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On-demand emission of individual electrons for the implementation of flying qubits and quantum
electron-optics experiments requires precise knowledge and tunability of emission times and energies.
Crucially, for confined electron sources such as driven quantum dots, the effect of local Coulomb
interaction on these emission properties needs to be understood, in particular if multiple particles
are emitted close in time or near-simultaneously. This paper theoretically analyzes electron-pair
emission from an ac driven quantum dot, detailing the competing effects of the electron-electron
interaction, the time-dependent potential forming the quantum dot, and of the quantum-state prop-
erties, such as degeneracy, on the emission times and energies. We complement a numerical analysis
of the coherent Schrödinger evolution of two particles in a driven potential with a master-equation
description for strongly interacting electrons tunneling stochastically into a weakly coupled conduc-
tor. This captures a broad range of different influences on the emitted particles and thereby guides
the development of single-electron sources with higher control over two-particle emission properties.

I. INTRODUCTION

The invention of on-demand single-electron sources [1–
3] has opened up for recent research on electron-based fly-
ing qubits [4] and more generally on quantum optics ex-
periments based on the controlled emission of single elec-
trons [3, 5, 6]. This endeavour relies not only on precisely
timing the electron emission, but also on controlling the
energy of the emitted particles. Indeed, recent experi-
ments have manipulated electrons in an energy-selective
manner [7, 8] and time-resolved measurements [7, 9]
and tomographic techniques [10–14] have revealed in-
formation about the emission characteristics of different
sources.

Reliable two–qubit gates within the electron-optical
flying qubit platform require further, crucial progress in
manipulating two-electron quantum states [3, 6, 8, 10,
12, 13, 15–17]. The most important distinguishing fea-
ture of electronic devices in this context is the possibly
strong Coulomb interaction between electrons. This can
play a role during particle propagation along wave guides
(implemented via quantum Hall edge states) [18, 19], or
when particles are brought to collide in a tunable manner
at quantum-point-contact based beam splitters [8, 15–
17, 20]. In contrast, the study of the interplay with
local Coulomb interaction, when electrons are emitted
from a periodically driven quantum dot [1, 2, 21–23],
has until now mostly been limited to single-level quan-
tum dots with constant, energy-independent tunnel bar-
riers [24–26]. Previous analyses of the emission en-
ergy have emphasized the role of the time- and energy-
dependence of the potential-well forming the quantum
dot [10, 14, 27]. However, local Coulomb interaction is
expected to strongly affect the emission times and ener-
gies of emitted electrons [28–33], which in turn are im-
portant for propagation velocities and further processing

FIG. 1. (a) Sketch of a tunable-barrier quantum-dot setup.
Gates on top of a conductor time-dependently modulate the
potential landscape [Eq. (1)] to eject pairs of electrons. The
positions xd,L, xd,C, and xd,R indicate the boundaries and
center of the quantum-dot region, xf,L and xf,R set the re-
gions, where a filter would measure time and energy at which
electrons propagate through it. (b) Sketch of the emission
process: the potential is driven such that the first electron
can tunnel out, until only one electron remains in the quan-
tum dot. Further driving allows also the second electron to
tunnel out until the potential well has basically disappeared.

of flying qubits.
The present paper thus theoretically analyses the emis-

sion times and energies of two-electron emission processes
from a quantum dot into a conductor separated by a gate-
tunable barrier [34], as sketched in Fig. 1(a). A particu-
lar focus of this study lies on the effect of local Coulomb
interaction on such processes.
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Typically, the emission into the conductor takes place
far above the Fermi energy, and is hence referred to as
hot-electron emission. The precise emission time and en-
ergy is controlled by a time-dependently modulated po-
tential of the dot and its exit tunnel barrier, as sketched
in Fig. 1(b). Electrons escape the dot once any of the
addition energies rises to a point above the conduction
band bottom at which the exit barrier becomes suffi-
ciently transparent. The emission process and the sepa-
ration of the particles in time and energy [7, 8], as pic-
tured in Fig. 1(b), is hence determined by a complex in-
terplay between the modulated potential shape and the
two-particle dot state dynamics due to quantum interfer-
ence as well as Coulomb interaction.

To get hold of the various competing effects, we ap-
proach the problem with two complementary methods.
First, we model the two-particle problem by numeri-
cally solving and analyzing the fully coherent two-particle
Schrödinger dynamics in a 1 dimensional (1d) potential
landscape with a dip between two barriers acting as the
dot [Fig. 1]. This captures how different addition ener-
gies for the two emitted electrons due to charging en-
ergy and single-particle level splitting lead to different
emission times, since the time-dependent potential mod-
ulation causes these energies to reach the onset of finite
exit-barrier transparency at subsequent times. The sim-
ulation, however, also exposes how this straightforward
time-energy separation can be nontrivially modified by
the possibility of Coulomb interaction transferring en-
ergy between the particles during the first emission event.
Similar interaction-based energy transfer between parti-
cles scattered at a barrier has been identified in Ref. [19].

Second, the emission times themselves can be enhanced
or delayed differently for the two particles, thereby fur-
ther altering the emission time-energy relations. Key un-
derlying mechanisms include single-particle state degen-
eracies leading to a faster first emission [24, 28, 35, 36],
as well as time-dependent dot and exit barrier variations
between the emission events shifting the required transi-
tion energy of the second particle relatively to the first.
A suitable experiment to study these mechanisms is to
measure the emission energies in sweeps of the dot po-
tential ramp speed, as the latter changes the rate of en-
ergy increase relatively to the exit barrier escape rate.
Simulating such sweeps using the full, interacting two-
particle Schrödinger dynamics is challenging. Results
may also depend on many experimentally inaccessible de-
tails of the potential landscape, and the numerical cost
of repeating the full simulation for many different ramp
speeds is rather high. We tackle these challenges by
complementing the two-particle simulation in 1d with a
time-dependent quantum master equation for an effec-
tive two-orbital quantum dot, capturing in a simple way
the interplay between Coulomb interaction, spatial de-
pendence of single-electron states with dot-internal dy-
namics, and energy-dependent dot-conductor couplings.
Unlike the coherent 1d Schrödinger evolution, this only
applies to the weak dot-conductor coupling regime, gov-

erned by electron emission processes due to stochastic
tunneling. The crucial advantage is, however, that the
much smaller state- and parameter space enables us to
systematically classify and compare the competing effects
impacting the emission times and energies as a function
of the dot potential ramp speed. This approach in par-
ticular accounts for degeneracy-enhanced emission rates,
and for classical ensemble-averaging which is typically
performed in experiments as well.

We implement our investigation strategy by organiz-
ing the remainder of this paper as follows. The model
and theoretical background of the coherent two-particle
Schrödinger dynamics within the time-dependently mod-
ulated, 1d potential landscape is introduced in Sec. II;
Sec. III then discusses the emission times and energies
obtained from the corresponding numerical simulations.
The quantum master equation approach for the dynamics
of the simplified quantum-dot model is set up in Sec. IV;
the resulting effects in the energy-time spectroscopy of
the emission process are detailed in Sec. V. We highlight
the main insights and open questions emerging from the
two complementary approaches of describing two-particle
emission times and energies in the concluding section
VI. This paper also contains an appendix with details
on the numerical simulation of Sec. II and Sec. III and
on the quantum master equation approach. Throughout
the manuscript, we set ℏ = kB = |e| = 1.

II. TWO-PARTICLE SIMULATION IN 1D

Experimental realizations of periodically driven
quantum-dot electron pumps typically rely on electro-
static confinement of two-dimensional electron gases via
tunable gates, as sketched in Fig. 1(a). A full theory of
two-electron emission from such dots would need to de-
termine the time evolution of a many-body electron sys-
tem with Coulomb interaction in an inhomogeneous and
time-dependent potential. Some approximations hence
need to be made to make the problem manageable.

In a first step, Secs. II and III, we make two approx-
imations: First of all, we decide to treat a two-particle
problem, which is motivated by the fact that the inter-
play between the emitted ‘hot’ electrons and the Fermi
sea in the contacts is rather weak. Furthermore, in order
to keep the numerical simulation tractable, we model the
system in one dimension.

A. Hamiltonian with time-dependent potential for
hot-electron emission

The potential landscape of the dot and its environment
we consider is sketched in Fig. 1(a). With V0 representing
the conduction band bottom high above the Fermi sea,
we envision the three gates defining the quantum dot to
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have a Gaussian-like effect on the potential landscape:

V (x ≥ 0, t) = V0 − Vd,C(t) exp

[
− (x− xd,C)

2

2σ2
d,C

]
(1)

+
∑

s=L,R

Vd,s exp

[
− (x− xd,s)

2

2σ2
d,s

]
.

The left Gaussian peak defines the left quantum dot ‘wall’
of height Vd,L at the reference coordinate xd,L ≡ 0 with
width σd,L, and the right peak represents the exit bar-
rier of height Vd,R and width σd,R at xd,R. The max-
imum of the resulting emission barrier with respect to
the potential in the conductor V0 at the initial time t0
defines a characteristic energy scale of the potential and
is indicated by δEb in Fig. 1. The central, inverted
Gaussian with constant width σd,C but time-dependent
depth Vd,C(t) at xd,C > xd,L = 0 establishes a tun-
able potential well. At initial time t0 ≡ 0, we choose
Vd,C(0) > 0 such that a dot forms inside this potential
dip, and confines two particles within the typical spatial
dot range1 [0, Ld = 5σd,C]. The dip potential Vd,C(t)
is then raised until the particles are emitted into the
flat channel right to the exit barrier, where we linearize
Vd,C(t) ≈ Vd,C(0) − vrt with corresponding ramp speed
vr. The latter approximation is appropriate if emission
takes place during some small fraction of a periodic drive
signal [10] with an amplitude A ∼ V0, such that the only
relevant transition energies E lie close to the emission
point, |E − V0|/A≪ 1.

We set up the system Hamiltonian by discretizing the
potential landscape V (x ≥ 0, t) [Eq. (1)] into R+1 points
defining R equidistant real space intervals δx = L/R
on some large, but finite length L ≫ Ld. Importantly,
we explicitly model only the dynamics of the two par-
ticles initially occupying the dot. This relies on the as-
sumption that for hot-electron emission with sufficient
energy splitting between empty conductance and com-
pletely filled valence band, the latter appears to be nearly
chargeless to the emitted electrons, apart from some
overall screening effect. Hence fixing the total parti-
cle number to 2, we obtain a Hilbert space spanned by
the (R + 1)(2R + 1) orthonormal, anti-symmetric states

|rσ, r′σ′⟩ = Ψ†
rσΨ

†
r′σ′ |Vac⟩ = −|r′σ′, rσ⟩ in discrete po-

sitions xr = rδx, r ∈ {0, . . . , R} with spin-z projec-
tion σ =↑, ↓. The particles are created from the vac-
uum |Vac⟩ by the fermionic field operators Ψ†

rσ obey-
ing the usual anti-commutation rules {Ψrσ,Ψr′σ′} = 0,{
Ψrσ,Ψ

†
r′σ′

}
= δrr′δσσ′ .

The time-dependent two-particle Hamiltonian
H2P(t) = Hkin + HCoul + Hpot(t) includes the po-

1 Due to the slightly skewed potential, we choose 2 standard devi-
ations to the left and 3 to the right.

tential landscape

Hpot(t) =
∑

σ=↑,↓

R∑
r=0

V (xr, t)Nrσ, (2a)

where Nrσ = Ψ†
rσΨrσ are the occupation numbers at

positions xr, and the kinetic energy

Hkin =
∑

σ=↑,↓

R∑
r=0

2λNrσ (2b)

−
∑

σ=↑,↓

[
R−1∑
r=0

λΨ†
(r+1)σΨrσ +

R−1∑
r=0

λΨ†
rσΨ(r+1)σ

]
.

The coupling λ = 1/(2meffδx
2) with effective elec-

tron mass meff arises when discretizing the ki-

netic term Ψ†
rσ

−∂2
x

2meff
Ψrσ as the centered difference,

∂2
xΨrσ ≈

[(
Ψ(r+1)σ −Ψrσ

)
−

(
Ψrσ −Ψ(r−1)σ

)]
/δx2.

