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ABSTRACT

The very long-term evolution of the hierarchical restricted three-body problem with a slightly aligned

precessing quadrupole potential is studied analytically. This problem describes the evolution of a star

and a planet which are perturbed either by a (circular and not too inclined) binary star system or by

one other star and a second more distant star, as well as a perturbation by one distant star and the

host galaxy or a compact-object binary system orbiting a massive black hole in non-spherical nuclear

star clusters (Hamers & Lai 2017; Petrovich & Antonini 2017). Previous numerical experiments have

shown that when the precession frequency is comparable to the Kozai-Lidov time scale, long term

evolution emerges that involves extremely high eccentricities with potential applications for a broad

scope of astrophysical phenomena including systems with merging black holes, neutron stars or white

dwarfs. By averaging the secular equations of motion over the Kozai-Lidov Cycles (KLCs) we solve

the problem analytically in the neighborhood of the KLC fixed point where the eccentricity vector

is close to unity and aligned with the quadrupole axis and for a precession rate similar to the Kozai

Lidov time scale. In this regime the dynamics is dominated by a resonance between the perturbation

frequency and the precession frequency of the eccentricity vector. While the quantitative evolution

of the system is not reproduced by the solution far away from this fixed point, it sheds light on the

qualitative behaviour.

1. INTRODUCTION

In this letter we study analytically the dynamics of a

test particle orbiting a central mass M on a Keplerian

orbit with semimajor axis a which is perturbed by an

external quadrupole potential given by:

Φouter =
Φ0

a2

[
3
(̂
jouter · r

)2
− r2

]
(1)

where Φ0 is constant. In the periodic analytically solved

Kozai-Lidov cycles (KLCs) (Lidov 1962; Kozai 1962) the

external quadrupole potential is constant in time (i.e

ĵouter is a constant unit vector) (for a recent review on

KLCs see (Naoz 2016)). We study the case where the

quadrupole potential is time dependent and ĵouter is a

unit vector which precesses around the z axis at a con-
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stant rate β with a constant inclination α:

ĵouter =

 sinα cos (βτ)

− sinα sin (βτ)

cosα

 (2)

where τ ≡ t
tsec

and tsec =
√
GMa
Φ0

is the secular timescale.

This problem describes the evolution of a star and a

planet which are perturbed either by a (circular and not

too inclined) binary star system or by one other star and

a second more distant star (Hamers & Lai 2017), as well

as a perturbation by one distant star and the host galaxy

or a compact-object binary system orbiting a massive

black hole in non-spherical nuclear star clusters (Petro-

vich & Antonini 2017). Previous numerical experiments

have shown that when the precession frequency is com-

parable to the Kozai-Lidov time scale, long term evo-

lution emerges that involves extremely high eccentrici-

ties (Hamers & Lai 2017) with potential applications for

the formation of planets around white dwarfs (Muñoz

& Petrovich 2020; O’Connor et al. 2020; Stephan et al.
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2021) and hot planets (Fabrycky & Tremaine 2007; Katz

et al. 2011; Naoz et al. 2011; Grishin et al. 2017). If

the test particle assumption is relaxed, the system ex-

hibits similar dynamics and the description is applica-

ble to a broader scope of astrophysical phenomena, in-

cluding Type Ia supernovae through the merger or col-

lision of white dwarfs in multiple systems (Thompson

2011; Katz & Dong 2012; Pejcha et al. 2013; Fang et al.

2018; Grishin & Perets 2022), gravitational wave emis-

sion through the merger of black holes or neutron stars

in quadruple systems (Liu & Lai 2018; Safarzadeh et al.

2019; Hamers & Safarzadeh 2020) and the formation of

close binaries (Antonini & Perets 2012; Petrovich & An-

tonini 2017; Bub & Petrovich 2020; Grishin & Perets

2022).

As mentioned, the case of α = 0 is the periodic ana-

lytically solved Kozai-Lidov cycles (KLCs) (Lidov 1962;

Kozai 1962).

2. EQUATIONS OF MOTION

The dynamics of the test particle can be parame-

terized by two dimensionless orthogonal vectors j =

J/
√
GMa, where J is the specific angular momentum

vector, and e a vector pointing in the direction of the

pericenter with magnitude e. In the secular approxi-

mation, a is constant with time while j and e evolve

according to the Kozai-Lidov equations (as Eq. 10a-b

in (Hamers & Lai 2017))

dj

dτ
= 3

4

((
j · ĵouter

)
j− 5

(
e · ĵouter

)
e
)
× ĵouter

de

dτ
= 3

2 (j× e)− 3
4

(
5
(
e · ĵouter

)
j−
(
j · ĵouter

)
e
)
× ĵouter

(3)

with ĵouter given by Eq. 2 (itself a solution of Eq. 10c in

(Hamers & Lai 2017)). A numerical integration of Eqs.

