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Abstract

Modern economies, characterized by their vast output of goods and services, op-
erate through globally interconnected networks. As economies become more com-
plex, so do these networks, coordinating increasingly diverse portfolios of specialized
efforts and knowledge. In this study, we analyze U.S. survey data (2005–2019) to
infer an underlying interdependency tree within the fabric of skill portfolios. Hier-
archically constructed, this skill tree starts from widely needed, foundational abil-
ities, constituting the root, and extends to highly specialized, niche skills required
by select jobs at the extremities. The directionality is defined by the asymmetrical
conditional probabilities of the presence of one skill given the existence of another.
Examining 70 million job transitions in resumes and national surveys, we observe
that individuals tend to delve deeper into these nested specialization paths as they
ascend the career ladder to enjoy higher wage premiums. Nevertheless, we find the
role of foundational skills for such ascent remains pivotal; without reinforcing them,
the anticipated wage premiums may vanish. Hence, we further differentiate nested
skills from others, with the former building on common prerequisites while the lat-
ter does not, and analyze disparities in these skill gaps across different genders and
racial/ethnic groups. Our analysis reveals a growing and concerning fragmentation
in the divide between these two skill groups over the past two decades, suggesting
further polarization within the job landscape [1]. Our findings highlight the critical
role of robust foundational skills as a stepping stone to specialization and the eco-
nomic advantages it can confer, reinforcing the need for balanced skill development
strategies in complex economies [2].

∗Correspondence can be sent to hyejin.youn@kellogg.northwestern.edu.
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Introduction

Complexity and specialization are foundational to the narrative of economic growth and
innovation [3–6]. As society advances, creating and maintaining sophisticated goods,
services, and infrastructure, these socio-economic complexities have surpassed what indi-
viduals can embody and manage on their own [7, 8]. It is no longer feasible for individuals
to master universal expertise across all areas. For economies, this means developing deep
divisions of labor and knowledge that first distribute knowledge across people and then
coordinate this distributed knowledge in teams, firms, and value chains [9–12]. For indi-
viduals, this means specializing, and deciding which skills to acquire over long educational
and work trajectories has become increasingly important [13]. As such, human capital is
far from an isolated entity but an interdependent ecosystem of skills and knowledge in
economies.

This leads to research questions: What does the structure of these interdependencies
look like? And, more importantly, what implications does this nested structure carry?
Division of labor, division of knowledge, and the existence of such an interdependency web
are not in doubt as they manifest in education and career paths in a way we experience
every day, shaping social and economic systems [1, 14]. However, though the framework
may seem intuitive, it is essential to note that the hierarchical layout of skills reflected
in job roles has often been assumed rather than empirically evidenced.

Emerging research aimed at understanding the network architecture of human capital
has yielded insights into the detailed tasks that individuals perform at work and the skills
they require to do so [15–23]. Nevertheless, a granular understanding of workers’ skill
trajectories and their resulting impacts on individuals remains an ongoing area of explo-
ration. Furthermore, these frameworks aim to capture complementarities or synergies
between capabilities, knowledge, and skills [15, 17, 20, 24, 25]. That is, jobs combine
skills that complement one another. We contribute to these ongoing efforts by construct-
ing a directed skill network that expresses how skills build or depend on one another,
conceptualizing trajectories with conditional probability.

In this paper, we propose that the skill composition of jobs not only reflects comple-
mentarities but also the innate cognitive constraints of how individuals learn. That is,
jobs not only combine synergistic skills but also skills that build on one another. This
aligns with an understanding of skill acquisition as a cumulative, sequential trajectory
that builds pyramidal skill structures where higher-level skills are nested in most basic
layers of expertise [26]. Students are taught calculus only after they have mastered the
basics of algebra and geometry. We infer such dependencies by analyzing how skills co-
occur in jobs and the construction of asymmetric skill networks in which the directed
arrows describe skill dependencies.

These dependencies turn out to integrate one of the core concepts of traditional hu-
man capital theory into the network-based complexity approach: human capital speci-
ficity. Since its inception, the distinction between general and specific skills has been a
hallmark of human capital theory, explaining why market economies typically underinvest
in general skills [27], why acquiring specific skills creates hold-up problems [28], and why
workers often face earning losses when they are displaced from their jobs [29]. However,
this distinction also matters because general skills constitute a foundational layer in an
individual’s human capital, on top of which more specific skills can be developed. Just
like the way mastering calculus requires a prior understanding of algebra and geometry,
these education and career paths are both sequential and cumulative, building on each
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other, and thus create a high-dimensional space of possibilities for job opportunities [26,
30].

The sequential nature of skill trajectories has important implications for professional
development and, therewith, socio-economic outcomes because they mean that certain
career paths are only feasible after prior investment in foundational skills [1, 14, 31–34].
As a consequence, specialization entails not just an increase in the volume of learning and
investments in education and training [7] but also the existence of structured, sequential,
and nested cumulative paths that can either enable or restrict specific career trajecto-
ries. These structured pathways systematically shape professional development and thus
the socio-economic landscape at large, leading not only to differential rewards but also
differential accessibility and feasibility of career options based on earlier choices [1, 14,
32–34]. Thus, to succeed in this complex environment, individuals must acquire the right
set of skills, knowledge, and abilities [20, 30, 35–39]. Yet, the most sought-after skills in
today’s economic and social sphere are often not readily accessible but are instead nested
within specific domains, requiring a progressive accumulation of knowledge and expertise
to unlock.

In this paper, we show that this hierarchical network yields a description of human
capital that not only recovers broad, well-established job categories but also helps pre-
dict career transitions and wage curves. To do that, we analyze skill portfolios and their
underlying structures using publicly accessible national surveys complemented by a pro-
prietary dataset. We differentiate specialized skills, those required by select occupations,
from general skills, those widely required across occupations (Fig. 1). We then construct a
nested hierarchical structure of skill dependencies, employing conditional probabilities of
the presence of one skill given the existence of another in occupations [40]. Our method
reveals that not every skill is embedded in a nested structure, resulting in a partially
nested hierarchical structure among skills (Fig. 2). Therefore, we quantify each skill’s
contribution to the overall nested architecture of the network and find that skills con-
tributing significantly to the nested architecture are rewarded most (Fig. 3), echoing the
nesting nature of economic complexity [41, 42].

By examining three different datasets (median occupational ages, synthetic birth co-
horts of individuals, and 70 million job transitions in resumes), we uncover that nested
branches are evidence of specialization and career advancement. That is, as individuals
progress up the career ladder, they need to acquire and apply skills on nested specializa-
tion branches (Fig. 4). Moreover, we find most of the wage premiums for these nested
specializations are conditional on foundational, general prerequisite skills they are nested
in, unlike unnested specializations without prerequisite skills (Fig. S30). This pattern
suggests deeply rooted structural disparities in race/ethnicity and gender (Fig. 6). Fi-
nally, we examine structural changes in the skill network over time and find a wider gap
between nested and unnested branches, suggesting potential barriers to upward mobility
(Fig. 7).

Structural properties of skill nestedness in human capital can provide actionable in-
sights. The methodologies we employ introduce a scalable metric for skill categorization,
enabling our analysis to extend to more granular levels. The nestedness metric effec-
tively captures shifts in dependency intensity, providing a nuanced view of labor market
polarization. As data on workplace skills, knowledge, capabilities, and tasks become
increasingly granular, our approach extends to analyzing skills at finer resolutions, eval-
uating their diverse contributions to nestedness. This capability to identify changes in
skill requirements across occupations complements the traditional context-informed cate-
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gories, which may not adjust as readily to these changes; the flexibility and adaptability of
our framework are useful for understanding the evolving landscape of skills and its impact
on career development and socio-economic disparities. As the labor market continues to
evolve, with new skills emerging and older ones becoming obsolete, our model acts as a
comprehensive and dynamic tool for tracking these shifts and their wider implications.

Results

Figure 1: Skill Level Distributions and Dependencies. (a-c) Average number of occupations
requiring each skill level for the three groups (see SI Section 1 for details.) Skills are grouped based on
their characteristic skill level distribution shapes, exemplified by the insets, and labeled as General (31
skills), Intermediate (43 skills), and Specific (46 skills). The shapes indicate that Specific skills (blue)
are needed only in a few jobs, while most jobs require high proficiency in General skills (red). (d)
Schematic illustrating our inference method for dependency between skill pairs using the asymmetric
conditional probability of one skill being required given another. For example, if requiring Math skills
is more probable given the presence of Programming (compared to the reverse), we infer a directional
dependency: Math → Programming, weighted by the level of asymmetry (see Methods). Similarly, Oral
Expression → Negotiation, but Math ↛ Dynamic Flexibility, as their presences are independent events,
that is, 𝑃(Math|Dyn. Flex.) = 𝑃(Dyn. Flex.|Math).

Skill Generality (Individual Occurrences)

The distinction between general and specialized skills is widely acknowledged, but a
systematic quantification of this divide has been lacking [36, 43–51]. Therefore, our
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study starts with examining, quantifying and classifying the generality of skills based on
their breadth of application across occupations, using publicly available survey data from
the U.S. Bureau of Labor Statistics (BLS). These surveys provide detailed observations
on the job requirements for thousands of occupational titles, including the importance
and required level of each skill, knowledge, or ability necessary for workers to perform
their occupational tasks.

Figure 1 illustrates the existence of skills with varying degrees of occupational demand,
characterized by their level distribution shapes across occupations with broad versus
narrow applications. Here, demand denotes the number of occupations requiring the
skill at a given level, ranging from 0 to 7. Specialized skills, such as Fine Arts and
Programming (blue), are required only by select occupations, often at high levels (6 or
7), but not across a broad range of occupations. This leads to a distribution shape that
primarily peaks at the 0-1 levels with a long tail. In contrast, skills considered general
(red), such as Oral Expression and Critical Thinking, are widely needed at elevated
levels, with distributions that peak at levels 3-4, indicating their general applicability
across most jobs.

To systematically classify skills, we group them based on similar level distribution
shapes, which we interpret as indicators of broad versus narrow utility of skills (See
Methods). Figure 1 (a-c) show distribution shapes for the resulting skill groups, calcu-
lated by averaging the number of occupations that require the given skill levels within
each group, which sketches the distinct level profile curve of that skill group. The in-
set examples demonstrate that some skills are specialized, meaning they are not widely
required across occupations but are critically needed at high levels in specific job con-
texts. These skills are identified and grouped into the specific skill set. In contrast, skills
relevant to a wide spectrum of roles are labeled as the general skill set.

These classifications, detailed in SI-Table S1, align with our common understanding
of general and specialized skill categories. Nevertheless, we ensure the robustness of our
findings by testing our results against different group sizes and clustering algorithms (see
SI Sec. 1). In addition to the distribution-based approach, skill generality can also be
measured by the median skill levels required across occupations. For example, the median
level for general skills is 3.34, for intermediate skills, it is 2.37, and for specific skills, it
is 0.87, reflecting the skewed shape of niche skills. In the following, we additionally show
that these generality measures are consistent with network-based measures of generality
[52]. Throughout the paper, our results are color-coded for consistency: general (red),
intermediary (gray), and specific skills (blue).

Skill Hierarchy (interdependency)

The disparate skill level profiles captured by our empirical generality skill groups suggest
a hierarchical structure among skills, with some serving as prerequisites for others. This
hierarchy has been a longstanding topic of interest in fields such as labor economics,
sociology, and management, but it has not been systematically analyzed [36, 43–50,
54–58]. As such, we propose a method to quantify these relations by calculating how
often occupations that require niche skills also require general skills and compare this to
the inverse—how often needing general skills predicts the need for certain niche skills.
If general skills are indeed prerequisites for niche skills, much like how most college
curricula have fundamental courses preceding specialized ones, we should expect to find
an asymmetry in these probabilities.
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Figure 2: Skill Dependency Hierarchy. (a-b) Dependency hierarchy is constructed from the aggre-
gated weighted directions of all skill pairs. Node sizes are proportional to education levels and colored
by the groups in Fig. 1. A node’s horizontal and vertical positions are, respectively, its educational
attainment and local reaching centrality. Defined as the proportion of the skills reachable from each
node or the number of interdependent skills, the centrality is a reasonable indicator for skill generality
[52]. b shows the backbone of the network for better local visualization, while c shows the full network
with normalized weights. (c-d) Reachability (arrival probability) from each skill to Programming, Ne-
gotiation, and Repairing (highlighted) [53]. Dark hues indicate a higher likelihood of arriving at the
focal skill (see Methods). Contrary to the well-nested Programming and Negotiation, Repairing does
not predominantly rely on general skills, indicating its unnested nature.

