dynamics in many of the formerly
stated topics of research. Hence, the Kuramoto model is capable to explain the synchronization
phenomenon that has been noticed [13–20].

The original Kuramoto model represents all-to-all coupled phase oscillators of non-identical
initial frequencies [1, 6]. However, in many cases, the nearest neighbour interactions between the
dissimilar oscillators are necessary [21–24]. This limitations to neighbouring interactions character-
ize the local coupled Kuramoto model (LCKM of coupled phase oscillators). The coupling between
the nearest neighbour oscillators, in the LCKM, can be made unidirectional or bidirectional [25, 26].
Here we are interested in the bidirectional version of the local coupled Kuramoto model (BLCKM)
at the incipient of synchronization. The synchronization appears when the non-identical oscilla-
tors transit from a desynchronization feature to a unison behaviour at a threshold coupling value
[27, 28]. Thus, at the stage of a complete synchronization all the non-identical oscillators in the
system become phase locked. Subsequently, the oscillators own a common frequency regardless
the different natural frequencies of oscillators prior to coupling. In this case, the BLCKM neither
analytically solved for a small number of oscillators (N > 3) nor for a large number of oscillators.
Analytic solutions, for a few and a finite number of non-identical nearest neighbour coupled phase
oscillators at synchronization, represent challenging problems. However, procurement analytic so-
lutions is crucial from theoretical and practical points of view [27–32]. Particularly, solutions for
four and a few non-identical BLCKM oscillators are very important in order to recognise the syn-
chronization mechanisms and the dynamics leading to the harmony behaviour. Understanding the
dynamics of four disparate BLCKM oscillators will permit us realizing the differences between the
four local coupled and the four global coupled systems. The case of four global coupled system is
solved analytically at the full phase locking state [33]. Moreover, the solutions for a few oscillators,
are significant not only because these systems emerge in many applications but also necessary to
guide us to find a method to solve the synchronization problem in a finite number of local coupled
phase oscillators. Once we figure out cases of a few and a finite number of oscillators, we shall
progress to be aware of systems of a very large number of oscillators.

Recently, the synchronization mechanism of a BLCKM of non-identical three oscillators has been
analyzed and solved analytically [34, 35] at the stage of a complete frequency synchronization. The
situation of non-identical three oscillators represents a case of bidirectional coupled phase oscillators
that allows to solve the unidirectional coupled three oscillators [34]. However, the case of three
BLCKM oscillators is a simple case where local and global couplings are equal. The problem of
four BLCKM oscillators is different in comparison to the case of three BLCKM oscillators. We
expect the dynamics, for four non-identical BLCKM oscillators, to be richer. The limitation of
the interactions to be nearest neighbour, in this case of four non-identical BLCKM oscillators,
introduces further details in order to obtain a solution. These details arise because we have twenty
four different ways to arrange the initial frequencies of the nearest neighbour oscillators in a ring
topology. Sequentially, the synchronization features of the adjacent oscillators are influenced.

In this work, we present a study of the four non-identical BLCKM oscillators at the instant
of a perfect frequency synchronization. An analytic solution is obtained not only for the critical
coupling constant but also for the phase differences between each two oscillators. The obtained
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expressions depend only on the natural frequencies of the oscillators. This work is organized as
follows: In section II, we present a model of four dissimilar BLCKM oscillators. In section III,
we show the synchronization trees and the different patterns of the synchronizations of the non-
identical four BLCKM oscillators. Also, in section III, we present the classification of the three
different classes. A solution of the system of unalike BLCKM oscillators and hence an exact
mathematical expression for the critical coupling constant is provided in section IV. In section V,
we introduce furthest remarks on the decisive coupling at synchronization. We obtain, in section
VI, formulas for the phase differences at the appearance of synchronization. A conclusion is given
in section VII.

II. MODEL OF THE FOUR NON-IDENTICAL LOCAL-COUPLED PHASE OSCILLA-

TORS

The non-identical four BLCKM oscillators are symbolized mathematically by [26–28]

θ̇i = ωi +
K

3
[sin(θi+1 − θi) + sin(θi−1 − θi)], (1)

for i = 1, 2, 3, 4. According to model (1), ωi and θi(t) are the initial frequency and the instantaneous
phase of the ith oscillator, successively, while θ̇i is its instantaneous frequency. The quantities
(θi+1− θi) and (θi−1− θi) in (1) are phase differences. The coupling constant is K. The oscillators
are in a ring, where periodic boundary conditions are applied (if i = 4 then i + 1 = 1 and when
i = 1 thence i − 1 = 4). In general, using (1/4)

∑

4

j=1
ωj = ωo = 0, i = 1, 2, 3, 4, does not alter

the features of system (1). At the moment a complete frequency synchronization stage appears,
when K = Kc (Kc is the critical coupling), the frequencies of all oscillators become ωo = 0 and
all the time evolution of phases θ̇i(t) = 0, i = 1, 2, 3, 4. In addition, the quantities θ̇i, the phase
differences (θi+1 − θi) and (θi−1 − θi) as well as their time evolution (θ̇i+1 − θ̇i) and (θ̇i−1 − θ̇i), for
i = 1, 2, 3, 4, turn into time independent quantities at Kc. Thus, a phase lock is established once a
stage of complete frequency synchronization at Kc appears. The phase lock is defined by a prime
phase difference φj = (θj − θk), j 6= k, which becomes π/2 (phase lock condition) [26–28]. The
time evolution of the frequency differences according to (1) are given by

φ̇i = ∆i +
K

3
[sin(θi+2 − θi + 1)− 2 sin(θi+1 − θi) + sin(θi − θi−1)], (2)

for i = 1, 2, 3, 4. In equation (2), the time progression of the phase differences is φ̇i = (θ̇i+1−θ̇i), i =
1, 2, 3, 4. The quantities ∆i = (ωi+1−ωi), i = 1, 2, 3, 4, are always the frequency differences between
two successive pairs of oscillators. According to equation (2), the frequency synchronization of the
four dissimilar BLCKM oscillators occurs when all the time evolution of the frequency differences
φ̇i = 0, and one of the phase differences φj = π/2. This phase lock condition corresponds to
the absolute maximum frequency difference ∆j . We shall define exactly φj = π/2 and ∆j tardier
in the text, for the four BLCKM oscillators, when we introduce the details of the twenty four
configurations of the assigning the initial frequencies of the four oscillators over the set {ωi}.

The conditions considered in this work for the unalike oscillators of BLCKM, when allocating
the initial frequencies, are restricted to not allowing any two oscillators or more to have the same
preliminary frequencies. Precisely, the frequency differences between any two close oscillators must
be ≥ 0.01 in addition to the condition (1/4)

∑

4

j=1
ωj = ωo = 0, i = 1, 2, 3, 4.

3



III. SYNCHRONIZATION TREES, CLASSIFICATIONS OF CONFIGURATIONS AND

CLASSES

The different choices of the natural frequencies set {ωi}, i = 1, 2, 3, 4, for four dissimilar oscil-
lators, are twenty four. Thus, there are twenty four different permutations in order to distribute
the frequencies over the orderly arranged set {ωmax, ωm>, ωm<, ωmin}. The maximum and the
minimum values of the initial frequencies are ωmax and ωmin. The other two initial frequencies, in
between the maximum and the minimum frequencies, are ωm> and ωm<. Always, in any arrange-
ment, we find {ωmax > ωm> > ωm< > ωmin}. Accordingly, the frequency differences have to be
determined as the differences between the initial frequencies of the nearest neighbour oscillators
only. Thus, the four incongruent oscillators of BLCKM will have phase locked states depending on
the prearrangement of the initial frequencies.

Motivated by the solution of the four all-to-all coupled phase oscillators [33], we expect that
the absolute maximum frequency difference (between the maximum and the minimum frequencies)
as well as the frequency difference (between the other two intermediate frequencies that allocate
between the maximum and minimum frequencies) are the effective parameters to control the phase
locked state. Also, the maximum and minimum frequencies contribute to ruling the sync state in
addition to the two previously stated frequency differences. Unlike the global case, the interactions
in the local and bidirectional coupled model are reduced to the nearest neighbour oscillators merely.
Therefore, we anticipate that the previously mentioned parameters affect the synchronizing state
rely on the different permutations of the four dissimilar BLCKM oscillators (as will be explained
well ahead). Consequently, the formerly mentioned parameters must be given in terms of the
initial frequencies of the non-identical nearest neighbour oscillators. However, the definitions of
the formerly specified parameters are not unique for the all twenty four different arrangements.

