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Abstract 

Spontaneous crystallization of metals under extreme conditions is a unique phenomenon occurring 

under far-from-equilibrium conditions that could enable the development of revolutionary and 

disruptive metastable metals with unusual properties. In this work, the formation of the hexagonal 

close-packed Nickel (hcp-Ni) metastable phase during spontaneous crystallization is studied using 

non-equilibrium molecular dynamics (MD) simulations, with the goal of maximizing the fraction 

of this metastable phase in the final state. We employ Bayesian Optimization (BO) with the 

Gaussian Processes (GP) regression as the surrogate model to maximize the hcp-Ni phase fraction, 

where temperature and pressure are control variables. MD simulations provide data for training 

the GP model, which is then used with BO to predict the next simulation condition. Such a BO-

guided active learning leads to a maximum hcp-Ni fraction of 43.38% in the final crystalized phase 

within 40 iterations when a face-centered cubic (fcc) crystallite serves as the seed for 

crystallization from the amorphous phase. When an hcp seed is used, the maximum hcp-Ni fraction 

in the final crystal increases to 58.25% with 13 iterations. This study shows the promise of using 

BO to identify the process conditions that can maximize the rare phases. This method can also be 

generally applicable to process optimization to achieve target material properties.     

 

Keywords: Crystallization, Bayesian Optimization, Machine Learning, Gaussian Processes, 

Metastable Phase  
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1. Introduction  

 Metastable crystalline materials often exhibit superior properties to their stable counterparts. 

The most well-known example is diamond, which possesses superior mechanical properties 

compared to the energetically more stable graphite [1,2]. Many transition metals such as nickel 

(Ni), cobalt (Co) and tungsten (W) can also exist in metastable forms [3–10]. For example, W 

occurs in two crystalline phases: α and β [7,11,12]. The former has a body-centered cubic (bcc) 

structure and is thermodynamically more stable in bulk form. The β phase (also called A15) is 

metastable with a cubic crystal structure, containing eight atoms per unit cell. The α and β phases 

can coexist under ambient conditions in thin films. These two phases exhibit different properties 

[7,13,14]. α-W has a higher electrical conductivity [15,16], while β-W was reported to exhibit 

superior mechanical properties and a giant spin Hall effect due to spin-orbit torques [14,17]. Thin 

films containing metastable bcc-Co and hexagonal closed packed (hcp) Ni phases also show 

unusual magnetic and electric properties [4,9,18,19]. For example, hcp-Ni exhibits unusual 

magnetic and mechanical properties, as well as high catalytic activity [6–10,15,20].  

Our previous experimental and theoretical works [21,22] show that a novel spontaneous 

crystallization method [21,22] can enable the production of metastable hcp-Ni from amorphous Ni 

(a-Ni). Molecular Dynamics (MD) simulations show that a crystalline Ni seed can initiate a 

crystallization process in a cluster of a-Ni nanoparticles at 800 K [21]. The self-sustaining 

crystallization wave traveling through the cluster leads to metastable hcp phase at the early stage 

of crystallization, but they transition into the more stable face-centered cubic (fcc) phase 

eventually. These simulation results were confirmed by experimental investigation: the localized 

heating of the compressed a-Ni nanoparticles (produced by liquid-phase reduction of nickel 
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nitrate) triggers a self-sustaining crystallization wave that propagates along the sample, eventually 

producing the stable fcc phase [21]. 

Some studies have been done on the crystallization of Ni using MD simulations. Nguyen 

et al. utilized MD simulations to study the influence of the heating and cooling rates, number of 

particles, temperature and relaxation time on the microscopic structure, phase transitions and 

dynamics of crystallization in four model systems containing different number of Ni atoms. Based 

on the common neighbor analysis (CNA), they discovered the coexistence of amorphous and 

crystalline phases during the crystallization process [23]. Louzguine-Luzgin et al. studied the 

vitrification and crystallization processes in liquid Ni using MD simulations. In their work, the 

glass transition was monitored using the radial distribution functions and cluster analysis. They 

analyzed the crystallization kinetics under isothermal conditions by monitoring density and energy 

variation as a function of time and found that the temperature corresponding to the minimum 

incubation period in the time-temperature-transformation diagram is 700–900 K [24]. Recently, 

we investigated the mechanism of spontaneous crystallization process in a-Ni nanoparticles to 

produce hcp-Ni [22]. Detailed MD simulations predict that hcp-Ni can be stabilized by tuning the 

amount and positions of crystalline seeds incorporated into the a-Ni nanoparticles. However, these 

simulations showed that the most critical parameter is temperature, with the optimal range of 700-

900 K. The fraction of hcp-Ni in the resulting crystalline product is ~ 20%. Rapid heating and 

cooling experiments of a-Ni nanoparticles prove the MD simulation results and enable the 

stabilization of a sizable quantity of hcp-Ni phase. The resulting hcp/fcc-Ni materials are shown 

to have superior mechanical properties compared to pure fcc-Ni. 