We operationalize the pairwise dependencies between skills using the information
asymmetry in occupational skill requirements, following [40]. The approach involves
calculating the conditional probability of requiring one skill (𝑠𝑘𝑖𝑙𝑙𝐴) given the presence
of another skill (𝑠𝑘𝑖𝑙𝑙𝐵), denoted as 𝑝(𝑠𝑘𝑖𝑙𝑙𝐴 |𝑠𝑘𝑖𝑙𝑙𝐵), and comparing it to the reverse
probability, 𝑝(𝑠𝑘𝑖𝑙𝑙𝐵 |𝑠𝑘𝑖𝑙𝑙𝐴). This comparison allows us to assign directionality to the
skill dependencies. If skill 𝐴 is contingent on skill 𝐵, meaning that the application or
acquisition of skill 𝐴 is dependent on that of skill 𝐵, then 𝑝(𝑠𝑘𝑖𝑙𝑙𝐴 |𝑠𝑘𝑖𝑙𝑙𝐵) will be greater
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than 𝑝(𝑠𝑘𝑖𝑙𝑙𝐵 |𝑠𝑘𝑖𝑙𝑙𝐴).
In cases where skill 𝐴 and skill 𝐵 are independent events across occupations, the direc-

tion disappears as the conditional probabilities will be equal. This is because when two
events are independent, 𝑝(𝑠𝑘𝑖𝑙𝑙𝐴 |𝑠𝑘𝑖𝑙𝑙𝐵) is expressed as 𝑝(𝑠𝑘𝑖𝑙𝑙𝐴)𝑝(𝑠𝑘𝑖𝑙𝑙𝐵), which is then
the same as 𝑝(𝑠𝑘𝑖𝑙𝑙𝐵 |𝑠𝑘𝑖𝑙𝑙𝐴). Similarly, if two skills are rarely applied together within
occupations, both base probabilities will be close to zero, 𝑝(𝑠𝑘𝑖𝑙𝑙𝐴, 𝑠𝑘𝑖𝑙𝑙𝐵) ≃ 0, indicat-
ing no statistical dependency between them. In both cases, co-occurrences are purely
a result of their random independent events of either occupational need or individual
workers’ properties and, thus, not influenced by any underlying relationship. Therefore,
an asymmetry in the conditional probabilities reveals how skill 𝐴 relies on skill 𝐵 for
its application or acquisition, indicating the importance of the order in which skills are
acquired or applied.

It is important to acknowledge that this directionality does not provide a detailed
understanding of the underlying process. The directionality could arise from the acqui-
sition sequence, such as the learning process, or the requirement sequence through job
seniority in organizations. What’s happening at the individual worker level is inferred
rather than directly measured in the current study because our empirical evidence is
based on occupational attributes. Disentangling these factors would require more micro-
level analyses, yet it is a promising avenue for future research. In this study, we focus on
providing a phenomenological understanding of the structure of skill dependencies and
their consequences for individuals.

Figure 1 (d) illustrates our inference method using select examples. Given the skill
level distributions, the conditional probability of math skills given programming skills,
𝑝(𝑠𝑘𝑖𝑙𝑙𝑚𝑎𝑡ℎ |𝑠𝑘𝑖𝑙𝑙𝑝𝑟𝑜𝑔), is higher than 𝑝(𝑠𝑘𝑖𝑙𝑙𝑝𝑟𝑜𝑔 |𝑠𝑘𝑖𝑙𝑙𝑚𝑎𝑡ℎ), resulting in the directional
dependency 𝑚𝑎𝑡ℎ → 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔. This direction is consistent with our common un-
derstanding and educational curriculum; to understand the complexity of a program, we
need to have a minimum knowledge of math. The same holds true for Negotiation skills
being conditional on Oral Expression. Moreover, developing and applying Math skills de-
pends on advancements in Deductive and Inductive Reasoning, which are in the general
group (red) of Fig 1 (c). These create dependency branches, suggesting we will expect
more than one depth to the hierarchical network.

These cross-group dependencies resemble biological mutualistic interactions where
specialist species (i.e., niche skills) preferentially interact with generalists (i.e., general
skills), suggesting a nested hierarchical skill integration [42, 59–61]. However, the result
is not always obvious; not every skill exhibits such dependency chains. Some specialized
skills, like Dynamic Flexibility, may not be contingent on more general skills like mathe-
matical prowess, which is again consistent with our common understanding. This can be
calculated as 𝑝(𝑠𝑘𝑖𝑙𝑙𝑑𝑦𝑛. 𝑓 𝑙𝑥 |𝑠𝑘𝑖𝑙𝑙𝑚𝑎𝑡ℎ) and 𝑝(𝑠𝑘𝑖𝑙𝑙𝑚𝑎𝑡ℎ |𝑠𝑘𝑖𝑙𝑙𝑑𝑦𝑛. 𝑓 𝑙𝑥). We find these two are
independent events in which both expressions equal 𝑝(𝑠𝑘𝑖𝑙𝑙𝑑𝑦𝑛. 𝑓 𝑙𝑥)𝑝(𝑠𝑘𝑖𝑙𝑙𝑚𝑎𝑡ℎ), resulting
in no directional dependency in our methodological framework.

Figure 2 (a) shows the backbone of the resulting hierarchical network obtained by
aggregating the empirically derived dependencies across all skill pairs. The network
extends from general to specialized skills, incorporating their directional dependencies
(the full network is shown in Fig. 2 b). Nodes are colored by generality group as in Fig. 1
and positioned based on educational requirements (x-axis) and Local Reaching Centrality
(y-axis), a measure of skill generality denoting the number of other skills reachable from
the focal skill [52]. The network reveals distinct specialization paths and a partially
nested architecture. Methods and SI Sec. 3 provide detailed parameters for statistical
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filterings and the threshold for directionality and backbone structure for Fig. 2.
Constructing a network structure from these conditional directions provides a method-

ologically consistent definition of general and specific skills using reaching centrality [52]
as an alternative measure for generality, as this can reflect the mass of interdependent
nodes on the focal node (0.71 correlated). Chains of dependencies for select examples
are also well embedded as expected, such as Deductive Reasoning to Math skills to Pro-
gramming, exemplifying the nesting of skills in the skill hierarchy. Negotiation has a
different set of dependencies compared to Programming, including Systems Analysis.
Supplementary Information Secs. 3.4 and 3.5 offer brief case studies highlighting the role
of dependency chains in career progress and specialization. Finally, we include the fully
labeled visualizations of Fig. 2 (a-b) in SI Figs. S15 and S14 for further examinations.

Skill Nestedness Contributions

Figure 3: Skill Nestedness Contributions Score. Skills’ nestedness score is highly indicative of
their generality (a), risk of automation (b), and their value (c-d). Skill Nestedness Contributions are
measured following [42]. Generality is measured by Local Reaching Centrality, as in Fig. 2, Automation
risk Index and Value for each skill is calculated, following [22, 62, 63]. We divide skills into nested,
positive contributions, and un-nested, negative contributions toward the nested skill structure.

Figure 2 also illustrates that the alignment of skills within a nested structure is not
uniform. While some skills, such as Programming and Negotiation, seamlessly integrate
with general skills in a nested pattern, others break from this arrangement, creating an
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uneven, tree-like hierarchy. This reveals a partially nested architecture in human capital,
indicating that specific skills don’t consistently subordinate to general skills [42, 64].

To systematically quantify and differentiate these observations on skills, we introduce
the ecological measure of nestedness and individual contribution scores where special-
ist species engage preferentially with generalists [59]. This analogy extends to the skill
ecosystem, where general human capital forms the bedrock for the acquisition and ap-
plication of more specialized skills [42, 60]. Therefore, we first measure an overarching
nested structure in human capital 𝑁. There are a number of different ways to measure
nested structures. We employ several measures commonly used in ecology, such as the
overlap index (𝑁𝑐), checkerboard score, Temperature, and NODF, to ensure the analysis
withstands the test of different nestedness measurements [42, 65–67] (See SI Sec. 2 for
the full analyses and robustness tests).

Next, we calculate a skill’s nestedness contribution score 𝑐𝑠 to assess its alignment with
the overarching nested structure 𝑁 [42]. This score is derived by comparing the actual
nestedness (𝑁) with a null expectation where a focal node 𝑠 is randomly distributed across
occupations without any underlying dependencies such as 𝑝(𝐴|𝐵), which is expressed
as 𝑐𝑠 = (𝑁− < 𝑁∗

𝑠 >)/𝜎𝑁∗
𝑠 . Here, 𝑁 denotes the empirically observed nestedness in

our survey dataset, while < 𝑁∗𝑠 > and 𝜎𝑁∗
𝑠 are the average and expected standard

deviation of the nestedness of the random condition, respectively [42]. We conduct 5,000
simulations for < 𝑁∗𝑠 > and 𝜎𝑁∗

𝑠 . In each simulation, occupations using the focal
skill 𝑠 are randomly selected, keeping the skill degree constant. This method allows us
to maintain consistency with actually observed patterns of niche and general skills but
destroy the dependencies such that we identify how dependencies positively/negatively
contribute to the overarching nestedness structure.

Skills with a high nestedness contribution (𝑐𝑠) are foundational to a hierarchical frame-
work of human capital, suggesting a systematic progression from general to specialized
skills toward layered learning paths that demand lengthy mastery effort [42, 68]. Such
a pattern suggests a complex process of human capital formation characterized by in-
terdependent skill acquisition pathways. These pathways are possibly essential for the
emergence of specialized skills. In addition, they have profound implications for wages
and education and contribute to disparities in demographics and opportunities [69].

Figure 3 (a) shows that highly specialized skills (blue) do not contribute equally to
the overall nested structure and are thus divided into those with negative and positive
contributions. As expected from Fig. 2, skills like Programming exhibit a positive impact
on nestedness, indicating a strong reliance on vertical dependencies within their applica-
tion domains. In contrast, skills like Repairing, which also belong to the group blue in
Fig. 1, are not heavily dependent on such structured dependencies and are quantified as
having a negative contribution to nestedness.

We corroborate these findings with simulations of arrival probability from each focal
skill. Figure 2 (d-f) highlights the distinct interaction patterns among two types of
specific skills: those that are primarily nested under general skills, such as Programming
or Negotiation, and those that primarily interact with other niche skills, such as Repairing.
We calculate arrival probabilities to the focal skill nodes and color other nodes according
to their arrival probabilities to the focal node (see Methods) [53]. Unlike the well-nested
Programming and Negotiation skills, only a handful of other skills are relatively more
easily reachable from Repairing than other skills, which are mostly in the same parts of
the skill tree.

Figures 3 (b-d) demonstrate that the nestedness score, a structural attribute, can
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translated into socio-economic properties. These findings suggest that skills with high
nestedness contributions are more likely to be associated with lower risks of automation
and higher wages, as they are integral to a deeply interconnected structure that demands
considerable investment for mastery [62, 70, 71]. Such skills play a crucial role in creating
a distinctively hierarchical human capital with vertically intricate dependencies, fostering
specialized niches that potentially affect wages, education, and demographics. In contrast,
skills with negative nestedness contributions, such as Repairing, do not exhibit the same
level of dependence on structured hierarchies and may be more susceptible to automation
and lower wages. This highlights the importance of considering not only the generality of
skills but also their position within the skill hierarchy when assessing their socio-economic
implications.

The relationship between nestedness contributions and socio-economic outcomes un-
derscores the significance of the skill hierarchy in shaping the labor market. By under-
standing the structural properties of skills and their interdependencies, we can better
predict the impact of technological change on different skill domains and inform policies
aimed at promoting skill development and mitigating the risks of job displacement.

For the remainder of this paper, we simplify the exposition by defining skills according
to their skill group and the sign of their nestedness score 𝑐𝑠. Skills with 𝑐𝑠 > 0 are indexed
as nested, while those with 𝑐𝑠 < 0 are considered un-nested skills. We continue to refer
to general skills as such since all skills in that group have positive nested scores.

Skill Categories in Career Trajectories

In this section, we examine how the derived skill structure uncovers individual career
trajectories through three empirical observations: median ages for occupations, synthe-
sized birth cohorts from individual surveys, and job transitions in resumes. Each data
source provides unique strengths and weaknesses, which, when combined, complement
each other and sketch a coherent picture of career paths.