Accordingly, as we regard nearest neighbour interactions, we distinguish three groups of arrange-
ments of initial frequencies to be distributed over {ωmax, ωm>, ωm<, ωmin}. Each group is composed
of eight configurations. We shall rename the three groups as class I, class II and class III. For each
class, we define the nearest neighbour frequency difference ∆̃max = |∆nn

i |max, for i = 1, 2, 3, 4,
where nn refers to nearest neighbour, which comes as the absolute maximum difference between
two frequencies of two nearest neighbour oscillators. We identify another nearest neighbour fre-
quency difference ∆̃m = (∆nn

i )m as obtained by means of the difference between the other two
nearest neighbour oscillators’s frequencies that are not involved in defining ∆̃max = |∆nn

i |max.
Therefore, we have distinct characterizations of these two quantities ∆̃max > 0 and ∆̃m for each
class. We shall explore, in details later within the text, the different configurations as well as the
definitions of both quantities ∆̃max > 0 and ∆̃m within each class. Also, we shall introduce the
rearranged frequencies ω̃max, ω̃m>, ω̃m< and ω̃min as well as the relocated phases θ̃max, θ̃m>, θ̃m<

and θ̃min. For each class, these reordered quantities (ω̃max, ω̃m>, ω̃m< and ω̃min) are necessary
for redefining the nearest neighbour frequency differences. Consequently, we shall utilize all the
quantities as defined above to rewrite system (1) in a unified form for all classes taking into consid-
erations the reordered phases. This is a required step in order to obtain a solution for system (1),
as it will be clear afterward in the text. Specifically, we look for a solution that expresses exactly
the critical coupling as a function of nearest neighbouring frequency differences ∆̃max and ∆̃m in
addition to nearest neighbour frequencies ω̃max and ω̃min.

A. Class I

Class I appears when each consecutive pair of initial frequencies (ω̃max & ω̃m>), (ω̃m> & ω̃m<),
and (ω̃m< & ω̃min) are possessed by two nearest neighbour oscillators. In addition, the pair (ω̃max
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FIG. 1: The examples of the synchronization trees of the dissimilar four BLCKM oscillators, for class I.
Conditions to obtain different patterns are indicated in the legends of each diagram. (a) The main plot shows
1st pattern. The upper inset diagram demonstrates 2nd pattern. The lower inset graph makes obvious 3rd

pattern. (b) The main plot presents 4th pattern. The upper inset reveals 5th pattern while the lower inset
illustrates 6th pattern.

& ω̃min) is composed of nearest neighbours because of the ring topology.
The plots of Figure 1(a, b) depicts examples of the synchronization trees, for class I. The main

plot of Figure 1a (pattern 1) appears, at the sync state, when one oscillator of ωmax alone encounters
a cluster of three oscillators of ωm>, ωm< and ωmin. The upper inset graph of Figure 1a (pattern
2), illustrates the synchronization as soon as the three oscillators’ cluster of ωmax, ωm> and ωm<

joins the other oscillator of ωmin, at a moment a synchronization stage comes out. The lower insert
diagram of Figure 1 (pattern 3) elucidates the synchronization, once a cluster of two oscillators of
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TABLE I: The eight assemblies that define class I. The quantities ∆̃max > 0 and ∆̃m < 0 are given for each
specific configuration.

configuration ∆̃max > 0 ∆̃m < 0

(ωmax, ωm>, ωm<, ωmin) ∆̃max = (ω̃max − ω̃min) ∆̃m = (ω̃m< − ω̃m>)

(ω1, ω2, ω3, ω4) ∆̃max = (ω1 − ω4) ∆̃m = (ω3 − ω2)

(ω1, ω4, ω3, ω2) ∆̃max = (ω1 − ω2) ∆̃m = (ω3 − ω4)

(ω2, ω3, ω4, ω1) ∆̃max = (ω2 − ω1) ∆̃m = (ω4 − ω3)

(ω2, ω1, ω4, ω3) ∆̃max = (ω2 − ω3) ∆̃m = (ω4 − ω1)

(ω3, ω4, ω1, ω2) ∆̃max = (ω3 − ω2) ∆̃m = (ω1 − ω4)

(ω3, ω2, ω1, ω4) ∆̃max = (ω3 − ω4) ∆̃m = (ω1 − ω2)

(ω4, ω1, ω2, ω3) ∆̃max = (ω4 − ω3) ∆̃m = (ω2 − ω1)

(ω4, ω3, ω2, ω1) ∆̃max = (ω4 − ω1) ∆̃m = (ω2 − ω3)

ωmax and ωm> connects to a cluster of the other two oscillators of ωm< and ωmin at Kc, where
the gap between ωmax and ωm> is larger than that of ωm< and ωmin. The main plot of Figure 1b
(pattern 4) points out to the synchronization once the oscillators are ordered to be a cluster of two
oscillators of original frequencies ωmax and ωm> attaching to a cluster of the other two oscillators of
the earliest frequencies ωm< and ωmin at Kc but the separation between ωmax and ωm> is smaller
than the splitting between ωm< and ωmin. The upper inset of Figure 1b (pattern 5) shows the
synchronization at Kc between a cluster of ωm< and ωm> when it meets a cluster of ωmax and ωmin.
The diagram in the lower inset of Figure 1b shows the pattern 6 when a group of ωm> and ωm<

joins another of ωmax and ωmin. In the patterns 4 and 5 both clusters have the same widths. The
difference between patterns 5 and 6 appears due to the separation between the middle oscillators
in the 5th is smaller than that in the 6th. We find always, in class I, the phase difference satisfying
the phase lock condition φmax = (θmax − θmin) = π/2 at Kc is corresponding to the frequency
difference ∆̃max > 0. As clearly appears in Figure 1, class I is obtained when all oscillators
appear nearest neighbours as well as they possess ω̃max = ωmax, ω̃min = ωmin, ω̃m> = ωm>,
and ω̃m< = ωm<. Thus, class I is distinguished by |∆nn

i |max ≡ ∆̃max = (ωmax − ωmin) > 0 and
(∆nn

i )m ≡ ∆̃m = (ωm< − ωm>) < 0. Also, the phases are θ̃max = θmax, θ̃m> = θm>, θ̃m< = θm<

and θ̃min = θmin. The eight arrangements of oscillators corresponding to class I are summarized in
table I. As indicated in table I, the left column shows the different eight configurations to distribute
the initial frequencies on the set {ωmax > ωm> > ωm< > ωmin}. The other two columns to the
right present the quantities ∆̃max > 0 and ∆̃m < 0, respectively.

B. Class II

Class II exists as neither the two oscillators of frequencies (ωmax&ωmin) nor the couple oscillators
of frequencies (ωm>&ωm<) are handled nearest neighbours. The pairing oscillators of frequencies
(ωmax&ωm>) are nearest neighbours as well as the combining oscillators of frequencies (ωm<&ωmin)
are nearest neighbours too. The major drawing of Figure 2a, at the unison state, presents a
pattern 1 of the synchronization feature once one oscillator of ωmax comes together with the
group of the three oscillators of ωm>, ωm< and ωmin. The upper inset of Figure 2a, indicates
the synchronization behaviour (pattern 2) as soon as a cluster of three oscillators of ωmax, ωm>

and ωm< meets the other oscillator of ωmin at the critical coupling. The main graph of Figure
2b, displays the synchronization tree (pattern 3) as a group of two oscillators of ωmax and ωm>

assembles another of ωm< and ωmin at Kc, where the interval between ωmax and ωm> is larger
than the difference between ωm< and ωmin. The diagram in the lower inset of Figure 2b (pattern
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FIG. 2: Samples of the synchronization hierarchies of four BLCKM oscillators, for class II, when the coupling
constant increases for distinctive configurations of {ωmax > ωm> > ωm< > ωmin}. Settings to find different
patterns are specified in the legends of each graph. (a) The principal drawing points to the pattern 1. The
higher insert figure puts on view the pattern 2. (b) The main diagram illustrates the pattern 3 and the
upper inset plot indicates the pattern 4 while the lower inset shows the pattern 5. The legends of all plots
show the two condition of the choices (as explained in table II). In all plots, we refer to table II, where each
row is composed of two sub-rows (first and second).