The Coulomb interaction potential

HCoul =
∑

σ,σ′=↑,↓

R∑
r′>r

k̃e
δx|r′ − r|

Nr′σ′Nrσ (2c)

contains the effective Coulomb constant k̃e = κke, where
ke is the bare value and κ accounts for material prop-
erties screening. Note that for a spin-up and spin-
down electron in the same position xr, we regularize the
Coulomb potential heuristically by setting the denomi-
nator in Eq. (2c) to δx/2. This is appropriate if the dis-
cretization step δx is small enough for the two electrons
to reside in a state with a typical separation larger than
δx prior to emission. Only in situations irrelevant to our
analysis may our δx choice still be insufficient, such as
collisions of counter-propagating particles. While we here
put forward one —experimentally relevant— choice for
the confinement and interaction potentials, modifications
of this could be envisioned in the future. One extension
would be to implement a Thomas-Fermi model for the
effect of a background electronic density on the screen-
ing of interactions or via image-charge screening [37], as
used for example in Ref. [15]. Furthermore, one could
optimize the confinement potential for the emission, sim-
ilarly to how it has recently been shown for the process
of loading the dot [38].

B. Unitary two-particle evolution and spectroscopy

We analyze the emission process, which is induced by
ramping up Vd,C(t) until the two electrons have enough
energy to pass through the exit barrier at xd,R into the
environment channel, at a potential energy V0. We start
by setting the initial state |Φ(t = 0)⟩ to the ground state
|GS⟩ of H2P(t = 0), for which the potential dip Vd,2(0)≫
Ed

C is deep enough for the dot to be stably occupied by
both electrons, given a typical dot charging energy Ed

C =
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k̃e/Ld. See, e.g., Ref. [39–41] for details of the loading
process.

The ground state and its subsequent evolution

∂t|Φ(t)⟩ = −iH2P(t)|Φ(t)⟩ , |Φ(0)⟩ = |GS⟩ (3)

due to the gradually lifted potential dip Vd,2(t) → 0
are obtained numerically using the Hamiltonian given
in Eq. (2). We have developed a GPU implementa-
tion of a direct, norm-preserving leap-frog solver for a
large, but bounded system, see Appendix A. This offers
non-prohibitive run times even for boundaries far enough
away that unphysical reflections do not affect the parti-
cle emission. In particular, it enables us to use the kernel
polynomial method [42] to compute the full emission en-
ergy distribution as a function of time.

With the time-dependent two-particle state |Φ(t)⟩ at
hand, we track the emission of the two electrons from the
dot with the expectation values ⟨O⟩(t) = ⟨Φ(t)|O|Φ(t)⟩ of
various observables O. Namely, next to the Coulomb en-
ergy HCoul and the spatial charge density |Ψ1(r, t)|2 =∑

σ=↑,↓⟨Φ(t)|Nrσ|Φ(t)⟩/δx, we extract the charge and

kinetic energy in the dot (l = d) as well as in a re-
gion away from the dot representing the energy filter
(l = f), see Fig. 1(b). Concretely, we obtain the charge

N l =
∑

σ=↑,↓
∑Rl

2

r=Rl
1
Nrσ and the kinetic energy H l

kin by

modifying Eq. (2b) by replacing in all sums the lower
limit 0 by Rl

1 and R in the upper limit by Rl
2; the in-

dices Rl
2 > Rl

1 delimit the spatial ranges [Rl
1δx,R

l
2δx]

on which these regions are defined. The time-dependent
charge and kinetic energy in the filter region as function
of time are the main quantities of interest in the analysis
of Sec. III. Their properties are further supported by the
time- and energy resolved emission distribution extracted
from the spectral density in the filter,

ϕ2P(t, E) = ⟨Φ(t)|δ(E −H f
kin)|Φ(t)⟩. (4)

Technically, this distribution is analogous to spectral de-
compositions in Green’s function approaches, see e.g.
Ref. [43]. From a practical point of view, it connects
to the experimentally broadened distribution functions
of Refs. [7, 10], see also the averaged emission distribu-
tion (13) of Sec. IV. However, in contrast to the stochas-
tic effects discussed later in Secs. IV and V, Eq. (4) only
emerges from quantum effects and two-particle interac-
tion. Note that this quantity should not be confused
with quasi probabilities, such as for example the Wigner
function.

III. TWO-PARTICLE DYNAMICS - RESULTS

We now discuss the emission dynamics from the two-
particle simulation described in Sec. II, analyzing the
time-dependent expectation values of the charge Nd in
the dot, of the charge N f and kinetic energy Ef

kin in the
filter region, as well as of the energy-and time-resolved

filter region spectral density [Eq. (4)]. We compare the
cases of vanishing (κ = 0) and finite (κ ̸= 0) Coulomb
repulsion strength, both for opposite spins ↑, ↓ initially
occupying dot orbitals of equal single-particle energy, and
for two ↑ spins initially residing in different, energy-split
dot orbitals due to Pauli exclusion.
Videos of the time-dependent particle density |Ψ|2

along the 1d potential landscape for the different sce-
narios can be found in the supplementary material [44].
In the following, we focus on the situation where par-

ticles are emitted separately in time, such as found in re-
cent experiments [7, 8]. This regime furthermore enables
to clearly attribute which of the effects described in the
following stem from Coulomb interaction, and which are
merely related to energy splittings or to time-dependent
potential variations. To achieve comparable situations
independently of the absence or presence of Coulomb in-
teraction, we choose for the simulation in Fig. 2, a smaller
effective mass meff than the literature values known, e.g.,
for InAs or GaAs. However, the interaction-related ef-
fects identified below remain equally important for larger
effective masses meff, see Appendix B.

A. Effects of single-particle level splitting

We start by analyzing the case of fully screened
Coulomb interaction (κ = 0) between two spin-↑ particles
with different orbital energies in the dot before emission,
see Fig. 2(a,b). Due to this energy splitting, the time-
dependent V (x, t) modulation causes the dot to emit the
first particle clearly separated from the second, as shown
by the successive dot particle number reduction from two
over one to zero (black line in panel (a)). The charge and
energy expectation values N f, Ef

kin (blue and red line) ac-
cordingly indicate one particle after another to arrive in
the filter region, with a time difference to emission set by
the propagation velocity of the coherent wave packet [44].
Notably, the second emitted particle, once fully inside the
filter region (N f → 1), has an overall higher energy than
the first one. We attribute this to the fact that by lifting
the Gaussian potential dip in Eq. (1) with the prefactor
Vd,C(t) = Vd,C(0)−vrt, the potential barrier around xd,R

is also slightly raised, as demonstrated in the wave prop-
agation animations [44]; the second particle emitted at a
later time therefore needs to be lifted to a higher energy
before it can escape [7].
While the left panel visualizes the main results to be

presented here, this trend is also confirmed by the behav-
ior of the spectral density. The spectral density ϕ2P(t, E)
in Fig. 2(b) is the time-dependent representation of the
traveling wave packets in terms of the discrete energy
eigenstates of the filter region, i.e., of a one-dimensional
problem with finite length xf,R−xf,L = 1350nm; it hence
reveals how the particle energies are distributed as a func-
tion of time, where the peak at E = 0 means that no
particle is present in the filter region. The plot exhibits
two time intervals with non-zero weight at finite ener-
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FIG. 2. Energy- and time dependent emission spectroscopy. Upper row: Vanishing Coulomb interaction, κ = 0, for equal
spins, ↑, ↑, in panels (a) and (b) as well as for degenerate spin states ↑, ↓ in panels (e) and (f). Bottom row: Finite Coulomb
interaction κ = 0.125, for equal spin states ↑, ↑ in (c) and (d) and for degenerate spin states ↑, ↓ in (g) and (h). We show
the number of electrons in the dot Nd, and the average kinetic energy and particle density in the filter region, Ef

kin and
N f as function of time (left columns, a,c,e,g); the right columns (b,d,f,h) show the time-resolved energy-density, ϕ2P(t, E),
where the discrete contributions stem from the discrete energies of the finite filter region. The typical energy scale δEb is
the numerically determined difference between the initial (t = 0) exit barrier height and the conductance band potential
bottom V0 [Fig. 1(a)]. The red stars mark the time-energy peaks of the average Ef

kin, the turquoise dashed and dotted lines,
respectively, indicate the ramp speed vr and the lowest level with sizable density once the wave package is fully located
in the filter region. We set tend = 307.2 ps, meff = 0.016me, L = 12000 nm, xd,L = 0, xd,C = 115 nm, xd,R = 255 nm,
Ld = 300 nm, xf,L = 1000 nm, xf,R = 2350 nm, and a potential landscape V (x, t) [Eq. (1)] with vr ≈ 0.39meV/ps, σd,L = 90nm,
σd,C = 60nm, σd,R = 50nm, Vd,L = 2.2V0, Vd,C(0) = 0.8V0, Vd,R = 0.006V0, δEb ≈ 0.0057V0, where V0 = 150meV. With
these parameters, the initial single-particle energy splitting of electrons with equal spin in the lowest energy states in the
potential well ((a),(b),(e),(f)) is 4.69meV ≈ 5.5δEb and the initial charging energy in the interacting cases ((e),(f),(g),(h)) is
⟨HCoul⟩(t = 0) = 8.35meV ≈ 9.83δEb. Appendix A 4 provides all parameters related to the numerical implementation.

gies, corresponding to the two emitted particles just as in
Fig. 2(a). The discrete values with nonvanishing density
stem from the finite size of the filter region; their broad-
ening stems from the truncation scheme that we employ
here. Interestingly, we observe a steep yet finite E − t-
slope of the spectral density, comparable to the potential
ramp speed vr (see the turquoise dashed lines). This re-
flects the experimentally observed effect of the potential
drive increasing the energy of a wave packet during its
emission, a so-called energy-time chirp [10].

Since the high-energy wave function components also
propagate faster through the filter, the spectral density
at lower energies remains finite for the longest time du-
ration. In fact, these slowly traveling components of
the wave function are also the main reason for the non-
vanishing N f in between the two peaks in (a), and for
an N f even slightly larger than 1 in the second peak.
Furthermore note that during periods in which the wave
packets are only partly localized in the filter region
(N f < 1), there is also partial overlap with low-energy

filter states that do not exhibit any significant spectral
density once the particle is fully inside the filter region.
This is highlighted by the horizontal, turquoise-dotted
line in Fig. 2(f), and creates the visual appearance of
voids in the spectral density at low energy.

In Fig. 2(c,d), we contrast the above case of two equal
spins subject to Pauli exclusion against the degenerate
situation with two opposite spins initially occupying the
same dot orbitals. In the absence of Coulomb inter-
action, κ = 0, this implies equal addition energies for
the two particles, and thus simultaneous emission. The
filter-region charge and kinetic energy accordingly exhibit
only one peak, where the energy is approximately twice
as large compared to the second peak of the spin-split
case [Fig. 2(a,b)]. The spectral density in panel (d) fur-
thermore features much more closely spaced lines once
both particles are localized well within the filter region.
The reason for this is that the spectral density is com-
posed of all possible pairs of (not equally spaced) single-
particle energies stemming from the contributions of the
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two emitted particles.

B. Energy transfer via Coulomb interaction

Having covered the non-interacting limit, we proceed
with Fig. 2(e-h) showing the corresponding dynamics in
the presence of a finite Coulomb interaction between the
two particles, κ ̸= 0. Focussing on the relative emis-
sion energy of the first and second particle, we see that
the first emitted particle carries significantly more en-
ergy than the second. This is the opposite outcome to
the κ = 0 case [Fig. 2(a-d)], and largely independent of
the particle spin orientations, which generally play a less
prominent role, c.f., Fig. 2(e-h).

The weak sensitivity to the particles’ spins is intu-
itively clear since the Coulomb repulsion keeps the parti-
cles in the dot apart, such that fermionic anti-bunching
becomes less of a factor. The main feature we highlight
here is, however, the fact that the first emitted particle
now always has more energy than the second. We at-
tribute this to the combination of our system being 1d,
and a Coulomb-interaction mediated energy exchange be-
tween the particles at the first emission event. Namely, if
both electrons are inside a one-dimensional dot in which
they cannot move about each other, they are bound to
repel each other into orbital configurations higher in en-
ergy both in response to Coulomb or exchange interac-
tion. However, once the first electron starts to leave,
the two-particle Coulomb interaction allows the remain-
ing electron inside the dot to relax to a lower energy by
transferring the energy difference as additional kinetic
energy to the escaping electron. This is the key differ-
ence between a mere single-particle level splitting related
to Pauli exclusion, and the transition energy difference
introduced by Coulomb repulsion. In fact, a close com-
parison between panels (e,f) and (g,h) reveals that the
Ef

kin difference between first and second electron is even
slightly higher for opposite spins without Pauli exclusion.
This suggests an even more efficient energy exchange,
possibly due to the fact that the particles can approach
each other even more without fermionic anti-bunching.