 Other than Ni, researchers also studied crystallization and self-propagating waves in other 

metals. Chui et al. used a topological method based on planar graphs to analyze the crystalline 
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structure of gold nanoclusters formed by quenching from the melt by MD [25]. Mahata et al. 

investigated the homogeneous nucleation from Al melt by large scale MD simulations. They found 

that the main crystalline phase was identified as fcc, but a hcp and an amorphous solid phases were 

also detected [26]. As can be seen from these previous studies, MD simulation is a valuable tool 

to facilitate the understanding of the metastable phase from a molecular level. However, each of 

such simulations can be time-consuming. Therefore, optimizing the amount of the metastable 

phase by exhaustively trying different conditions (e.g., temperature and pressure) can be 

insurmountable using MD simulations and there can be no guarantee of success. 

Recently, the advent of black-box optimizations like Bayesian Optimization (BO) and Machine 

Learning (ML) models led to the novel material design and discovery with superior properties [27–

34]. Terayama et al. gave an overview of recent studies regarding automated discovery, design, 

and optimization based on black-box optimization methods including BO [35]. Diwale et al. 

utilized an augmented BO to promote the nucleation of polyethylene crystals with noisy 

measurements from non-equilibrium MD simulations [36]. Solomou et al. used a multi-objective 

BO approach to efficiently discover the precipitation-strengthened NiTi shape memory alloys with 

up to three desired properties [37].  

In this work, we use MD simulations to model the spontaneous crystallization process of a-Ni 

under different temperatures and pressures. The final fraction of the metastable hcp phase from 

each simulation is recorded, which provides data for training a Gaussian Process (GP) machine 

learning model. We then utilize BO with the GP to suggest the next simulation conditions 

(temperature and pressure) based on the expected improvement acquisition function, which 

balances exploration and exploitation in the parameter space. A new MD simulation is then 

performed for the BO-suggested conditions and the calculated hcp-Ni fraction is added to the 
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dataset to re-train the GP model to start a new iteration. Such a BO-guided active learning leads to 

a maximum hcp-Ni fraction of 43.38% in the final crystalized phase within 40 iterations when a 

fcc crystallite serves as the seed for crystallization from the amorphous phase. When a hcp seed is 

used, the maximum hcp-Ni fraction in the final crystal increases to 58.25% with 13 iterations. This 

study shows the promise of using BO to identify the process conditions that can maximize the rare 

phases. This method can also be generally applicable to process optimization to achieve target 

material properties.     

 

2. Methodology  

2.1. Crystallization simulations 

In order to study the crystallization of a-Ni, it is needed to first generate a-Ni structure. We did 

this by melting and quenching a crystal Ni structure, which can be either fcc or hcp. For fcc and 

hcp crystals, the MD simulation box sizes are chosen to be 10×10×45 and 15×8.66×45 unit cells 

in size containing 18,000 and 23,625 Ni atoms, respectively. Each of these single crystals is 

thermalized at 300 K under 1 bar for 100 ps. Then it is heated up from 300 K to 3000 K under 1 

bar in the NPT ensemble for 1000 ps to be melted, and the molten structure is equilibrated at 3000 

K for 100 ps. The structure is then quenched to 300 K within 100 ps to form the a-Ni structure. 

The structure is further equilibrated at 300 K and different pressures for 100 ps to get prepared for 

the crystallization simulation. After that, a crystalline seed (hcp or fcc) is placed in contact with 

the a-Ni at one end of the simulation domain, and after building the combined structure, an energy 

minimization is performed on it. Finally, the combined structure is simulated at the target 𝑇𝑖 and 

𝑃𝑖 for 1250 ps. Figures 1a and 1b show the amorphization process of fcc-Ni and the crystallization 
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process of a-Ni, respectively. For all cases, the isothermal and isobaric MD simulations are 

performed using Nosé−Hoover thermostat and barostat with relaxation time scales of 0.1 and 1 ps, 

respectively. Figure S1 in section S1 of the Supporting Information (SI) shows the evolution of 

pressure and temperature with time for the pairs of input process conditions equal to (800 K, 10 

bar) and (1400 K, 200000 bar) corresponding to the a-Ni with fcc and hcp seeds, respectively. This 

demonstrates that pressure and temperature values are well-controlled in the system during the 

crystallization of a-Ni under NPT ensemble. 