4) shows the cluster of ωmax and ωm> once it joins the other one of ωm< and ωmin at the critical
coupling, when the space between ωmax and ωm> is smaller than the split between ωm< and ωmin.
Unlike class I, we cannot find in class II a partial synchronization between the middle oscillators
because they are not nearest neighbours. As a result, for class II, the nearest neighbour frequency
difference |∆nn

i |max ≡ ∆̃max 6= (ωmax − ωmin). In addition, the other nearest neighbour frequency
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TABLE II: The eight arrangements of class II. The frequency differences ∆̃max > 0 and ∆̃m < 0 are specified
for each particular configuration. Each row has two sub-rows in accord to the resettled nearest neighbour
frequencies as well as the relation between ∆̃max and |∆̃m|. The reallocated phases are defined.

configuration ∆̃max > 0 ∆̃m < 0 Phases

(ωmax, ωm>, ωm<, ωmin) ∆̃max = (ω̃max − ω̃min) ∆̃m = (ω̃m< − ω̃m>)

(ω1, ω2, ω4, ω3) (ω1 − ω4) > (ω2 − ω3) ω̃m> = ω2 & ω̃m< = ω3 θ̃max = θ1 & θ̃m> = θ2
ω̃max = ω1 & ω̃min = ω4 ∆̃max = (ω1 − ω4) ∆̃m = (ω3 − ω2) θ̃min = θ4 & θ̃m< = θ3

(ω2 − ω3) > (ω1 − ω4) ω̃m> = ω1 & ω̃m< = ω4 θ̃max = θ2 & θ̃m> = θ1
ω̃max = ω2 & ω̃min = ω3 ∆̃max = (ω2 − ω3) ∆̃m = (ω4 − ω1) θ̃min = θ3 & θ̃m> = θ4

(ω1, ω4, ω2, ω3) (ω1 − ω2) > (ω4 − ω3) ω̃m> = ω4 & ω̃m< = ω3 θ̃max = θ1 & θ̃m> = θ4
ω̃max = ω1 & ω̃min = ω2 ∆̃max = (ω1 − ω2) ∆̃m = (ω3 − ω4) θ̃min = θ2 & θ̃m< = θ3

(ω4 − ω3) > (ω1 − ω2) ω̃m> = ω1 & ω̃m< = ω2 θ̃max = θ4 & θ̃m> = θ1
ω̃max = ω4 & ω̃min = ω3 ∆̃max = (ω4 − ω3) ∆̃m = (ω2 − ω1) θ̃min = θ3 & θ̃m> = θ2

(ω2, ω3, ω1, ω4) (ω2 − ω1) > (ω3 − ω4) ω̃m> = ω3 & ω̃m< = ω4 θ̃max = θ2 & θ̃m> = θ3
ω̃max = ω2 & ω̃min = ω1 ∆̃max = (ω2 − ω1) ∆̃m = (ω4 − ω3) θ̃min = θ1 & θ̃m< = θ4

(ω3 − ω4) > (ω2 − ω1) ω̃m> = ω1 & ω̃m< = ω2 θ̃max = θ3 & θ̃m> = θ1
ω̃max = ω3 & ω̃min = ω4 ∆̃max = (ω3 − ω4) ∆̃m = (ω2 − ω1) θ̃min = θ4 & θ̃m> = θ2

(ω2, ω1, ω3, ω4) (ω2 − ω3) > (ω1 − ω4) ω̃m> = ω1 & ω̃m< = ω4 θ̃max = θ2 & θ̃m> = θ1
ω̃max = ω2 & ω̃min = ω3 ∆̃max = (ω2 − ω3) ∆̃m = (ω4 − ω1) θ̃min = θ3 & θ̃m< = θ4

(ω1 − ω4) > (ω2 − ω3) ω̃m> = ω2 & ω̃m< = ω3 θ̃max = θ1 & θ̃m> = θ2
ω̃max = ω1 & ω̃min = ω4 ∆̃max = (ω1 − ω4) ∆̃m = (ω3 − ω2) θ̃min = θ4 & θ̃m> = θ3

(ω3, ω4, ω2, ω1) (ω3 − ω2) > (ω4 − ω1) ω̃m> = ω2 & ω̃m< = ω3 θ̃max = θ3 & θ̃m> = θ4
ω̃max = ω3 & ω̃min = ω2 ∆̃max = (ω3 − ω2) ∆̃m = (ω1 − ω4) θ̃min = θ2 & θ̃m< = θ1

(ω4 − ω1) > (ω3 − ω2) ω̃m> = ω2 & ω̃m< = ω3 θ̃max = θ4 & θ̃m> = θ3
ω̃max = ω4 & ω̃min = ω1 ∆̃max = (ω4 − ω1) ∆̃m = (ω2 − ω3) θ̃min = θ1 & θ̃m> = θ2

(ω3, ω2, ω4, ω1) (ω3 − ω4) > (ω2 − ω1) ω̃m> = ω2 & ω̃m< = ω1 θ̃max = θ3 & θ̃m> = θ2
ω̃max = ω3 & ω̃min = ω4 ∆̃max = (ω3 − ω4) ∆̃m = (ω1 − ω2) θ̃min = θ4 & θ̃m< = θ1

(ω2 − ω1) > (ω3 − ω4) ω̃m> = ω3 & ω̃m< = ω4 θ̃max = θ2 & θ̃m> = θ3
ω̃max = ω2 & ω̃min = ω1 ∆̃max = (ω2 − ω1) ∆̃m = (ω4 − ω3) θ̃min = θ1 & θ̃m> = θ4

(ω4, ω1, ω3, ω2) (ω4 − ω3) > (ω1 − ω2) ω̃m> = ω1 & ω̃m< = ω2 θ̃max = θ4 & θ̃m> = θ1
ω̃max = ω4 & ω̃min = ω3 ∆̃max = (ω4 − ω3) ∆̃m = (ω2 − ω1) θ̃min = θ3 & θ̃m< = θ2

(ω1 − ω2) > (ω4 − ω3) ω̃m> = ω4 & ω̃m< = ω3 θ̃max = θ1 & θ̃m> = θ4
ω̃max = ω1 & ω̃min = ω2 ∆̃max = (ω1 − ω2) ∆̃m = (ω3 − ω4) θ̃min = θ2 & θ̃m> = θ3

(ω4, ω3, ω1, ω2) (ω4 − ω1) > (ω3 − ω2) ω̃m> = ω3 & ω̃m< = ω2 θ̃max = θ4 & θ̃m> = θ3
ω̃max = ω4 & ω̃min = ω1 ∆̃max = (ω4 − ω1) ∆̃m = (ω2 − ω3) θ̃min = θ1 & θ̃m< = θ2

(ω3 − ω2) > (ω4 − ω1) ω̃m> = ω4 & ω̃m< = ω1 θ̃max = θ3 & θ̃m> = θ4
ω̃max = ω3 & ω̃min = ω2 ∆̃max = (ω3 − ω2) ∆̃m = (ω1 − ω4) θ̃min = θ2 & θ̃m> = θ1

difference (∆nn
i )m ≡ ∆̃m 6= (ωm< − ωm>). Therefore, the redefined frequencies ω̃max, ω̃min, ω̃m>

and ω̃m<, as well as their consistent rearranged phases θ̃max, θ̃min, θ̃m> and θ̃m< will be different
than the case of class I. We shall delineate all the previously mentioned quantities. As clearly seen
in table II, the left column shows the different eight arrangements to put forward the initiation
frequencies set {ωmax > ωm> > ωm< > ωmin}. The other two columns, in the middle, introduce
the nearest neighbour frequency differences ∆̃max > 0 and ∆̃m < 0, respectively. The column to
the right indicates the relocated phases of the oscillators.