These features described above are confirmed by the
properties of the spectral density, plotted in panels (f)
and (h). The higher-energy contributions of the first
emitted particle compared to the second are clearly vis-
ible, whereas the second emission strongly resembles the
non-interacting, spin-split case, shown in panel (b). The
higher kinetic energy of the first emitted particle goes
along with a higher propagation velocity, which can be
seen in the smaller time-window in which the high-energy
states are occupied in the filter region.

Another Coulomb-repulsion related effect on the first
emitted particle is simply the static, 1/r-dependence of
the potential originating from the second particle resid-
ing in the dot. This features most prominently when
V (x, t) is chosen to be a sharp potential well with a flat
bottom shifted up in time. In this case, the first emit-

ted wave packet remains sharper over time and travels
faster than the second, since the first particle effectively
runs down the 1/r potential while the second diffuses out
into a flat potential landscape, see box-potential anima-
tions in Ref. [44]. This also highlights the more general
fact that the potential landscape needs to fall off into the
environment in order to see well confined wave packets2.

Additional smaller features occur in the spectral func-
tion of particles in the filter region, which are expected to
derive from the precise realization of the potential land-
scape and the resulting complex coherent two-particle
wave-packet dynamics. Attributing these features to spe-
cific physical mechanisms is hindered by the large avail-
able parameter space and the numerical cost of sweeping
this space. This includes variations of the ramp speed
vr as an experimentally feasible method to expose non-
trivial deviations from the above identified time-energy
chirp. In the following, we therefore switch to the com-
plementary quantum master equation description of an
effective, two-orbital quantum-dot, in which these effects
can be studied more systematically.

IV. MASTER EQUATION FOR EFFECTIVE
DOT MODEL

In addition to highlighting the importance of dot-
internal Coulomb scattering, the numerical analysis in
Sec. III shows more generally that the emission times and
energies are dependent on a complex interplay between
interaction, interference and the spatial structure of the
potential landscape. However, isolating these features
within the full two-particle model is tricky and time-
consuming due to the many different parameter inter-
dependencies, and the analysis would be tied to a 1d
setting. We therefore approximate the emission dynam-
ics with a simpler, fermionic two-orbital dot with lo-
cal Coulomb interaction and a tunnel-coupled reservoir.
Given sufficient spatial confinement for two-particle emis-
sion, this model is appropriate for zero- to three dimen-
sional quantum dots. It furthermore allows for a full
many-body master-equation study that can to a signif-
icant extent be carried out analytically. This analysis
yields the average emission energies at a given emission
time but does not provide information about the sub-
sequent particle propagation, which is instead accessible
via the complementary numerical approach of Secs. II
and III and the related movies in Ref. [44].

2 In the tunneling regime captured by the master equation in
Sec. IV and Sec. V, this difference is insignificant because tun-
neling is due to stochastic wave function projections.
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FIG. 3. (a) Sketch of the discrete single-particle energy levels
ϵL/R, their coupling τ , as well as two-particle interaction U
in the quantum dot. Electrons can be emitted from the dot
far above the Fermi level µ due to the time-dependent driv-
ing Vt and energy-dependent coupling Γ(E) to the reservoir.
(b) Example for the dot occupation number and the emitted
charge and energy currents as function of time due to the
modulated potential. (c) Example for emission energies of
the two electrons as function of emission time. Stars indicate
energy-time pairs of one driving protocol on a line extrapo-
lated by the time-dependent addition energies, see Sec. VD
for definitions of ∆Emit and ∆Etr.

A. Quantum dot coupled to reservoir

Our model contains two fermionic single-particle states
ℓ = R,L with local Coulomb charging energy in a
time-dependently driven potential coupled to a reservoir
[Fig. 3(a)]. In the corresponding Hamiltonian Htot =
H(t) +Hres +Htun(t), the dot dynamics are given by

H(t) = ϵL(t)NL+ϵR(t)NR+τ(d†RdL+d†LdR)+U(t)NLNR.
(5)

This includes the driven onsite-energy ϵR(t) = ϵ(t) =
ϵ0 − A cos (Ωt) with offset ϵ0 and amplitude A, a single-
particle level splitting ∆ϵ = ϵL(t) − ϵR(t), an inter-
nal transition amplitude τ ≥ 0, and the spatially inde-
pendent, but possibly time-dependent onsite interaction
strength U(t) > 0. While the latter cannot describe dot-
internal Coulomb scattering as seen for the extended 1d
model [Sec. II B], the time-dependence does reflect how
possible dot size variations during the driving cycle can
affect the Coulomb energy, as detailed in Sec. VA. The

occupation number operators N = NR +NL, Nℓ = d†ℓdℓ
are expressed in terms of the dot creation (d†ℓ) and anni-
hilation (dℓ) operators for single-particle state ℓ = R,L.

Note that despite the suggestive notation, we do not yet
specify the physical nature of these states: ℓ may, at this
point, not only refer to two localized levels ℓ = R,L, but
also to a spin projection (ℓ =↑, ↓) in a spinful setup, or to
two orbitals (ℓ = s,p) in a strongly spin-polarized system.
The effectively non-interacting Hamiltonian Hres =∑
k,ν ϵkνc

†
kνckν of the electronic reservoir describes a

quasi-continuum of fermionic modes with wave number
k and all discrete quantum numbers ν necessary to char-
acterize these modes. The respective creation and anni-

hilation operators are denoted by c†kν , ckν . The charge
conserving coupling between these modes and the dot
state is governed by

Htun =
∑
k,ν

τkν(t)c
†
kν

(
dR +XRL

kν dL
)
+H.c. (6)

The coupling amplitudes τkν(t) account for time-
dependently varying couplings due to the driven potential
landscape; the relative amplitude XRL

kν models that de-
pending on the setup, one dot mode ℓ may couple more
strongly to the environment mode kν than the other dot
mode. Averaged over all environment modes as carefully
prescribed in Sec. IVB, the coupling amplitudes deter-
mine the typical rates

Γℓ(E, t) = 2π
∑
k,ν

δ(E − ϵkν)
∣∣(δℓR +XRL

kν δℓL
)
τkν(t)

∣∣2 .
(7)

for tunneling in or out of dot mode ℓ = R,L with
Kronecker deltas δℓR, δℓL. Importantly, the energy-
dependent barrier transparency Γℓ(E), beyond the com-
mon wideband limit [45], should capture that the poten-
tial V (x, t) [Eq. (1)] induces emission once Vd,C(t) is small
enough for a dot transition energy E to exceed the poten-
tial energy outside the dot. We achieve this with a bar-
rier height V0 > µ above which Γℓ(E) increases smoothly
from an uncoupled dot with Γℓ(µ ≤ E ≤ V0) = 0 to a
weakly coupled dot with Γℓ(E ≥ Eb) = Γℓ:

Γℓ(E ≥ µ, t) = ΓℓS (E, V0, Eb) . (8)

The modified sigmoid

S(E, x, y) =


0 E ≤ x[
1 + exp

(
y−x
E−x + y−x

E−y

)]−1

x < E < y

1 E ≥ y

(9)
implements the ramp-up from exactly 0 to Γℓ using an
analytic function in the finite interval3 [V0, Eb]. The ex-
plicit time-dependence of Γℓ(E, t) can arise from a pos-
sibly time-dependent exit barrier height, V0 → V0(t) =
V0(ϵ(t)) and Eb → Eb(t) = Eb(ϵ(t)). We address this

3 unlike a regular sigmoid, which is only exponentially close to its
limits within any finite interval.
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further below, see Sec. VC, to analyze the effect of dot
potential modulations on the tunnel barrier, which we
have already identified for the unitary two-particle evo-
lution above as the cause of the different energy peak
heights in Fig. 2(a).

B. Dot state dynamics

We describe the time-dependent dot state with a mas-
ter equation for the reduced density matrix ρ(t), i.e.,
with the reservoir modes traced out as detailed, e.g.,
in [46, 47]. Indeed, the emission of electrons far above
the Fermi energy of the conductors is equivalent to a
situation with infinitely large bias, for which a weak-
coupling master equation approach is applicable [48–50].
The broadening in the currents calculated in this section
hence stem from the stochastic nature of the tunneling.

With the above in mind, we use the approach of
Ref. [51] to derive a Lindblad master equation for the
dot tunnel-coupled to the bath. Care needs to be taken
since the tunneling (6) couples a single environment mode
kν to both dot states ℓ = L,R for XRL

kν ̸= 0. This
introduces up to four independent decay channels per
particle- and hole process corresponding to the two pos-
sible orthogonal hole-like operators αdR + βdL and the
analogous particle-like fields. As we have not yet tied ℓ
to any specific single-particle basis, and since the shape
of H(t) is invariant under any unitary transform (after
properly regauging the fields to ensure τ ≥ 0 and by re-
moving any constant energy shift) of the single-particle
basis [Eq. (5)], we demand that each of the maximally
4 orthogonal channels in Htun are proportional to only

one of the four dot operators dℓ, d
†
ℓ. The corresponding

master equation for the density operator ρ(t) then reads

∂tρ = −i[H + Λ, ρ] +
∑
ηℓ

[
LηℓρL

†
ηℓ −

1

2

{
L†
ηℓLηℓ, ρ

}]
(10)

with Lamb shift Λ [Eq. (C1)] and Lindblad operators

Lηℓ =
∑
i,j

√
Γℓ(ηEij , t)fη(ηEij)⟨i|dηℓ|j⟩ × |i⟩⟨j|. (11)

The states |i⟩, |j⟩ are the four instantaneous many-body
energy eigenstates of the dot Hamiltonian H(t), and
Eij = Ei − Ej the corresponding energy differences,
where our notation suppresses their time-dependence for

better readability. The operator dηℓ = δη+d
†
ℓ + δη−dℓ

combines the corresponding dot creation and annihi-

lation operators, and fη(x) =
[
exp

(
η x−µ

T

)
+ 1

]−1
is

the Fermi function f for η = +, respectively 1 − f
for η = −. The master equation (10) relies on the
instantaneous-time approximation, in which the Lind-
blad operators (11) only depend on the parameters at
the current emission time t [51–53]. We expect that
this leads to reliable results for driving that is limited

by AΩ≪ (Eb−V0)
2 [50, 54]. For fast driving of tunable-

barrier dots, see also Ref. [8, 27, 55].
As discussed above, we represent the hot electron set-

ting by taking the T → 0 limit of the Fermi function,
i.e., fη(x) → Θ(η [µ− x]) with Heaviside function Θ(x).
Moreover, in the lowest-order coupling approximation as-
sumed here, the environment-induced Lamb shift Λ only
modifies the unitary dynamics in the single-particle sec-
tor of the local Hamiltonian H. The splitting ∆ϵ and
coupling τ are hence generally shifted for coherent L-R
rotations, but the jump rates (11) are only affected by
the bare energies. Also, our discussion focuses on a tun-
nel coupling Γ/U = 0.001 much smaller than the range
|Eb−V0| ∼ 0.05U on which the barrier changes its opac-
ity [Eq. (8)], so that |Λ| ∼ Γ ≪ |Eb − V0|. Thus, while
we do account for the Lamb shift Λ in solving Eq. (10),
it is in fact irrelevant for the emission dynamics in all
cases considered in this paper, i.e., both for ∆ϵ = τ = 0
and for |∆ϵ|, |τ | ≫ Γ. More detailed derivations of the
master equation are given in Appendix C.

C. Time-resolved emission energy

The observables of interest for our master-equation
based analysis are the ensemble-averaged time-dependent
charge current and energy current carried by particle
transfer into the environment. Local charge conservation
[H(t), N ] = 0 and charge conserving tunneling implies
that the particle current into the environment equals the
particle current out of the dot. Furthermore, in the weak
coupling limit, no energy is stored in the barriers [56],
⟨Htun⟩ = 0, so that the energy flow into the reservoir is
the flow out of the dot minus the energy exchange with
the work source. We hence write

IN (t) = −Tr[N∂tρ] , IE(t) = −Tr[H(W I,E × ρ)].
(12)

In the regime studied here, the energy flow is concomitant
with net particle transfer; hence the kernel W I,E involves
only those state transitions of the master equation (10)
with changing dot occupation, as detailed in Appendix D.