We begin our analysis with occupational ages, as it is reasonable to expect progression
and skill development to correlate closely with age due to the substantial investment of
time and the dense set of prerequisites they demand [30, 72, 73]. Figure 4 (a-c) shows
the levels of general, nested, and unnested skills in occupations, segmented by their
median ages, computed using the Current Population Survey (CPS) (see Methods). The
outcomes align consistently with our predictions [30]. Occupations with median ages over
30 demand high levels of both general and nested skills, while unnested skills, supposedly
lacking interdependencies, do not demonstrate any significant correlations with ages.

To examine if our results hold across career trajectories, we construct synthetic birth
cohorts using the CPS microdata, which provides yearly repeated cross-sectional surveys
but does not allow longitudinal tracing of respondents long enough for us to trace a few
decades. Therefore, we connect snapshots of surveys through their birth years to mimic
career trajectories [74, 75]. For example, we construct a 1967 cohort for Fig. 4 (d-f),
excluding observations of non-full-time respondents and those below age 17 or above 55.
We then repeat this for different birth cohorts.

Figures 4 (d-f) show the skill composition of synthetic birth cohorts from 1980 to
2022, with insets for the 1967 cohort. Consistent with the findings in Fig.4 (a-c), age 30
emerges as a significant transition point. General and nested skills concurrently increase
sharply until around 30, when unnested skills experience a moderate decrease. After the
age of 30, the rise in overall skill levels stabilizes.
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Figure 4: Skill Compositions with Occupational Ages and Career Trajectory. (a-c) Average
skill levels of occupations (and 95% confidence intervals), segmented by occupations’ employees’ median
ages. Levels of general and nested skills rise with an occupation’s median age, while unnested skills do
not vary across median-age groups. (d-f) Average skill levels (and 95% confidence intervals) against age
in synthetic birth cohorts. The insets isolate cohorts born in 1967, whereas the main figures average
across all cohorts. Notably, general and nested skills rise markedly until around age 30, with declining
unnested skills. Moreover, gender gaps also become more pronounced around 30. (g-h) Average skill
levels (and 95% confidence intervals) over identified job sequences as documented in resumes for general,
nested, and unnested skills. (i) Changes in skill levels in consecutive job transitions. Skill profiles are
typically stabilized within the initial five jobs. The grey triangles indicate bootstrapped results where
the sequences of jobs are randomized.

The advantage of the second dataset is the information on both the age and demo-
graphics of individuals, allowing us to decompose our findings by gender. Differentiating
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skill trends by gender uncovers a gap in specializations that emerges around 30. Men
continue to grow their general and nested skills until their 50s, whereas for women, the
increase in these skills hits a plateau in their early 30s, the typical age range for first-time
mothers in the US. Supplementary Information Secs. 7.1 and 7.2 further investigate the
influence of parenthood on male and female workers by slicing data by those with and
without children as well as the influence of sorting into jobs based on schedule and work-
ing hours, respectively. These findings are robust to conditioning out yearly economic
conditions (SI Fig. S27). In the following sections and in Fig. S53, we offer more detailed
breakdowns of these gender disparity trends with respect to race and ethnicity. Notably,
education does not fully account for the growth in skill documented by our analysis. As
SI Fig. S28 shows, the share of educational attendance is negligible after the age of 30,
while skill growth continues. Similar patterns, in more modest magnitudes, emerge for
workers with no more than high school diplomas (SI Fig. S29.)

Lastly, we complement our findings using resume datasets that record individual job
transitions, encompassing over 70 million job transitions documented in over 20 million
resumes. While these data provide a direct record of individual workers’ job sequences,
they are not publicly accessible, do not include age or gender information for detailed
analyses, and are known for biased sampling, favoring more nested job roles. Hence, while
valuable for corroborating previous findings, they cannot replace the previous datasets.

Figures 4 (g-h) show the average skill levels required in job sequences held across ca-
reer paths, and Fig. 4 (i) displays changes in skill requirements for the 𝑖th job transition,
Δ𝑖, excluding job transitions within the same occupation (Δ𝑖 = 0). On aggregate, career
journeys unfold with increasing stocks of both general and nested skills (𝑐𝑠 > 0), sug-
gesting that nested specialization paths require simultaneous increases in nested specific
skills along with their dependency skills. In addition, we find skill portfolios typically
stabilize within the first five job transitions (Δ𝑖>5 ≈ 0), and in the first three jobs (𝑖 < 3),

nested skills require more general skills than later (Δ
𝑔𝑒𝑛𝑒𝑟𝑎𝑙

𝑖<3 ≫ Δ𝑛𝑒𝑠𝑡𝑒𝑑
𝑖<3 ), after which they

become comparable (Δ
𝑔𝑒𝑛𝑒𝑟𝑎𝑙

𝑖>3 ≈ Δ𝑛𝑒𝑠𝑡𝑒𝑑
𝑖>3 ). The continued growth in general skills across

career paths suggests that these skills need to be continuously enhanced regardless of
career stage. As a benchmark, we create bootstrapped job sequences (gray marks around
zero) that randomize the order of jobs as if there were no career development, confirming
that the observed trends are indeed attributed to career developments (see SI Sec. 4.1 for
details).

To explore nested specialization, we choose registered nurses (RNs) and nurse prac-
titioners (NPs) by analyzing resume data to understand how skill and wage differences
manifest in career trajectories. Supplementary Information Fig. S17 shows the additional
skills (necessary to prescribe medicine and diagnostic tests) in higher-paying NP positions
appear in nested paths with growth in both general and dependent niche skills such as
medicine, therapy, biology, science, and chemistry (see SI-Sec. 3.4 for the detailed anal-
ysis). In addition, SI Sec. 3.5 makes a case wherein insufficient levels of certain general
skills preclude the development of the dependent niche skills, once again highlighting how
our framework teases out pathways for developing human capital.

All three empirical observations consistently depict nested specializations (i.e., growth
in both general and nested skills) throughout career trajectories, while unnested skills are
left relatively underdeveloped. The resume analysis offers direct evidence of a recurring
yet counterintuitive pattern: valuable specialization is not just about developing niche
skills; it is conditional on advancing the required more general skills. This suggests that
the conventional model, where basic general skills precede advanced specialized skills, is
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not entirely accurate. Instead, career paths tend to unfold with increasing emphasis on
general skills and their dependent, nested skills. While research has emphasized the role of
education, Fig. 4 (and SI Figs. S28 and S29) reveal that skill advancement continues long
after the age of schooling, suggesting nested specialization pathways operate through
but also beyond education [30, 35, 37, 75, 76], challenging the commonly held role of
education in developing human capital.

One might argue that our findings are driven by management/administration jobs,
which are typically undertaken later in careers with higher wages. To ensure they do
not drive our findings, we repeated the entire analysis without these factors and found
consistent results (see SI Sec. 9.1). Also, we repeated the entire analysis, excluding social
skills, and again our results remained robust, suggesting that our findings are attributed
to the intrinsic structure of skills rather than the influence of particular social skills or
managerial jobs (see SI Sec. 9.2 for the full analyses).

Skill Categories and Wage Premiums

Figure 5: Skill Wage Premiums and Educational Requirements. (a) Occupations’ average
annual wage and (b) required education levels plotted against skill levels (with 95% confidence intervals),
and their respective slopes (blue bars) in (c-d), and standard errors. The substantial wage premiums
and higher educational requirements associated with nested specializations much reduced (shaded bars)
after controlling for general skill levels (insets), implying that the bulk of investments in and returns to
specialization are conditional on the accumulation of general skills. The initial wage penalty for unnested
specializations turns into a wage premium once general skill levels are controlled for.
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Figure 5 (a-b) supports our premise that nested specialization patterns are associated
with wage premiums. In particular, we find that educational requirements and average
annual wages tend to rise with rising requirements of nested skills in an occupation.
However, a closer examination of the observed wage premiums for nested skills (blue bar)
in Fig. 5 (c) reveals that such premiums almost fully disappear when we control for the
occupation’s general skill requirements (shaded bar). This suggests that general skills are
integral to the deployment of nested skills. In contrast, unnested skills (𝑐𝑠 < 0) seem to be
associated with wage penalties. However, controlling for general skill requirements now
turns this penalty into a wage premium that is comparable in magnitude to the nested
skill premium. This shows that unnested skills are also valued in the labor market.
However, their wage premium is not immediately apparent because unnested skills tend
to correlate with an absence of general skills.

Further analyses in SI Sec. 5 demonstrate that these results are robust to controlling
for education, training, and workplace experience and hold across subsamples of major
occupational groups. Again, the results are not driven by managerial occupations or
social skills, usual suspect factors in wage premium (see the results in SI-Table S5, and
SI Figs. S31-S33, S38, S61, and S63).

Disparity in Demographic Groups

Figure 6: Skill Disparity in Demographic Distribution of race/ethnicity and gender (a)
The relative average skill level, education level, and weekly wages for Asian, Black, and Hispanic/Latinx
workers compared to White workers (expressed as a ratio). (b) The relative average skill level, education
level, and weekly wages for female workers compared to male workers. 95% confidence intervals for each
estimated ratio are calculated by bootstrapping subsamples (see Methods). These differentials are robust
to measurement (SI Fig. S48), follow similar age trends seen in Fig. 4, and are robust to time-variant
economic factors (Fig. S53.) SI Figs. S50 and S51, further show the gaps have narrowed over time.

To gain a better understanding of the role that skill differences may play in labor
market inequalities, we examine how skills vary across demographic groups. Figure 6 (a)
compares skill, education, and wage differences across race/ethnic groups against their
White peers. The results, first of all, show large wage gaps between Black and Hispanic
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workers on the one hand and Asian workers and the baseline of White workers on the other
hand. These wage gaps are accompanied by employment in jobs with lower requirements
of nested skills for Black and Hispanic workers. However, for Hispanic workers, there is
another potentially important factor: elevated unnested skill requirements.

We explore this further in a brief case study of how language-skill requirements may
keep workers out of jobs that require certain nested skills (see Supplementary Information
Sec. 3.5). To do so, we leverage the hierarchical nature of our skill network. This allows us
to distinguish between nested skills that depend on (general) language skills and nested
skills that don’t. Within the group of Hispanic workers, we find particularly large gaps
in language-dependent nested skills compared to other nested skills for workers who have
recently moved to the US. Such workers may instead develop un-nested skills, leading
to “skill traps” that are associated with long-run wage penalties (SI Fig. S30). Taken
together, these findings indicate that closing wage gaps for Black workers may require
different solutions than for Hispanic workers.

Figure 6 (b) focuses on skill gaps between men and women across social groups. The
most pronounced disparities exist in nested and unnested specializations. Except for
in the Asian subsample, women tend to work in occupations that require higher levels
of education and general skills than men. However, this does not translate into higher
levels of nested skills, where women tend to fall behind men. These disparities are likely
to contribute to the well-known gender wage gap we observe in the right-most panel.
Encouragingly, this gap has narrowed over time, as demonstrated in SI Fig. S51. However,
the disconnect between education and general skills on the one hand and wages and nested
skills on the other is puzzling. Supplementary Information Sections 7.1 and 7.2 probe
deeper into these gender gaps. This analysis suggests that parenthood, as well as the fact
that women often work in jobs with more regular and predictable work schedules, impact
both wages and skill development [77–79]. In fact, whereas having children is associated
with reduced general and nested skills for women, men with children tend to have higher
levels of general and nested skills than men without children in the household. When
it comes to work schedules, Similarly, we find that the association between gender and
nested skill requirements at work is reduced by over a third when we control for irregular
hours and overtime in an occupation.

Finally, Section 6 of the Supplementary Information studies the geographic distribu-
tion of skills, showing that general skills concentrate in densely populated urban areas.
This finding is in line with prior work that highlights the diverse and complex economic
activities that are found in large urban economies [24, 80–84]. Moreover, this greater
concentration of general skills in large cities can account for about one-third of the well-
established urban wage premium [85].