Consequently, we have two choices, as they appear in the legends of the plots of Figure 2 (a and b)
and in table II: the first is distinct when ω̃max = ωmax, ω̃min = ωm<, ω̃m> = ωm>, and ω̃m< = ωmin

(see the main plots of Figure 2a and 2b as well as the first sub-row, within any row in table II, for any
configuration). The second is defined as ω̃max = ωm>, ω̃min = ωmin, ω̃m> = ωmax, and ω̃m< = ωm<
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(see the upper inset of Figure 2a and the upper inset of Figure 2b in addition to the second sub-row,
inside any row in table II, for any arrangement). Any of the two choices is fulfilled when the pattern
5 appears (the lower inset of Figure 2b). Accordingly, as shown in table II, we have two selections
for each configuration, either |∆nn

i |max ≡ ∆̃max = (ω̃max − ω̃min) ≡ (ωmax − ωm<) > 0 in addition
to (∆nn

i )m ≡ ∆̃m = (ω̃m< − ω̃m>) ≡ (ωmin − ωm>) < 0 or |∆nn
i |max ≡ ∆̃max = (ω̃max − ω̃min) ≡

(ωm>−ωmin) > 0 along with ∆nn
i |m ≡ ∆̃m = (ω̃m<−ω̃m>) ≡ (ωm<−ωmax) < 0. These two choices

match the phases to be either θ̃max = θmax, θ̃m> = θm>, θ̃min = θm< additional to θ̃m< = θmin

or θ̃max = θm>, θ̃m> = θmax, θ̃min = θmin as well as θ̃m< = θm<, respectively. In this class II, we
always notice the previously mentioned two selections that agree with the phase lock condition,
at Kc, is either φmax = (θmax − θm<) = π/2 or φmax = (θm> − θmin) = π/2, in sequence. The
phase lock condition match up whichever the frequency difference ∆̃max = (ωmax − ωm<) > 0 or
∆̃max = (ωm> − ωmin) > 0, respectively.

A comparison between tables I and II shows that the left columns in both tables include different
configurations in each class. In addition, class II, contains more details in comparison to class I.
These details appear because the arrangements of the initial frequencies over the set {ωmax >
ωm> > ωm< > ωmin} do not fulfill the requirements that all the ordered oscillators, in each
assembly, are nearest neighbours. The legends of all plots in Figure 2(a and b) clearly indicate these
details. Therefore, in order to held the oscillators as nearest neighbours and hence the definitions of
the frequency differences according to equations (1) and (2), we must redefine frequencies as they
appear in the 1st and 3rd columns (from left) of table II. Also, in class II, the phases are defined
in a different manner (the farthest right column in table II). Subsequently, in each column in table
II, for each configuration, there are two sub-rows. This is because, in class II, we must include
the two adoptions of the initial frequencies. Moreover, we have to embrace the two alternatives,
for each configuration, of the nearest neighbour frequency difference ∆̃max > 0 in addition to the
nearest neighbour frequency difference ∆̃m < 0. Also we present, for each arrangement, the two
assortments of the phases as shown in the extreme right column.

C. Class III

Class III appears whenever the twosomes oscillators of (ωmax&ωmin) are nearest neighbour and
the couples oscillators of (ωm>&ωm<) are nearest neighbour. Neither the combined oscillators of
(ωmax&ωm>) nor the other pair of (ωm<&ωmin) are nearest neighbour oscillators. The principal
illustration of Figure 3 (pattern 1), describes the synchronization tree, once the oscillator of ωmax

meets the cluster of three oscillators of ωm>, ωm< and ωmin at Kc. The upper insertion pattern of
Figure 3 (pattern 2), put on view the synchronization feature as the cluster of three oscillators of
ωmax, ωm> and ωm< links to the oscillator of ωmin at the critical coupling value. The lower inset
diagram of Figure 3 (pattern 3), displays the synchronization behaviour when the assembly of two
oscillators of ωmax and ωmin joins the group of two oscillators of ωm> and ωm< at Kc. In class III,
neither we obtain patterns similar to patterns 3, 4 and 6 of class I (see Figure 1(a and b)) nor we
observe displays similar to patterns 3, 4 and 5 of class II (see Figure 2b). Also, within class III, we
obtain a unique pattern 3 which is different from the pattern 5 in class I.

Furthermore, the pattern 3 in class III is not like to the patterns 5 in class I because the
oscillators of ωmax and ωm> as well as the oscillators of ωm< and ωmin are not nearest neighbours
in class III. Therefore, class III is obtained when the frequencies are ω̃max = ωmax, ω̃min = ωmin,
ω̃m> = ωm> and ω̃m< = ωm<. Moreover, the phases are regarded as θ̃max = θmax, θ̃min =
θmin, θ̃m> = θm> and θ̃m< = θm<. Thus, we characterize class III by |∆̃nn

i |max ≡ ∆̃max =
(ωmax − ωmin) > 0 and (∆̃nn

i )m ≡ ∆̃m = (ωm> − ωm<) > 0. The phase lock condition, for
class III, φmax = (θmax − θmin) = π/2 at Kc corresponds to ∆̃max > 0. The different eight
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FIG. 3: Some exemplars of the synchronization diagrams of the non-identical four oscillators, in support of
class III, as soon as the coupling constant increases for specific arrangements of {ωmax > ωm> > ωm< >
ωmin}. Sceneries to realize dissimilar patterns are shown in the legend of each illustration. The major
drawing refers to the pattern 1. The higher insertion graph indicates the pattern 2. The lower draw
diagram implies the pattern 3.

TABLE III: The eight compositions of class III. The definitions of both ∆̃max > 0 and ∆̃m > 0 are
particularly set for each specific configuration.

configuration ∆̃max > 0 ∆̃m > 0

(ωmax, ωm>, ωm<, ωmin) ∆̃max = (ω̃max − ω̃min) ∆̃m = (ω̃m> − ω̃m<)

(ω1, ω3, ω4, ω2) ∆̃max = (ω1 − ω2) ∆̃m = (ω3 − ω4)

(ω1, ω3, ω2, ω4) ∆̃max = (ω1 − ω4) ∆̃m = (ω3 − ω2)

(ω2, ω4, ω1, ω3) ∆̃max = (ω2 − ω3) ∆̃m = (ω4 − ω1)

(ω2, ω4, ω3, ω1) ∆̃max = (ω2 − ω1) ∆̃m = (ω4 − ω3)

(ω3, ω1, ω4, ω2) ∆̃max = (ω3 − ω2) ∆̃m = (ω1 − ω4)

(ω3, ω1, ω2, ω4) ∆̃max = (ω3 − ω4) ∆̃m = (ω1 − ω2)

(ω4, ω2, ω1, ω3) ∆̃max = (ω4 − ω3) ∆̃m = (ω2 − ω1)

(ω4, ω2, ω3, ω1) ∆̃max = (ω4 − ω1) ∆̃m = (ω2 − ω3)

classifications of oscillators according to class III are itemized in table III. As stated in table III,
the left column presents the different eight arrangements to assign the initial frequencies on the
set {ωmax > ωm> > ωm< > ωmin}. The other two columns to the right explain the definitions of
the nearest neighbour quantities ∆̃max > 0 and ∆̃m > 0.

It should be noted that there are three major differences between class I and class III. The first
exists directly from the different arrangements of the initial frequencies which appear within the left
columns in both tables I and III. Moreover, the configurations in class III include some non-nearest
neighbour oscillators as we order the initial frequencies over the set {ωmax > ωm> > ωm< > ωmin}.
The second become visible because of the quantities (ωmax − ωm>) and (ωm> − ωmin) are not
nearest neighbours in class III in comparison to the similar quantities in class I. We neglect the
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use of both quantities (ωmax − ωm>) and (ωm> − ωmin) in both classes I and III (as will be clear
later). The third appears in the definition of the frequency difference ∆̃m = (ωmax − ωmin) > 0,
in order to distinguish class III when we treat later equations (1) to arrive to an analytic solution
in regard to this class III. As we expect, the equation for calculating Kc will be given in terms
of ∆̃max and ∆̃m. Therefore, ∆̃m must have a different sign when it is operated in class III than
that is used for class I. This change is necessary so as to distinguish the exact values of Kc for
class III from the values of the critical coupling of class I. Also, class III sets apart from class II
as the comparison between tables II and III shows different configurations in each class (II and
III). Additionally, the definitions of ∆̃max and ∆̃m are different for class III in comparison to the
corresponding quantities in class II. Also, in class III, there is no need to redefine the phases as
they are outlined in the extreme right column of table II of class II.

