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We show that a network of non-identical nodes, with excitable dynamics, pulse-coupled, with
coupling delays depending on the Euclidean distance between nodes, is able to adapt the topology of
its connections to obtain spike frequency synchronization. The adapted network exhibits remarkable
properties: sparse, anti-cluster, necessary presence of a minimum of inhibitory nodes, predominance
of connections from inhibitory nodes over those from excitatory nodes and finally spontaneous spatial
structuring of the inhibitory projections: the furthest the most intense.

PACS numbers: 89.75.-k Complex systems - 89.75.Fb Structures and organization of complex systems -
05.45.Xt Synchronization; coupled oscillators - 05.65.+b Self-organized systems

I. INTRODUCTION

Phase synchronization of excitable pulse-coupled os-
cillators in the presence of delays proportional to their
distance is a geometric frustration problem not admit-
ting a solution in general. The basic idea is as follows:
for nodes A and B to train each other to spike in phase,
the delay τAB between them must be an exact multiple
of their interspike interval (ISI). Similarly, for B and C
to spike in phase, τBC must be a multiple of ISI. But,
unless you are in a very particular geometry (such as the
one used in [1–4]) τAC is in general not proportional to
ISI and therefore the spike of A participates in desyn-
chronizing C. Along this argument, the pulse aspect of
the coupling, i.e. the existence of an interaction only
during a very short time interval compared to ISI, is
fundamental. Indeed, the further the coupling is from a
Dirac distribution, the less the proportionality relation
between delay and ISI is constraining.

Given the difficulty of the problem, several approaches
have been tried. Pioneering work [5] deals with a net-
work of identical integrate-and-fire pulse-coupled and ex-
citatory units. The delay is not related to the distance
between nodes but to a maximum time beyond which
the action of node j on node i is forgotten (i.e. reduces
to zero). Two topologies are studied: a fully connected
network and a two-dimensional regular mesh with local
coupling. The dynamics converges to a frequency syn-
chronized solution, where all nodes have the same ISI
without spiking in unison. In [6], delays are now clearly
associated with the time required for the action poten-
tial to propagate along the axon of each neuron. Identical
excitatory neurons with an exponentially decreasing cou-
pling with distance, give rise to waves (which implies a
global synchronization in frequency but not in phase).
[7] investigated the effect of time delays on a set of two-
dimensional identical excitatory oscillators. The oscilla-
tors are regularly distributed on a square grid and the in-
teractions between oscillators A and B are delayed by an
amount proportional to the distance rAB between them.

The weights of the connections first decrease as 1/rAB ,
then vanish for rAB > r0. The oscillators are not pulse-
coupled. It is found that distance-dependent time delays
induce various patterns including traveling rolls, square-
like and rhombus-like patterns, spirals, and targets. [8]
considered the effects of distributed delays on amplitude
death. Oscillators, whose amplitude must be described
in order to eventually cancel it, are of Ginzburg-Landau
type. They are identical and their dynamics are not ex-
citable. Here the delays are not distance-dependant but
are chosen randomly accordingly to a given probability
distribution. It is showed that even a small spread in
the delay distribution can greatly enlarge the set of pa-
rameters for which amplitude death occurs. The idea
of the statistical distribution of delay was then taken
up: to study a standard field model of neural excita-
tory and inhibitory populations [9, 10], to investigate the
coherent activity patterns in inhibitory, synaptically cou-
pled, bursting Hindmarsh-Rose neurons [11], to demon-
strate the widespread occurrence of dynamically main-
tained spike timing sequences in recurrent networks of
pulse-coupled spiking neurons with large time delays [12].

[13] studies the Rulkov mapping in the presence of a
delay proportional to the interneuron distance and of a
coupling strength proportional to the difference of the
fast variables (coupling known as electrical as opposed
to synaptic coupling known as pulse-coupling). The neu-
rons are not identical, the dynamics of an isolated neuron
is chaotic and the network organization allows a continu-
ous modulation between a scale-free network with dom-
inating long-range connections and a homogeneous net-
work with mostly adjacent neurons connected. A time
averaged Kuramoto’s order parameter (R) is measured.
It is found that the most phase synchronized response
(R ' 0.4) is obtained for the intermediate regime where
long as well as short-range connections constitute the
neural architecture.

All the previous studies we have just described share a
common approach: that of providing i) first an excitable
dynamics for the nodes and ii) an a priori topology for
the network connections, with specific properties such
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as random, small word, scale free, all to all or sparsely
connected, dependence of connection weights on distance
etc...Although natural and prolific, this approach leaves a
serious doubt about the adequacy of the a priori network
topology to the intrinsic properties of the dynamics of the
individual nodes. For example, consider a small world
network of pulse-coupled neurons with excitable dynam-
ics. These neurons are either excitatory or inhibitory.
They also differ in the duration of their refractory pe-
riod. Finally, with randomly positioned nodes and de-
lays proportional to the distance between the nodes, the
combination of delays seen by each node is absolutely
unique. A small-world network is characterised by the
presence of a few long-distance connections. But which
nodes are best suited to establish long-distance connec-
tions? The excitatory ones? the inhibitory ones? the
largest or smallest refractory periods? Imposing a net-
work topology without fine-tuning it to the detailed char-
acteristics of each node leaves a lot to chance and is not
an optimal way to proceed.