In summary, the analysis of skill categories across demographic groups reveals a com-
plex interplay between skills, education, and wages that leave an imprint on macro-level
labor market disparities between societal groups. Although a deeper analysis of the
causes and consequences of these disparities is beyond the scope of the current paper,
our results highlight that analyzing skill gaps solely through the lens of educational at-
tainment overlooks aspects of human capital that have an important impact on a variety
of labor market disparities. Moreover, the complex interaction between wages and skill
types suggests that considering such aspects may provide valuable insights for labor mar-
ket policies: addressing long-lived disparities in the labor market may require targeted
interventions that go beyond traditional educational programs and instead consider how
different skill categories shape labor market outcomes.
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Widening Gap in the Skill Structures

Figure 7: Historical Changes in the Skill Structure (a) Distribution of skill levels for different
skill groups in 2005 and 2019. The arrow indicates the shift in average skill levels from 2005 to 2019.
Unlike the positive shifts in general skills, the shift in specific skills is not as noticeable. (b) Distribution
of skill levels for nested and unnested skills in 2005 and 2019. The arrow shows the shift in average skill
levels from 2005 to 2019. While nested skills follow the shift in general skills, the demand for unnested
skills has decreased. (c) Comparison of skill hierarchy structures between 2005 and 2019. The changes
in the structure of skill hierarchies over time highlight an increasing divide in the dependencies of nested
and unnested skills and the widening gap between them.

The historical changes in the skill structure, as shown in Figure 7, raise concerns given
the important roles that nested and unnested specializations play in career progression
and demographic and regional disparities. These changes reignite the debate over the
widening job polarization [1, 2, 17].

Figure 7 (a) indicates an increase in the demand for general skills, as evidenced by the
shift from the dotted to the solid distribution. This increase in demand for general skills
corresponds to higher wage premiums over the recent decade, suggesting that the economy
has been rewarding workers with a broad set of skills (see SI Fig. S39). However, the
seemingly static distribution of specific skills masks underlying changes in the application
of nested and unnested skills. As shown in Figure 7(b), there has been a rise in the
application of nested skills and a decline in the use of unnested skills between 2005 and
2019, reiterating the importance of considering skill interdependencies when analyzing
changes in the skill structure.

These changes have led to a more nested skill structure, as indicated by the decreased
checkerboard score (from 438.67 to 356.4) and temperature (from 40.07 to 31.89), and
increased NODF (from 39.06 to 41.72) and 𝑁𝑐 (from 573,873 to 651,030) between 2005
and 2019 [65, 66]. A lower checkerboard score and temperature, along with a higher
NODF, signify a more nested structure.

However, the shift towards greater overall nestedness has been uneven across differ-
ent skill sets. Figure 7 (c) demonstrates this as a widening gap between the nested and

15



unnested branches over the decades. Supplementary Fig. S56 (b) shows a strengthening
in the connections among nested skills, indicating their growing complexity and mutual
dependence, while SI Fig. S56 (d) reveals weakened dependency chains of unnested skills.
All in all, this trend is observed as a broadening and deepening of nested skill branches
within the hierarchy in Fig. 7 (c), reflecting an increase in the complexity and interde-
pendence of these specialized skill areas [86, 87].

Indeed, the chasm between the two types of specializations has alarmingly broadened
within the educational domain over the last two decades [2, 18, 19]. In response to this, the
structural changes in the hierarchical tree network are concerning, given the significance
of these specializations for future career developments and wage premiums. They reveal
an economy wherein the structure of valuable human capital has grown more nested,
reinforcing barriers to workers without the necessary fundamental skills, who are often
entrapped in unnested specialization pathways (see SI Figs. S30 and S19). The widening
gap between the nested and unnested specialization paths could indicate strongly rooted
chronic disparity.

The increased demand for general skills and the shifting balance between nested and
unnested skills have important implications for workers and policymakers. While the
rising wage premiums associated with general skills suggest that workers who invest in
developing a broad skill set may be better positioned to succeed, the growing importance
of nested skills and the declining use of unnested skills may exacerbate existing inequalities
and create new barriers to entry for certain occupations.

As the skill structure becomes more complex and interdependent, policymakers and
educators must develop strategies to ensure that individuals from all demographic groups
and regions have access to fundamental skill development opportunities. Failing to do so
may exacerbate disparities and hinder economic mobility for certain segments of the pop-
ulation. To mitigate the potential negative consequences of the changing skill structure,
it is crucial to invest in education and training programs that foster both general skills
and unlock valuable specialized pathways. Our results suggest that providing individuals
with a strong foundation in general skills and the opportunity to develop nested special-
izations is essential for navigating the increasingly complex labor market and achieving
better career outcomes.

Discussion

Human capital has traditionally been quantified in terms of years of schooling or work
experience, yielding important insights about wage curves and returns to education [35,
36]. With the arrival of detailed data on tasks that people perform at work and the skills
they require to do so, a more granular assessment of human capital became feasible,
juxtaposing, for instance, cognitive and manual skills, routine and non-routine skills, or
STEM and social skills [71, 88, 89]. However, these dichotomies are often ad hoc, tailored
to test specific assumptions about trends in the labor market, such as mechanization,
computerization, and the rising importance of soft skills.

In contrast, the complexity approach to human capital analyzes labor markets through
network analysis, providing a more comprehensive and data-driven perspective. Under-
standing the network architecture in complex economic systems—spanning technology,
input-output, supply-chain, trade, products, and skills—has yielded insights into socioe-
conomic phenomena [17, 21, 25, 38, 64, 90–94]. These insights both corroborate and
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contest established theoretical frameworks, including the underlying causes of economic
disparities between countries and their potential developmental trajectories by analyzing
trade networks [25, 95]; the pace of technological innovation and economic growth through
technology networks [90, 96]; differences in labor productivity and resilience through the
lens of skill and occupation networks [20, 38]; and economic network resistance and per-
sistence using business networks [21, 23, 42, 97]. These models and methods translate a
range of structural properties into quantifiable and actionable insights.

Our empirical study aims to add a new layer to these structural properties by illus-
trating how connections within these networks are conditional and how structures become
increasingly nested as complexity and specialization grow. This method provides struc-
tural insights into prior empirical findings that cognitive skills are clustered themselves
and valued more highly than physical skills, based on patterns of co-occurrence [15, 17–
21]. Within this networked framework, we observe a system where more central nodes, or
skills, are rewarded more substantially along the network’s nested branches, suggesting
that the value attributed to cognitive skills in previous findings is interdependent with
the increasingly nested structure of the skill network. Consequently, this finding leads us
to move beyond the traditional dichotomy of cognitive versus physical skills towards a
structural classification of skills as either nested or unnested.

Our research thus bridges economic theories that recognize hierarchical structures to
explain progression and wage premiums [35, 36] and the economic complexity model for
understanding economic development [25], where the hierarchical organization of skills
and their societal implications have been taken for granted rather than empirically verified
[20]. Our work aims to offer an empirical framework as a network of skills in which ties
capture skills’ directional interdependencies, distinguishing pathways to specialization.
Notably, we show that relying solely on the information embedded in the network of skills
and occupations allows for a quantification of skills based on the concept of nestedness,
independent of economic and social variables and without any presupposed or context-
informed labeling of skills. Our analysis of wage and demographic disparities shows the
predictive capability of this minimal approach for various socioeconomic factors.

The hierarchical structure and its inherent directionalities add a new dimension to the
rising field of economic complexity, providing a deeper understanding of how knowledge is
accumulated within a population and how its precedence relations between activities are
expressed in the economic activities of a firm, city, region, or country [10, 41, 68, 82, 98–
103]. The directional dependencies that we propose break the symmetry in traditional
co-occurrence networks for a better understanding of structural changes in economic
complexity [25, 81, 95, 98, 104].

In increasingly complex, large teams, social skills become crucial when specialization
requires workers to coordinate with team members possessing different specialized skills
[16, 20, 105–108]. Our framework identifies and locates social skills embedded in the
skill structure along with general and nested skills (SI Fig. S63-a), explaining their re-
cent growth and significant role in wage premiums (see SI Fig. S63-b) [89, 109–117].
Nevertheless, our results go beyond the contributions of social skills and managerial oc-
cupations to wage premiums, as the results are robust to their absence in analyses (see
SI Sections 9.2 and 9.1). Therefore, social skills are valuable not just because of their
role in sociality but because of their structural properties, serving as foundational build-
ing blocks of human capital to enable further valuable specialization and more complex
organizations.

The structural implications of our findings extend beyond individual careers and their
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associated rewards, suggesting potential consequences for not only intra-generation ca-
reer mobility but also perhaps inter-generation career mobility. In this context, Figure 7
presents a disconcerting trend, illustrating the widening gaps across nested branches over
the span of a decade. We speculate that these growing disparities may be attributed to
the increasing complexity of the economy and the deepening of individual specializations.
As the skill structure becomes more intricate and the dependencies between skills more
pronounced, individuals who successfully navigate these nested pathways may reap sig-
nificant benefits, while those who struggle to acquire the necessary skills may face limited
opportunities for advancement, potentially leading to entrenched inequalities that per-
sist across generations. However, we acknowledge that the current study does not fully
underpin these implications due to the lack of detailed datasets and a comprehensive
analytical framework. Therefore, we recognize the need for further research to exam-
ine these critical questions and unravel the long-term consequences of the evolving skill
structure on intra-generation and inter-generation mobility in order to inform policies and
interventions aimed at promoting equitable access to skill acquisition, fostering inclusive
economic growth and mitigating the potential for widening disparities within and across
generations.

There are limitations in inferring the dynamics. First, our current empirical find-
ings do not establish a causal relationship between semantic categories and structural
manifestations, presenting an important question for future research using theoretical
frameworks and computational models. Second, our analysis leverages datasets of occu-
pational “requirements” of skills, that is, skills that are applied, which is not a direct
measure of skill acquisition. In essence, the manner in which skills are learned remains
outside our observational scope. We assume that skills applied in the workplace have
been acquired beforehand but not long before. This suggests that an individual may
have competencies in arithmetic, linear algebra, and programming, which might not be
fully exploited until they progress in their career. Although possible, such instances are
presumed to be rare and not economically sensible, as individuals typically do not seek
to acquire skills that are not immediately necessary, which probably pay less. This pre-
sumption rests on the belief that individuals strive to optimize their earnings and learning
opportunities within their limited time and resources, making the phenomenon of being
overqualified for job requirements relatively uncommon. Fundamentally, we suggest that
there is a reluctance to engage in learning and skill development without direct applica-
tion or compensation; thus, they occur relatively together. Related, our unit of analysis
is jobs rather than individual employees, limiting our ability to discern the co-occurrence
of learning and skill application. Future research could benefit from surveys targeting
employees to gather nuanced data on individual skill portfolios as opposed to relying
solely on job surveys. Finally, our data primarily describe the U.S. labor market, which
has idiosyncrasies in its education system, industrial composition, and urban structure.
How well these findings generalize to other work settings, such as entrepreneurship [118],
and economies, especially those at different stages of development [119], remains a task
for future research.

Essentially, the underlying assumption is that people are less inclined to learn and
develop skills unless these are directly applied or rewarded in their roles. In addition to the
implicit mechanism of learning, our unit of analysis is not the employee but the job. The
lack of granularity in our empirics makes it hard to identify whether learning goes together
with the application of skills. In the future, conducting surveys of employees for detailed
observations of individuals’ skill endowments, rather than job surveys. Finally, our data
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primarily describe the U.S. labor market, which has idiosyncrasies in its education system,
industrial composition, and urban structure. How well these findings generalize to other
work settings, such as entrepreneurship [118], and economies, especially those at different
stages of development [119], remains a task for future research.

In conclusion, our study introduces a novel approach to understanding the structure
of skills in the labor market, shedding light on the pathways to specialization and the
mechanisms driving skill value and resilience. While our study has limitations, it lays
the groundwork for future research to explore the generalizability of our findings and
investigate the relationships between skills, education, and socioeconomic outcomes.