In all diagrams of Figures 1, 2 and 3, and their insets, we refer to Kc in the graphs, where the
oscillators start to synchronize to each other having equal θ̇i, for i = 1, 2, 3, 4, as time independent
quantities. The four quantities θ̇i own numerical values < 10−5 and they remain at these values
for an extremely long time. Also, we determine numerically Kc when the phase differences φi, for
i = 1, 2, 3, 4, become time independent and they possess numerical values < 10−5 as well as they
persist at these values for an enormously long time. At Kc, system (3) undergoes a saddle-node
bifurcation and the phase slip features of θ̇i and θ̇i, for i = 1, 2, 3, 4, disappear.

IV. EXACT SOLUTION AT THE INSTANT OF SYNCHRONIZATION

As stated in the previous section, we find the following: the consecutive pairs of oscillators
in each configuration of class I appear nearest neighbours. Consequently, the nearest neighbours
quantities ∆̃max = (ωmax − ωmin) and ∆̃m = (ωm< − ωm>) are obtained. In class II, the two
oscillators of ωmax and ωmin seem non-nearest neighbours as well as the other two oscillators
of ωm> and ωm< look non-nearest neighbours. Therefore, in class II, we need to redefine the
frequencies to allocate pairs of nearest neighbours as (ω̃max&ω̃m>), (ω̃m>&ω̃m<), (ω̃m<&ω̃min)
and (ω̃max&ω̃min). Also, we redefine their corresponding phases to be (θ̃max&θ̃m>), (θ̃m>&θ̃m<),
(θ̃m<&θ̃min) and (θ̃max&θ̃min). Henceforward, we define the nearest neighbour frequency differences
∆̃max = (ω̃max − ω̃min) and ∆̃m = (ω̃m< − ω̃m>). In class III, the oscillators of (ωmax&ωm>)
and those of (ωm<&ωmin) are non-nearest neighbours. However, the pairs of (ωmax&ωmin) and
(ωm>&ωm<) are nearest neighbours, which make the necessary frequency differences between the
nearest neighbours as ∆̃max = (ωmax − ωmin) and ∆̃m = (ωm> − ωm<). Therefore, the major
effective difference between class I and class III are coming due to the two nearest neighbour
oscillators’ frequency difference ∆̃max > 0. The reallocated quantities pave the way to obtain a
unified solution to the three classes. Thus, for the three classes (see tables I, II and III), we write
system (1) as

ω̃max +
Kc

3
[sin(θ̃m> − θ̃max) + sin(θ̃min − θ̃max)] = 0,

ω̃m> +
Kc

3
[sin(θ̃max − θ̃m>) + sin(θ̃m< − θ̃m>)] = 0,

ω̃m< +
Kc

3
[sin(θ̃m> − θ̃m<) + sin(θ̃min − θ̃m<)] = 0,

ω̃min +
Kc

3
[sin(θ̃m< − θ̃min) + sin(θ̃max − θ̃min)] = 0. (3)

Always for each configuration within each class, we use the first and the last two relations of system
(3) that express the two oscillators possessing frequencies ω̃max and ω̃min, to write the following
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equations

sin(θ̃m> − θ̃max) = 1−
3ω̃max

Kc

, (4a)

sin(θ̃min − θ̃m<) = 1 +
3ω̃min

Kc

. (4b)

Moreover, we utilize the equations of system (3), at the synchronization point, to arrive at

3∆̃max

Kc

+ sin(θ̃m> − θ̃max) + sin(θ̃min − θ̃m<) = 2, (5a)

3∆̃m

Kc

+ sin(θ̃m> − θ̃max) + sin(θ̃min − θ̃m<) = 2 sin(θ̃m> − θ̃m<), (5b)

where, ω̃max, ω̃m>, ω̃m<, ω̃min, ∆̃max and ∆̃m are defined for any configuration within each class
in tables I, II, and III. Also, the quantities θ̃max, θ̃m>, θ̃m< and θ̃min are demarcated for each class
as specified in the previous section. We inscribe the expressions (4) and (5) using the phase lock
condition (θ̃max − θ̃min) = π/2 at Kc. Therefore, we apply the phase lock condition to obtain

sin(θ̃m> − θ̃m<) = − cos(θ̃m> − θ̃max + θ̃min − θ̃m<),

cos(θ̃m> − θ̃max + θ̃min − θ̃m<) = cos(θ̃m> − θ̃max) cos(θ̃min − θ̃m<)

− sin(θ̃m> − θ̃max) sin(θ̃min − θ̃m<),

cos(θ̃m> − θ̃max) =

√

1− (1−
3ω̃max

Kc

)2,

cos(θ̃min − θ̃m<) =

√

1− (1 +
3ω̃min

Kc

)2.

Accordingly, we draw on the directly above relations in addition to equations (4) and (5a) to arrive
to the following expression

sin(θ̃m> − θ̃m<) =

1

K2
c

(−K2
c + 3Kc∆̃max + 9ω̃maxω̃min + 3

√

ω̃maxω̃min(3ω̃max − 2Kc)(2Kc + 3ω̃min)). (6)

Also, we relate equations (5) and (6) together to yield the following mathematical form

3Kc(∆̃max + ∆̃m) + 6(
√

ω̃maxω̃min(3ω̃max − 2Kc)(3ω̃min + 2Kc) + 3ω̃maxω̃min) = 0. (7)

Thus, we treat equation (7) to obtain the resulting equation, which is written as

− 9Kc(−Kc∆̃
2
max −Kc∆̃

2
m − 2Kc∆̃max∆̃m − 16Kcω̃maxω̃min − 12∆̃maxω̃maxω̃min

− 12∆̃mω̃maxω̃min + 24ω̃2
maxω̃min − 24ω̃maxω̃

2
min) = 0. (8)

When the following conditions are satisfied

Kc 6= 0,

∆̃max 6= 0,

ω̃maxω̃min 6= 0,

(∆̃max + ∆̃m)2 + 16ω̃maxω̃min 6= 0, (9)
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FIG. 4: The illustrations represent the transition from the desynchronization region to the synchronization
zone for all classes. Data obtained numerically from system (3) are denoted by open circles while equation
(10) is represented by the solid line in each drawing within each class. (a) The graph shows, for class I,
the coincidence of the numerical data as circles with equation (10) as a solid line. (b) The plot depicts the
justification of expression (10) in a connected line that fit well with the computed data as circles in the case
of class II. (c) The diagram presents the matching between the calculated data as circles and formula (10)
as a solid line in the occasion of class III. In each plot, the upper and lower arrows refer to the maximum
and minimum limits for each class as well as the conditions of initial frequencies. Also, as shown in (c), the
sign of the abscissa is changed from a negative value to a positive one at coordinates (0.0, 1.0) as indicated
by the middle arrow.

equation (8) gives exactly Kc, for classes I, II and III, that is written as

Kc

∆̃max

= 1 +
∆̃mH

∆̃max

,

H = −
∆̃max(∆̃max + ∆̃m)2 + 4ω̃maxω̃min(3∆̃max + ∆̃m)

∆̃m((∆̃max + ∆̃m)2 + 16ω̃maxω̃min)
. (10)

Thus, expression (10) determines the values of Kc once we know the initial frequencies
{ω̃max, ω̃m>, ω̃m<, ω̃min} of the four oscillators for any configuration within any class. Accord-
ing to equation (10), the analytically calculated values of Kc depend on the quantities ∆̃max, ∆̃m,
ω̃max and ω̃min as expected. In expression (10), the quantities ∆̃max and ∆̃m are considered as
the frequency differences between nearest neighbour oscillators. Also, in formula (10), ω̃max and
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ω̃min are frequencies of nearest neighbour oscillators. Thus, equation (10) is serviceable, for each
class (see tables I, II and III), once we know the initial frequencies ω̃max, ω̃min, ω̃m> and ω̃m< and
define the frequency differences ∆̃max and ∆̃m.