  All simulations performed are using the Large-scale Atomic/Molecular Massively Parallel 

Simulator (LAMMPS) Package [38,39]. The embedded-atom method potential is used 

[21,22,40,41]. The fraction of the hcp-Ni phase is calculated based on the Polyhedral Template 

Matching (PTM) method [42]. The threshold in the PTM model is equal to 0.15. The threshold 

sets an upper limit on the maximum permitted deviation before a local structure is identified as 

disordered. PTM determines the local lattice structure around an atom and classifies the structures 

according to the topology of the local atomic environment [42]. 
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Figure 1. (a) Amorphization of fcc-Ni and (b) crystallization of a-Ni. The green, purple, blue and red particles show 

atoms with fcc, melt, amorphous and hcp phases, respectively. (c) Flowchart of the BO process that iterates between 

MD data acquisition, GP model training and BO prediction. 

 

2.2. Overview of the BO process 

Figure 1c depicts the BO process that combines MD simulations, GP model training and 

BO in an iterative loop. For starting the BO, N initial data points as 𝒟1:𝑁 = (𝐱1, 𝑦1), … , (𝐱𝑁, 𝑦𝑁) 

are produced from MD simulations at different conditions, where 𝐱1 = (𝑇1, 𝑃1) , … , 𝐱𝑁 =

(𝑇𝑁, 𝑃𝑁), and they have been chosen randomly from grid-like points distributed in the T-P space. 

The 𝑦1, … , 𝑦𝑁 are the hcp-Ni fractions at steady state in the MD simulations corresponding to 𝐱1, 

… , 𝐱𝑁, respectively. The initial input data are standardized using 𝐱 =
𝐗𝑖𝑛−μ

σ
 before feeding them 

into the multivariate GP model with 𝐗𝑖𝑛, 𝜇 and 𝜎 as the input data, mean and standard deviation, 

respectively. Using the GP model, the posterior mean and standard deviation are calculated and 
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then they are fed into the expected improvement acquisition function, 𝛼(𝒟1:𝑁 , 𝜇(𝐱), 𝜎(𝐱), 𝛿). 

Through the optimization of 𝛼 with the GP model, the next sampling point is predicted as 𝐱𝑁+1 =

𝑎𝑟𝑔𝑚𝑎𝑥𝐱 𝛼(𝐱|𝒟1:𝑁). 𝐱𝑁+1  is converted to 𝐗𝑁+1  by inverting the standardization process, and 

MD simulation is performed at condition 𝐗𝑁+1  to compute the hcp-Ni fraction for this BO-

suggested point as 𝑦(𝐗𝑁+1) = 𝑦𝑁+1. The new data is added to the previous data as 𝒟1:𝑁+1 =

𝒟1:𝑁  ∪  (𝐱𝑁+1, 𝑦𝑁+1), which is used to retrain the GP model. This iteration is repeated while no 

higher hcp-Ni fraction can be found. BO, GP and the acquisition function are explained in details 

in section S2 of the SI.    

 

3. Result and discussion 

       Figure 2a shows the variation of the hcp-Ni fraction as a function of time during the 

crystallization of a-Ni with an hcp seed at 800 K and different pressures. The results for two other 

temperatures at 600 K and 1200 K are shown in section S3.1 of the SI. In general, for a given 

temperature, higher hcp-Ni fraction can be reached with higher pressures, but this trend is not 

monotonic. Figure 2b summarizes the steady state hcp-Ni fraction from each condition. The 

highest hcp-Ni fraction achieved in these simulations is 44% at 600 K and 500,000 bar. We note 

that for these simulations, the calculation of the hcp phase fraction includes the seed as well.  
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Figure 2. (a) Fractions of hcp-Ni phase as a function of time for crystallization of a-Ni with a hcp seed at 800 K and 

different pressures. (b) The steady-state hcp-Ni fraction at different temperatures as a function of logarithmic pressure. 

(c) Fractions of hcp-Ni versus time at 200,000 bar and different temperatures. (d) The steady-state hcp-Ni fraction at 

different pressures as a function of temperature. 

       

         For two high pressures, we have also performed simulations with different temperatures. 