3 is shown as blue lines in the top two panels of Fig. 1

for α = 0.01◦ and β ≈ 2.9 (left panel) and α = 5◦ and

β = 2.5 (right panel). We remind that in the α = 0 case

(pure KLCs), jz (middle panel of Fig. 1) is constant and

e (top panel of Fig. 1) is periodically oscillating but with

a constant emax (which for e0 ≪ 1 can be approximated

with emax ≈
√
1− 5

3j
2
z ). As can be seen in the top and

middle panels of Fig. 1 the times of zero crossing of jz
correspond to the times of extremely high eccentricities,

as expected from KLCs.

We restrict the analysis to the regime where α ≪ 1

(i.e α being a small parameter around which α = 0

is already analytically solved) and
∣∣∣e · ĵouter∣∣∣ ∼ 1 (i.e

j · ĵouter ≈ jz ≪ 1, e ∼ 1 and inclination close to 90◦,

which is close to the KLC fixed point of e = 1, i =

Figure 1. Results of numerical integrations for: Left panel:
α = 0.01◦ and β ≈ 2.9, with initial conditions ex = jx =
−jy = 10−5, ez = 0.98 and right panel: α = 5◦ and β =
2.5, with initial conditions ex ∼ −10−5, jx ∼ −0.28, jy ∼
−0.186, ez ∼ 0.825. The blue solid lines are the result of
the integration of the full secular equations, Eqs. 3 (with
2), while the red dashed lines are the result of the averaged
equations, Eqs. 21-24, and using Eq. 33 (where it has real
roots) to determine emin and emax using Eqs. 25 and 34. The
two green horizontal lines in the bottom panel represent the
extremum values of δ as determined from initial conditions
and in the middle panel the maximal and minimal values of
jz as determined from initial conditions using Eq. 25 and
the extremums of δ. τ̂ is defined in Eq. 12.

90◦ and j = 0). In this regime, the eccentricity vector

precesses around the z axis. When the frequencies of

the precession of e and ĵouter are far from each other -

the precession of the quadrupole potential has a minor

effect on the KLCs. On the other hand, when these two

frequencies are close, long-term resonant dynamics are

obtained and are the focus of this letter.

3. APPROXIMATED EQUATIONS

In this regime and up to first order in α one obtains

the following 6 equations (neglecting jz in this regime

in the rhs of the derivatives of ex, ey and ez):

d

dτ
jz = 15

4 ezα (ex sin (βτ) + ey cos (βτ)) (4)

d

dτ
ez =

3
4 (2 (jxey − jyex) + 5ezα (jx sin (βτ) + jy cos (βτ)))(5)
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d

dτ
ex= − 9

4ezjy (6)

d

dτ
ey = + 9

4ezjx (7)

d

dτ
jx= − 15

4 ez (ey + ezα sin (βτ)) (8)

d

dτ
jy = + 15

4 ez (ex − ezα cos (βτ)) (9)

In the lowest order approximation, d
dτ ez = 0, resulting

with a forced harmonic oscillator for the vector e in the

x − y plane with ëx = ω2
0 (L cos (ωτ)− ex) where ω =

β, L = ezα and ω0 =
√

135
16 ez. Below we solve the next

level of approximation where ez is slowly changing.

4. AVERAGED EQUATIONS

Since α is small the dynamics on short time scales fol-

low the known (test particle triple system) Kozai-Lidov

Cycles, which have two constants of motion: jz and

CK = e2 − 5

2
e2z = e2

(
1− 5

2
sin2 i sin2 ω

)
. (10)

On longer time scales the parameters of the KLC, jz and

CK , evolve.

Consider the following ansatz for the vector e in the

x−y plane: At any time τ , the projection of the vector e

on the x−y plane can be presented as a point moving on

a slowly evolving ellipse with semimajor axis a inclined

with an angle θ with respect to the x axis and semiminor

axis b centered at the origin, i.e

ex−y = α
1
3

(
cos θ, − sin θ

sin θ, cos θ

) a cos
(
β̂τ̂ + ϕ

)
b sin

(
β̂τ̂ + ϕ

) 
(11)

where ϕ is a slowly dynamically evolving phase and

τ̂ =
1

2
α

2
3 τ (12)

and

β̂ = 2α− 2
3 β. (13)

See note after Eq. 24 regarding the choice of normal-

ization prefactors: α
1
3 , α

2
3 and α− 2

3 . The ansatz in Eq.

