
Stability of multi-lamellar lipid tubules in excess water

Tripta Bhatia

In the lyotropic phase of lipids with excess water, multilamellar tubules (MLTs) grow from defects. A phenomenological model
for the stability of MLTs is developed that is universal and independent of the underlying growth mechanisms of MLTs. The
stability of MLTs implies that they are in hydrostatic equilibrium and stable as elastic objects that have compression and bending
elasticity. The results show that even with 0.1 atm solvent pressure differences, the density profile is not significantly altered,
thus determining that the stability is due to the trapped solvent. The results are of sufficient value in relation to lamellar stability
models and may have implications beyond the described MLT models, especially in other models of membrane systems.

Introduction

The curvature of biomembranes and the molecular mecha-
nisms that drive the generation of curvature are important.1–4

Bilayer tubules are observed in lipid-protein compartments
such as giant unilamellar vesicles (GUV), in vitro. In the
GUV system, one of the mechanisms for the generation of
curvature is the compositional asymmetry of the leaflet due
to the different amounts of glycolipid GM1.5 Bilayers can
also acquire transbilayer asymmetry through asymmetric ad-
sorption (or desorption) layers formed by the composition of
the solution, resulting in the generation of membrane shapes
in the form of tubules or buds.3,6,7 This article describes
MLTs as quasi-equilibrium structures using elasticity theory.
MLTs are made up of only one lipid 1,2-dioleoyl-sn-glycero-
3-phosphocholine (DOPC) and grow from defects. This im-
plies that the bilayers have the same lipid composition and no
asymmetry in terms of this composition. Fig. 1 shows an epi-
fluorescence image of stable cylindrical MLTs rooted in the
lamellar reservoir for which stability conditions are discussed.

Experimental methods

We have prepared lamellar stacks of DOPC lipid (purchased
from Sigma). Approximately 20-50 µ l of chloroform lipid
solution (containing approximately 0.2 mole% of membrane
dye, 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine,
triethylammonium salt, RhPE purchased from Molecular
Probes) is spread on a glass coverlip. The sample is gently
dried in a nitrogen stream and kept covered inside a desicca-
tor overnight with little vacuum sufficient to hold the chamber
tight for the duration. The coated cover slip with dried sample
was glued to a larger cover slip at the edges using mica spacers
of about 100 µm thickness. Solvent was introduced between
the coverslips of the sample cells by capillary action. After the
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Fig. 1 Two-dimensional view of multilamellar tubules (MLTs)
dispersed in excess water. The brightest region is the lipid reservoir
in which the tubules are rooted. The image was obtained by
epi-fluorescence microscopy. The scale bar is 20 µm.

dry lamellar stack is hydrated, water molecules are constantly
exchanged between the sample and the bulk; therefore, the
hydration gradient acts as a driving force for tubule growth, as

Fig. 2 Growth of tubules. After the addition of water, the growth of
the MLT tip is tracked. The edge of the water front moves at a speed
∼ 5 µm/s much faster than the growth speed of MLTs.
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previously described in detail.8,9 Fig. 2 shows tubule growth
after water is added. The edge of the water front moves at a
speed ∼ 5 µm/s much faster than the growth of the tip of the
MLTs rooted in the reservoir. There are two important results
of the previous studies: (i) the need to obtain a necessary first
step for the generation of MLTs is the presence of defects;
and (ii) once such a membrane tubule has formed, the open
chamber needs to be closed to stop all growth and retraction
dynamics, thereby achieving hydrostatic equilibrium.
The open edges were sealed with silicone glue immediately af-
ter the solvent filled the entire gap. We found that in the sealed
sample cells, an osmotic equilibrium is reached between the
swollen lamellar stack and the excess water and the tubes re-
main stable for a couple of days. Sample cells are observed
under a confocal microscope (LEICA TCS-SP2, He-Ne laser
543 nm) equipped with a 40x dry objective (0.85 N.A.) having
a correction collar. Fig. 3 shows a two-dimensional confocal
cross section of the tip and root of the tubules. The double
arrow indicates the incident laser polarization. In a closed
(sealed) chamber, the diameter of the core of these MLTs is
extracted from quantitative image analysis, namely optimum
smoothening.10 Fluorescence confocal polarizing microscopy
(FCPM) observations confirmed that the tubules are multil-
amellar, are capped at the end and originate from defects. The
bright region in the image of the tubules is the region where the
dye molecules have their absorption and emission dipole mo-
ments oriented parallel to the incident laser polarization. For
a closed (sealed) chamber, water-molecule exchange can oc-
cur only within the sample cell, and an equilibrium is reached
for which the number of water molecules leaving the lamellar
stack is exactly balanced by the number of water molecules
entering the stack, and no further growth of tubules occurs. In
this situation, the image reveals that MLTs have a wide range
of rc and ro. Given the earlier observations9, in particular
the long lifetime of the structures, it is reasonable to consider
these as quasi-equilibrium structures.