Solving this problem requires to leave the network free
to self-adapt to the specificities of each neuron. In line
with this finding, [14] explores both analytically and nu-
merically an ensemble of coupled phase oscillators gov-
erned by a Kuramoto-type system of differential equa-
tions, where effects of time delay (due to finite signal-
propagation speeds) and network plasticity (via dynamic
coupling constants) inspired by the Hebbian learning
rule, are taken into account. The oscillators are not
pulse-coupled and the same neuron can simultaneously
project excitatory and inhibitory synapses. In two di-
mensions, various type of spatiotemporal patterns dis-
playing frequency but not phase synchronisation are then
reported. Another approach is to get as close as possi-
ble to biological reality. The numerical experiment in [15]
simulates the activity of 105 neurons and 8.5 106 synaptic
contacts randomly distributed on the surface of a sphere
of radius 8 mm with sub-millisecond time resolution. The
neurons interact via both local and long-distance con-
nections. The ratio of excitatory to inhibitory neurons
is 4/1. Neurons, both excitatory and inhibitory, are not
identical and the parameters that describe their dynam-
ics in the absence of coupling are randomly distributed
around a mean value. Short-term depression and facil-
itation are taken into account through the Markram’s
[16] phenomenological description of short-term synap-
tic plasticity. Long-term synaptic plasticity is taken into
account through spike-timing dependent plasticity [17].
The main result of this numerical experiment is the ob-
servation of spontaneous self-organization of neurons into
groups and repeatedly generated patterns of activity with
millisecond precision of spike timing ( in agreement with
experimental observations [18]). Later noting that the
propagation delay between any individual pair of neurons
is precise and reproducible with a sub-millisecond preci-
sion [19, 20] and arguing that obtaining and maintaining
such precision can only be understood if the spike-timing
is of the highest importance for the brain, Izhikevich in-

troduces the term Polychronization [21] to qualify such
spiking activity and suggests that they could play a cru-
cial role in the information storage process.

Here we are interested in a network of non-identical
excitable oscillators, pulse-coupled, with remote actions,
either excitatory or inhibitory, retarded by propagation
delays. Our aim is to understand if and how such a
network can self-organize to reach a regime of frequency
(but not necessarily phase) synchronization? We do not
seek to obtain this frequency synchronization by bring-
ing into play biologically realistic mechanisms, but rather
approach it as an optimization problem where each node
modifies the weight of its incoming connections to best
adjust its ISI to an external and common setpoint ISIsp.
In some ways, we are more interested in the pursued fi-
nality and its consequences than in the means to reach
it. Our mains results are:

1. the frequency synchronization requires the manda-
tory presence of a minimum percentage of in-
hibitory nodes among excitatory ones.

2. the nodes that spike at the same time and consti-
tute the repeatedly generated patterns of activity
with millisecond precision of spike timing reported
in [15, 18, 21] actually form anti-clusters. This
means that almost all of the connection weights are
associated with inter-pattern links, while the mass
of intra-pattern connections is almost vanishing.

3. During the adaptation process, the statistics of
the connection weights converge to a lognormal
distribution. The weight of outgoing connections
from inhibitory nodes is significantly larger than
would be expected if the weights were randomly
distributed among the nodes. Those from the in-
hibitory nodes are on the contrary significantly less
numerous. Moreover, we observe the spontaneous
occurrence of a spatial structuring where the weight
of the outgoing connections is greater and deviates
all the more from the random distribution as the
distance between the nodes is greater.

The study plan is as follows: First, the excitable dy-
namics model used will be described and the synchro-
nisation algorithm and its consequences on the network
dynamics will be presented. The convergence of the al-
gorithm will then be checked numerically. In a second
step we present our results: i) necessity of a minimum
percentage of inhibitors, ii) occurrence of death ampli-
tude in the presence of a high percentage of inhibitors,
iii) the formation of anticlusters and iv) spatial distri-
bution of the weights of the connections as a function
of the distances and the excitatory-inhibitory nature of
the connections. Finally the possible implications of our
results to genuine neural networks are discussed.
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II. THE MODEL

A. neuronal dynamics

To model a network of N pulse-coupled excitable os-
cillators, we use a point process framework [22]. The
benefits of such a choice are multiple:

1. the intrinsically probabilistic nature of the dynam-
ics. We obtain a Poisson’s distribution of inter-
spikes interval for an isolated neuron without any
effort.