Data and Methods

Datasets

Occupational Information Network (O*NET) includes survey records of job-
oriented attributes and worker-oriented descriptors conducted by The Bureau of Labor
Statistics (BLS) [120]. Job-oriented attributes include educational requirements, work-
place experience, and training. Worker-oriented descriptors include 120 work-relevant
knowledge, abilities, and skills (labeled skills throughout the text for brevity). Each
occupation includes a list of skills with their sophistication levels (or intensity) and the
importance of those requirements, each resulting in an occupation-skill matrix. Our main
analysis uses the level, but the other variable is highly corrected (0.94), and therefore,
our findings are robust to the choice of measurements. We have obtained two versions:
2019, to avoid concerns over contaminating data with signals from the COVID-19 pan-
demic, and 2005, the first version with a consistent skill topology and available education
covering a significant number of occupations.
Occupational Employment and Wage Statistics (OEWS) offers wages and em-
ployment information at different granularity levels (nation-wide, region-specific, and
industry-specific). We have used nationwide, region-specific data for 2005 and 2019 and
combined them with their respective year from O*NET. Note that including and aggre-
gating data from several years before and after 2005 and 2019 does not change our results.
In the resulting combined data, occupational units were aggregated at the 6-digit SOC
codes (OEWS is available at the 6-digit level, while O*NET is available at the 8-digit
SOC level).
Current Population Survey (CPS) is a monthly survey of households conducted by
the Bureau of Census for the Bureau of Labor Statistics. It offers a representative sample
of the population obtained in each round that offers statistics on various aspects of the
labor force [121]. From the Labor Force Statistics component of CPS, we obtain the
median age of workers in occupations for 2019. From the CPS microdata, we acquire em-
ployment and demographic information on households between 1980 and 2020, including
occupation, wage, hours worked, gender, and race/ethnicity information. Matching with
SOC occupational units requires a crosswalk described in the corresponding section.
Burning Glass Resume Data includes 70 million job sequences (8-digit SOC) doc-
umented in 20 million individuals’ resumes between 2007 and 2020 from Burning Glass
(also known as Lightcast). Burning Glass applied AI tools to submitted resumes, digitiz-
ing their text and mapping them to occupational titles consistent with BLS SOC codes,
allowing for easy integration with O*NET data.

19



Skill Generality Groups

For each skill, O*NET reports the required levels needed for workers of each occupation to
perform their tasks. We call the distribution of the number of occupations that require
skill at varying levels the level distribution. The shape of a skill’s level distribution
illustrates its generality across occupations, shown in Fig. 1 (a). As such, we group skills
by their similar distribution shapes by 𝑘-mean clustering algorithms with correlation
metrics. Figure 1 (b) shows the characteristic shapes of each skill group. We provide
three statistical tests for optimal 𝑘 and show the findings are qualitatively robust to some
variations (see SI Sec. 1). Throughout analyses, we mainly analyze the effects of general
and specific skills to filter possible noises.

This group is consistent with the local reaching centrality measure, which was used
to embed nodes vertically in Fig. 2 (b). The local reaching centrality is defined as the
proportion of the skill hierarchy structure that is reachable from a skill via outgoing
edges [52]. The higher reaching centrality in the hierarchy structure is, therefore, the
more interdependent skills. As such, this measure offers additional indicators of skill
generality.

Conditional Probabilities for Skill Hierarchy Structure

The conditional probability that infers the directionality operates on binary values, but
skill levels are recorded in continuous variables [0,7], which makes it hard to apply the
conditional probability method. We use the disparity filter to extract a statistically
significant presence/absence in an occupation-skill matrix [122]. Parameters are chosen
such that i) the rank of skill terms in the strength (from the weighted network) and
degree (in the binary network) is preserved, ii) the rank of occupations’ skills of each
category in the weighted network is preserved in the binary network. Supplementary
Information Section 3.1 discusses details and compares the state of data before and after
the transformation.

We then calculate conditional probabilities of every pair of skills in the transformed
(binary) matrix to infer dependence and directions between two skills, following [40]. We
first account for the significance of conditional appearances, subject to a threshold, 𝑧𝑡ℎ.
Here, 𝑧𝑡ℎ is a threshold for the extent to which we eliminate chance from two skills being
used in the same occupation. Given the significant skill pair conditional appearances, we
estimate conditional probabilities 𝑃(𝑢 |𝑣) and 𝑃(𝑣 |𝑢). The direction of dependence 𝑣 → 𝑢

is set when 𝑃(𝑢 |𝑣) is substantially greater than 𝑃(𝑣 |𝑢), subject to a parameter 𝛼𝑡ℎ, which
is differentially weighted for each pair of skills so that it accounts for heterogeneous
skill node degrees (see Eq. 6 in SI Section 3). The magnitude of the dependence is a
parametric function of the difference between the conditional probabilities of observing 𝑢

and 𝑣, and the null model that accounts for the estimated number of shared occupations
between them, given the degrees of 𝑢 and 𝑣.as shown by Eq. 7 in SI Section 3. Figure
1 (d) broadly illustrates the intuition behind this methodology. Figure 2 (a) presents a
backbone structure of the aggregated all skill pairs, where the edge weights follow the
magnitudes of pairwise dependencies, as described above. Figure 2 (b) offers the full
network. Please see SI Section 3 and [40] for the detailed procedures and choices of
parameters and thresholds.
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Reachability with Arrival Probability

To quantify what are the chances of getting to the focal skill 𝑗 given the pre-requisite
skill 𝑖, we calculate reachability from one skill to a focal skill. It is basically arrival
probability, or a version of hitting probability, of a random walk arriving at 𝑗 from node
𝑖 given the weighted skill dependency network [53]. For source and target skills 𝑖 ≠ 𝑗 ,
this is numerically equivalent to first deriving the probability of random walks of length
𝑙 by raising the weighted-directed adjacency matrix (skill dependency network in Fig. 2),
𝑀, to power 𝑙, and then calculating 𝑅𝑖, 𝑗 = Σ𝑙𝑀

𝑙
𝑖, 𝑗
. We obtain the final arrival probability

by summing over a sufficient number of path lengths until reaching saturation points.
To compute arrival probabilities for focal skills (such as Programming, Negotiation, and
Repairing) in Fig. 2 (b-f), we apply the R package markovchain [123].

Nested and Unnested Skill Categories

Nestedness is a structural characteristic that describes interactions in an ecological sys-
tem, where specialist species often interact with a subset of generalists. Unlike ecological
systems, however, SI-Fig. S6 shows the skill-occupation matrix is a noisy nested structure
far from the perfect upper-left triangle when sorted by marginal totals (fills). This im-
perfect nested structure may account for the constraints on occupations (limited carrying
capacity), introducing severe competition between skill species. Indeed, SI-Fig. S5 shows,
unlike broad skill generality, the occupation’s scope is narrowly distributed, indicating
that the total amount of skill levels embodied in an occupation is not much different from
each other, regardless of how much they are paid and how advanced education is needed
(see SI Sec. 2).

We attribute occupations’ limited scope of skills to the limited attention and cog-
nition/physiological capacity that individual workers can offer. There is only so much
a single person can equip and do for a single job [7, 124]. Thus, individuals’ capacity
restricts how many skills an occupation can bundle. This constraint explains the pro-
cess of specializations needed for a complex job. The structure now includes not only
nested structure but also mutually exclusive presences, possibly due to competition be-
tween skills within an occupation. In contrast to occupations, skills do not have such
constraints. Therefore, for limited occupation scope, we only consider the skills’ contri-
bution to nested structure.

This constraint distinguishes the nestedness of extensive economies such as nations,
regions, and urban areas from the nestedness of occupations in that specializations dom-
inate the evolution of the labor market while others are dominated by diversification. As
a result, the skill-occupation matrix is expected to be modular as well as nested with
mutually exclusive modules. Nested-modular matrix is a complicated structure and will
be beyond our current scope [125, 126]. Here, we will focus on individual skills’ con-
tributions to the nested structure and differentiate skills that contribute to the nested
structure from those that do not.

Therefore, we quantify a skill’s contribution to the nested structure, i.e., nested score,
𝑐𝑠, defined as a deviation from a null model where the edges of a focal node 𝑠 to oc-
cupations are randomly reassigned, that is, 𝑐𝑠 = (𝑁− < 𝑁∗

𝑠 >)/𝜎𝑁∗
𝑠
. 𝑁 is a nestedness

score, and < 𝑁∗
𝑠 > and 𝜎𝑁∗

𝑠
are the means and standard deviation derived from the null

model [42]. For each focal skill 𝑠, we run 5,000 iterations [127]. We employ the overlap
index, checkerboard score, Temperature, and NODF, nestedness scores commonly used
in ecology, to quantify nestedness 𝑁 [65–67, 128]. In addition, we only consider skill’s
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contribution and do not occupation’s contribution. To obtain discrete categorizes, any
non-general skill with 𝑐𝑠 > 0 is called ”nested” skills, and ”un-nested” otherwise. The
resulting skill categories are shown in Fig. 3. The detailed allocation of skills to these
categories are outlined in SI Table S2, and SI Sec. 2 offers details and robustness checks.

Educations

Education variables in O*NET are categorized into twelve discrete grades, ranging from
below high school (1) to post-doctorate (12). Each occupation includes the proportion to
which corresponding sampled employees had to have a given educational level to be hired.
With this information, we calculated an occupation’s associated education variable as a
weighted average of the employees. For instance, Chief Executives’ expected education
variable < 𝑒𝑑𝑢 >𝑜 is calculated as Σ𝑒 𝑓𝑒 · 𝑒𝑑𝑢𝑒 where 𝑓𝑒 is a fraction of CEO whose
education is 𝑒, and 𝑒𝑑𝑢𝑒 is a corresponding value of education category, ranging 1 for
below high school to 12 for post-doctorate. For an educational requirement to a skill 𝑠,
< 𝑒𝑑𝑢 >𝑠, we average the skill’s education levels of occupations, < 𝑒𝑑𝑢 >𝑜, weighted by

the level of skill, Level, that is
Σ𝑜 <𝑒𝑑𝑢>𝑜 · Level𝑜,𝑠

Σ𝑜Level𝑒,𝑜
.

Demographic Distribution of Skills

Median ages of workers in each occupation are derived from the Current Population
Survey (CPS) of the year 2019, and synthetic birth cohorts from individuals born in each
year are created from the individuals’ survey conducted jointly by the U.S. Census Bureau
and the Bureau of Labor Statistics [121]. Different occupational taxonomies between the
two datasets are mapped by the BLS crosswalk.
Synthetic birth cohorts: The Current Population Survey (CPS) conducts monthly
surveys to obtain a representative sample of the population in each round [121]. How-
ever, this longitudinal survey does not span over a long period of time, which presents a
challenge when attempting to analyze long-term trends. To address this issue, we employ
the concept of synthetic cohorts. Synthetic cohorts are constructed by stitching together
snapshots of individuals born in the same year across different survey rounds. For ex-
ample, to create a synthetic cohort for those born in 1970, we first identify people whose
birth year was 1970 in the CPS surveys conducted in 1995, 1996, 1997, and so on, up to
2015. We then plot the data for this cohort as if we have been following the individuals
born in 1970 throughout their ages, as shown in the inset of Figure 4.

It is important to note that this cohort is referred to as a “synthetic birth cohort”
because it is not a real cohort in the traditional sense. The individuals surveyed by CPS
in each round are different, even though they were all born in the same year. By following
individuals born in the same year across multiple survey rounds, we can track changes in
the behaviors or characteristics of interest as people age, albeit with different individuals
representing the cohort at each point in time.

While synthetic cohorts do not provide the same level of individual-level consistency
as true longitudinal studies, they offer a valuable tool for analyzing long-term trends and
changes within a specific age group when long-running longitudinal data is not avail-
able. This approach allows researchers to leverage the representative nature of the CPS
surveys to gain insights into the evolution of various social, economic, and demographic
characteristics over time, and thus a common practice across various literature [74, 75,
129, 130].
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Demographic analysis: CPS microdata also include gender and race/ethnicity demo-
graphic information. We chose four categories, Whites, Blacks, Asians, and Hispanic, as
they are the bulk of the sample, and any individuals of Hispanic background are included
in that category for Fig. 6. To avoid attrition and early retirement, we include only full-
time workers employed at the time of the survey, earning at least $10,000 annually, and
between 18 and 55. For each demographic category, the average skill level is calculated
for their occupational composition. The microdata records individuals’ wages and the
number of hours worked. We adjust wages for inflation and account for the number of
hours worked to compute an adjusted weekly wage, which is readily comparable across
the population. The race/ethnic disparities in Fig. 6 are a ratio of each demographic
quantity (general level, nested level, unnested levels, education, and weekly wages) to
those of White workers, following [87] identifying a dominant social group, a social group
if it is at least 1.5 times more likely to be employed in the focal occupation. Likewise, the
gender gap within each race/ethnicity is measured as a ratio of those quantities to those
of male workers. Because we do not have a matched sample, we obtain 95% confidence
intervals by random sub-sampling. In each iteration, we take 10% of the subpopulation of
interest, for instance, Asian male and Asian female workers, and estimate all correspond-
ing measures. Repeating this sampling and estimation process in 10,000 iterations, we
obtain the distribution for each estimation and derive the 95% confidential intervals. The
skill, education, and wage estimations of Fig. 6 average over the years. Supplementary
Figs. S50 and S51 capture temporal patterns of these factors, exhibiting the gaps have
narrowed over time. In addition, SI Figs. S52 and S53 show the skill differentials between
male and female workers that start around the age of 30 (main Fig. 4), manifest across
racial and ethnic groups.