Elasticity of tubules

A phenomenological model is proposed to analyze the stabil-
ity of simple cylindrical MLTs with a uniform cross section
shown in Fig. 3. The pertinent experimental observations on
which the model is based are listed below.

1. After the sample cell is sealed, the tubules remain stable
for more than one day.5,8,9 The model applies to the equi-
librium shapes achieved by the MLTs shown in Fig. 3.

2. The tubules are capped at the end (Fig. 3). The membrane
fluorescence signal comes from dye molecules oriented
in the bilayer with the absorption and emission dipole
moment always oriented in the plane of the bilayer8,9.

Thus, all MLT images exhibit this optical effect, namely
photoselection, from which the membrane morphology
of MLTs with a well-defined tip can be defined.

3. The tubules originate from defects in the lipid reservoir,
shown in Fig. 3.9

4. Tubules have a wide range of rc and ro. In general, the
examined MLTs have ro in the range of 1-30 µm. Fur-
thermore, in the stability regime, the structures are inves-
tigated with a z-stack confocal that detects the diameter
of the core in the range 88± 23 nm and 6860± 50 nm,
respectively, using a special image processing technique,
namely optimal smoothening.10

a                      b

Fig. 3 Two-dimensional confocal cross section of the tip and root
of the tubules. The double arrow indicates the incident laser
polarization. FCPM observations confirmed that the tubules are
multilamellar, are capped at the end, and originate from defects. Top
panel: Multilamellar tubule (MLT) observed by fluorescent confocal
polarized microscopy (FCPM) with incident laser polarization (a)
oriented perpendicular to the long axis of the tubule and (b) parallel
to the long axis of the tube. The scale bar is 10 µm applied to (a,b).
Bottom panel: FCPM image of the root of arbitrary MLTs in the
lipid reservoir, which confirms the multilamellar arrangement. The
bright region of the tubules is the region where the dye molecules
have their absorption and emission dipole moments oriented parallel
to the incident laser polarization.
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Given the above observations and, in particular, the long life
times of the structures, it is reasonable to consider these as
quasi-equilibrium structures. Therefore, the theory of elastic-
ity is used to understand the stability and structure of MLTs.

Elasticity of stack of bilayers:The smectic liquid crystals are
one-dimensional “solids” composed of fluid layers exhibiting
quasi-long-range order in the orthogonal direction of the lay-
ers. For small distortions, the elastic free energy (in Cartesian
coordinates) is11–13.

Fel =
∫ [B

2

(
∂zu
)2

+
κ

2
H2 + κG K

]
dx dy dz , (1)

where z is the solid direction “like” of the layering, u (x,y,z) is

the layer displacement field. (B/2)
(

∂zu
)2

is the energy den-
sity for compression (or extension) of the layer spacing with
B as the compression modulus. (κ/2)H2 is the energy den-
sity for layer bending, with the modulus of bending κ and the
mean curvature H = [(1/2)(1/R1 + 1/R2) =52

⊥u], with the
principal radii of curvature R1 and R2 and 52

⊥ = (∂ 2
x + ∂ 2

y ).
K = (1/R1R2) is the Gaussian curvature. The Gaussian cur-
vature term contributes to the energy only if the system under
study has a boundary or undergoes a change in topology (num-
ber of handles). The tubule in Fig. 3 has a single core, with
a uniform core radius (rc) and an outer radius (ro). The edge
structure of the tubule is probed by changing the incident laser
polarization by (π/2) from Fig. 3a to Fig. 3b, which confirms
that the tubule is capped at the end and that the open edges of
the bilayers are not exposed to the solvent. MLTs grow from
defects in the hydrated lamellar stack9. The main result of our
paper is to develop a curvature-elastic model for the stability
of MLTs, as described in the following.

Elasticity of MLTs:An MLT is an aggregate of multiple bi-
layers that are rolled coaxially to form cylindrical structures
characterized by an outer radius ro and an inner core radius
rc that are dispersed in the bulk water in the sample cell. The
tubules are capped at one end, and the other end is rooted into
the lamellar stack. We have ignored the tubule cap energy,
since the tubules are (10−100) µm long. The elastic energy
of the tubular lamella contributes from the compression of the
layer and the curvature of the layer11,12 with the direction of
the layer changed from z→ r and the direction of the in-plane
changed from (x,y)→ (r,φ), where r is the radial direction,
φ is the polar angle and z lies parallel to the long axis of the
tubules. Equation (1) becomes

Fel =
∫ [B

2

(
∂ru
)2

+
κ

2

(
∂

2
r u+

1
r2 ∂

2
φ u+

1
r

∂ru
)2 ]

rdr dφ dz

(2)
where the symbols have their usual meaning, ∂r stands for

the differential operator d/dr and H =
(

∂ 2
r u+ 1

r2 ∂ 2
φ

u+ 1
r ∂ru

)

is the mean curvature. The Gaussian curvature term is ne-
glected14. We retain the subdominant term in the free elastic
energy because the compressive and curvature stresses must
be balanced for stability. We define λ 2 = (κ/B) where λ and
B have the dimension of length and pressure, respectively.