2. the perfect control of the dynamics of a neuron.
The temporal evolution of an isolated neuron re-
quires the integration of neither a dynamic system
nor the computation of a nonlinear mapping but
just corresponds to a shift in the state space.

3. and above all a remarkable efficiency and speed of

execution. The algorithm does not converge all the
time, and even when it does, it can take several
tens of millions of integration steps, hence the need
to go fast.

The drawbacks are the consequence of the advantages:
the dynamics of an isolated neuron is highly schematized,
especially compared to the diversity of possible behaviors
and to the precise modeling that could be done [23].

The state of neuron i at time t (t ∈ N) is de-
scribed by the variable Si(t) which takes discrete values
in [−T ri , T s]. T s and T ri are integer values representing
respectively the spike and the refractory durations. The
neurons are not identical because they can differ by the
duration of their refractory period T ri . The dynamics of
Si is composed by an alternation of a deterministic and
a stochastic part. The deterministic part starts at time
t∗ whenever Si(t

∗) = T s and continues with

t∗ + ... 0 1 ... T s − 1 T s T s + 1 ... T s + T ri − 1 T s + T ri
S T s T s − 1 ... 1 −1 −2 ... −T ri 0

Note that during this deterministic sequence, Si jumps
from +1 to −1 without passing through 0. This is be-
cause we reserve Si = 0 to describe the rest state, the one
reached after the refractory period. The stochastic part
starts at time trest whenever Si(t

rest) = 0 and is involved
in the determination of the next state Si(t

rest + 1)

Si(t
rest) = 0 =⇒ Si(t

rest+1) =

{
T s with prob pi(t

rest)

0 ” 1− pi(trest)
(1)

with

pi(t) = R
[
p0 + a

N∑
j=1

DjWijH(Sj(t− τij))
]

(2)

where

R(x) =


0 if x ≤ 0

x if 0 ≤ x ≤ 1

1 if x ≥ 1

H(n) =

{
1 if n > 0

0 otherwise

(3)
p0 ∈ [0, 1] and a ≥ 0 are constant parameters, Dj = ±1
depending on whether j is excitatory or inhibitory, Wij ≥
0 is the strength of the connection from j to i and τij is
their propagation delay proportional to their Euclidean
distance. The role of the function R is to guarantee that
pi is a probability, that is a positive number in [0, 1].
The pulse-coupled character of the dynamics is modeled
by the function H which takes non-zero values only when
the neighbors spike at the right time.

When the neuron chains spikes without discontinuity,
its dynamics is periodic and the inter-spike interval (ISI)

reaches its minimum value ∆ = T s + T ri + 1. In our
simulations, we use p0 = 0.001 such that the average
ISI in absence of coupling (a = 0) is about 103 time
steps.

B. network geometry

In line with our objectives, the network is free to adapt
as it wishes since it is all to all connected and that the
weights of the connections Wij can evolve without con-
straints between [0,+∞]. On the other hand, the spatial
positions of the nodes and consequently the propagation
delays are determined once and for all at the beginning of
the optimization process. In what follows, we discuss this
initial distribution of positions that we want to be both
random but with a well-defined smaller distance between
neighbors [24].

In a first step, N neurons are randomly distributed on
the surface of a sphere of radius R = 1. The interneuron
distances vary between 0 and 2R = 2.0 and their initial
distribution is shown in fig.1.

In a second step the spatial distribution of the nodes
onto the surface is regularized in order to homogenize
their surface density. This adjustment is achieved by
subjecting the node i to repulsive

∑
j 1/rij interactions.

The repulsive forces are applied until the quality factor of
the min

j
(rij) distribution is equal to 30 [24]. In the end,

the nodes form an almost hexagonal network (with mesh
dhex '< min

j
(rij) >), with many penta-hepta topological

defects (fig.2).
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FIG. 1. Histogram of the interneurons distances before ajuste-
ment with 300 bins (vanishing distances are not taken into
account). The network has 300 nodes randomly distributed
on a sphere of unit radius .

FIG. 2. Histogram of the interneurons distances after ajuste-
ment. The first peak (the most left-handed) in the distribu-
tion is associated with min

j
(rij), i.e. the mesh of the hexagonal

network. The ratio between the height of this peak and its
width at half height defines the quality factor.

As the simulation is time discretized, all the delays τij
are expressed as integer unit of cdt the distance traveled
by the information during a unit of time:

τij =
[ rij
cdt

]
(4)

where [ ] stands for the integer value. An important pa-
rameter is then the number of time steps necessary to
transmit the information from one node to its nearest
neighbor. This number is equal to τmin = dhex/cdt.
The maximum distance being 2R = 2, the state of all
the neurons must be stored in memory over a duration
of 2τmin/dhex time steps. Therefore, for an economi-
cal management of the memory it is better to use a
small value of τmin (in most of our simulations we used
τmin = 3).