Skill Compositions in Career Trajectories

The expected skill levels of each category in the career sequences. We studied over 70
million job sequences (8-digit SOC) in 20 million individual resumes from Burning Glass
Institute between 2007 and 2020. We then calculate the expected skill levels in 𝑖th job
by averaging the skill levels of those occupations appearing in 𝑖th sequences, shown in
Fig 4 (g-h). From these sequences of averaged skill levels, we calculate skill level changes
in 𝑖th job transition levels, Δ𝑖, shown in Fig. 4 (i).

We exclude job transitions shorter than one year or within an occupation (i.e., moving
from one company to another without changing the occupation) for our primary analyses.
The decision to remove such occupations arises from the oddity we observed in most
such jobs. For instance, various janitors or models became CEOs immediately or with
overlapping periods. Nevertheless, our findings are robust to this decision (see SI Sec 4
for details).

To see if the observed trends are truly attributed to career trajectories, we shuffle
job history in resumes, bootstrapping the job sequences to produce a benchmark and
compare it with the skill changes we empirically observed in career moves in Fig. 4 (i),
confirming that the empirically observed trends are unique to the career trajectories.

Temporal Evolution of Skill Structure

We utilize this evolution of skill structure to demonstrate the implication of our con-
structed nestedness skill structure. We choose two sufficiently apart datasets to capture
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the structural difference, that is, version 9.0 in 2005 because it is the first version com-
parable to the most recent version while offering satisfactory coverage of occupational
information (such as education and wage), and version 24.1 in 2019 because it is the
most recent version without the potential contamination of irregular patterns due to
the pandemic. The empirical challenge is that the classification system is continuously
updated in response to technological progress, economic transformation, and social re-
configuration [131].

We created a crosswalk between occupation classifications in 2005 and 2019 that is not
immediately available but only between two consecutive years. Occupation codes in 2005
are matched to those in 2006, and then those in 2006 to 2009, ... to 2019. Our crosswalk
automatically matches 968 occupations in 2019 skill data and 941 unique occupations in
2005 skill data, and the rest are manually matched. Using these occupations and their
skill levels in 2005, we construct the skill structure of 2005 in Fig. 7 (c), using comparable
parameters and layouts for both years to make the networks most comparable (see SI).

Acknowledgement

H. Y. and M. H. acknowledge the support of the National Science Foundation Grant
Award Number EF-2133863. The authors are grateful to Yong-Yeol Ahn, Inho Hong,
Hyunuk Kim, Balazs Lengyel, Muhammed Yildirim, James McNerney, Morgan Frank,
Ljubica Nedelkoska, Christopher Esposito, Ulrich Schetter, Serguei Saavedra, James
Evans, and Brian Uzzi for their valuable discussions and feedback. F.N. gratefully ac-
knowledges financial support from the Austrian Research Agency (FFG), project #873927
(ESSENCSE).

References

1. Autor, D. H. & Dorn, D. The Growth of Low-Skill Service Jobs and the Polarization
of the US Labor Market. American Economic Review 103, 1553–97 (2013).

2. Althobaiti, S. et al. Longitudinal Complex Dynamics of Labour Markets Reveal In-
creasing Polarisation. arXiv preprint arXiv:2204.07073. arXiv: 2204.07073 (2022).

3. Carneiro, R. L. On the Relationship between Size of Population and Complexity
of Social Organization. Journal of Anthropological Research 42, 355–364 (1986).

4. Henrich, J. in The Secret of Our Success (princeton University press, 2015).

5. Richerson, P. J. & Boyd, R. Complex societies: The evolutionary origins of a crude
superorganism. Human nature 10, 253–289 (1999).

6. Mitchell, M. Complexity : a guided tour isbn: 9780195124415 (Oxford University
Press, Oxford [England] ; 2009).

7. Jones, B. F. The Burden of Knowledge and the “Death of the Renaissance Man”: Is
Innovation Getting Harder? The Review of Economic Studies 76, 283–317 (2009).

8. Gamble & Blackwell. Knowledge Management: A state of the art guide 6 (Institute
of Directors, London, 2002).

9. Becker, G. S. & Murphy, K. M. The Division of Labor, Coordination Costs, and
Knowledge. The Quarterly journal of economics 107, 1137–1160 (1992).

24

https://arxiv.org/abs/2204.07073


10. Hidalgo, C. A. Why Information Grows : The Evolution of Order, from Atoms to
Economies isbn: 9780465039715 (Basic Books, Boulder, UNITED STATES, 2015).

11. Azoulay, P., Jones, B. F., Kim, J. D. & Miranda, J. Age and High-Growth En-
trepreneurship. American Economic Review: Insights 2, 65–82 (2020).

12. Pichler, A. et al. Building an alliance to map global supply networks. Science 382,
270–272 (2023).

13. Acemoglu, D. & Restrepo, P. The wrong kind of AI? Artificial intelligence and the
future of labour demand. Cambridge Journal of Regions, Economy and Society 13,
25–35 (2020).

14. Schwabe, H. & Castellacci, F. Automation, workers’ skills and job satisfaction.
PloS one 15, e0242929–e0242929 (2020).

15. Anderson, K. A. Skill networks and measures of complex human capital. Proceed-
ings of the National Academy of Sciences 114, 12720–12724 (2017).

16. Börner, K. et al. Skill discrepancies between research, education, and jobs reveal
the critical need to supply soft skills for the data economy. Proceedings of the
National Academy of Sciences 115, 12630–12637 (2018).

17. Alabdulkareem, A. et al. Unpacking the polarization of workplace skills. Science
Advances 4, 1–10 (2018).

18. Xu, W. et al. Developing China’s workforce skill taxonomy reveals extent of la-
bor market polarization. Humanities and Social Sciences Communications 8, 187
(2021).

19. Lin, K.-H. & Hung, K. The Network Structure of Occupations: Fragmentation,
Differentiation, and Contagion. American Journal of Sociology 127, 1551–1601
(2022).

20. Neffke, F. M. H. The value of complementary co-workers. Science Advances 5
(2019).

21. Del Rio-Chanona, R. M., Mealy, P., Beguerisse-Dı́az, M., Lafond, F. & Farmer,
J. D. Occupational mobility and automation: a data-driven network model. Journal
of The Royal Society Interface 18, 20200898 (2021).

22. Frank, M. R. et al. Toward understanding the impact of artificial intelligence on
labor. Proceedings of the National Academy of Sciences, 201900949 (2019).

23. Moro, E. et al. Universal resilience patterns in labor markets. Nature Communica-
tions 12, 1972 (2021).

24. Gomez-Lievano, A., Patterson-Lomba, O. & Hausmann, R. Explaining the preva-
lence, scaling and variance of urban phenomena. Nature Human Behaviour 1, 0012
(2016).

25. Hidalgo, C. A. et al. The principle of relatedness in Unifying Themes in Com-
plex Systems IX: Proceedings of the Ninth International Conference on Complex
Systems 9 (2018), 451–457.

26. Wilk, S. L., Burris Desmarais, L. & Sackett, P. R. Gravitation to Jobs Commen-
surate With Ability: Longitudinal and Cross-Sectional Tests. Journal of applied
psychology 80, 79–85 (1995).

25



27. Becker, G. S. Human capital: A theoretical and empirical analysis, with special
reference to education (University of Chicago press, 2009).

28. Williamson, O. E. The economic institutions of capitalism. Firms, markets, rela-
tional contracting (Springer, 2007).

29. Jacobson, L. S., LaLonde, R. J. & Sullivan, D. G. Earnings losses of displaced
workers. The American economic review, 685–709 (1993).

30. Jovanovic, B. & Nyarko, Y. Stepping-stone mobility. Carnegie-Rochester Confer-
ence Series on Public Policy 46, 289–325 (1997).

31. Heckman, J. J. The economics of inequality: The value of early childhood education.
American Educator 35, 31 (2011).

32. Nelson, D., Wilmers, N. & Zhang, L. Job Upgrading and Earnings Growth for
Non-college Workers. Academy of Management Proceedings 2022, 11043 (2022).

33. Goldin, C. & Katz, L. F. The Race Between Technology & Education 163–246.
isbn: 9780674028678 (2008).

34. Azoulay, P., Greenblatt, W. H. & Heggeness, M. L. Long-term effects from early
exposure to research: Evidence from the NIH “Yellow Berets”. Research Policy 50,
104332 (2021).

35. Mincer, J. Schooling, experience, and earnings. isbn: 0870142658 (National Bureau
of Economic Research; distributed by Columbia University Press, New York, 1974).

36. Becker, G. S. Investment in Human Capital : A Theoretical Analysis. Journal of
Political Economy 70, 9–49 (1962).

37. Lucas, R. E. On the mechanics of economic development. Journal of Monetary
Economics 22, 3–42 (1988).

38. Neffke, F. & Henning, M. Skill relatedness and firm diversification. Strategic Man-
agement Journal 34, 297–316 (2013).

39. Stephany, F. & Teutloff, O. What is the price of a skill? The value of complemen-
tarity. Research Policy 53, 104898 (2024).

40. Jo, W. S., Park, J., Luhur, A., Kim, B. J. & Ahn, Y.-Y. Extracting hierarchical
backbones from bipartite networks 2020. arXiv: 2002.07239.

41. Hidalgo, C. A. & Hausmann, R. The building blocks of economic complexity. eng.
Proceedings of the National Academy of Sciences of the United States of America
106, 10570–10575 (2009).

42. Saavedra, S., Stouffer, D. B., Uzzi, B. & Bascompte, J. Strong contributors to
network persistence are the most vulnerable to extinction. Nature 478, 233–235
(2011).

43. Poletaev, M. & Robinson, C. Human capital specificity: Evidence from the Dictio-
nary of Occupational Titles and Displaced Worker Surveys, 1984-2000. Journal of
Labor Economics 26, 387–420 (2008).

44. Gathmann, C. & Schönberg, U. How general is human capital? A task-based ap-
proach. Journal of Labor Economics 28, 1–49 (2010).

45. Ferguson, J. P. & Hasan, S. Specialization and Career Dynamics: Evidence from
the Indian Administrative Service. Administrative Science Quarterly 58, 233–256
(2013).

26

https://arxiv.org/abs/2002.07239


46. Leung, M. D. Dilettante or Renaissance Person? How the Order of Job Experiences
Affects Hiring in an External Labor Market. American Sociological Review 79, 136–
158 (2014).

47. Merluzzi, J. & Phillips, D. J. The Specialist Discount: Negative Returns for MBAs
with Focused Profiles in Investment Banking. Administrative Science Quarterly
61, 87–124 (2016).

48. Byun, H., Frake, J. & Agarwal, R. Leveraging who you know by what you know:
Specialization and returns to relational capital. Strategic Management Journal 39,
1803–1833 (2018).

49. Fini, R., Jourdan, J., Perkmann, M. & Toschi, L. A New Take on the Categori-
cal Imperative: Gatekeeping, Boundary Maintenance, and Evaluation Penalties in
Science. Organization Science (2022).

50. Byun, H. & Raffiee, J. Career Specialization, Involuntary Worker–Firm Separa-
tions, and Employment Outcomes: Why Generalists Outperform Specialists When
Their Jobs Are Displaced*. Administrative Science Quarterly 68, 270–316 (2023).

51. Rotundo, M. & Sackett, P. R. Specific versus general skills and abilities: A job level
examination of relationships with wage. Journal of occupational and organizational
psychology 77, 127–148 (2004).

52. Mones, E., Vicsek, L. & Vicsek, T. Hierarchy measure for complex networks. eng.
PloS one 7, e33799 (2012).

53. Norris, J. R. Markov chains 2 (Cambridge university press, 1998).

54. Neal, D. Industry-Specific Human Capital: Evidence from DisplacedWorkers. Jour-
nal of Labor Economics 13, 653–677 (1995).

55. Parent, D. Industry-Specific Capital and the Wage Profile: Evidence from the Na-
tional Longitudinal Survey of Youth and the Panel Study of Income Dynamics.
Journal of Labor Economics 18, 306–323 (2000).