Figure 2c shows such a series of simulations at 200,000 bar, and those for 900,000 bar is included 

in section S3.1 of the SI.  The highest steady state hcp-Ni fraction reached in these simulations is 

42% at 600 K and 200,000 bar. However, as summarized in Figure 2d, there is again no monotonic 

trend for hcp-Ni fraction as a function of temperature.  
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Besides employing a hcp crystallite as the crystallization seed, we have also performed the 

same set of simulations using an fcc seed (Figure 3 and section S3.2 in the SI). Similar to the hcp 

seed case, there are no monotonic trends for the hcp-Ni fraction as a function of temperature nor 

pressure. The highest hcp-Ni fraction achieved from these simulations is 38% at 900 K and 

900,000 bar. For many of the simulations with an fcc seed corresponding to the low pressures, the 

steady-state hcp-Ni fractions are close to zero (Figure 3b and 3d). Another interesting observation 

is that for intermediate pressures of 50,000 - 200,000 bar, there is first a gradual increase in the 

hcp-Ni fraction followed by a sudden decrease to almost zero due to the conversion of the hcp-Ni 

phase into the fcc-Ni phase. The insets in Figure 3a show the representative phases before and 

after this conversion. The same sharp phase conversion is also observed at other two temperatures 

simulated (600 and 1,200 K in sections S3.2 and S4 in the SI). This conversion phenomenon 

appears only at medium pressures for the crystallization of a-Ni with an fcc seed, indicating these 

pressures allow the system to form the hcp phase but are not high enough to keep the phase. At 

higher pressures, the formed hcp phase becomes more stable.  
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Figure 3. (a) Fractions of hcp-Ni phase as a function of time for crystallization of a-Ni with an fcc seed at 800 K and 

different pressures. Insets show representative simulation snapshots before and after the sharp hcp-to-fcc phase 

transition. (b) The steady-state hcp-Ni fraction at different temperatures as a function of logarithmic pressure. (c) 

Fractions of hcp-Ni versus time at 200,000 bar and different temperatures. (d) The steady-state hcp-Ni fraction at 

different pressures as a function of temperature. 

       The above results indicate that it is challenging to identify the crystallization conditions that 

may maximize the hcp-Ni fraction due to lack of monotonic trends. Therefore, BO is employed. 

For BO of the crystallization with an hcp seed, there are 30 data points from the above simulations 

with different (𝑇, 𝑃) pairs. This dataset is used to train the GP model. In section S2.1.1 in the SI, 

we show the parity plots corresponding to the Leave-One-Out cross validation [43,44] using our 
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GP model which validates the good predictivity of the model. We bound the variables in the BO 

as the [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥] = [300 𝐾, 2000 𝐾] and [𝑃𝑚𝑖𝑛, 𝑃𝑚𝑎𝑥] = [1 𝑏𝑎𝑟, 900000 𝑏𝑎𝑟]. Figures 4a-c 

are the posterior means, standard deviation and normalized EI acquisition function corresponding 

to the BO iterations 1, 50 and 85, respectively, for the crystallization with an hcp seed. The noise 

standard deviation in the GP model is 0.10. For each iteration, one point as the favorable pair of 

(𝑇𝑛𝑒𝑤, 𝑃𝑛𝑒𝑤) is suggested by BO where the acquisition function is maximized. This suggested 

condition is simulated using MD to calculate the hcp-Ni fraction, which is then added to the next 

iteration. With increasing number of iterations, the density of the BO-suggested points in the 

search space increases where the posterior mean is the highest while the posterior standard 

deviation is the lowest. In Figure 4, as a general view, the leftmost side of the search space includes 

points that hcp-Ni fraction gets high values. This region corresponds to low temperatures, but the 

pressures are very high, which makes the crystallization possible.  

       In Figure 5a, the distance between consecutive BO-suggested points in the search space as a 

function of the iteration number is shown. It is seen that for most of the iterations, the 

displacements of the suggested points are very small which shows that the suggested points by the 

acquisition function are so close to each other and the exploitation is dominant to exploration. 

However, there are some points in the Figure 5a that are representations of large distances between 

consecutive points which is the indication of exploration of the BO, e.g., the distance between 

pairs of x[22] and x[21] (suggested points at iterations 22 and 21) as (300 K, 374564 bar) and (300 

K, 551890 bar), respectively. Figure 5b depicts the maximum accumulative values of the hcp-Ni 

fraction calculated with MD simulations as 𝑦𝑏𝑒𝑠𝑡 for different BO iterations. Two high values of 

hcp-Ni happen at iteration numbers 9 and 13 which are equal to 57.44% and 58.25%, respectively. 