III. ALGORITHM

There are no strict and rigorous rules leading to the
choice of the algorithm used. Rather, it is the result of
a set of general considerations, analogies and heuristic
arguments that we present below. Ultimately, the main
rationale is that it effectively leads to synchronized solu-
tions.

1. We have deliberately chosen not to use a central
control capable of accepting or rejecting a solution
based on a global computation. The reason is that
this kind of approach quickly becomes impractical
with increasing N . On the contrary, we opted for
a local, scalable and parallelizable approach.

2. Following H.A. Simons’ ideas in his famous paper
”Architecture of the complexity” [25], the nodes of
the network were imposed to be unable to perform
complicated mathematical computations (such as,
for example, gradient computations or predictions).
We just expect each oscillator to be able to estimate
its ISI and to compare it with the setpoint ISIsp.

3. We assume that the incoming weight adjustment is
not done systematically at each time step but only
when the node has just spiked.

4. A node that has just tested a new local weight con-
figuration but which ultimately does not adopt it,
cannot force the rest of the network to return to
its initial state configuration. This would require
too much effort in terms of storage and transport
of information. The node that did the test must
continue on its way. Optimization must be done
on the fly.

5. The modification of the incoming connections of
node A has a direct effect on its spike frequency.
On the contrary, the effect of modifying its outgo-
ing connections is obviously more indirect: when
node A acts on the incoming connections of its
neighbours, then their spike frequencies are mod-
ified and may act in return on the spike frequency
of A. Both approaches are possible but we will limit
ourselves in the algorithm to the most efficient one,
i.e. the modification of incoming connections only

6. We have chosen not to impose any a priori struc-
ture on the connection network. Each node is con-
nected with all the others but the weights of the
connections evolves without constraint, can vanish
or, on the contrary, grow indefinitely. This is a
very expensive choice in terms of computating time
but which is absolutely necessary to let the network
freely choose its own topology.

If, at time t, node i does not spike, then its incoming
connections do not change. Now if it spikes at time t,
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then this node starts its remodelling activity by estimat-
ing the elapsed time interval ISI between its last two
spikes. Let j be another node of the network (j 6= i) con-
nected to i through Wij . If the last spike of j took place
at a time different from t− τij , then i does not perceive
any synaptic potential from j. It is then useless for itself
to maintain the incoming connection Wij and

Wij(t+ 1) = Wij(t) (1− b) (5)

where b is a small positif real. On the contrary, if j
spiked at t − τij then its weight contribution is changed
accordingly to

Wij(t+1) = max
(

0,Wij(t)+αξDj (ISI − ISIsp)
)

(6)

where ξ ∈ [0, 1] is a random uniformly distributed vari-
able and α ≥ 0 stands for the modification amplitude. In-
terpretation of eq.(6) is straightforward: if i detects that
its ISI is higher than the setpoint (i.e. (ISI − ISIsp) >
0), the incoming connections associated with inhibitory
nodes (Dj = −1) will be decreased while those associ-
ated with excitatory nodes (Dj = +1) will be increased.
As a result, Wij and the probability for i to spike are
increased. Conversely, when ISI < ISIsp, the same
dynamics eq.(6) leads to a decrease in the spike prob-
ability. Note that more sophisticated expressions can be
considered for the weight change, but Eq.6 can be un-
derstood as the unique linearization in the neighborhood
of ISI ' ISIsp of any mechanim imposing frequency
synchronisation.

It is important to realize that the algorithm is of the
greedy type. Although the evolution of Wij (eq.6) im-
poses without any doubt that the ISI of node i will get
closer to the setpoint, the simultaneous global conver-
gence of all the nodes is absolutely not guaranteed: the
convergence of a node can be done at the expense of an-
other one.

Fig.3 represents a typical time evolution of the global

deviation Gs =
∑N
i=1(ISIi−ISIsp)2 along the optimiza-

tion process. While α is gradually increased by steps of
0.1, we observe a decrease of Gs to zero indicating that
the system does evolve globally towards a frequency syn-
chronization. However, this convergence is far from being
uniform and takes rather the aspect of an avalanche dy-
namic where the local optimization of a node can provoke
a cascade of events at the network level. Finaly, when the
global synchronization is reached, the network dynamics
stops and the network does not evolve anymore.