We start the dynamics (10) from double occupa-

tion, ⟨d|ρ(t = 0)|d⟩ = 1 with |d⟩ = d†Rd
†
L|0⟩ created from

the dot vacuum |0⟩, and an initial dot potential
ϵ(t = 0) = ϵ0 −A, sufficiently below the energy where the
exit barrier becomes opaque to keep the electrons sta-
ble in the dot, 2(ϵ0 −A) + U ≪ V0. The driven tran-
sition energies Eij eventually reach the opaque-barrier
interval Γℓ(E > V0) > 0 causing a particle to be emit-
ted. The resulting particle current IN (t) is a measure
for the emission probability at time t, and the ratio
Emit(t) = IE(t)/IN (t) is associated to the energy emitted
per particle. We combine the above quantities to define
the time- and energy-resolved emission distribution

ϕ(t, E) = IN (t)δ(E − Emit(t)) , Emit(t) =
IE(t)

IN (t)
.

(13)
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Unlike experimental data in, e.g., [7, 10, 15] or the two-
particle spectral density (4), this distribution is sharp
in E because the energy Emit(t) per emitted particle
is already defined in terms of both classical and quan-
tum averaging. The observed energy spread in experi-
ments [9, 10, 15] is considered to stem to a large extent
from the noise and timing jitter of pump and detector
drive signals, obscuring the quantum uncertainty. The
reconstructed Wigner distribution [10] is likely of mixed
states, in other words, a classical ensemble of different
emitted states, rather than of a pure state. Our sim-
plified, low-energy model in Eq. (13) captures how an
uncertainty in emission time results in a classical uncer-
tainty in emission energy; quantum mechanical energy
smearing is hence not at the focus of the present paper,
but could instead potentially be obtained from the full
two-particle approach previously described in Sec. II.

We consider a central question to be how the two emit-
ted particles differ in the distribution ϕ(t, E) —and in
particular in their average emission times and energies—
as a function of the system- and driving-parameters, with
special focus on the potential ramp speed ∂tϵ(t). Assum-
ing two particles released within two separated time in-
tervals, as sketched in Fig. 3(b), with the first transition
from double to single occupied dot and the second from
single occupied to empty dot indicated by x ∈ {1, 2}, we
obtain these averages by integrating over ϕ(t, E):

tx =

∫
∆tx

dt

∫
dE [t× ϕ(t, E)] =

∫
∆tx

dt [t× IN (t)]

Emit,x =

∫
∆tx

dt

∫
dE [E × ϕ(t, E)] =

∫
∆tx

dt IE(t). (14)

Sweeps of the offset potential ϵ0, within a range fulfill-
ing V0 ≤ ϵ0 + U + A, modify the potential ramp speed
∂tϵ(t) in the time in which the addition energies are in the
opaque-barrier interval. This modifies the emission ener-
gies and emission times tx (as well as the ramp speed at
the time of emission). We sketch in Fig. 3(c) a parametric
time-energy plot of (tx, Emit,x − ϵ0) for the two-particle
emissions, indicated by stars for one specific choice of ϵ0.
When sweeping ϵ0, we expect the emission energies to
lie on the indicated lines, extrapolating with the cosine-
shape of the addition energies, time-dependent via ϵ(t).
To connect the obtained trajectories to available ex-

perimental data [7, 8, 57], we compare the two emission
curves in two different ways. First, we fix the offset ϵ0,
meaning we compare the emission times and energies of
the first and second particle for the same driving protocol :

∆Emit(ϵ0) = Emit,2(ϵ0)− Emit,1(ϵ0). (15)

Compare to the horizontal distance betwen the stars
shown as an example in Fig. 3(c). If a particle with
energy E was instantaneously emitted as soon as E > V0

with constant V0, we would not expect any difference
between first and second particle, ∆Emit → 0. We, how-
ever, show in Sec. V that ∆Emit ̸= 0 arises due to the

finite emission time ∼ 1/Γℓ competing with the driv-
ing parameters Ω, ϵ0 determining the ϵ(t)-ramp speed at
emission, and with dot-internal transitions ∼ 1/τ .
Second, we compare different driving protocols with dif-

ferent ϵ0, ϵ
′
0 > ϵ0, black vertical line in Fig. 3(c), to ob-

tain the apparent transition energy difference between
first and second particle:

∆Etr(t) = Emit(t1[ϵ0] = t)− Emit(t2[ϵ
′
0] = t). (16)

For well separated emission events, we intuitively ex-
pect ∆Etr to be given by the difference between the
largest possible double-to-single transition energy and
the largest available single-to-zero transition energy af-
ter the first emission event. Based on the dot Hamilto-
nian Eq. (5), this difference is given by the sum of in-
teraction strength and splitting between the two single-
particle states, ∆Etr ≈ ∆Eref

tr = U + 2
√
|τ |2 +∆ϵ2/4,

see Eq. (C2). While we indeed find this to be mostly the
case, there are, however, deviations from ∆Etr ≈ ∆Eref

tr

that we further explore in Sec. VD.

V. TIME-RESOLVED EMISSION
SPECTROSCOPY — RESULTS

To discuss the time-resolved emission spectroscopy ob-
tained from the master equation, we first analyze the
difference in emission energy of the two particles ∆Emit

and in particular its dependence on the ramp speed
vr,1 = AΩsin(Ωt1), as shown in Fig. 4. To stay in line
with previous experiments [7, 15], we tune vr,1 by sweep-
ing the offset ϵ0 determining at which phase, and thus
at which slope of the cosine-shaped ϵ(t) the particles
are emitted. This entails two features visible in all re-
sults shown in the following subsections: first, all graphs
begin at a finite vr,1, determined by the minimum off-
set requirement ϵ0 + A ≥ V0 for the driving cycle with
amplitude A to emit both particles from the dot. Sec-
ond, the ∆Emit-lines bend downwards when approaching
this minimum ramp speed from above. This stems from
the stronger curvature of the cosine-shaped driving po-
tential around the turning point ϵ(t) ≈ ϵ0 + A ≈ V0;
it causes the two ramp speeds to differ significantly,
vr,1 ≫ vr,2 = AΩsin(Ωt2), and thus the first particle
to be emitted at a higher energy, ∆Emit < 0.
In the following we provide a detailed analysis of

how emission times and energies are impacted by local
Coulomb interaction effects as compared to effetcs due
to the potential landscape creating the dot (here visible
as energy- and dot-state-dependent couplings). We ad-
dress the impact that quantum-state degeneracies have
enabled by Coulomb interaction, Sec. VA, the effect
of coupling asymmetry and internal dynamics (as they
could realistically arise also from local Coulomb repul-
sion, see Sec. III), Sec. VB, compare to the effect that re-
sults from driving-dependent tunnel couplings, Sec. VC,
and show the effect of a time-varying local Coulomb in-
teraction, Sec. VD.
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A. Interplay between interaction and degeneracy

We start by studying the influence of degenerate or-
bitals and of the coupling asymmetry, see results pre-
sented in Fig. 4(a). We, therefore, first set ∆ϵ = τ = 0
in the Hamiltonian (5). In this case of degenerate
single-particle levels, as is commonly the case for spin-
degeneracies for example, the first emitted electron can
be either the one occupying level R or level L, leading to
an increased rate ΓR + ΓL for the emission of the first
particle [24]. Since the second particle is emitted more
slowly than the first, it is also emitted at a higher energy
due to the continuous lifting of the energy level by the
driving potential. This effect of the level degeneracy can
be seen in Fig. 4(a), where ∆Emit is shown for 3 differ-
ent situations with zero detuning, ∆ϵ = 0. The red and
the orange-dashed lines show this degeneracy-induced ef-
fect, demonstrating a ∆Emit that increases with increas-
ing ramp speed vr,1. This effect is stronger for the red
line, where the equal rates ΓR = ΓL are smaller than
for the orange line. Therefore the time that passes until
the emission of the second particle is larger such that the
level has been shifted to a higher energy. The blue-dashed
line shows that this degeneracy effect indeed yields simi-
lar results to having one of the levels being coupled more
strongly than the other. In contrast, as soon as the dot-
orbital degeneracy of two equally coupled levels is lifted,
∆ϵ ̸= 0, the degeneracy-induced delay of the second emis-
sion vanishes, as shown by the black dashed-dotted line
that is close to zero and almost independent of the driv-
ing speed.

This effect due to the degeneracy of single-particle en-
ergy levels can only be observed in the presence of strong
Coulomb interaction, separating the emission of the two
particles from the dot. Note that the impact of degen-
eracy on decay rates [58] of a quantum dot has been ob-
served in various experimental settings [35, 59, 60] and
further schemes have been theoretically proposed to read
out such differences in decay rates [31, 61].

B. Coupling asymmetry and internal dynamics

One possible factor governing the emission spectrum
in the 1D two-particle dynamics discussed in Sec. III
is the dot-internal repulsion due to Pauli exclusion and
Coulomb interaction, pushing one particle further away
from the tunnel barrier than the other. The resulting
asymmetric coupling to the environment can be reflected
within the master equation approach by setting ΓL ̸= ΓR.
Calculations which illustrate the result of an (effective)
coupling asymmetry are shown in Fig. 4(b).

We have previously seen in Fig. 4(a) that ∆Emit grows
with increasing vr,1 for degenerate levels (∆ϵ = 0) or if
the higher-lying state was at least equally if not stronger
coupled to the environment. If we instead assume a much
more weakly coupled high-lying state (∆ϵ > 0,ΓL ≪
ΓR), the slower tunneling rate in the first emission event

degenerate, asym. coupling

degenerate, sym. coupling

strong, sym. coupling

detuned, sym. coupl.

detuned, asym. coupl.

increasing
detuning 

+ coupl. asym

FIG. 4. Emission energy differences ∆Emit [Eq. (15)] as
function of the ramp speed vr,1. (a) shows the case of zero
level-coupling τ = 0. In (b) we set for all lines ΓR = 500Ω.
The black dashed-dotted lines in panels (a,b) are identical
for reference. The time-independent parameters in both pan-
els are U = 1000Γ, A = 34U , V0 = 35U , Eb = 35.05U .
Appendix C states all parameters relevant for the numerical
implementation.

leads to a significantly higher emission energy than for
the second electron emitted from ϵR(t) with rate ΓR. As
long as the two emission events remain clearly separated
in time, this leads to exactly the opposite situation with a
negative ∆Emit < 0 becoming more negative with grow-
ing vr,1, as shown by the green-dashed line in Fig. 4(b).
Note however, that if vr,1 is increased even further, ap-
proaching or exceeding ΓL, the lower addition energy
ϵR + U may cross V0 and induce emission from state L
before the higher-lying particle from state R could leave
the dot. This can result in almost simultaneous emis-
sion and a ∆Emit approaching positive values again, as
indicated by the positively curving green-dashed line in
Fig. 4(b) for vr,1/(AΩ)→ 1.

A relevant situation where such an asymmetric tun-
nel coupling, and hence a negative ∆Emit(vr,1)-slope can
be realized is when two localized orbitals can be oc-
cupied in the dot, and tunneling to the environment
from one of them can occur only through coherent cou-
pling to the other. Concretely, we realize this by setting
ΓL = 0 and turning on a finite τ > 0 in the Hamil-
tonian (5). The ratio |∆ϵ/τ | then determines to what
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FIG. 5. Emission energy differences ∆Emit [Eq. (15)] as func-
tion of the ramp speed vr,1 for different potential-dependent
barrier height shifts ∆Eb [Eq. (17)]. We fix ΓR = ΓL =
100Ω, ϵV = V0 − U = 34U , τ = ∆ϵ = 0. For the light grey
dashed curve (∆Eb = 0.25U), we set ϵb−ϵV = 0.25U , whereas
all other graphs are taken at ϵb − ϵV = 2U . The remaining
parameters equal those stated in the caption of Fig. 4.

degree the single-particle eigenstates of the dot are local-
ized in orbitals L and R, interpolating between perfect
(anti-)bonding states (|∆ϵ/τ | → 0) and perfectly local-
ized states (|∆ϵ/τ | → ∞). With state 2 decoupled from
the bath (ΓL), a splitting ∆ϵ = 0 results in equally cou-
pled bonding- and anti-bonding states, whereas a positive
splitting ∆ϵ > 0 yields a higher-lying state with weaker
effective environment coupling, see Appendix C. Fig-
ure 4(b) accordingly shows a very weak vr,1-dependence
of ∆Emit for ∆ϵ = 0 (turquoise solid line) due to the
nearly symmetric environment coupling, and a clearly
negative ∆Emit(vr,1)-slope due to the strong coupling-
asymmetry for finite splitting ∆ϵ ∼ τ > 0 (violet-dashed
and blue-dotted line). In particular, the effect gets larger
with larger splittings ∆ϵ, localizing the single-particle
eigenstates more strongly into orbital L and R.