56. Leahey, E. Not by productivity alone: How visibility and specialization contribute
to academic earnings. American sociological review 72, 533–561 (2007).

57. Teodoridis, F., Bikard, M. & Vakili, K. Creativity at the Knowledge Frontier: The
Impact of Specialization in Fast- and Slow-paced Domains. Administrative Science
Quarterly 64, 894–927 (2018).

58. Heiberger, R. H., Munoz-Najar Galvez, S. & McFarland, D. A. Facets of Special-
ization and Its Relation to Career Success: An Analysis of U.S. Sociology, 1980 to
2015. American Sociological Review 86, 1164–1192 (2021).

59. Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of
plant–animal mutualistic networks. Proceedings of the National Academy of Sci-
ences 100, 9383–9387 (2003).

60. Saavedra, S., Reed-Tsochas, F. & Uzzi, B. A simple model of bipartite cooperation
for ecological and organizational networks. Nature 457, 463–466 (2009).

61. Staniczenko, P. P. A. & Panja, D. Temporal origin of nestedness in interaction
networks. PNAS Nexus 2, pgad412 (2023).

27



62. Frey, C. B. & Osborne, M. A. The future of employment: How susceptible are jobs
to computerisation? Technological Forecasting and Social Change 114, 254–280.
arXiv: 1602.03506 (2017).

63. Frank, M. R., Ahn, Y.-y. & Moro, E. AI exposure predicts unemployment risk 2022.

64. Baldwin, C., MacCormack, A. & Rusnak, J. Hidden structure: Using network meth-
ods to map system architecture. Research Policy 43, 1381–1397 (2014).

65. Stone, L. & Roberts, A. The checkerboard score and species distributions. Oecologia
85, 74–79 (1990).
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Supplementary Information: Nested Skills in Labor

Ecosystems: A Hidden Dimension of Human Capital

Section 1 offers details on the statistical derivations and robustness checks corresponding to the
results on Generality in the main text (Figs. S1-S4), and the resulting skill groups (Tab. S1)
introduced in the main Fig. 1 (a-c) and used across the paper.

Section 2 expands on the nestedness of occupation-skill networks in part shown in Fig. 3 and
used throughout the paper. It describes the rationale for (Fig. S5 and S6), the methodology of
measuring skill-level contribution to nestedness, alternative measurement of skills’ contributions,
the results based on different measures (Fig. S7-S9), and the resulting split of skills based on
nestedness we used throughout the paper (Tab. S2). It also includes an alternative approach to
splitting skills based on correlation, which yields consistent results(Tab. S3).

Section 3 articulates the construction of the skill hierarchy of the main Fig. 2 (a and b).
It describes how we derive conditional probabilities between pairs of skills (which is briefly
introduced in Fig. 1 (d), the choice of parameters (Figs. S10-S12), and sensitivity analysis
(Figs. S13). Figs. S14 and S15 show the full and backboned skill hierarchy network with all skill
labels attached. The section highlights the linkage between our skill hierarchy and a skill co-
occurrence network (Fig. S16), and offers two cases based on comparing registered nurses with
nurse practitioners (Fig. S17), and the skill entrapment of some immigrants (Figs. S18-S19), to
showcase how the skill hierarchy captures career progress.

Section 4 expands on the temporal analyses reported in the main Fig. 4. We have explicated
the preparation process (Figs. S20-S22 and Tab. S4) Bootstrapping of the job sequences in
resume data (Fig. S24-S25), and included the result for all skill cateogires (Fig. S23). We also
include details about the analysis of median age of workers (Fig. S26), and the analysis of
synthetic birth cohorts based on CPS (Fig. S27). As robustness checks, we also show that the
skill development observed in the main Fig. 4 continues long after education (Fig. S28) and also
emerges for individuals without college education (Fig. S29).

Section 5 expands the analyses of the main Fig. 5, capturing the correlation of occupational
wages, educational requirement, and experience with their average levels of each skill category
(Fig. S31-S33), supplements these results by robustness checks, using alternative measures of
skill levels (Fig. S34-S36), and regression analyses (Tab. S5). We show the robustness of the
main wage findings across major occupational groups (Fig. S38), replicate the main Fig. 5 based
on the data of year 2005 (Fig. S39), and finally show the correlation between levels of each skill
categories and occupational automation risk [62] (Fig. S37).

Section 6 offers a descriptive geographic analysis of skill distribution. We offer evidence that
part of the urban wage premiums is explained by the distribution of general and nested skills
(Tab. S6, and Figs. S40-S46), but leave an in-depth study of the topic for future work.

Section 7 extends the demographic skill analysis of the main Fig. 6, in Fig. S47. Figs. S50
and S51 capture temporal patterns of these factors, exhibiting the gaps have narrowed over
time. Fig. S52 depicts that racial/ethnic and gender differentials in skills follow similar age
trends observed in the main Fig. 4, and are robust to time-variant economic factors (Fig. S53).
In Fig. S49, we highlight the differential influence of parenthood on male and female workers,
observed in the diverging growth of general and nested skills in the main Fig. 4.

Section 8 expands on the changes in occupational skill requirements between 2005 and 2019
(the main Fig. 7), and the resulting changes in the skill hierarchy (Figs. S54-S56). The section
also provides a brief discussion of the changes in the occupational taxonomy (Fig. S57).

Section 9 offers a battery of robustness checks on whether administrative and managerial
occupations (Figs. S58-S62 and Tab. S8) or social skills (Figs. S63) derive the increasingly
important role of general skills.



Contents

1 Skill Groups 1

2 Skill Nestedness 5
2.1 Nested Modular structure in Skills and Occupations . . . . . . . . . . . . . . . . 5
2.2 Skill’s contribution to Nestedness . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Nested and Un-nested Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Alternative Approach for Deriving Skill Categories . . . . . . . . . . . . . . . . . 10

3 Conditional Skill Dependencies 13
3.1 Skills-Occupation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Skill Dependency from Conditional Probabilities . . . . . . . . . . . . . . . . . . 13
3.3 Linkage to Skill Co-occurrence Networks . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Skill Hierarchy Captures Career Progress (Specialization) . . . . . . . . . . . . . 21
3.5 Skill Hierarchy Captures Skill Entrapment . . . . . . . . . . . . . . . . . . . . . . 22

4 Skill Categories in Career Trajectories 26
4.1 Resume Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Occupational Median Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Individuals’ Age and Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Skill Investment and Payoffs 36
5.1 Investment and Payoffs of Skill Subtypes . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Automation Risk and Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Skill Payoffs for Different Occupations . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Skill Investment and Payoffs in 2005 . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Skills’ Geographic Distribution 43
6.1 Counties’ Skill Endowments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Skills and Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Skills and Manufacturing Industries . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Skills’ Demographic Distribution 49
7.1 Parenthood and the Diverging Skills of Male and Female Workers . . . . . . . . . 50
7.2 Gender and Jobs Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.3 Skills and Wage Gaps Have Narrowed Over Years . . . . . . . . . . . . . . . . . . 53
7.4 Gender-Age Divergence of Skills across Demographic Groups . . . . . . . . . . . 54

8 Historical Patterns of Skill Change for Occupations 57
8.1 Changes in the Skill Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.2 Changes in the Skill Dependency Network . . . . . . . . . . . . . . . . . . . . . . 58
8.3 Occupation Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9 Robustness Checks with Management and Admin Occupations and Social
Skills 62
9.1 Role of Management and Administrative Occupations . . . . . . . . . . . . . . . 62
9.2 Role of Social Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

34



1 Skill Groups

We obtain data-driven categories of skill generality by grouping skills based on their Level Dis-
tributions. We employ a 𝑘-means clustering algorithm (see Fig. 1 in the main) and supplement
the results with two more measures of skill generality (the average skill level and occupation
counts), explained later in this and the next sections. Here, we discuss clustering skills based
on their distribution shapes, as Fig. 1 shows in the main text.

The 𝑘-means clustering algorithm requires two inputs, a distance metric and the number
of clusters, 𝑘. We choose the correlation distance (as in equation 1) for the former and 𝑘 = 3
for the latter. We did not use Euclidean distance because it does not differentiate the shape
distributions as inputs compared to correlation. Second, we choose 𝑘 = 3 because it seems to be
in the range of optimal numbers (2-4) from various statistical tests shown in Fig. S1. Finally,
we provide two alternative categories of skill generality, which are consistent with the results of
the 𝑘-means clustering.

To measure the correlation similarity among the distribution shapes, we binned the distri-
bution with intervals of 0.1. For instance, the skill level ranges from 0 to 7, resulting in a vector
of 35 entries, each corresponding to bins of [0,0.10), [0.10, 0.20),... Correlation similarities are
measured across these vectors. Table S1 shows the assignment of skills resulting from 𝑘-means
clustering (based on correlation similarity and 𝑘 = 3) used in the main text.

𝑑 = 1 −
Σ𝑖𝑥𝑖𝑦𝑖 − 1

𝑛
Σ𝑖𝑥𝑖Σ𝑖𝑦𝑖√︃

Σ𝑖𝑥
2
𝑖
− 1

𝑛
(Σ𝑖𝑥𝑖)2

√︃
Σ𝑖𝑦

2
𝑖
− 1

𝑛
(Σ𝑖𝑦𝑖)2

(1)

We use three statistical tests to determine the optimal 𝑘. These include the elbow method,
silhouette analysis, and gap statistics, as shown in Fig. S1. These results suggest optimal
numbers from 2 to 4. We provide the clusters resulting from each choice of 𝑘 in Figs. S2-S4.

The conventional Elbow method calculates the within-cluster sum of squares for different
numbers of clusters 𝑘 in order to find a sharp decline from one 𝑘 to another followed by a
more gradual decrease in slope, where we find 𝑘 = 3 is the best. Silhouette analysis [132]
measures the similarity of each observation with the cluster to which it is assigned, producing
a metric that ranges from -1 (dissimilar) to 1 (similar). In determining the optimal 𝑘, one
looks for the value at which the average (silhouette width) is maximum, providing 𝑘 = 2 for the
optimal number. The Gap statistic [133] compares the total intracluster variation for different
𝑘 with their expected values under a null model (i.e., a distribution with no obvious clustering,
generated using (1,000 iterations of) Monte Carlo simulations of the sampling process,) wherein
maximal intracluster variation is desired, providing 𝑘 = 4 for the optimal number. To determine
the optimal number of clusters, 𝑘, based on Gap Statistic, we used the criterion proposed by
[133], wherein the smallest 𝑘 such that the change in intracluster variation, 𝑓 , is smaller than
an (error-adjusted) standard deviation, 𝑠 of the null model ( 𝑓 (𝑘 + 1) − 𝑓 (𝑘) ≥ 𝑠𝑘+1).

Figures S2-S4 show individual skills within categories. The number of groups does not
change the order of generality of skills, which is central to our analysis. The context of our
study encourages a focus on the most and the least general skills because those epitomize two
skill categories of broad theoretical interest: general skills and specialized skills. Therefore, it is
a practical choice for us to start with three clusters, focus primarily on the two extremes, and
subject the skills in the remaining cluster to secondary examination. Given the visual shapes
of distributions and the semantic benefit of differentiating the most general and moderately
general skills (so-called intermediate skills), we continue using 𝑘 = 3 in the main text. To
reduce any inherent noise due to the skills between general and specifics, we choose 𝑘 = 3 and
focus on general and specifics. Table S1 shows the resulting split and offers some supporting
statistics.
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Figure S1: Statistical tests to determine the optimal 𝑘 for 𝑘-mean clustering algorithms.
The figure shows the results of Elbow method, Gap statistic, and Silhouette analysis

Figure S2: Skill Level Distribution with 𝑘 = 3. Skills are in descending order of generality. The
depicted distribution of skills is used in the main text.
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Figure S3: Skill Level Distribution with 𝑘 = 2. Skills are in descending order of generality.

Figure S4: Skill Level Distribution with 𝑘 = 4. Skills are in descending order of generality.
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Table S1: The Skill Group Assignment Resulting from Clustering Skills based on their
Usage Distribution Shapes.. Skills are ordered by their generality (their average levels demanded
across occupations, and their marginal totals in the binary skill-occupation network).