Randomness is present in the dynamics through pi(t)
(eq.1) and ξ (eq.6) and the initial geometrical distribu-
tion of the nodes. To investigate these effects, we per-
form two types of numerical experiments. All the sim-
ulations have in common the same parameter values (a,
cdt, Ts and ISI setpoint), the same initial Wij values
and they share the same distribution of refractory peri-
ods and excitatory/inhibitory ratios: for Tr = 38, 80/20,
for Tr = 39, 79/21 and for Tr = 40 81/19 (we intro-
duce the notation [[38, 80/20], [39, 79/21], [40, 81/19]] to

FIG. 3. Imposed time evolution of α (left axis, in black)

and Gs =
∑N
i=1(ISIi − ISIsp)2 (right axis, in red) along the

optimization process. The network consists in 300 nodes: for
Tr = 38 there are 88 excitatory and 16 inhibitory nodes, for
Tr = 39, 96 and 10 and for Tr = 40, 71 and 19. Ts = 3 and
a = 4. The ISI setpoint is set at 45.

designate such a configuration). On the other hand, the
two groups differ by their initial distribution of the po-
sition of the nodes. The simulations of the first group
(20 simulations) use a strictly identical geometrical dis-
tribution such that the origin of randomness is limited
to pi(t) and ξ. We observe that the convergence to-
ward a frequency synchronisation regime is achieved for
α > αc where αc varies from one experiment to another
with αc ∈ [0.8, 1.2]. Averaging over the 20 experiments,
we found < αc >= 1.0 ± 0.1. Each of the simulations
of the second group (10 simulations) uses its own, ran-
domly generated, geometrical configuration. We found
αc ∈ [0.90, 1.60] with < αc >= 1.1 ± 0.2. Thus, we can
see that i) the two types of measures are consistent with
each other, ii) and that the random distribution of node
positions is an important source of fluctuations. There-
fore, in what follows, each optimization process will be
associated with a random draw of the position of the
nodes.

IV. RESULTS

A. Spatio-temporal dynamics at convergence

At convergence, the spatio-temporal dynamics is char-
acterized by the periodic succession of node patterns D =
P1, P2...PISIsp where ISIsp is the imposed inter-spike in-
terval setpoint (fig.4). A pattern is constituted by the set
of all nodes that spike at the same time. As the number
of nodes varies from one pattern to another, the global
firing rate oscillates periodically in time with the period
ISIsp (fig.5). The patterns in the sequence D are 2 by
2 disjoint and their gathering constitutes the total set of
nodes of the network. Therefore they form a partition of
the set of nodes. Fig.6 and fig.7 show typical temporal
evolutions of the dynamics in the space of the patterns.
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FIG. 4. Raster plot of the network activity. The configu-
ration is [[38, 136/53], [39, 157/53], [40, 170/31]] and involved
600 nodes. Ts = 3, p0 = 0.001, b = 0.01, a = 4 and
ISIsp = 46. The figure corresponds to the spatiotemporal
dynamics after convergence of the optimization process.

FIG. 5. Time evolution of the global firing rate associated
with the raster plot in fig.4.

On the vertical axis, the zero corresponds to any pat-
tern that is not in the list D =P1, P2...PISIsp . Fig.6 is
the regular and periodic dynamics obtained after conver-
gence of the optimization process. Fig.7 is obtained by
freezing the dynamics of the network corresponding to
fig.6 (i.e. Wij are constant) and by increasing the back-
ground noise (po = 0.04). The global dynamics is found
to be intermittent with phases of locking on the periodic
solution at convergence, interspersed by episodes of more
or less long stall with a complex dynamics.

B. Mandatory presence of inhibitory nodes and
amplitude death

The importance of inhibitory mechanisms for genera-
tion of cortical rhythms is now well established [26, 27]:
Synaptic inhibition is known to balance excitation and
control the precise timing of spike generation. Synap-
tic inhibition itself can be synchronized by way of in-
teractions within networks of inhibitory and excitatory
neurons. It is therefore expected that our model also

FIG. 6. Time evolution of the spatio-temporal dynamics in
the space of the patterns. On the vertical axis, the numbers
1 to 46 stand for the patterns P1, P2...PISIsp observed at the
convergence of the optimization process in fig.4 and fig.5.

FIG. 7. Same as fig.6 but now p0 = 0.04 such that the dy-
namics is strongly disrupted. As before, the numbers 1 to 46
on the vertical axis stand for the patterns D = P1, P2...PISIsp
but now 0 is associated with any patterns that is not in the list
D. Pay attention to the difference in the horizontal scales: the
one in fig.6 spans only a few ISIsp while here it corresponds
to more than 200.

proves that frequency synchronization is only possible in
the presence of a minimum number of inhibitory nodes.

Each node being associated with a specific refractory
period Tr, we should normally characterize a given net-
work by its statistical distribution of Tr. Nevertheless,
for the sake of simplicity, we have concretely limited our-
selves to 3 distinct values (typically Tr ∈ [38, 40]). Tests
with up to 5 values have been performed to check that
this limitation was not relevant. The spike duration Ts
being the same for all nodes, the setpoint for the inter-
val between 2 spikes ISIsp cannot be less than ∆min =
Trmin + Ts + 1 because our model (eq.1) does not con-
tain any mechanism capable of reducing the refractory
period. On the other hand, it seems possible to impose
an ISIsp greater than ∆max = Trmax+Ts+1 because one
expects the inhibitory neurons to cooperate to prohibit
the spike over a duration longer than Trmax . Typically
we impose either ISIsp = ∆max+1 or ISIsp = ∆max+2.
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FIG. 8. The network consists of 300 nodes whose initial posi-
tions are randomly chosen on a sphere. The refractory period
of each node is randomly chosen among the 3 values 38, 39
and 40 and its inhibitory/excitatory character is determined
by drawing with a probability fg (fraction of inhibitors). The
ISI setpoint is 45. The red points (left axis, solid discs) stand
for (fg, αc). The black ones (hollow diamonds) correspond to
(fg, ndeath), where ndeath is the number of nodes that have
ceased to spike under the pressure of the inhibitory nodes
along the optimisation process

.