Finally, it is interesting to compare the above described
effect leading to higher emission energy of the first emit-
ted particle (∆Emit < 0) in the weak tunneling regime
to the mechanism causing ∆Emit < 0 in the coherent
two-particle simulation [Fig. 2]. In the latter case, the
first emitted particle attains additional energy because
energy is transferred from the particle remaining in the
dot due to a dot-internal rearrangement process. This
is physically distinct from the above described effect of
asymmetric coupling, which can exist even in the absence
of Coulomb interaction.

C. Impact of time-modulated barrier potential

Until here, we have kept the coupling Γℓ constant in
time, while only the energy levels were modulated. How-
ever, a major cause of finite ∆Emit between the two
emitted particles, which we have already identified from

the coherent two-particle simulation, Sec. III, can be
the effect of the dot potential modulation on the tun-
nel barrier. We can systematically analyze this within
the master equation framework by letting the bare cou-
pling strengths Γℓ(E, t) explicitly depend on the time-
dependent potential ϵ(t). Our approach is to model a
situation where the energy window in which the coupling
is modulated from zero to Γℓ, is shifted upwards during
the driving by a total amount ∆Eb. We therefore add to
V0 and Eb in Eq. (8) the expression

∆EbS(ϵ(t), ϵV , ϵb), (17)

interpolating with the smooth sigmoid-like function (9)
between an initial (V0, Eb) and final (V0 + ∆Eb, Eb +
∆Eb) within the interval [ϵV , ϵb] traversed by ϵ(t).
The influence of the varying exit barrier (17) on the

ramp-speed dependent emission-energy difference ∆Emit

is illustrated in Fig. 5. We find that if the total barrier-
height shift ∆Eb takes place well between the two emis-
sion events on the scale of the typical tunneling time, the
barrier shift expectedly leads to a shift of ∆Emit(vr,1) in
equal direction, sgn (∆Eb) = sgn (∆Emit), as illustrated
by the light grey solid, red and dark grey dashed lines in
Fig. 5. The precise magnitude |∆Emit|, however, depends
on how fast the barrier height is ramped compared to
both the emission time 1/Γℓ and the dot potential ramp
time (Eb−V0)/vr,1 itself. This becomes even more rele-
vant if the barrier height is ramped instead within a dot
potential interval [ϵV , ϵb] close to, or even containing a
particle emission event. In this case, comparable time
and energy scales ϵ̇(t) ∼ vr,1 ∼ ∆Eb

ϵV −ϵb
vr,1 can also change

the slope of ∆Emit(vr,1) compared to the case of constant
V0, Eb. For example, the light grey dashed line in Fig. 5
for ∆Eb = ϵV −ϵb = 0.25U and ϵV = V0−U corresponds
to a case in which the onset of the opaque region of the
barrier V0 is essentially raised together with the addition
energy ϵ(t) + U of the first particle once the latter has
reached V0. The imminent particle emission is thereby
continuously deferred for ϵV < ϵ(t) < ϵb, and vr,1 affects
∆Emit more strongly nonlinearly, via the combination of
ϵ(t) itself and V0(ϵ(t)), Eb(ϵ(t)). Apart from the oppo-
site sign of barrier height shift, a similar nonlinearity is
also seen in the dashed-dotted black line in Fig. 5 for
∆Eb = −2U and ϵV − ϵb = 2U .

D. Apparent transition energy changes due to
time-dependent charging energy

We finish our analysis by studying how the appar-
ent equal-time transition energy difference ∆Etr between
first and second emitted particle [Eq. (16)] is affected by
the dot parameters. The effects analyzed up to here are
found to not significantly affect ∆Etr. This changes when
the time-dependent dot potential ϵ(t) also influences the
charging energy U , via the changing spatial confinement
in the dot’s potential landscape. A similar effect could in
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FIG. 6. Apparent transition energy difference ∆Etr [Eq. (16)]
as function of the ramp speed vr,1 for a potential-dependent
interaction strength U(ϵ(t)) as given in Eq. (18). We fix ΓR =
ΓL = 500Ω, ϵU = Eb − U + 0.01U = 34.01U , δϵU = 0.29U .
For the light grey solid line underneath the blue dashed line,
we set ∆ϵ = 0.5U, τ = 0.75U , whereas ∆ϵ = τ = 0 in all other
graphs. The remaining parameters equal those stated in the
caption of Fig. 4.

practice also arise via a modulated single-particle split-
ting ∆ϵ, but we here only consider U for simplicity and
concreteness. We model this in analogy to Eq. (17) with
the smooth transition

U(ϵ) = U +∆US(ϵ(t), ϵU , ϵU + δϵU ), (18)

where S(ϵ, ϵU , ϵU + δϵU ) (9) establishes a smooth transi-
tion between the initial (U) and final (U +∆U) interac-
tion strength within the potential interval [ϵU , ϵU + δϵU ].

In Fig. 6, we compare ∆Etr(vr,1) with constant U to
cases in which the interaction strength either disappears
(∆U = −U) or doubles when ϵ is ramped up through
[ϵU , ϵU + δϵU ]. First note that the expected reference

energy difference ∆Eref
tr = U + 2

√
|τ |2 +∆ϵ2/4 includes

both the interaction strength U for ϵ < ϵU and the single-
particle orbital splitting due to ∆ϵ, τ . The light-grey
solid and blue dashed lines in Fig. 6 show results for
constant U , where we choose ∆ϵ = τ = 0 (blue) and
∆ϵ = 0.5U , τ = 0.75U . These lines clearly show that the
apparent transition energy difference closely approaches
this expected difference ∆Etr → ∆Eref

tr .
Instead, a finite ∆U ̸= 0, quantifying the time-

dependent shift of the interaction energy, can affect
∆Etr if the interaction strength changes prior to or dur-
ing the first emission event: A U -shift prior to emis-
sion only leads to a constant, vr,1-independent shift to
∆Etr → ∆Eref

tr +∆U , as intuitively expected. However,
if the interaction strength changes closely to the likely
emission time on the scale of the typical emission rate,
the effect depends on how fast ϵ, and hence U(ϵ) are
shifted relatively to this emission rate. The resulting
vr,1-dependence in this case —with ϵU + U ≈ V0 pur-
posely coinciding with the addition energy of the first
particle reaching V0— is illustrated by the dark-grey

dashed/black dashed-dotted line in Fig. 6. Note that
we consider not only decreasing (∆U = −U), but also in-
creasing interaction strength (∆U = +U): while ∆U < 0
reflects the physically more intuitive scenario in which a
rising ϵ reduces the spatial confinement, one could also
imagine a special potential shape in which this confine-
ment tightens at least within a limited ϵ interval, mean-
ing ∆U > 0. As apparent from the concrete example
∆U = +U in Fig. 6, ∆Etr − ∆Eref

tr is then accordingly
shifted in positive direction, albeit with smaller magni-
tude than the negative bending for ∆U = −U . This
different magnitude occurs because a shift ∆U < 0 close
to the emission time lowers the addition energy and hence
further defers the emission time, thereby providing more
time during which the emission energy also decreases.

VI. CONCLUSION AND OUTLOOK

This manuscript has provided a detailed analysis of
the energy- and time-dependent emission of a pair of
hot electrons from a driven quantum-dot potential. To
capture a broad range of physical mechanisms impact-
ing the emission process, we have employed two com-
plementary models and ensuing approaches: a numeri-
cal two-particle simulation in a time-modulated 1d po-
tential including Coulomb interaction, and an effective
master equation description of a two-orbital quantum
dot with time-dependent energy levels. Both methods
have generally revealed the impact of the driven, dot-
internal dynamics and of the possibly time-dependent
dot exit-barrier height on the emission spectrum. A
specific insight of the coherent two-particle simulation
is how dot-internal energy transfer via Coulomb inter-
action can influence the emission process —especially in
an effectively one-dimensional geometry. By contrast,
the master equation analysis has demonstrated how the
emission energies are impacted by dot-level modulation
speed, dot-degeneracy effects typical of zero- or higher-
than-one dimensional systems, and by orbital dependent
dot-environment coupling asymmetries.
With the theory results obtained here, a systematic

comparison with experiments is enabled. This is thanks
to the largely isolated discussion of the above stated phys-
ical mechanisms that are furthermore to a good extent
separately accessible/tunable in experiment.
For very fast dot level modulation, we expect the mas-

ter equation approach used here to break down and we
anticipate that nonadiabatic effects can become impor-
tant. The treatment of these effects is however beyond
the scope of the current manuscript and left open to fu-
ture studies.
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APPENDIX

Appendix A: Details of two-particle dynamics
simulation

This appendix details how we perform the two-particle
simulation outlined in Sec. II on a GPU. Generally,
we need to overcome two numerical challenges. First,
the two-particle interaction complicates the common ap-
proximation of unbounded systems by finite systems
with an absorbing, non-Hermitian boundary Hamilto-
nian [62, 63]. As pointed out in Sec. II, our solution
to this is to resort to a reflecting boundary in a large sys-
tem, such that unphysical boundary reflections happen
far enough away from the dot to not interfere with the
emission process. Second, the time-dependent potential
significantly increases the numerical cost of the conven-
tional Lanczos method [64, 65] of solving Schrödingers
equation for time-independent Hamiltonians, since the
Krylov subspace truncation must eventually be repeated
after a few potential update. We thus instead choose a
direct leap-frog [66] solver as discussed below.

More precisely, we start by describing how we map out
and index the Hilbert space [Sec. A 1] and Hamiltonian
[Sec. A 2]. We then detail the leap-frog time evolution
scheme as well as the calculation of expectation values
[Sec. A 3]. This appendix finishes with an overview of the
simulation steps [Sec. A 4]. The full code implemented in
C++ and in the Nvidia CUDA progamming language is
provided in Ref. [44].

1. State representation on triangular 2d grid

We start by considering the Hilbert space basis of oc-

cupation number states |rσ, r′σ′⟩ = Ψ†
rσΨ

†
r′σ′ |Vac⟩ =

−|r′σ′, rσ⟩ in discrete positions xr = rδx, r ∈ {0, . . . , R}
with spin-z projection σ =↑, ↓ and fixed total occupation
number N = 2. The full Hilbert space of two particles in
1d can be arranged in a 2d grid of projections of the full
state |Φ⟩ onto these NS linearly independent basis states
|i⟩ := |riσi, r

′
iσ

′
i⟩. However, due to the anti-symmetry

of these states under exchange of spin and position, this
does not form a full square, but rather a triangular ar-
rangement. The grid used in our simulations is illustrated
in Fig. 7: The blue-shaded boxes in this grid number
the i = 0, . . . , NS − 1 projections onto the basis states
|i⟩. The second particle in these states with quantum
number pair r′σ′ is tied to the discrete horizontal grid

FIG. 7. Two-dimensional triangle-grid mapping of the two-
particle state |Φ⟩ with(a)/without(b) spin degree of freedom
σ in a potential landscape with R + 1 sites r. The-blue
shaded boxes with number i = 0, . . . , NS − 1 indicate the
corresponding projection ⟨i|Φ⟩ onto the i-basis state, given
by |i⟩ = |riσi, r

′
iσi⟩ for the spinful, and by |ri, r′i⟩ for the spin-

less case. The smaller black-crossed boxes represent empty,
zero-valued grid points acting as padding elements in memory.
The horizontal and vertical axes display the grid coordinates
(A1) corresponding to the state numbers i.

coordinate nx = 0, 1, . . . , where (r′σ′)-index pairs with
larger r′ are located farther to the right, and spin σ′ =↓
is always to the right of σ′ =↑ for equal r′. The vertical
coordinate ny = 0, 1, . . . likewise indicates the single-
particle state of the first particle with quantum numbers
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rσ, where larger r are further below and spin ↓ is below
↑ at equal r. Without loss of generality, we arrange the
triangular grid to ensure r ≤ r′, i.e., in upper-right for-
mat. The grid points with rσ = r′σ′ are forbidden by
Pauli’s principle, but are nevertheless considered part of
the triangle: together with two additional rows (one per
spin-projection) at the top, and one additional column to
the right of the triangle (smaller black-crossed boxes in
Fig. 7), they are regarded as constant, zero-weight grid
points. Our numerical implementation allocates these
points in memory merely to act as padding elements for
sparse matrix-vector multiplications, see Appendix A 2.