11 has a symmetry under the following transformation

(both changes together)

(a− b) → − (a− b)

(θ − ϕ) → (θ − ϕ+ π)

meaning that without loss of generality (a− b) is non

negative.

Using Eqs. 6-7 in the limit ez = 1 and neglecting

the time derivatives of the slowly varying functions, the

projection of the angular momentum on the x− y plane

is correspondingly given by

jx−y =
4

9
α

1
3 β

(
cos θ, − sin θ

sin θ, cos θ

) b cos
(
β̂τ̂ + ϕ

)
a sin

(
β̂τ̂ + ϕ

)  .

(14)

Note the ansatz includes four slowly evolving variables,

a, b, θ, ϕ, which describe the averaged evolution of the

four components ex, ey, jx, jy.

Since the frequency of the precession of ĵouter is β and

the driving frequency of the Kozai oscillations is
√

135
16 ez

a resonance is obtained between the two perturbations

when the two frequencies approach each other and it

is useful to quantify the distance from resonance by a

dynamical parameter,

δ = α− 2
3
1

β0

(
(β0ēz)

2 − β2
)

(15)

where ēz is the averaged value of ez over KLC which

satisfies (using Eq. 5)

ez = ēz +
α

2
3

6

(
a2 − b2

)
cos
(
2
(
β̂τ̂ + ϕ

))
(16)

and

β0 =

√
135

16
≈ 2.9. (17)

Using the following slow variables

s = −45

2
(a− b) sin (θ − ϕ) (18)

c = −45

2
(a− b) cos (θ − ϕ) (19)

and focusing on the resonant limit of ω = ω0 in the

forced harmonic oscillator mentioned above, i.e β = β0,

the following set of ODEs is obtained:

δ̇ = s (20)

ṡ =− (45β0 + δc) (21)

ċ = δs (22)

and

d (θ + ϕ)

dτ̂
= δ (23)

d (a+ b)

dτ̂
= 0, (24)

where ˙ denotes a derivative with respect to τ̂ .
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Several notes are in order: (1) The parameters

s, c, a + b, θ + ϕ uniquely determine all the slow vari-

ables: a, b, θ, ϕ. (2) The evolution of δ, s and c can be

obtained by solving the closed subset of Eqs. 20-22. (3)

The equations obtained have no explicit dependence on

the small parameter α. In fact, the α dependent pref-

actors in Eqs. 11-15 were chosen for this reason. (4) jz
can be obtained from the demand that j ·e = 0. In fact,

the following combination of jz and δ is constant:

jz +
δ

6
α

2
3 = const., (25)

allowing jz to be readily obtained using the initial con-

ditions and the time evolution of δ. The resulting slow

evolution of δ for the examples in Fig. 1 is shown in the

bottom panel and is used for the solution of jz plotted

as a dashed red line in the middle panel. As can be seen

in the left panel, the slow evolution of jz agrees to an

excellent approximation with the numerical result.

5. ANALYTIC SOLUTION

The averaged equations, Eqs. 20-22, admit two con-

stants of the motion, denoted C1 and C2,

C1 = 1
2

(
δ2 + 45 (a− b) cos (θ − ϕ)

)
(26)

C2 = (a− b)
2
+ 2δ√

15
(27)

implying that the evolution of the three variables δ, a−b

and θ − ϕ is periodic. Using Eq. 24 we define a third

constant

C3 = (a+ b)
2

(28)

which together with C1 and C2 determine the long term

evolution of the entire system.

The resulting evolution of δ is equivalent to the dy-

namics of a particle moving in a one dimensional poten-

tial with a constant energy

E =
1

2
δ̇2 + V =

1

2

((
45

2

)2

C2 − C2
1

)
(29)

where (using β0 =
√

135
16 , see Eq. 17)

V = 45β0δ −
1

2
C1δ

2 +
1

8
δ4. (30)

This potential has two distinct shapes depending on

whether C1 is smaller or larger than the critical value

Ccrit
1 = 15

(
3

2

) 7
3

. (31)

If C1 < Ccrit
1 the potential has no maxima and one min-

imum (see example in the left upper panel of Fig. 2). If

Figure 2. Upper panel: the potential V (Eq. 30) in blue
and the constant energy E (Eq. 29) in black for the two
optional shapes dependent on the constants C1 (Eq. 26) and
C2 (Eq. 27). Lower panel: Trajectories in the a− b vs. θ−ϕ
plane for different values of C1 at some C2. Dashed black
line mark the minimal value of C1 for rotations. Red dashed
lines mark the value of C1 of the potentials in the upper
panels. The left plots show a case where C1 < Ccrit

1 and
θ− ϕ is librating. The right plots are the case that is shown
in the left panel of Fig. 1 and show a case where C1 > Ccrit

1

and θ − ϕ is rotating. Red circles (in all panels) mark the
extremums of δ (which are also a−b extremums, see Eq. 27).