Control simulations with ISIsp = ∆max + 5 have been
successfully performed. However, for even larger values,
numerical convergence problems have been encountered.

We have conducted no less than 300 numerical exper-
iments (fig.8). For each simulation, the initial position
of the nodes is randomly generated. Then for each node,
its value of Tr is chosen randomly and uniformly between
the 3 values 38, 39, and 40. Finally the excitatory or in-
hibitory action of the node is randomly drawn: with a
probability fg the node is inhibitory, with a proba 1− fg
it is excitatory. fg changes with the experiments inside
[0.05, 0.95]. For each simulation, α is increased in steps
of 0.1 until a critical value αc is reached for which a fre-
quency synchronization regime is established. Value of α
higher than 6.0 have not been investigated. Red points in
fig.8 represents the set of (fg, αc) points. When several
αc are associated to the same value of fg, it is the highest
value of αc that counts, the one that ensures the conver-
gence towards the frequency synchronization whatever
the initial geometry of the nodes and the optimization
path taken. For fg ' 0, the plot suggests a divergence of
αc associated with the impossibility of a global frequency
synchronization in the absence of inhibitory nodes. For
fg ' 1, we observe the spontaneous death of a certain
number ndeath of nodes during the optimization process.
At a given moment, under the action of their inhibitory
connections, these nodes were unable to spike. And since
a node that does not spike cannot change its incoming
connections, the situation persists as long as the neigh-
borhood action goes on.

FIG. 9. Histogram of R({Wrand}) defined in eq.7. We made
10000 random draws and the histogram has 100 bins.The net-
work consists of 300 nodes whose initial positions are ran-
domly chosen on a sphere. The refractory period of each node
is randomly chosen among the 3 values 38, 39 and 40 and the
fraction of inhibitors fg = 0.15. The ISI setpoint is 45 while
the delay between two diametrically opposed nodes is 2/cdt =
33 < ISIsp. We find < R({Wrand}) >= 0.022 ± 0.0025
which implies that R({Wcvg}) at convergence deviates from
the mean value by more than 9.4 standard deviation.

.

C. Anti-clusters structuring

For two nodes A and B to train each other to spike
in phase, the delay τAB between them must be an exact
multiple of the setpoint ISIsp. Consequently, we expect
and observe two very distinct operating regimes depend-
ing on whether the maximum delay between 2 nodes of
the network (2/cdt) is less or greater than ISIsp.

We introduce

R({W}) =

∑
Pµ∈D

∑
i∈Pµ,j∈Pµ

Wij∑
Pµ∈D

∑
Pµ′ 6=µ∈D

∑
i∈Pµ,j∈Pµ′

Wij

(7)

which, for a given configuration {W}, stands for the ra-
tio between the total weight of the internal connections
to each pattern Pµ and the total weight of the connec-
tions between two distinct patterns Pµ and Pµ′ 6=µ. We
compute R({Wcvg}) where {Wcvg} is the configuration
network at the convergence of the optimization process.
We compare the previous result with the distribution of
R({Wrand}) where {Wrand} are derived from {Wcvg} by
randomly redistributing its weights among the nodes of
the network.

We first consider the situation where 2/cdt < ISIsp
that corresponds to a ”small” network where all nodes are
within one inter-spike interval of each other. This regime
correspond to the vast majority of our investigations be-
cause it is the most interesting and the surprising situ-
ation. Fig.9 is a histogram of the values of R({Wrand})
obtained after 10000 draws of the random configuration
{Wrand}. While < R({Wrand}) >' 0.022 with a stan-
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FIG. 10. The plot shows the set of points (τij ,Wij) where i
and j belong to the same pattern Pµ ∈ D. The networks has
600 nodes, Ts = 3, a = 4 and p0 = 0.001. Their refractory
periods are not identical and vary between 38 and 40. The
ISI setpoint is fixed at 46 and 2/cdt = 100. The fraction of
inhibitory nodes is 20%. The first maximum is located at 46
(= ISIsp) and the second at 92.

dard deviation of 0.0025, the measured value at conver-
gence is R({Wcvg}) = 1.9 10−7, significantly smaller. It
thus deviates from the random distribution by more than
9 standard deviations, which rules out any coincidence:
therefore the patterns Pµ ∈ D are characterized by a very
strong anti-cluster structuring.