Considering only the state-representing grid points,
the R + 1 possible r-values and two spin-projections
yield, by application of the Gauss sum rule, one grid
point/vector components for each of the NS = (2R +
1)(2R+1+1)/2 = (R+1)(2R+1) linearly independent
basis states. We enumerate these non-empty points from
i = 0 to i = NS − 1 by starting from the top non-empty
grid row, advancing from left to right, and then by jump-
ing to the left of the next row, skipping all empty grid
points. The top-left non-empty grid point thereby corre-
sponds to i = 0, and the bottom right to i = NS−1. Our
GPU-based numerical approach associates GPU threads
directly to the index i, but not to the quantum numbers
riσi, r

′
iσ

′
i which can be inferred from the grid-location

(ny
i , n

x
i ). Each thread hence first determines ny

i , n
x
i from

i. Carefully contemplating the above defined grid point
arrangement and again making use of the Gauss sum rule,
we derive and use

ny
i =

⌊
2(R+ 1)− 1

2
−
√
2(NS − i) +

1

4

⌋

nx
i = ny

i +
(2R+ 1− ny

i )(2R+ 2− ny
i )

2
+ 1 + i−NS

ri = ⌊ny
i /2⌋ , r′i = ⌊nx

i /2⌋
σi = ny

i mod 2 , σ′
i = nx

i mod 2, (A1)

where σ = 0/1 is synonymous to σ =↑ / ↓. The memory
address of the state vector component at grid coordinate
(ni

y, n
i
x) is given by the basis state index i —shifted by all

preceding empty padding elements— to ensure sufficient
data locality, see full code [44] for details.

Note that while the square root in Eq. (A1) is in prin-
ciple computationally demanding, our implementation
nevertheless calculates it on-the-fly in every GPU thread
without any severe performance impact. This works
because our simulation mostly relies on sparse matrix-
vector multiplication, whose performance is in any case
primarily memory-bandwidth limited. To efficiently use
the available bandwidth, we compute and store the vec-
tor components only in single precision (32 bit) instead
of double precision (64 bit), as our comparisons between
the two have not revealed any appreciable inaccuracies
for the former. Moreover, due to the absence of any Zee-
man field and spin-orbit coupling, the equal-spin case
effectively reduces to a spinless system. Neglecting the
quantum number σ altogether for this case, we obtain

a triangle grid with approximately 4 times fewer points

compared to the spinful case, NS → ÑS = R(R+1)
2 , see

Fig. 7(b). Moreover, we then only add a single row of
top-padding empty points, and no padding column to
the right. Grid and particle coordinate also become di-
rectly related, i.e., we set ri = ny

i and r′i = nx
i in Eq. (A1)

without dividing by the spin factor 2.

2. Implementing the sparse Hamiltonian matrix

The absent Zeeman and spin-orbit coupling terms in
our model mean that any Hamiltonian appearing in our
simulation can always be gauged to have a fully real ma-
trix representation with respect to the above defined oc-
cupation number basis. Moreover, the only non-diagonal
elements within this matrix appear for the kinetic energy
Hkin [Eq. (2b)], yielding a sparse matrix containing non-
zero elements only in the main diagonal and in maximally
4 sub-diagonals, i.e., 2 subdiagonals per particle/grid di-
mension. Exploiting this simple structure, we implement
the sparse matrix-vector multiplication of any Hamilto-
nian with a state as a CUDA kernel acting on an array
that stores the grid-ordered vector components accord-
ing to the previous Sec. A 1. An actual calculation is
of course only performed for output-array elements cor-
responding to non-empty grid points associated with a
basis state index i, skipping the computation for con-
stantly zero-valued padding elements. These padding el-
ements are nevertheless important for any input array, as
explained below.
The main-diagonal elements of the Hamiltonian ma-

trix, i.e., those elements relating grid points i to them-
selves, consist of three different contributions. One stems
from the onsite term 4λ of Hkin [Eq. (2b)] for two par-
ticles, which is independent of time t and state i. The
second contribution comes from the Coulomb potential
(2c), which only requires a single division by δx|ri−r′i| per
index i, and is hence always computed on-the-fly. This is
in contrast to third contribution, given by the diagonal
elements of Hpot(t). The latter namely equal the sum
of two single-particle potentials V (δxri, t) + V (δxr′i, t)
[Eq. (1)], meaning that while several computationally
expensive exponential functions are required to evalu-
ate V (x, t), the same value for V enters many differ-
ent main-diagonal elements of Hpot(t). The potential
V (x, t) is thus pre-computed only once for each of the
R + 1 different spatial coordinates x = rδx, and stored
in the GPU memory. The subsequent calculation of the
main-diagonal matrix elements of Hpot(t) and of the full
two-particle Hamiltonian H2P(t) then simply reads these
values.
The only contribution to the sub-diagonals of the

Hamiltonian matrix come from the bilinear coupling
terms ∼ λ in Hkin [Eq. (2b)]. As such, they relate
state vector components associated with different indices
i′ ̸= i, both in horizontal (nx) and vertical (ny) grid di-
rection, see full code at [44]. Care needs to be taken in
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determining the correct fermionic exchange sign in the
spinful case, and in correctly truncating the coupling at
any edge of the non-empty grid. Points on these edges
namely coincide with a particle at one of the ends of
the 1d potential landscape, where the coupling beyond
the edge no longer contributes to Hkin. The above men-
tioned zero-value padding elements are added precisely
to make any branching logic for these edge cases in the
application ofHkin unnecessary. This helps not only with
code readability, but also with avoiding divergent GPU
threads.

3. Time evolution of state, expectation values, and
spectral density

Having defined the state space and set up the Hamil-
tonian matrix, we can now describe how we perform the
Schrödinger time evolution (3) and obtain the expecta-
tion values for the charge and energy in the dot and in
the filter region.

For a time-independent Hamiltonian, the Schrödinger
equation (3) can be solved efficiently by truncating
the evolution to the relevant Krylov subspace, such
as in the often employed time-dependent Lanczos ap-
proach [64, 65]. However, the modulated potential
V (x, t) entering our time-dependent two-particle Hamil-
tonian H2P(t) [Eq. (2)] reduces the efficiency and in-
creases the complexity of this method, because the trun-
cation must be repeated regularly, with possibly V (x, t)-
dependent truncation cutoffs. Our numerical imple-
mentation avoids these complications by instead solv-
ing the Schrödinger equation (3) directly, demanding a
spatial(δx)- and temporal(δt) resolution to reliably cap-
ture the desired maximum kinetic energy Emax, i.e.,

Emax ≤ 2 π2

2meffδx2 (lowest energy of two opposite-spin

electrons in a box of size δx) and Emax ≤ 2π/δt (us-
ing E = ω = 2π/∆t). Given kinetic energies E ∼ meV
in a potential landscape of typical size L ∼ 104nm, we
choose a leap-frog solver suitable for the quite large num-
ber of basis states NS ∼ 106 required by these criteria.
This method saves memory bandwidth by allocating only
few temporary resources per time step, and in particu-
lar preserves the state norm without any explicit renor-
malization [66]: As the latter would be computationally
expensive due to the necessary overflow protection for
the given NS, this represents a crucial advantage. To
check whether our discretization steps are actually small
enough for our results to converge, we also run a few
higher-resolution test-runs for comparison.

The leap-frog scheme begins by initializing the system
in the ground state |GS⟩ of H2P(0), i.e., with respect
to the initial potential configuration V (x, t = 0). We
achieve this by first seeding a two-particle state |Seed⟩
that has only non-zero vector components inside the dot
region, 0 < rδx, r′δx < Ld, and then by evolving this
state along the imaginary time axis to project out any

excited state:[
|Φ(t̃+ δt̃)⟩

]
i
=

NS−1∑
j=0

[
e−H2P(0)δt̃

]
ij

[
|Φ⟩(t̃)

]
j

≈
NS−1∑
j=0

[
1−H2P(0)δt̃

]
ij

[
|Φ(t̃)⟩

]
j

|Φ(t̃ = 0)⟩ = |Seed⟩, (A2)

for which we have implemented a time-independent
CUDA kernel to apply 1 − H2P(0)δt̃ to the state vec-
tor. Altogether performing NGS imaginary-time steps
(A2) to obtain the ground state |GS⟩, these steps are in-
terspersed with explicit state renormalizations |Φ(t̃)⟩ ←
|Φ(t̃)⟩/

√
⟨Φ(t̃)|Φ(t̃)⟩ after each set of Nnorm

GS subsequent
evolution steps (A2). We then define the ground state as

|GS⟩ := |Φ(t̃ = NGSδt̃)⟩. (A3)

Each renormalization by the inverse square-root norm

1/
√
⟨Φ(t̃)|Φ(t̃)⟩ is computed on the GPU using the

cuBLAS Level-1 API from the standard CUDA li-
brary [44].
To prepare the actual real-time leap-frog evolution, we

first divide the state into real and imaginary part. Due to
measurably better performance, the latter are not stored
in a block format, but instead in an interleaved fashion.
This means that we do not distribute real and imagi-
nary parts into separate grids, but rather split each state
component [|Φ(t = 0)⟩]i and each empty point in the grid
shown in Fig. 7 into a pair of successively stored single-
precision floating point numbers, the first corresponding
to the real part and the second to the imaginary part; the
empty padding elements are represented by two constant
zero-values. The crucial aspect of the leap-frog method is
now to introduce a half-time step between real and imag-
inary part. This means that the initial-state components
[|Φ(t = 0)⟩]i read

Re {[|Φ(t = −δt)⟩]i} = [|GS⟩]i

Im {[|Φ(t = −δt)⟩]i} = Im

{[
|δt/2⟩√
⟨δt/2|δt/2⟩

]
i

}

Re {[|Φ(t = 0)⟩]i} = Re

{[
|δt⟩√
⟨δt|δt⟩

]
i

}

Im {[|Φ(t = 0)⟩]i} = Im

{[
|3δt/2⟩√
⟨3δt/2|3δt/2⟩

]
i

}

|δt/2⟩ =
(
1− iH2P(0)

δt

2

)
|GS⟩

|δt⟩ =
(
1− iH2P(0)

δt

2

)
|δt/2⟩√
⟨δt/2|δt/2⟩

|3δt/2⟩ =
(
1− iH2P(0)

δt

2

)
|δt⟩√
⟨δt|δt⟩

, (A4)

where we have implemented a custom CUDA ker-
nel to perform the sparse matrix-vector multiplication
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1− iH2P(0)

δt
2

)
|x⟩, and exploited that |GS⟩ is already

normalized and has purely real components. Using the
likewise purely real matrix representation of H2P(t), the
leap-frog time evolution then proceeds according to [66]

Re {[|Φ(t+ δt)⟩]i} =
NS−1∑
j=0

Re
{
[1− iH2P(t)δt]ij [|Φ(t)⟩]j

}
= Re {[|Φ(t)⟩]i} (A5a)

+

NS−1∑
j=0

[H2P(t)δt]ij Im
{
[|Φ(t)⟩]j

}

Im {[|Φ(t+ δt)⟩]i} =
NS−1∑
j=0

Im
{
[1− iH2P(t)δt]ij [|Φ(t)⟩]j

}
= Im {[|Φ(t)⟩]i} (A5b)

−
NS−1∑
j=0

[H2P(t)δt]ij Re
{
[|Φ(t)⟩]j

}
,

where the CUDA kernel for the sparse matrix-vector
product [H2P(t)δt] |Φ⟩ reads the single-particle potential
V (x, t) [Eq. (1)] pre-generated for time t from GPU mem-
ory prior to evaluating the time step (A5).