The features corresponding to these two points are the pairs of (300 K, 463186 bar) and (300 K, 
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459952 bar) which are so close to each other. This result demonstrates that the hcp-Ni fraction for 

the crystallization of the a-Ni with an hcp seed is very sensitive to pressure values. After 13 

iterations, BO could be able to find the maximum value of the hcp-Ni as 58.25%.         
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Figure 4. Posterior mean, posterior standard deviation and normalized EI acquisition function for the BO of hcp-Ni 

fraction from crystallization with an hcp seed for iterations (a) 1, (b) 50, and (c) 85.  

 

 

Figure 5. (a) The changes of distance between consecutive points suggested by the acquisition function corresponding 

to the iterations n and n-1 with iteration number (b) The changes of best observation calculated using the MD 

simulation with the iteration number. Two subfigures show the acquisition function distribution for iterations 9 and 

13. 𝜎𝑦 and 𝛿 are equal to 0.1 and 0.01 for the BO task. 

      Figures 6a-c are the posterior means, standard deviation and normalized EI acquisition 

function corresponding to the BO iterations 1, 50 and 85, respectively, for the crystallization with 

an fcc seed. The noise standard deviation in the GP model is 0.03. For BO of the crystallization 

with an fcc seed, there are 42 initial data points. In Figure 6, as a general view, the center of the 

search space includes most of the points suggested by acquisition function. 
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Figure 6. Posterior mean, posterior standard deviation and normalized EI acquisition function for the BO of hcp-Ni 

fraction from crystallization with an fcc seed for iterations (a) 1, (b) 50, and (c) 85.  
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In Figure 7a, the distance between consecutive BO-suggested points in the search space 

as a function of the iteration number is shown. It is seen that at the beginning, the displacements 

of the suggested points are large, representing the exploration phase. Later in the BO, the distances 

between the consecutive points becomes much smaller, indicating the exploitation around the 

maximum. These can be seen from the acquisition function heat maps from iterations 40 and 77 in 

Figure 7b. Based on these diagrams, it could be seen that the acquisition function distributions are 

similar to each other and also the suggested red points are close together. In Figure 7a, the distance 

between pairs of x[60] and x[59] (suggested points at iterations 60 and 59) as (1231 K, 394643 

bar) and (881 K, 602672 bar), respectively, is large which is the indication of exploration. Figure 

7b demonstrates two high values of hcp-Ni happening at iteration numbers 40 and 77 which are 

equal to 43.37% and 42.10%, respectively. The features corresponding to these two points are the 

pairs of (1229 K, 452358 bar) and (1211 K, 495516 bar). After 40 iterations, BO could be able to 

find the maximum value of the hcp-Ni as 43.37%.  
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Figure 7. (a) The changes of distance between consecutive points suggested by the acquisition function corresponding 

to the iterations n and n-1 with iteration number (b) The changes of best observation calculated using the MD 

simulation with the iteration number. Two subfigures show the acquisition function distribution for iterations 40 and 

77. 𝜎𝑦 and 𝛿 are equal to 0.03 and 0.01 for the BO task.  

 

4. Conclusion 

 

       In this work, the goal is maximizing the fraction of metastable hcp phase during the 

crystallization of the bulk a-Ni structure at steady state and discover the process conditions leading 

to that optimum value. Non-equilibrium MD simulations under NPT ensemble are performed to 

study the crystallization of a-Ni. Using the PTM method, the phases of the atoms as amorphous, 

fcc and hcp are recognized during the crystallization under different temperature and pressure 

values and the fractions of hcp phase at steady state are collected as the objective function for the 

BO algorithm. The surrogate model used in BO algorithm is the GP with matern kernel. Based on 

the BO of the a-Ni with hcp seed using 𝜎𝑦 and 𝛿 equal to 0.1 and 0.01, 58.25% hcp-Ni could be 

gained after 13 BO iterations where the temperature and pressure are equal to 300 K and 459,952 

bar, respectively. Moreover, for the a-Ni with fcc seed using 𝜎𝑦 and 𝛿 equal to 0.03 and 0.01, 

maximum hcp-Ni that BO converges into is 43.37% after 40 iterations of BO algorithm. This study 

shows the promise of using BO to identify the process conditions that can maximize the rare 

phases. This method can also be generally applicable to process optimization to achieve target 

material properties.  
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Supplementary Material 

See the supplementary material for the complete explanation of the Evolution of process 

conditions, Bayesian Optimization, Variation of hcp-Ni fraction with time and Crystallization of 

a-Ni with FCC seed at medium pressure values.  

 

 

Code availability 

The Python code required to reproduce these findings are available to download from 

https://github.com/sinaDFT/BO_BulkNi_Crystallization upon publication. 
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