C1 > Ccrit
1 the potential has a maxima and two minima

(see example in the right upper panel of Fig. 2 showing

the case that is solved in the left panel of Fig. 1) 1. The

extremum values of δ determined from the potential and

energy are marked as red circles in the top panels of Fig.

2 and are plotted as green lines in the bottom panel of

Fig. 1. The extremums of (a− b) are readily given us-

ing Eq. 27 and are marked as red circles in the bottom

panels of Fig. 2.

The slow angle (θ − ϕ) can either librate or rotate de-

pending on the constants of motion C1 and C2. Exam-

ples of trajectories of both cases are plotted as equi-C1

curves in the bottom panels of Fig. 2. For rotations,

cos (θ − ϕ) must reach both 1 and −1. Using Eqs. 26-

27, we have

cos (θ − ϕ) =
1

(a− b)

(
2

45
C1 −

1

12

(
C2 − (a− b)

2
)2)

.

(32)

Given C1 and C2 the rhs. of Eq. 32 has a global maximal

value (in the (a− b) > 0 regime) denoted M (C1, C2).

1 For analysis of the different features we equip the reader with a
link to a visualization of Eqs. 30, 29: https://www.desmos.com/
calculator/ubgicqtddn

https://www.desmos.com/calculator/ubgicqtddn
https://www.desmos.com/calculator/ubgicqtddn
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If M (C1, C2) < −1 - Eq. 32 cannot be satisfied for

any (θ − ϕ) and so the pair (C1, C2) do not represent

any set of initial conditions. If M (C1, C2) < 1 the

slow angle (θ − ϕ) is librating. If M (C1, C2) > 1 both

cos (θ − ϕ) = −1 and cos (θ − ϕ) = 1 can be reached

(because at (a− b) → ∞ the rhs. of Eq. 32 approaches

−∞) and (θ − ϕ) is rotating 2. Since the rhs. of Eq. 32

is monotonically increasing with C1, for each C2 there is

therefore a minimal permitted C1 and a higher minimal

C1 above which (θ − ϕ) is rotating. The latter threshold

is shown as a black dashed curve in the lower panels of

Fig. 2.

For the regime we solve, e2z close to 1, CK < 0 and

the minimum and maximum values of the eccentricity

during any such Kozai cycle are obtained at ω = ±π
2 .

As a result, these can be calculated using the constants

jz and CK through

3e4extremum +
(
5j2z − 3 + 2CK

)
e2extremum − 2CK = 0.

(33)

The long-term evolution of jz is obtained via Eq. 25 and

the evolution of CK follows

CK = −3

2
+

1

2
α

2
3

(
1

2
(C2 + C3)−

√
5

3
δ

)
. (34)

The extremal values of the eccentricity obtained from

jz and CK are plotted (on a semi-log 1 − e plot) as

red dashed curves in the upper panel of Fig. 1. As can

be seen in the left panel, the analytical solution captures

the long term evolution of the oscillations to an excellent

approximation compared to the numerical integration of

Eqs. 3.

6. DISCUSSION

In this letter we provide a concise presentation of the

analysis and analytic solution for the dynamics of a test

particle in a Keplerian orbit perturbed by a precess-

ing quadrupole potential. We explicitly demonstrate

the success of the solution vs. full numerical solution

of the secular equations for a case that is very close to

the assumptions made, i.e extremely small α, β = β0

and ez ∼ 1.

Exploring the validity of the solution for wider scopes

of the parameters is beyond the scope of this work, but

as an example we present in the right panel of Fig. 1

the capability of the analytic solution to describe and

approximately reconstruct the long term evolution even

for higher values of α (5◦ as is numerically explored in

(Hamers & Lai 2017)) and for a value of β slightly dif-

ferent from β0.

Although the analytical model presented in this letter

is directly applicable only to a small region of the pa-

rameter space (i.e test particle and small perturbation)

and only for the final stages of the evolution (i.e at high

eccentricity) - it serves as a basis for understanding the

more complex phenomena, when the two bodies have

comparable mass, and hints for the evolution farther

from resonance (i.e starting with low eccentricity).

In the future, we plan to explore the validity and rel-

evance of this model to the different astrophysical phe-

nomena involving KLCs. In addition, we plan to relax

some of the assumptions especially starting with low ec-

centricity or relaxing the test particle assumption.

We thank the anonymous referee for helpful comments

improving this letter. We thank Ido Barth for a useful

discussion pointing the connection to coordinate moving

in a potential well.
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