In the case of a network with 2/cdt = 100 > ISIsp,
the situation is completely changed. In such a ”large”
network, each node can be linked to several distinct
nodes shifted by exactly one ISIsp. Then R({Wcvg})
is no longer almost zero, but on the contrary is mea-
sured to be almost one standard deviation higher than
< R({Wrand}) > (not shown). The anti-cluster structure
is in competition with the connections between nodes be-
longing to the same pattern and is clearly less predom-
inant. Fig.10 shows the connection weights repartition
Wij versus the delay τij when both i and j belongs to
the same given pattern Pµ (randomly chosen in the D
sequence). We clearly observe that only internal con-
nections with a delay equal to ISIsp ot 2 ISIsp are not
vanishing.

D. Network sparseness

The Gini coefficient is a real number, between 0 and 1,
that measures the rate of inequality of the distribution
of a variable. It was originally developed in economics
to measure the income inequality of a country’s popula-
tion. Applied to the case of connection weights, a null
value of this coefficient would correspond to the homoge-
neous distribution of the mass, i.e. to the case where all
Wij are equal. On the contrary, a coefficient equal to 1
would mean that all the weights are zero, except for one
and only one. For values of fg ' 0.2 and the number N
between 100 to 600 of nodes, we find a staggering value

FIG. 11. Histogram with 200 bins of the weights of the con-
nections Wij in log-log scales. We integrated the results ob-
tained for 5 distinct networks with fg = 0.2 at convergence
of the optimization process. The turquoise cercles correspond
to networks with 300 nodes while the red diamonds are as-
sociated with network with 600 nodes. Continuous lines are
quadratic fits compatible with lognormal distributions.

.

of 0.95 indicating that the optimized networks are par-
ticularly sparse with a very large majority of connections
reduced to zero coexisting with a very few number of very
massive connections. Fig.11 shows a typical histogram of
the connexion weights Wij in log-log scales.

E. Predominance of projections from inhibitory
nodes

Here we focus on the global masses of the network con-
nections according to the excitatory or inhibitory nature
of the nodes of departure and arrival. We introduce

P++({W}) =
∑

{i ∈ [1, N ]|Di = +1}
{j ∈ [1, N ]|Dj = +1}

Wij (8)

where P++({W}) stands for the total mass of the excita-
tory← excitatory connections for the network configura-
tion {W}. We define in the same way the other masses
P+−, P−+ and P−−.

The numerical values of the above quantities at the
convergence of the optimization process do not have any
meaning in themselves. Neither do their ratios since
they depend on fg. So we will proceed as for the
demonstration of the anti-cluster structure in paragraph
IV C, by comparing P.. ({Wcvg}) with the distribution of
P..({Wrand}) where {Wrand} are derived from {Wcvg} by
randomly redistributing its weights among the nodes of
the network. The results are displayed in fig.12. Since
they differ from the mean values by several standard devi-
ations, they are highly significant from a statistical point
of view. They clearly shows a very net deficit in the mass
of the connections from excitatory nodes, to the benefit
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.. Pxy({Wcvg}) < Pxy({Wrand}) > standard deviation σ
Pxy({Wcvg})−<Pxy({Wrand})>

σ

++ 557485 623876 3690 -18.0

−+ 141147 159531 2792 -6.6

+− 224183 159530 2782 23.2

−− 60525 40403 1516 13.3

FIG. 12. Same configuration as in fig.4. P.. are defined in
eq.8. The rightmost column shows the difference between the
measurements at convergence and the mean value in units of
standard deviation. Undoubtedly, a large part of the mass has
been allocated to the outgoing connections from the inhibitory
nodes at the expense of the outgoing connections from the
excitatory ones.

of a substantial excess in the mass of the connections
from inhibitory nodes.

F. Spatial distribution of the connexion weights

The question that interests us here is to know if there is
a relationship between the propagation delay τij between
any 2 nodes i and j of the network and the weights Wij

(possibly Wji) of their connections. For that purpose, we
introduce the following definitions:

M+−({W} , τ) =
∑

{i ∈ [1, N ] |Di = +1}
{j ∈ [1, N ] |Dj = −1}

Wijδ(τ − τij) (9)

where δ(n) = 1 if n = 0 and cancels out for any other
integer value. For the configuration {W}, M+−({W} , τ)
is the sum of the masses of all the connections from an
inhibitory node to an excitatory one and separated by
a propagation delay τ . By analogy, we define in the
same way M++, M−+ and M−−. We then proceed
in the same way as for proving the anti-cluster feature
of the optimized network or for proving the predomi-
nance of the inhibitory projections. We first compute
M..({Wcvg} , τ) where {Wcvg} is the configuration net-
work at the convergence of the optimization process and
then we compare the result with M..({Wrand} , τ) where
{Wrand} are derived from {Wcvg} by randomly redis-
tributing its weights among the nodes of the network.
The results are displayed in the figures fig.13, fig.14 and
fig.15. For fig.13, fig.14, the 3 columns correspond to the
triple repetition of the numerical experiment by chang-
ing only the initial position of the nodes on the sphere.
The red circles stand for the case of the optimized net-
work M..({Wcvg} , τ) while the numerous blue points are
associated with M..({Wrand} , τ) and the 10000 random
draw repetitions. Some figures give the impression that
the optimized values are compatible with a random con-
figuration of the connection masses. Others, on the con-
trary, seem to indicate that they clearly deviate from it.
To clarify the situation, we introduce