Figure 4 presents the confirmation of equation (10) to express Kc for the three classes. Figures
4a, 4b and 4c show the plots of Kc/∆̃max versus ∆̃mH/∆̃max, where H is given in expression
(10). Figure 4 shows clearly a complete agreement between Kc (analytic) and Kc (calculated
numerically). The computed data, obtained by using equation (3), are shown as open white
circles. These data match excellently the solid line (for each class) that represents equation (10).
Figures 4a and 4b have positive abscissas in the cases of classes I and II but the definitions of the
quantities ∆̃max and ∆̃m are different in each class. For each configuration in class II, ω̃max, ω̃min,
H and Kc are possessing different values in contrast to the similar quantities in class I (the legends
of Figure 4a and 4b present examples). In addition, the configurations {ω̃max, ω̃m>, ω̃m<, ω̃min} in
both classes I and II are different. Figure 4c represents the validation of equation (10) for class
III. Figure 4c appears different in comparison to figures 4a and 4b, because class III contains the
quantity ∆̃m > 0. When ∆̃m > 0 is used in equation (10), we obtain the values of Kc that matches
class III. This is because Kc in equation (10) depends on ∆̃max > 0, ∆̃m > 0, ω̃max and ω̃min

that lead to have different abscissa and ordinate in the case of Figure 4c of class III. Moreover,
in Figure 4c, the x-axis is ranged from a negative value to a positive one. This is for the reason
that the quantity H(∆̃max, ∆̃m, ω̃max, ω̃min) changes its sign, depending on the values of the initial
frequencies, while ∆̃m is always positive. In Figure 4(a-c), for each class, the area under the solid
line represents the region where the oscillators are in desynchronized states while the zone above
the solid line signifies the synchronized states. As shown in the diagrams of Figure 4, any different
coordinates denote different cases of Kc, ∆̃max, ∆̃m and H for each class.

V. FURTHER ELUCIDATIONS CONCERNING THE CRITICAL COUPLING

According to Figure 4(a, b and c), the minimum and maximum limits in the three plots are
different. These differences make an additional distinction of each class. Class I possess a minimum
limit at the coordinates (∆̃mH/∆̃max ≈ 0.0017,Kc/∆̃max ≈ 1.0017) when the assigning of the
initial frequencies are ωmax = −ωmin and ωm> = 0.005ωmax = −ωm<. The maximum boundary,
for class I, appears at the coordinates (∆̃mH/∆̃max ≈ 0.4963,Kc/∆̃max ≈ 1.4963) once the starting
frequencies are allocated to be ωmax = −ωmin and ωm> = 0.99ωmax = −ωm<. For class II, the
minimum border is located at (∆̃mH/∆̃max ≈ 0.10946,Kc/∆̃max ≈ 1.0946) whenever we find either
the case ωmax = −0.3971ωmin, ωm> = −0.3824ωmin as well as ωm< = −0.2206ωmin or the situation
ωmin = −0.3971ωmax, ωm> = −0.2206ωmax along with ωm< = −0.3824ωmax. It is not possible,
upon taking into considerations the different configurations of class II, to have a lower limit than the
previously observed limit. This is because the quantity ∆̃m does not own a less negative value close
to zero or being zero. The upper bound, for class II, occurs at (∆̃mH/∆̃max = 0.5,Kc/∆̃max = 1.5)
each time we have ωmax = −ωmin, ωm> = 0.99ωmax in addition to ωm< = −ωm> or we get a case
of initial frequencies ωmax = −ωmin, ωm> = 0.005ωmax and ωm< = −ωm>. Regarding class III,
the lowest limit comes across at (∆̃mH/∆̃max ≈ −0.2479,Kc/∆̃max ≈ 0.7521) as soon as the
initial frequencies are allotted to be ωmax = −ωmin, ωm> = 0.99ωmax additional to ωm< = −ωm>.
The highest limit, in class III, ensues at (∆̃mH/∆̃max ≈ 0.1193,Kc/∆̃max ≈ 1.1193) when the
preliminary frequencies are selected to be whichever ωmax = −0.3401ωmin, ωm> = −0.3333ωmin

as well as ωm< = −0.3265ωmin or ωmin = −0.3401ωmax, ωm> = −0.3265ωmax in addition to
ωm< = −0.3333ωmax. We notice that the point of changing signs at the abscissa in Figure 4c
occurs at (0.0, 1.0), when ωmax = −ωmin and a case of two equal initial frequencies are coincident
ωm> = ωm< = 0, but this case does not belong to the BLCKM used in this work. Cases of
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x-coordinate to the left of the inversion point occur when (∆̃mH/∆̃max < 0 and Kc/∆̃max < 1
(H < 0). The cases of x-coordinate to the right of the overturn point appear once (∆̃mH/∆̃max > 0
and Kc/∆̃max > 1 (H > 0). This is credited to the verity that the upturn point represents a
transition situation between the pattern 3 (see Figure 3) as well as its similar patterns, and both
the cases of patterns 1 in addition to 2 (see Figure 3) besides their alike. The minimum critical
coupling constants for the three classes are KI

c−min ≈ 1.0017∆̃max, K
II
c−min ≈ 1.0946∆̃max and

KIII
c−min ≈ 0.7521∆̃max. The maximum critical coupling constants for classes I, II and III are

KI
c−max ≈ 1.4963∆̃max, K

II
c−max = 1.5∆̃max and KIII

c−max ≈ 1.1193∆̃max. As we notice, class III
has the lowest critical coupling constant while class II holds the largest value of the critical coupling
constant. Also, the values of KI

c−max and KII
c−max are comparable as well as they occur at similar

patterns of ωmax = −ωmin and ωm> = 0.99ωmax = −ωm<. However, the value of KI
c−max can

not increase more to be the same as KII
c−max because of, in case of non-identical BLCKM, the

restriction that the frequency differences between any two or more oscillators must not have values
less than 0.01.

We also notice thatKI
c−max andKI

c−min occur at conditions (as indicated in the legends of Figure
4a) when the patterns of synchronization trees show two oscillators of initial frequencies (relative
to ωo = 0) remaining up and two oscillators of initial frequencies staying down (comparative to
ωo = 0). However, KI

c−min takes place (see Figure 4a) at a pattern possessing ωm> = −ωm< (they
are close to ωo = 0) while KI

c−max comes about for a pattern owing ωm> = −ωm< (they are far
from each other). For class II, KII

c−max (see plots of Figure 4(a and b)) comes to pass at conditions
of a pattern that shows both KI

c−max and KI
c−min of class I. In class III, KIII

c−min happens (see
Figure 4c) at conditions that lead to have KI

c−max. The value of KII
c−min ensues (see Figure 4b) as

the patterns of synchronization trees show either one oscillator of initial frequency ωmax placing up
and three oscillators of initial frequencies ωm> + ωm< + ωmin = −ωmax holding down (relative to
ωo = 0) or three oscillators of initial frequencies ωmax + ωm> + ωm< = −ωmin locating up and one
oscillator of initial frequency ωmin lasting down (relative to ωo = 0). We find KIII

c−max (see Figure
4c) when a similar pattern that leads to KII

c−min of class II but the initial frequencies are different.
For any configuration in a certain class, we are familiar with the relationships between the

frequencies ω̃max, ω̃min, ω̃m> as well as ω̃m< and their corresponding initial frequencies ωmax, ωmin,
ωm> in addition to ωm<. Also, for every class, we know how to express the frequency differences
∆̃max along with ∆̃m in terms of the initial frequencies ωmax, ωmin, ωm> and ωm<. Accordingly,
for class I, we define ω̃max = ωmax, ω̃min = ωmin, ω̃m> = ωm>, ω̃m< = ωm<, ∆̃max = (ωmax−ωmin)
and ∆̃m = (ωm< − ωm>). Consequently, we write the critical coupling (equation (10)) in terms of
the initial frequencies of each configuration of class I as

KI
c = (ωmax − ωmin) + (ωm< − ωm>)H

I ,

HI = −
A1 +B1

C1

,

A1 = (ωmax − ωmin)((ωmax − ωmin) + (ωm< − ωm>))
2,

B1 = 4((ωmax − ωmin) + 3(ωm< − ωm>))ωmaxωmin,

C1 = (ωm< − ωm>)(((ωmax − ωmin) + (ωm< − ωm>))
2 + 16ωmaxωmin). (11)

Within class III, For any configuration, we find ∆̃max = (ωmax − ωmin) and ∆̃m = (ωm> − ωm<).
Also, the frequencies become ω̃max = ωmax, ω̃min = ωmin, ω̃m> = ωm> and ω̃m< = ωm<. As a
result, we express the critical coupling in terms of the initial frequencies for each configuration in
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class III as

KIII
c = ((ωmax − ωmin) + (ωm> − ωm<)H

III ,

HIII = −
A3 +B3

C3

,

A3 = (ωmax − ωmin)((ωmax − ωmin) + (ωm> − ωm<))
2,

B3 = 4((ωmax − ωmin) + 3(ωm> − ωm<))ωmaxωmin,

C3 = (ωm> − ωm<)(((ωmax − ωmin) + (ωm> − ωm<))
2 + 16ωmaxωmin). (12)

It is evident in equations (11) and (12) that the difference, in determining Kc, between classes I
and III appear due to (ωm< − ωm>) for class I and (ωm> − ωm<) for class III.