As already highlighted above, the key and name-giving
feature of the leap-frog scheme is the initialization (A4)
with half-time separation δt/2 between real and imagi-
nary part. This stabilizes the state norm during the time
evolution (A5) —and hence renders explicit renormal-
izations unnecessary— if that norm and the expectation
value are slightly redefined [66]:

⟨O⟩(t) = ⟨Φ(t)| [O|Φ(t)⟩]
⟨Φ(t)|Φ(t)⟩

(A6a)

⟨Φ(t)|Φ(t)⟩ :=
NS−1∑
i=0

[Re {[|Φ(t)⟩]i}]
2

(A6b)

+

NS−1∑
i=0

Im {[|Φ(t)⟩]i} Im {[|Φ(t− δt)⟩]i}

⟨Φ(t)| [O|Φ(t)⟩] :=
NS−1∑
i=0

Re {[O|Φ(t)⟩]i}Re {[|Φ(t)⟩]i}

+

NS−1∑
i=0

Im {[O|Φ(t)⟩]i} Im {[|Φ(t− δt)⟩]i} .

(A6c)

Note that the interleaved memory storage of real and
imaginary parts enables us to compute the norm (A6b)
on the GPU with a single call of the cuBLAS Level-
1 scalar-product routine, thereby preventing numerical
overflow while maintaining a high runtime performance.

A particularly important expectation value for our sim-
ulation is the time-dependent spectral density ϕ2P(t, E)
[Eq. (4)]. We evaluate this density by expanding the

H f
kin-dependence of δ(E−H f

kin) in terms of a finite num-
ber NCP of Chebyshev polynomials of first kind [42]:

ϕ2P(t, E) = ⟨δ(E −H f
kin)⟩(t) (A7)

≈
NCP−1∑
n=0

Kn(E/ECP)

ECP⟨Φ(t)|Φ(t)⟩
⟨Φ(t)|

[
pn

(
H f

kin

ECP

)
|Φ(t)⟩

]

with energy scale ECP chosen such that all eigenvalues of
H f

kin/ECP lie within the open interval (−1, 1), with the
recursively defined Chebyshev vectors

p0(x)|Φ(t)⟩ = |Φ(t)⟩ (A8)

p1(x)|Φ(t)⟩ = x|Φ(t)⟩
pn≥2(x)|Φ(t)⟩ = 2x [pn−1(x)|Φ(t)⟩]− [pn−2(x)|Φ(t)⟩] ,

and with the Chebyshev expansion coefficients

Kn(x) =
(2− δn0) cos (acos(x)n)

π
√
1− x2

Jn (A9)

Jn =
1

(NCP + 1)
sin

(
nπ

NCP + 1

)
cot

(
π

NCP + 1

)
+

(
1− n

NCP + 1

)
cos

(
nπ

NCP + 1

)
. (A10)

The Jackson kernel Jn suppresses unphysical oscillations
in the Chebyshev polynomial expansion of δ(E − x) due
to the Dirac δ being sharp in x. Note again that the norm
and vector overlaps in Eq. (A7) are defined by Eq. (A6),
which, due to the employed leap-frog scheme, slightly
differs from the usual definition.

To compute the sum over n in Eq. (A7) for a fixed time

t on the GPU, we first obtain all ⟨Φ(t)|
[
pn

(
Hf

kin

ECP

)
|Φ(t)⟩

]
and buffer them in a single vector of size NCP; all coef-
ficients Kn(E/ECP) for all considered ratios E/ECP are
stored into a matrix. Performing the sum in Eq. (A7)
thereby reduces to a single call of the cuBLAS dense
matrix-vector product of the coefficient matrix with the
Chebyshev polynomial vector. Note, also, that we do
not call a scalar-product routine for each individual poly-

nomial ⟨Φ(t)|
[
pn

(
Hf

kin

ECP

)
|Φ(t)⟩

]
entering Eq. (A7). We

instead employ a custom CUDA kernel for the matrix-
vector product H f

kin|Φ(t)⟩ to recursively compute a sub-
set of all NCP required Chebyshev vectors (limited by the
GPU memory capacity) according to Eq. (A8), and first
buffer these vectors as columns of a large matrix. Then,
we calculate the given subset of Chebyshev polynomials
with a single cuBLAS dense vector-matrix multiplication
of ⟨Φ(t)| (⟨Φ(t− δt)| for the imaginary part [Eq. (A6c)])
with this matrix. We thereby benefit from cuBLAS-
specific optimizations of the dense vector-matrix prod-
uct, which sizably reduces the time to evaluate Eq. (A7)
compared to calculating all scalar products individually
(∼ 10− 20%, depending on vector size).
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4. Overview of simulation steps

Having detailed the individual aspects of the simula-
tion, we conclude Appendix A with an overview of the
steps performed, and the system parameters used to ob-
tain the data presented in Fig. 2 and Fig. 8.

1. Generate the seed state |Seed⟩ [Eq. (A2)], pre-
calculate all Chebyshev coefficients Kn(E/ECP)
[Eq. (A9)] for all n = 0, 1, . . . , NCP − 1 and for
a discrete set of energy ratios E/ECP, and store
these Kn(E/ECP) into a matrix.

2. Compute the initial potential landscape V (x, 0)
[Eq. (1)] and initialize the system state into the
ground state |GS⟩ of the initial HamiltonianH2P(0)
[Eq. (2)] with the scheme described in and around
Eqs. (A2)-(A3).

3. Starting from |GS⟩, prepare the initial state of
the leap-frog time evolution scheme according to
Eq. (A4).

4. Perform a number N test
GS of time evolution steps

(A5) with a constant Hamiltonian H2P(0) to let
the system state settle to the actual initial simula-
tion state |Φ(0)⟩, and confirm that H2P(0) does not
further evolve this state |Φ(0)⟩ in time apart from
a global phase.

5. Calculate the initial expectation values for the ob-
servables of interest with respect to |Φ(0)⟩ using
Eqs. (A6)-(A10).

6. Finally, run the simulation for a desired time tend
by repeating the evolution step (A5) with a contin-
uously updated, time-dependent potential V (x, t)
[Eq. (1)] entering the two-particle Hamiltonian
H2P(t) [Eq. (2)]. Use Eqs. (A6)-(A10) to calcu-
late observable expectation values in regular time
intervals.

For all simulations shown in Fig. 2 and Fig. 8, the sys-
tem is discretized in R + 1 = 211 = 2048 sites. The
total simulation time tend = 307.2 ps is divided into nu-
merical time steps of length δt = 2.5 × 10−5 ps, and we
compute all observables for 29 = 512 equidistant time
points within [0, tend], each using NCP = 217 = 131072
Chebyshev polynomials to generate ϕ2P. We use NGS =
5×216 = 327680 imaginary time steps δt̃ = 1.25×10−5ps
to generate the ground state |GS⟩ of H2P(0), where we
renormalize every Nnorm

GS = 23 = 8 step, and we have
checked for convergence in a test run with larger NGS at
lower Nnorm

GS , δt̃. Prior to the actual time evolution, we
use N test

GS = 215 = 32768 time steps δt to initialize the
state |Φ(0)⟩ from |GS⟩.

FIG. 8. Energy-and time dependent emission spectroscopy for
effective mass meff = 0.016me as in main text (a,b) compared
to the corresponding quantities formeff = 0.067me as in GaAs
(c,d). We assume two equal ↑-spins, κ = 0.125, and all other
parameters as stated in the caption of Fig. 2 and at the end
of Appendix A4.

Appendix B: Two-particle dynamics for larger
effective mass

This short appendix compares the two-particle simu-
lation from Sec. III for two spin-↑ electrons with finite
interaction κ = 1/8 and effective mass meff = 0.016
[Fig. 2(e,f)] to simulations with larger effective mass
meff = 0.067me typical of GaAs, but otherwise equal
parameters. In particular, we confirm in Fig. 8 that the
first emitted particle still receives additional kinetic en-
ergy from the particle relaxing inside the dot [Fig. 8(a,c)].
By contrast, differences between the two cases are the
smaller energy splitting [Fig. 8(b,d)], due to Ef

kin ∼
1/meff, and the generally higher kinetic energy for the
larger meff = 0.067. The latter stems from a combina-
tion of the smaller single-particle dot energy splitting and
the exit-barrier potential rising with higher dot poten-
tial. Namely, compared to the case meff = 0.016me, the
smaller dot addition energies cause emission at smaller
dip depth Vd,C, and hence at later times t. At these later
times, the emission is even further deferred and, alto-
gether pushed to higher emission energies by the increas-
ing tunnel barrier height [Fig. 8(a,c)], see also videos in
[44]. Moreover, we observe an initially sharper and, due
to the larger meff, also more slowly traveling wave pack-
age, as evident from a comparison of N f, see turquoise
lines in Fig. 8(a,c).
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Appendix C: Master equation evolution

This appendix details some analytical and numerical
aspects of our solution to the master equation (10). The
Lindblad operators Lηℓ [Eq. (11)] and the Lamb shift

Λ =
∑
ηℓ
ii′j

Fηℓ(Eii′ , Ei′j)⟨i|d†ηℓ|i
′⟩⟨i′|dηℓ|j⟩ × |i⟩⟨j| (C1)

Fηℓ(E,E′) = −P
∫ ∞

−∞
dω

[√
Γℓ(ηω − ηE)fη(ηω − ηE)

2πω

×
√
Γℓ(ηω + ηE′)fη(ηω + ηE′)

]
.

as derived from Refs. [51, 67] (all symbols including cre-
ation/annihilation operators dηℓ defined below Eq. (11))
depend on the energies Ei and eigenstates |i⟩ of the dot
Hamiltonian (5). We hence start with these quantities:

Ei=0 = 0 , Ei=d = 2ϵ+∆ϵ+ U

Ei=χ=± = ϵ+
∆ϵ

2
+ χ

√
|τ |2 + ∆ϵ2

4
(C2)

|i = 0⟩ = |0⟩ , |i = d⟩ = |d⟩

|i = χ = ±⟩ =
∑

ℓ=L,R

Cℓ
χ|ℓ⟩, (C3)

with

CL
χ =

sgn(τ) [Eχ − ϵ]√
|τ |2 + (Eχ − ϵ)2

, CR
χ =

|τ |√
|τ |2 + (Eχ − ϵ)2

(C4)
interpolating between |i⟩ being either the ”L” and ”R”
states |L⟩ and |R⟩, or the bonding/antibonding states
|L⟩ ± |R⟩, depending on ∆ϵ, τ .
Next, we use that each Lindblad operator flips the

dot fermion parity (−1)N = (−1)NL+NR while the
Hamiltonian H and the Hermitian Lamb shift Λ = Λ†

conserve this parity, meaning (−1)NLηℓ = −Lηℓ(−1)N
and (−1)NH = H(−1)N , (−1)NΛ = Λ(−1)N . Together

with the absence of any pairing terms ∼ d†Ld
†
R, dLdR

in the Hamiltonian and any higher-order Γ terms,
this means that the reduced density operator ρ can
only have 6 non-zero elements4 during the entire
time evolution (10). In the occupation number basis(
|0⟩, |ℓ = L⟩ = d†L|0⟩, |ℓ = R⟩ = d†R|0⟩, |d⟩ = d†Ld

†
R|0⟩

)
,

these elements are

P = (P0, PL, PR, Pd, PLR, PRL)
T

(C5)

= (⟨0|ρ|0⟩, ⟨L|ρ|L⟩, ⟨R|ρ|R⟩, ⟨d|ρ|d⟩, ⟨L|ρ|R⟩, ⟨R|ρ|L⟩)T

4 This presupposes that any element other than the 6 mentioned
are initialized to 0. If not, those elements would, however, still
evolve independently from the 6 relevant ones.