If the tube is assumed to have a uniform circular cross sec-
tion along its length, then the dependence of u(r,φ ,z), on φ be-
comes zero for hydrostatic equilibrium, i.e; (∂φ u = 0). Hence,
for cylindrically symmetric MLTs with a uniform cross sec-
tion, the elastic free energy is;

Fel =
∫

r,z,φ
r

B
2

[
(∂ru)2 +λ

2
(

∂
2
r u+

1
r

∂ru
)2
]

dr dφ dz

= 2π

∫
r,z

r f [u(r),u′(r),u′′(r)]dr dz

where u′(r) = ∂ru, u′′(r) = ∂ 2
r u and Fel have the dimension of

energy. We consider all possible variations in Fel induced by a
shift in layer displacement from u to (u+∆u),

δFel = 2π

∫
r,z

δ
(
r f [u(r),u′(r),u′′(r)]

)
dr dz

= 2π

∫
r,z

[
∂ (r f )

∂u
δu+

∂ (r f )
∂u′(r)

δu′(r)+ · · ·
]

dr dz
(3)

Condition for stability

The tubules are bounded by water at the top, between the bi-
layers, and inside the core. To be in hydrostatic equilibrium,
the normal stresses at rc and ro must balance the fluid pressure
inside and outside the tubule, respectively, as shown in Fig. 4.
If the negative and positive signs show the direction outward
and inward from the bilayer plane, respectively, then

σ(ri) =−pi,

− σ(ro) = po
(4)

where σi and σo are the normal stresses in the innermost and
outermost layers that counterbalance the pressures pi and po
of the solvent in ri and ro, respectively, as shown in Fig. 4. In
equilibrium, the Euler-Lagrange equation (δFel/δu)= 0 holds
within the bulk of the lamellar region of the MLT giving,(

λ
2− r2)u′(r)− r

(
λ

2 + r2)u′′(r)

+ r2
λ

2
(

ru(4)(r)+2u(3)(r)
)
= 0

(5)

The solution to the Euler-Lagrange equation for (r > 0,λ >
0) is given by

u(r) = c3 λ
2Y0

(
− ir

λ

)
+ c2 λ

2
(

I0

( r
λ

)
−1
)
+ c1 log(r)+ c4

= c2 λ
2
(

I0

( r
λ

)
−1
)
+ c1 log(r)+ c4,
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where In(x) and Yn(x)15, respectively, represent modified
Bessel functions of the first kind and Bessel functions of the
second kind and of order n, and the four integration constants
are denoted with the symbol c. The layer displacement u(r) is
real. Therefore, we drop the term proportional to Y0 (−ir/λ ),
which is a pure imaginary. The constant c4 corresponds to the
uniform and rigid displacements of the entire MLT and can
therefore be set to zero (c4 = 0) by an appropriate choice of
the origin of the coordinate system. This gives a certain real
value of u(r).

u(r)' c2 λ
2
(

I0

( r
λ

)
−1
)
+ c1 log(r) (6)

The gradient of layer displacement or the bilayer compression,
∂ru(r) is a direct measure of the density change given by

v(r) = ∂ru(r) = c2 λ I1

( r
λ

)
+

c1

r
(7)

Now, it remains to find the two integration constants c1 and c2
subject to the boundary conditions given by equation (4).

Fig. 4 An MLT in hydrostatic equilibrium. σi and σo are the
normal stresses in the innermost and outermost layer that
counterbalance the pressures pi and po of the solvent. ”W” denotes
the water (or solvent), ”L” denotes the lamella, ri(= rc) and ro
denote the inner (or core) and outer radii of the tubule, respectively.