Q−+ =
M−+({Wcvg} , τ)− <M−+({Wrand} , τ)>√

<M−+({Wrand} , τ)2> − <M−+({Wrand} , τ)>2

(10)

FIG. 13. The first row stands for the plot of M++({W} , τ)
versus τ while the second one with M−+({W} , τ) versus τ .
The columns correspond to the repetition of the measurement
for 3 networks with 600 nodes, Ts = 3, a = 4 and p0 = 0.001
but distinct random initial positions of the nodes. The re-
fractory periods are not identical and vary between 38 and
40. The ISI setpoint is fixed at 46. The fraction of inhibitory
nodes is 20%. Red points correspond to the converged opti-
mized network while the numerous blue crosses are associated
with the random distribution of the weights among the net-
work connections.

that stands for the deviation from the mean value mea-
sured in units of standard deviation (also Q++, Q+− and
Q−−) and plot it versus τ (fig.15). The analysis of the
figures leads to the following remarks:

1. For a given value of the delay, the values of M++

or M−+ associated with outgoing connections from
excitatory nodes, do not deviate significantly (more
than 3 standard deviations) from the mean value of
the random distributions.

2. Nevertheless, if for a given delay, the values of M.+

were only due to chance, then from one delay to
another we should observe an alternation of values
larger and smaller than the average. The fact that
a large majority of the values are below the mean
value is statistically significant and is corroborated
by the global P.+ measurements.

3. For outgoing connections from inhibitory nodes,
we clearly observe that not only are M.− signifi-
cantly above the random value, but also that this
deviation increases with delay. The further the in-
hibitory connection projects, the higher its weight.

V. DISCUSSION

We have just shown that a network of non-identical
nodes, with excitable dynamics, pulse-coupled, with cou-
pling delays depending on the Euclidean distance be-
tween nodes, was able to adapt the topology of its con-
nections to obtain spike frequency synchronization. The
adapted network has the following remarkable properties:
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FIG. 14. Same regime of parameters as in fig.13, but now the
first row deals with M+− versus τ while the second one with
M−− versus τ .

FIG. 15. Same regime of parameters as in the first column
of fig.14 and fig.15. The plots are concerned with Q.. versus
τ as defined in eq.10 which measures the deviation from the
mean value in units of standard deviation.

1. The spatio-temporal dynamics is organized in a pe-
riodic succession of patterns. A pattern is consti-
tuted by the set of nodes that spiked at the same
time. The set of patterns forms a partition of the
network. There are very few connections between
nodes of the same pattern and the vast majority
of connections concern nodes belonging to distinct
patterns. This results in an anti-cluster structure.

2. The network is very sparse.

3. Inhibitory nodes play a fundamental role in fre-
quency synchronization. Not only because fre-
quency synchronization requires the presence of a
minimum number of inhibitory nodes, but also be-
cause the total mass of outgoing connections from
the inhibitory nodes is very significantly larger than
if the connections were established randomly.

4. We observe the spontaneous occurrence of a spa-
tial organization of inhibitory nodes: The further
the inhibitory connection projects, the higher its
weight.

It is worth noting that these properties are somewhat
generic in the sense that they do not depend on the de-
tails of the biological mechanisms that might have been
involved. They derive solely from the fact that frequency
synchronization has been imposed.

What could prevent our conclusions from applying to
neural networks? First, although neuronal phase syn-
chronization is suspected to play an important role in
neuronal processes, the exact mechanism of operation re-
mains to be discovered. Is phase synchronization a conse-
quence of learning processes or a necessary prerequisite?
Even more questionable is the willingness of neural net-
works to synchronize in frequency.

Second, even if we admit the need for the neural net-
work to be synchronized, there exist many biological
mechanisms that could relax the geometric frustation
character of the phase synchronization problem. For ex-
ample, one can increase the duration of synaptic interac-
tion, introduce mechanisms to adapt the spike frequency
of an isolated neuron, or simply modify the propaga-
tion times of potentials by taking into account the myelic
sheaths.

Finally and assuming that our results have any bio-
logical reality, the interpretation [21] of synchronization
patterns in terms of information carriers is somewhat at
odds with the anti-cluster structure that we observe. A
good way to decide would be to measure the strength of
synaptic coupling between neurons of the same pattern
observed in experiments [18] and numerical simulations
[15] .
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