This vector evolves according to [Eq. (10)]

∂tP = W ·P, (C6)

where the elements Wy,z = [W]y,z of the transition ma-
trix W are obtained from an expansion of the master
equation (10) with the help of Eqs. (C2)-(C4):

W0,d = Wd,0 = WL,R = WR,L = WRL,LR = WLR,RL = 0

W0,ℓ=L/R =
∑

ℓ′=L,R

[
γℓ′

0ℓ

]2
, Wℓ=L/R,0 =

∑
ℓ′=L,R

[
γℓ′

ℓ0

]2
Wd,ℓ=L/R =

∑
ℓ′=L,R

[
γℓ′

dℓ

]2
, Wℓ=L/R,d =

∑
ℓ′=L,R

[
γℓ′

ℓd

]2
W0,0 = −

∑
ℓ=L,R

Wℓ,0 , Wd,d = −
∑

ℓ=L,R

Wℓ,d

Wℓ,ℓ = −W0,ℓ −Wd,ℓ

W(0/d),LR = W(0/d),RL =
∑

ℓ′=L,R

γℓ′

(0/d)Lγ
ℓ′

(0/d)R

WLR,(0/d) = WRL,(0/d) =
∑

ℓ′=L,R

γℓ′

L(0/d)γ
ℓ′

R(0/d)

Wℓ,ℓℓ̄ = Wℓℓ̄,ℓ = (Wℓ,ℓ̄ℓ)
∗ = iτ̃ −

∑
ℓ′=L,R

γℓ′

0ℓγ
ℓ′

0ℓ̄
+ γℓ′

dℓγ
ℓ′

dℓ̄

2

WLR,LR = (WRL,RL)
∗ = −i∆ϵ̃− Γde

2
, (C7)

defining ℓ̄ = R if ℓ = L and ℓ̄ = L if ℓ = R. These equa-
tions (C7) introduce the shifted single-particle energies

∆ϵ̃ = ∆ϵ+ ⟨L|Λ|L⟩ − ⟨R|Λ|R⟩
τ̃ = τ + [⟨L|Λ|R⟩+ ⟨R|Λ|L⟩] /2 (C8)

as well as the following (square-root) rates:

γℓ′

0ℓ =
∑
χ=±

√
Γ−
ℓ′ (Eχ0)C

ℓ
χC

ℓ′

χ (C9)

γℓ′

ℓ0 =
∑
χ=±

√
Γ+
ℓ′(Eχ0)C

ℓ
χC

ℓ′

χ

γℓ′

dℓ =
∑
χ=±

√
Γ+
ℓ′(Edχ)C

ℓ
χC

ℓ̄′

χ

γℓ′

ℓd =
∑
χ=±

√
Γ−
ℓ′ (Edχ)C

ℓ
χC

ℓ̄′

χ

and

Γde =
∑
χ=±

[
Γ+
L (Edχ) + Γ−

R(Eχ0)
]
(CR

χ )
2

+
∑
χ=±

[
Γ+
R(Edχ) + Γ−

L (Eχ0)
]
(CL

χ)
2, (C10)

where we use

Γ±
ℓ′=L,R(E) = Γℓ′(E)f±(E). (C11)
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As in the main text, we denote energy differences as
Eij = Ei − Ej .

In the following, for completeness, we describe how
to evaluate the Lamb shift. Note, however, that for the
parameter regimes considered here, with Γ≪ U, δEb, the
Lamb shift has no visible impact on the presented results
and could therefore equally be neglected.

Equation (C8) relies on the symmetry of the Lamb
shift Λ both in the eigenbasis and L-R basis: ⟨i|Λ|j⟩ =
⟨j|Λ|i⟩, ⟨ℓ|Λ|ℓ′⟩ = ⟨ℓ′|Λ|ℓ⟩. The latter follows from
Λ† = Λ and the fact that the eigenstates |i⟩ admit the
real representation (C3) in the local dot basis. Using
the identity 1 = |0⟩⟨0| +

∑
χ=± |χ⟩⟨χ| + |d⟩⟨d| and the

definition Eq. (C1), we can further expand Eq. (C8) to

∆ϵ̃ = ∆ϵ+ [Λ++ − Λ−−]
[
|CL

+|2 − |CR
+ |2

]
+ 2Λ+−

[
CL

+C
L
− − CR

+C
R
−
]

(C12)

τ̃ = τ + [Λ++ − Λ−−]C
L
+C

R
+ + Λ+−

[
CL

+C
R
− + CL

−C
R
+

]
.

The matrix elements

Λχχ = ⟨χ|Λ|χ⟩
= [F−L(Eχ0, E0χ) + F+R(Eχd, Edχ)] |CL

χ |2

+ [F−R(Eχ0, E0χ) + F+L(Eχd, Edχ)] |CR
χ |2

Λ+− = Λ−+ = ⟨+|Λ|−⟩ (C13)

=
∑

ℓ=L,R

[F−ℓ(E+0, E0−)− F+ℓ(E+d, Ed−)]C
ℓ
+C

ℓ
−

contain structure factors Fηℓ given in Eq. (C1). To
calculate these, we assume the here relevant zero-
temperature limit and model the barrier transparency as
in Eqs. (8),(9) for energies E > µ; to enable the dot to be
recharged for E < µ, we also model the barrier as reopen-
ing for decreasing energies below µ, choosing for conve-
nience the same relative energy range δEb = |Eb − V0|
on which the barrier becomes transparent:

Γℓ(E ≤ µ, t) = Γℓ [1− S (E,µ− δEb, µ)] . (C14)

Physically, the details of this barrier reopening is irrele-
vant for the emission process, apart from the mere fact
that it brings the dot back to its original doubly occu-
pied state at the end of the ϵ(t) driving cycle. However,

Eq. (C14) formally enters F+ℓ just as Eq. (8) enters F−ℓ:

F+ℓ(Eχd, Edχ)
T→0
= − 1

2π
P
∫ µ

−∞
dω

Γℓ(ω)

ω − Edχ

= − 1

2π
P
∫ µ

µ−δEb

dω
Γℓ(ω)

ω − Edχ

− lim
|D|→∞

Γℓ

2π
ln

∣∣∣∣µ− δEb − Edχ

|D|

∣∣∣∣
(C15)

F−ℓ(Eχ0, E0χ)
T→0
=

1

2π
P
∫ ∞

µ

dω
Γℓ(ω)

ω − Eχ

=
1

2π
P
∫ Eb

V0

dω
Γℓ(ω)

ω − Eχ

− lim
|D|→∞

Γℓ

2π
ln

∣∣∣∣Eb − Eχ

|D|

∣∣∣∣ (C16)

F+ℓ(E+d, Ed−)
T→0
= P

∫ µ−Ed−

−∞
dω

∏
χ=±

√
Γℓ(ω + Edχ)

−2πω

= −P
∫ µ

µ−δEb

dω

√
Γℓ(ω)

√
Γℓ(ω − E+−)

2π(ω − Ed−)

− lim
|D|→∞

Γℓ

2π
ln

∣∣∣∣µ− δEb − Ed−

|D|

∣∣∣∣
(C17)

F−ℓ(E+0, E0−)
T→0
= P

∫ ∞

µ−E−

dω

∏
χ=±

√
Γℓ(ω + Eχ)

2πω

= P
∫ Eb

V0

dω

√
Γℓ(ω)

√
Γℓ(ω + E+−)

2π(ω − E−)

− lim
|D|→∞

Γℓ

2π
ln

∣∣∣∣Eb − E−

|D|

∣∣∣∣ . (C18)

It is typical for such principal value (P) integrals (C15)-
(C18) to have a logarithmic divergence for infinite band-
width |D| → ∞. We stress, however, that the shifted
splitting and coupling [Eq. (C12)] only involve differences
of these integrals in which all divergent terms cancel
out. Furthermore, the poles Eχ, Edχ avoided by princi-
pal value integration are either outside the finite support
of the respective Γℓ(E) or fully enclosed by the integra-
tion interval; their contribution thus mostly cancels out
due to the sign switch. Indeed, as confirmed by our nu-
merical results, the effective contribution to τ̃ ,∆ϵ̃ is then
∼ Γ =

∑
ℓ Γℓ.

Note that while we evaluate the functions (C15)-
(C18) numerically as described below, the above ana-
lytical expressions already highlight a few special cases
for Λ. First, we consider τ = 0, which means that
the eigenvectors |±⟩ are the bare dot states |L/R⟩. We
then have Cℓ

+C
ℓ
− = CL

+C
L
+ = 0, which according to

Eqs. (C12),(C13) results in τ̃ = τ = 0. Analogously,
∆ϵ = 0 and τ > 0 implies perfectly L-R (anti-)symmetric
states |CL

χ | = |CR
χ | and therefore ∆ϵ̃ = ∆ϵ = 0 ac-

cording to Eq. (C12). This, importantly, proves that
Λ cannot rotate the single-particle eigenbasis if the lat-
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ter is given by the dot states L,R or by the corre-
sponding bonding and antibonding states. In case of
τ = 0, Eq. (C13) furthermore predicts the proportion-
ality (∆ϵ̃ −∆ϵ) ∼ (Λ++ − Λ−−) ∼ (ΓL − ΓR), meaning
that the Lamb shift then scales with the environment
coupling asymmetry between the two bare dot states. For
the setup studied in Fig. 5 and for all curves of Fig. 6 ex-
cept the light grey one, the Lamb shift therefore vanishes
exactly, ∆ϵ̃ = ∆ϵ, τ̃ = τ .

We emphasize again that all system parameters enter-
ing Eqs. (C2)-(C10) can in principle be time-dependent in
the way discussed in Sec. IV. We therefore need to solve
the master equation (C6) numerically, which we achieve
with a standard fourth-order Runge-Kutta integration
scheme [44]. We use Nt = 222 = 4194304 time steps
over a single period 2π/Ω to create a single current trace
as in Fig. 3(a), and substitute the result into Eq. (14)
to obtain the emission times and energies (tx, Emit,x) for
x = 1, 2. This procedure is repeated for Nsw = 29 = 512
equidistant ϵ0-points in the closed range [0, 35U ] to de-
termine the energy-time relations Emit,1(t) and Emit,2(t)
as sketched in Fig. 3(b). Note that equidistant ϵ0-steps
do not translate into equidistant time steps for these
Emit,x(t)-curves. To determine the apparent transition
energy ∆Etr [Eq. (16)], we hence first pick Emit,1 at a
given time t, and then sample Emit,2 by interpolating be-
tween Emit,2(t<) and Emit,2(t>) with t< and t> being
the closest times before and after t, so that t< ≤ t ≤ t>.

Finally, to obtain the Lamb shift Λ, we use Simpson’s
1/3 rule with NSimp = 217 + 1 = 131073 equidistant
points to evaluate the principal value integrals (C15)-
(C18). Importantly, if any resonance lies within the in-
tegration interval, we implement the principal-value in-
tegration to achieve stable convergence by placing these
points symmetrically around this resonance. Since the
integrals need to be obtained for a large range of Eχ or
Edχ in many different driving protocols, we reduce the
number of required computations by precomputing the
integrals for NInt = 223 = 8388608 equidistant energy
points in a range [−2.5A, 2.5A]. The matrix elements
Eq. (C13) are then obtained by linearly interpolating be-
tween these points. A further reduction of the integral
computation time is achieved by likewise linearly interpo-
lating between NΓ = 218 = 262144 precomputed points
of the Γ(E) functions. We have checked for convergence

by individually increasing the above stated number of
points and comparing the results.

Appendix D: Energy current kernel

The matrix representation WI,E of the energy current
kernel W I,E yielding Eq. (12) is derived from the full ma-
trix W [Eq. (C6)]. It turns out that in the regimes stud-
ied here, this can be done by neglecting all transitions
between (instantaneous) dot energy eigenstates of H(t)
[Eq. (5)] with equal particle number. We calculate WI,E

in three steps: first we rotate the single-particle sector
of W from the L,R basis to the single-particle eigenbasis
(C3):

V = O×W ×O−1 (D1)

with the transformation matrix elements

Oχχ′,ℓℓ′ = [O]χχ′,ℓℓ′ = ⟨χ|ℓ⟩⟨ℓ
′|χ′⟩, (D2)

between the basis states ℓ, ℓ′ ∈ {0,L,R,d} and the eigen-
states χ, χ′ ∈ {0,−,+,d}. Second, we set rates for tran-
sitions with constant particle number to zero:

Vχ1χ2,χ3χ4
→ 0 , χ1,2,3,4 ∈ {−,+} , (D3)

where either χ1 ̸= χ3 or χ2 ̸= χ4. The third and final
step is to rotate back to the left-right located basis:

WI,E = O−1 ×V ×O. (D4)

Strictly speaking, Eq. (D3) may introduce deviations
from the trace preservation rule

∑
i Vi,χχ′ = 0 for the

probability-coherence couplings5. However, since our
manuscript always considers either single-particle degen-
eracy ∆ϵ = 0 or large energy splittings |E+ − E−| ≫
|Eb−V0| compared to the barrier broadening, these tran-
sition rates are always negligible: we observe several
orders of magnitude smaller rates Vχ1χ2,χ3χ4

compared
to the transitions V0,χχ′ , Vχχ′,0, Vd,χχ′ , Vχχ′,d involving a
particle number change. This justifies Eq. (D3) for all
emission processes studied in this paper, and shows that
energy transfer in these situations is always tied to par-
ticle transfer. This also implies W I,E × ρ ≈W × ρ = ∂tρ
to a very good approximation.

[1] G. Fève, A. Mahé, J.-M. Berroir, T. Kontos, B. Plaçais,
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