In every arrangements of class II, once the frequencies turn into ω̃max = ωmax, ω̃min = ωm<,
ω̃m> = ωm> and ω̃m< = ωmin. Additionally ∆̃max = (ωmax − ωm<), ∆̃m = (ωmin − ωm>) and
(ωmax−ωm<) > (ωm>−ωmin). Subsequently, we obtain the critical coupling in terms of the initial
frequencies as

KII−a
c = (ωmax − ωm>) + (ωmin − ωm>)H

II−a,

HII−a = −
A2−a +B3−a

C3−a

,

A2−a = (ωmax − ωm>)((ωmax − ωm>) + (ωmin − ωm>))
2,

B2−a = 4((ωmax − ωm>) + 3(ωmin − ωm>))ωmaxωm<,

C2−a = (ωmin − ωm>)(((ωmax − ωm>) + (ωmin − ωm>))
2 + 16ωmaxωm<). (13)

Within class II, as soon as the frequencies held ω̃max = ωm>, ω̃min = ωmin, ω̃m> = ωmax and
ω̃m< = ωm<. Also, when we find ∆̃max = (ωm>−ωmin), ∆̃m = (ωm<−ωmax) and (ωm>−ωmin) >
(ωm< − ωmax). In this case, the critical coupling is written as

KII−b
c = (ωmax − ωmin) + (ωm< − ωmax)H

II−b,

HII−b = −
A2−b +B3−b

C3−b

,

A2−b = (ωm> − ωmin)((ωm> − ωmin) + (ωm< − ωmax))
2,

B2−b = 4((ωm> − ωmin) + 3(ωm< − ωmax))ωm>ωmin,

C2−b = (ωm< − ωmax)(((ωm> − ωmin) + (ωm< − ωmax))
2 + 16ωm>ωmin). (14)

It is obvious from equations (11), (12), (13) and (14) that the value of the critical couplings
depend on the initial nearest neighbour frequencies. The minimum critical coupling constants
for the three classes are KI

c−min ≈ 1.0017(ωmax − ωmin), KIII
c−min ≈ 0.7521(ωmax − ωmin) and

KII−a
c−min ≈ 1.0946(ωmax − ωm<) or K

II−b
c−min ≈ 1.0946(ωm> − ωmin). The maximum critical coupling

constants for classes I, III and II areKI
c−max ≈ 1.4963(ωmax−ωmin), K

III
c−max ≈ 1.1193(ωmax−ωmin)

and KII−a
c−max = 1.5(ωmax − ωmin) or KII−b

c−max = 1.5(ωm> − ωmin). The minimum and maximum

critical couplings KII−a
c−min and KII−a

c−max appear depending on the condition (ωmax−ωm<) > (ωm>−

ωmin). Also, the minimum and maximum critical couplings KII−b
c−min and KII−b

c−max occur relying on
(ωm> − ωmin) > (ωmax − ωm<).

VI. PHASE DIFFERENCES AT THE CRITICAL COUPLING

System (3), the phase lock condition (4) and equation (10) allow us to calculate the phase
differences at the moment the four local coupled phase oscillators synchronize having a common
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frequency. Therefore, for classes I, II and III, we write the phase differences as

sin((θ̃max − θ̃min)) = 1,

sin(θ̃m> − θ̃max) = 1−
3ω̃max

H∆̃m + ∆̃max

,

sin(θ̃min − θ̃m<) = 1 +
3ω̃min

H∆̃m + ∆̃max

,

sin(θ̃m< − θ̃m>) =
H∆̃m + ∆̃max − 3(ω̃m> + ω̃max)

H∆̃m + ∆̃max

≡
H∆̃m + ∆̃max + 3(ω̃m< + ω̃min)

H∆̃m + ∆̃max

, (15)

where, H is specified in equation (10). Relations (15) determine the phase differences (θ̃max−θ̃min),
(θ̃m> − θ̃max), (θ̃min − θ̃m<) and (θ̃m< − θ̃m>) for any arrangement in each class. In particular,
expression (15) is valid, within every class, when the conditions defining ∆̃max, ∆̃m, ω̃max, ω̃m>,
ω̃m<, ω̃min, θ̃max, θ̃m>, θ̃m< and θ̃min are satisfied as specified in tables I, II and III.

We know, within each class, the connections between the frequencies ω̃max, ω̃m>, ω̃m<, added
to ω̃min and their consistent preliminary frequencies ωmax, ωm>, ωm< as well as ωmin. Also, we
are aware of, for any class, how to determine the frequency differences ∆̃max along with ∆̃m in
terms of the initial frequencies ωmax, ωm>, ωm< and ωmin. Also, we are acquainted with the
relations (as defined for each class) between the phases θ̃max, θ̃m>, θ̃m< in addition to θ̃min and
their corresponding phases θmax, θm>, θm< together with θmin. Accordingly, we determine the
phase differences (θi+1 − θi), for i = 1, 2, 3, 4.

Therefore, we write (3) (see tables I and III along with the conditions valid for any arrangements
{ωmax > ωm> > ωm< > ωmin}), for classes I and III, as

ωmax +
Kc

3
[sin(θm> − θmax) + sin(θmin − θmax)] = 0,

ωm> +
Kc

3
[sin(θmax − θm>) + sin(θm< − θm>)] = 0,

ωm< +
Kc

3
[sin(θm> − θm<) + sin(θmin − θm<)] = 0,

ωmin +
Kc

3
[sin(θm< − θmin) + sin(θmax − θmin)] = 0, (16)

where, in (16), Kc ≡ KI
c for class I and Kc ≡ KIII

c for class III. Thus (15), for class I as the phase
terms appear in (16), can be written as

sin(θmax − θmin) = 1,

sin(θm> − θmax) = 1−
3ωmax

HI(ωm< − ωm>) + ωmax − ωmin

,

sin(θmin − θm<) = 1 +
3ωmin

HI(ωm< − ωm>) + ωmax − ωmin

,

sin(θm< − θm>) =
HI(ωm< − ωm>) + ωmax − ωmin − 3(ωm> + ωmax)

HI(ωm< − ωm>) + ωmax − ωmin

≡
HI(ωm< − ωm>) + ωmax − ωmin + 3(ωm< + ωmin)

HI(ωm< − ωm>) + ωmax − ωmin

, (17)
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where HI is given in equation (11). The phase differences for class III, when we consider the phase
terms in (16), are given as

sin(θmax − θmin) = 1,

sin(θm> − θmax) = 1−
3ωmax

HIII(ωm> − ωm<) + ωmax − ωmin

,

sin(θmin − θm<) = 1 +
3ωmin

HIII(ωm> − ωm<) + ωmax − ωmin

,

sin(θm< − θm>) =
HIII(ωm> − ωm<) + ωmax − ωmin − 3(ωm> + ωmax)

HIII(ωm> − ωm<) + ωmax − ωmin

≡
HIII(ωm> − ωm<) + ωmax − ωmin + 3(ωm> + ωmin)

HIII(ωm> − ωm<) + ωmax − ωmin

, (18)

where HIII is written in equation (12). In equations (17) and (18), we find ∆m = (ωm< − ωm>)
for class I while ∆m = (ωm> − ωm<) for class III.