Solving for u(r)

The divergence of normal stress16 (∂iσi j) on a patch of mem-
brane with area (dA = rdrdφ ) and volume (dV = rdrdφdz) is
related to the total force per unit volume given by;

ftot =
∫

V
(∂iσi j) dV =

∫
A

σi j n̂ j ·dÂ (8)

where n̂ j is the normal area vector. Normal stress σ(r) and
radial strain u′(r) are related to elastic free energy16 as;

σ(r) =
δFel

δ (u′(r))
=

1
r

δ (r f )
δ (u′(r))

=
2πB

r

(
λ

2u′′(r)+
(

λ 2

r
+ r
)

u′(r)
)

=
2πB

r

(
λ

2v′(r)+
(

λ 2

r
+ r
)

v(r)
) (9)

Solving equations (4) and (9) we obtain the following.

c1 = ri

[
pir2

i
2πBα

+ c2λ

(
λ riI0 (γi)

α
− I1 (γi)

)]
,

c2 =
pir3

i β − por3
oα

2πBλ
[
α (β (riI1 (γi)− roI1 (γo))+λ r2

oI0 (γo))−λ r2
i β I0 (γi)

]
where α =

(
2λ 2 + r2

i
)
, β =

(
2λ 2 + r2

o
)
, γi = (ri/λ ), and

γo = (ro/λ ). Substituting c1 and c2 into equation (6), u(r) is
calculated from equation (6).

Hydrostatic equilibrium

The bilayer compression is plotted for an MLT with a given
pressure difference (pi− po) of the solvent. I have chosen the
dimensionless unit of length as γi = (ri/λ ) = 1, and measure
the pressure in units of B. For the Lα phase under considera-
tion, λ is of the order of a few layer spacings and B' 10 atm.
The ∂ru(r) for an MLT with the same inner and outer pres-
sures (pi = po) of the solvent is plotted and shows that the
MLT has varying non-zero bilayer compression, as shown in
Fig. 5 by the black color curve. If the inner and outer pressures
are zero, the bilayer compression, ∂ru(r) and the stresses are
zero throughout the tubule.

1 1.5 2 2.5 3
0.007

0.011

0.015

0.019

r Hin units of ri � ΛL

¶
r
u
Hr
L

Fig. 5 Red curve [(pi−po) = 0.1 atm], black curve (pi = po). The
tubule has (rc, ro) = (1,3) in dimensionless units of length as
(ri/λ ).

In reality, the solvent pressures inside and outside the tubule
can be different, because (rc < ro). A lower rc implies a higher
normal stress of the layer curvature (the mean curvature is
1/2rc at the core-solvent interface). The normal stress at the
outer radius is clearly lower, as (ro > rc). Thus, it is reason-
able to assume that the solvent pressure inside the tubule (in
the core) is greater than that outside the tubule. We have plot-
ted ∂ru(r) for an MLT with unequal inner and outer pressures
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(pi 6= po) of the solvent, e.g., (pi− po) = 0.1 atm. Even in
this extreme case, we find that the compression and, therefore,
the density profile of the lamellar material within the MLT do
not change significantly, as shown in Fig. 5, by the red color
curve. In such a scenario, the pressure difference can be stabi-
lized by trapping the solvent within small closed regions that
are dynamically formed in the reservoir.

Fig. 6 Different size and morphology of multilamellar tubules
(MLTs) dispersed in excess water. The cross-sectional view
(279 µm on each side) is obtained by fluorescence confocal
polarized microscopy (FCPM) with incident laser polarization
oriented along the vertical axis of the image.

Conclusions

Stability of MLTs implies that they are in hydrostatic equi-
librium and stable as elastic objects that have compression
and bending elasticity. In this regime, the model is univer-
sal and independent of the underlying growth mechanisms of
MLTs. The MLTs did not exhibit any significant motion on
the typical time scales of the experiments in the closed sample
cell. Furthermore, in the stability regime, MLTs are treated
as aggregates of lipid bilayers with an equilibrium spacing of
Deq between adjacent bilayers, which is achieved by balanc-
ing the intermolecular forces within the stack. In the pres-
ence of defects, growth is driven by the hydration gradient.8

The size and morphology of MLTs in the experiments cannot
be controlled, as shown in Fig. 6. However, if the lamellar
stacks are spin coated, then MLTs do not form.9 Multilateral
tubule growth, also known as myelin figures (MF)17, during
lipid hydration is explored using surfactants such as Aerosol-
OT, triethylene glycol monododecyl ether18–26, from vesicu-

lar dispersions of lung surfactant extract27, lipid vesicles with
hydrophilic polymers28,29 and aqueous multicomponent poly-
mer solutions30. In living systems, an important example is
the presence of MF in the pulmonary lining, an extracellu-
lar lipid-protein coat on the alveolar surface, the presence of
which helps reduce surface tension when the lungs are de-
flated31–33. The model is simple and might be of interest to
the field in understanding tubule stability in a variety of bio-
logical processes/applications. The results are shown in Fig. 5
and show that even with solvent pressure differences of 0.1
atm, the density profile is not significantly altered, thus deter-
mining that the stability is due to the trapped solvent. I also
believe that the results are important enough for the lamellar
stability model to be considered for publication, with impli-
cations beyond the MLT models described, especially when
trying to model other membrane systems.
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