Regarding class II (see table II and necessities for any predeterminations {ωmax > ωm> >
ωm< > ωmin}) there are two choices: the first comes out when the frequencies are ω̃max = ωmax,
ω̃min = ωm<, ω̃m> = ωm> and ω̃m< = ωmin. The corresponding phases are θ̃max = θmax, θ̃m> =
θm>, θ̃min = θm< along with θ̃m< = θmin. Thus, for the first choice in class II (refer to the
first sub-row in each row of table II and prerequisites for any composition of the frequencies
{ωmax > ωm> > ωm< > ωmin}, we inscribe (3) as

ωmax +
KII−a

c

3
[sin(θm> − θmax) + sin(θm< − θmax)] = 0,

ωm> +
KII−a

c

3
[sin(θmax − θm>) + sin(θmin − θm>)] = 0,

ωmin +
KII−a

c

3
[sin(θm> − θmin) + sin(θm< − θmin)] = 0,

ωm< +
KII−a

c

3
[sin(θmin − θm<) + sin(θmax − θm<)] = 0. (19)

The reorganization of (19) is necessary to obtain ∆̃max = (ωmax − ωmin) and ∆̃m = (ωmin − ωm>)
as differences between nearest neighbours oscillators. These lead, for the first choice (once the
phase terms in (19) is taken into account), to write down (15) as

sin(θmax − θm<) = 1,

sin(θm> − θmax) = 1−
3ωmax

HII−a(ωmin − ωm>) + (ωmax − ωm<)
,

sin(θm< − θmin) = 1 +
3ωm<

HII−a(ωmin − ωm>) + (ωmax − ωm<)
,

sin(θmin − θm>) =
HII−a(ωmin − ωm>) + (ωmax − ωm<)− 3(ωm> + ωmax)

HII−a(ωmin − ωm>) + (ωmax − ωm<)

≡
HII−a(ωmin − ωm>) + (ωmax − ωm<) + 3(ωmin + ωm<)

HII−a(ωmin − ωm>) + (ωmax − ωm<)
, (20)

where HII−a is given in equation (13). The second selection, for class II (see table II and requisites
for any assemblages of {ωmax > ωm> > ωm< > ωmin}) arises whenever the frequencies are ω̃max =
ωm>, ω̃min = ωmin, ω̃m> = ωmax and ω̃m< = ωm<. The consistent phases are θ̃max = θm>,
θ̃m> = θmax, θ̃min = θmin as well as θ̃m< = θm<. Hence, refer to the second sub-row in each row of
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table II and criterions for any configuration of the frequencies {ωmax > ωm> > ωm< > ωmin}, we
write out (3) as

ωm> +
KII−b

c

3
[sin(θmax − θm>) + sin(θmin − θm>)] = 0,

ωmax +
KII−b

c

3
[sin(θm> − θmax) + sin(θm< − θmax)] = 0,

ωm< +
KII−b

c

3
[sin(θmax − θm<) + sin(θmin − θm<)] = 0,

ωmin +
KII−b

c

3
[sin(θm< − θmin) + sin(θm> − θmin)] = 0. (21)

The adaptation of (21) is essential to assimilate ∆̃max = (ωm>−ωmin) and ∆̃m = (ωm<−ωmax) as
differences between nearest neighbour oscillators. These guide us, for the second selection (when
we take into account the phase terms in (21)), to rewrite (15) as

sin(θm> − θmin) = 1,

sin(θmax − θm>) = 1−
3ωm>

HII−b(ωm< − ωmax) + (ωm> − ωmin)
,

sin(θmin − θm<) = 1 +
3ωmin

HII−b(ωm< − ωmax) + (ωm> − ωmin)
,

sin(θm< − θmax) =
HII−b(ωm< − ωmax) + (ωm> − ωmin)− 3(ωmax + ωm>)

HII−b(ωm< − ωmax) + (ωm> − ωmin)

≡
HII − b(ωm< − ωmax) + (ωm> − ωmin) + 3(ωm< + ωmin)

HII−b(ωm< − ωmax) + (ωm> − ωmin)
, (22)

where HII−b is specified in equation (14).
Equations (17), (18), (20) and (22) indicate that the phase differences are defined uniquely

within the configurations in each class. In class II, more details are introduced which guide to
perceive two cases contingent on the conditions leading to equations (18) and (19). The phase
differences, within each class, expose definitely the dependencies on the initial frequencies of the
oscillators {ωmax > ωm> > ωm< > ωmin}.

VII. CONCLUSION

We have studied a system of four non-identical nearest neighbour bidirectional coupled phase
oscillators (BLCKM) in a ring, at the moment the state of a complete frequency synchronization
comes out. For this system, we shed the light to the minutiae that arise because the nearest
neighbour interactions. These intricacies, in the dissimilar four BLCKM oscillators (a system
includes twenty four different arrangements to distribute the starting values of frequencies over the
individual oscillators {ωmax > ωm> > ωm< > ωmin} prior to coupling), allow us to categorize three
classes. Each class comprises eight configurations. At the synchronization stage, when considering
the local coupling between oscillators, we specify a phase lock condition for classes I, II and III.
We use the phase lock condition to obtain mathematical expressions, for calculating the critical
coupling strengths for any configuration within each class, in the case of four locally coupled phase
oscillators in a ring. The expressions for computing the critical coupling strengths, for the three
classes, show dependency on the initial frequencies of the four oscillators. Also, we determine the
lower and upper limits of the critical coupling constant for each class. We are also capable to obtain
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formulas for the phase differences, for each class, which demonstrate reliance on the preliminary
frequencies of the four nearest neighbour oscillators earlier to coupling.

The analytic expressions, for the critical coupling of non-identical four BLCKM oscillators, will
allow to extend the work presented here to study the different synchronization patterns in each
class either during partial synchronization or during the unison state for K > Kc. Thus, the
determination of the coupling factor for non-identical four BLCKM at a phase locking state will
assist to obtain formulas for the coupling constants at partial synchronization states. Also, the
formulas for Kc will help to calculate the phase differences for a coupling constant larger than
the critical coupling value as well as to relate the phase differences to each other. In addition,
a further investigation of the four non-local BLCKM can be achieved, for each class, concerning
in details the synchronization trees for different distributions of the initial frequencies over the
set {ωmax > ωm> > ωm< > ωmin}. A future work can be carried out to examine the transition
from a pattern to another within each class. Also, it can introduce a further understanding on
the dependency of each pattern, within each class, on the ratio ∆̃m/∆̃max. Not only this previous
part but also the future work have to explore how the quantity H depends on ∆̃m/∆̃max within
each class. The upcoming study must show how the nearest neighbour interaction terms lead to
attractions and/or repulsions between oscillators in any arrangements for each class. The previous
statement means that we can find a reason for having different critical couplings for the three classes
even if the oscillators (within classes I, II and III) have similar initial frequencies. Moreover, a
study of a stability analysis can be carried out. A comparative explorations between the four
local BLCKM and the four all-to-all coupled model be required because the two cases contain the
smallest number of oscillators that introduce the difference between local and global couplings.

It is expected that the study of a case of four non-identical BLCKM oscillators, with periodic
boundary conditions, may help to understand the mechanism of synchronization of a few and a
limited number of local coupled phase oscillators (unidirectional and bidirectional couplings) in
a ring topology. The investigation of the case N = 4 BLCKM oscillators could possibly help in
interpreting the behavior of systems, for example the case of N = 5. The similar procedures of the
classification of classes can be applied straightforward to the case of N = 5 but with more details.
Understanding the cases of N = 4 and N = 5 of nearest neighbour coupled phase oscillators may
help to develop a method to study extra number of nearest neighbour coupled oscillators. This
development may be done based on what is presented here in this work or based on synthesizing
a method that mixes some of ideas in this work and ideas from other works [27, 28]. Also, the
presented analysis, in the case of four unalike BLCKM oscillators, may guide us to construct a
theory concerning the synchronization of a few and a finite number of non-identical local coupled
phase oscillators in a ring. Thus, enforce using a few and a finite number of oscillators to design
practical systems that serve in several convenient applications [33].

Considering the non-identical BLCKM oscillators, the periodic boundary conditions play an
extremely important role at the transition to synchronization [28]. However, for a few and a limited
number of nearest neighbours coupled phase oscillators, we have to analyze in details the individual
oscillators that compose such systems. This extensive study has to be done to determine the two
oscillators, which have the phase correlation and draw all of the nearest neighbour oscillators to
have the same frequency at a critical coupling.
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