Skill Group Skill Titles (skill generality, occupation counts)

General
(3.43,
563.61)

Oral Comprehension (3.96, 682), Oral Expression (3.9, 680), Customer and Personal
Service (3.85, 604), English Language (3.76, 590), Written Comprehension (3.68, 598),
Reading Comprehension (3.65, 593), Near Vision (3.64, 703), Problem Sensitivity
(3.58, 571), Deductive Reasoning (3.58, 553), Critical Thinking (3.57, 594), Educa-
tion and Training (3.55, 539), Active Listening (3.54, 593), Inductive Reasoning (3.48,
533), Speaking (3.45, 550), Mathematics Knowledge (3.43, 538), Written Expression
(3.4, 532), Monitoring (3.38, 589), Computers and Electronics (3.38, 582), Informa-
tion Ordering (3.37, 616), Writing (3.29, 514), Speech Clarity (3.28, 474), Speech
Recognition (3.26, 589), Category Flexibility (3.23, 610), Judgment and Decision
Making (3.21, 520), Active Learning (3.19, 531), Coordination (3.16, 534), Complex
Problem Solving (3.15, 498), Administration and Management (3.15, 507), Social
Perceptiveness (3.1, 486), Time Management (3.05, 477), Clerical (3.03, 492)

Intermediate
(2.44,
281.42) Selective Attention (2.99, 496), Fluency of Ideas (2.94, 451), Far Vision (2.94, 451),

Flexibility of Closure (2.92, 420), Instructing (2.92, 435), Originality (2.88, 440), Vi-
sualization (2.86, 415), Service Orientation (2.85, 442), Learning Strategies (2.84,
387), Persuasion (2.79, 366), Perceptual Speed (2.76, 317), Systems Analysis (2.64,
321), Systems Evaluation (2.63, 337), Management of Personnel Resources (2.6, 245),
Mathematics Skills (2.57, 284), Negotiation (2.57, 277), Finger Dexterity (2.56, 352),
Public Safety and Security (2.55, 298), Number Facility (2.54, 264), Time Sharing
(2.54, 164), Mathematical Reasoning (2.52, 267), Psychology (2.47, 305), Visual Color
Discrimination (2.45, 207), Speed of Closure (2.44, 128), Memorization (2.34, 120),
Personnel and Human Resources (2.33, 234), Engineering and Technology (2.33, 296),
Law and Government (2.32, 241), Production and Processing (2.29, 302), Operation
Monitoring (2.28, 250), Auditory Attention (2.23, 175), Communications and Media
(2.21, 200), Arm-Hand Steadiness (2.21, 327), Quality Control Analysis (2.19, 216),
Control Precision (2.17, 318), Sales and Marketing (2.09, 230), Manual Dexterity
(2.08, 302), Hearing Sensitivity (2.04, 85), Trunk Strength (2.01, 238), Depth Percep-
tion (1.84, 122), Transportation (1.79, 119), Economics and Accounting (1.77, 129),
Operations Analysis (1.75, 128)

Specific
(1.22,
93.3) Mechanical (2.4, 354), Design (2.08, 244), Chemistry (1.97, 204), Multilimb Coordi-

nation (1.88, 264), Operation and Control (1.79, 192), Physics (1.76, 147), Geography
(1.71, 159), Sociology and Anthropology (1.65, 153), Static Strength (1.64, 211), Ex-
tent Flexibility (1.59, 234), Troubleshooting (1.58, 126), Reaction Time (1.53, 189),
Science (1.52, 154), Management of Material Resources (1.5, 32), Telecommunica-
tions (1.48, 53), Building and Construction (1.47, 137), Biology (1.42, 152), Ther-
apy and Counseling (1.42, 119), Management of Financial Resources (1.37, 69), Re-
sponse Orientation (1.32, 72), Philosophy and Theology (1.31, 102), Medicine and
Dentistry (1.26, 108), Stamina (1.26, 79), Gross Body Coordination (1.24, 55), Dy-
namic Strength (1.21, 56), Wrist-Finger Speed (1.2, 21), Rate Control (1.18, 93),
Equipment Selection (1.09, 15), Equipment Maintenance (1.06, 95), Foreign Lan-
guage (1.03, 17), Gross Body Equilibrium (1.03, 33), Technology Design (1.02, 19),
Repairing (1.02, 91), History and Archeology (0.93, 52), Speed of Limb Movement
(0.86, 11), Programming (0.84, 29), Spatial Orientation (0.83, 21), Glare Sensitivity
(0.74, 13), Fine Arts (0.6, 43), Sound Localization (0.6, 3), Peripheral Vision (0.59,
8), Food Production (0.59, 44), Night Vision (0.53, 2), Explosive Strength (0.48, 4),
Installation (0.37, 11), Dynamic Flexibility (0.15, 2)
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2 Skill Nestedness

2.1 Nested Modular structure in Skills and Occupations

As the scope of knowledge expands, the need for specialization grows. Unlike findings
of the economic complexity about the nested landscape of national, regional, and urban
capabilities [41, 134], occupations often bundle few skills and therefore encompass much
narrower knowledge domains. While the main focus of our paper is revealing the under-
lying structure of workplace skills, noting the distinction is vital. Here, we empirically
offer evidence of the difference between occupation and skill scopes in two ways before
discussing nestedness in the skill space. We find higher variation among skills (in the
number of occupations that demand a skill) than among occupations (in the number
of skills an occupation demands), as seen in Fig. S5), suggesting a non-trivial nested
structure (Fig. S6).

Figure S5 shows the Level Distribution of skills (red) and the distribution of the total
skill amounts in occupations (blue). To obtain the skill Level Distribution, one measures
the demand for each skill and makes a distribution. For example, how much English skills
are needed for the entire labor market or how much Physics skills are needed across occu-
pations. The former is more broadly used (i.e., general) and therefore has a higher demand
than the latter. A skill’s demand is calculated by summing skill levels/importances in the
occupations (red). Similarly, by adding the total levels/importance of each occupation,
one obtains occupations’ skill endowments, the total level of skills needed to undertake
the job’s tasks.

Figure S5 shows, unlike broad skill generality, occupation’s endowment is narrowly
distributed. This narrow distribution indicates that the total amount of skills needed for
an occupation is not much different from each other, regardless of how much they are paid
and how advanced education is needed. We attribute occupations’ limited scope of skills
to the limited scope or attention that individual workers can offer. There is only so much
a single person can equip and do. Thus, individuals’ capacity restricts how many skills
occupations can bundle. This constraint explains the process of specializations needed
for a complex job. In contrast to occupations, skills do not have such constraints. While
some skills are niche, general skills epitomize expertise of widespread demand, as they
are needed in most occupations.

This stark difference in the scope of occupations and skills requires quantifying the
nestedness structure of the skill-occupation matrix differently. In ecological terms, there
is no site/area/biome (occupation) that is large enough to nest other sites (occupations),
whereas there are species (skills) that can nest other species (skills) as they can appear
anywhere. This explains why Fig. S6 shows the noisy nested structure in the skill-
occupation matrix, far from the perfect nested triangle. The skill-occupation structure
allows mutually exclusive presences, possibly due to competition between skills within an
occupation.

We construct and measure a nested structure of a skill-occupation matrix in Fig. S6.
The original skill-occupation matrix’s entry is a continuous variable (indication of the
degree or point along a continuum to which a particular descriptor is required or needed
to perform the occupation). But most conventional nestedness analyses require binary
entries, and thus, we employ a disparity filter to make the matrix binary entries of statis-
tically significant presences (see Sec. 3.1). We then sort the matrix entries in descending
orders of marginal totals [59]. As Fig. S6 shows, the result deviates from the perfect
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Figure S5: Scaled Density Distribution of Skill and Occupation Endowments. Endowment
for skills and occupations is calculated by averaging the intensity values for each column and row,
respectively. We compute endowment using both intensity measures of Importance and Level. The
results contrast for endowment distribution of skills from occupations. Unlike skills, occupations show
closer average Importance values. This finding implies occupation’s attention is constrained. Hence,
they must allocate their limited attention to skills.

nested structure as an upper-left triangle. Nevertheless, the upper left is highly popu-
lated, indicating a nested structure. This imperfect nested structure may account for the
constraints on occupations (limited carrying capacity), introducing severe competition
between skill species. This constraint distinguishes the nestedness of extensive economies
of nations, regions, and urban areas from occupation’s nestedness, for which specializa-
tions dominate the evolution more than diversification. As a result, the skill-occupation
matrix is expected to be modular as well as nested with mutually exclusive modules.
Nested-modular matrix is a complicated structure and will be beyond our current scope
[125]. Here, we will focus on individual skills’ contributions to the nested structure and
differentiates skills that contribute to the nested structure from those that do not.

Figure S6: The skill-occupation matrix The occupations and skills of the matrix are arranged in
descending order of their marginal fills (along the x and y axes, respectively.)

2.2 Skill’s contribution to Nestedness

The above evidence reveals that the landscape of human capital is partially nested due to
matching increasing complexity with specialization (perhaps, niche constructions), result-
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ing in a nested-modular structure. We speculate that increasing complexity mainly gen-
erates nested structure, and specialization mainly generates modular structure. We think
mathematical modeling of a labor ecosystem according to this insight can be extremely
interesting, and we leave this for future work while we focus on empirical observations
and quantifications for now.

Due to the structural complications, described above, conventional approaches for
quantifying nested structure (sorting the matrix to observe an upper triangle or calculat-
ing presences/absences accounting for a well-defined nested structure) are likely imper-
fect. Instead, we look for skills’ individual contributions to the current nested structure
compared to their counterfactual contributions under a null model. For instance, [42]
proposes such an approach based on the idea of randomizing edges for a focal skill and
comparing the nestedness in the simulated network with the observed value in the system.
In our case, we create counterfactual worlds as if a focal skill can appear equally likely
in any occupation. This equally probable null hypothesis randomly chooses a focal skill’s
occupations (edges) without considering education, domain knowledge, industrial require-
ments, or historical contingency, imposing the current socio-economic structure. Then,
we measure an increase/decrease in nestedness by destroying the current imposition. For
simplicity, this method is only available for a presence/absence bipartite network [66,
135]. We use the disparity filter [122] because the method preserves degree heterogeneity,
which is crucial to distinguishing general from niche skills. We explain this method in
more detail in the supplementary section 3.

We use three commonly used metrics of nestedness (checkerboard score, Tempera-
ture, and NODF) to quantify nestedness 𝑁 at the level of the skill-occupation matrix.
Checkerboard score measures the deviation from nestedness as checkerboard appearance
of fills [65]. This score is consistent with the well-known nestedness index, 𝑁𝑐, count-
ing the number of times that a species’ presence at a site correctly predicts its presence
at richer sites and sums these counts across species and sites [67]. The presence of a
checkerboard, an empty site when the nested site predicts the fill, decreases the nested-
ness. Temperature measures as the total number of “surprises” on the assumption of a
perfectly nested matrix as temperature increases thermal noises to destroy perfect struc-
ture [128]. Although this is a great measure, this index has its underlying assumption
that the system is actually following the mechanism for a perfect nested structure if there
is no temperature. NODF quantifies nested overlaps, the notion that all species in a poor
habitat are present in richer habitats, and decreasing fill (marginal totals of interactions
between habitats and species) [66].

Now that we identify the null hypothesis to generate a focal skill’s counterfactuals
and nestedness indexes let’s calculate skills’ contributions to nestedness, 𝑐𝑠. For each
skill, we run at least 1,000 simulations, wherein, the focal skills’ ties to occupations are
randomly shuffled, keeping the number of ties constant. Therefore, all ties of the focal
skill (meaning the skill’s generality) are preserved. Then, we measured a nestedness index
of the generated matrix mentioned above, as 𝑁∗. We quantify a skill 𝑠’s contribution as:

𝑐𝑠 =
𝑁− < 𝑁∗

𝑠 >

𝜎𝑁∗
𝑠

(2)

< 𝑁∗
𝑠 > and 𝜎𝑁∗

𝑠
denote the mean and standard deviation of the nestedness of the

simulated matrix, in which skill 𝑠’s edges were randomized.
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Figure S7: Nestedness Contribution of Skills based on checkerboard [65].

Figure S8: Nestedness Contribution of Skills based on Temperature [128].

2.3 Nested and Un-nested Skills

Figs S7, S8, and S9 show the nestedness contribution of skills using checkerboard score,
Temperature, and NODF, respectively. We are particularly interested in examining the
relationship between nestedness contribution and the position of skills in our hierarchy
whose vertical position is a local reaching centrality and the horizontal position is educa-
tion attainment. In addition, we would like to compare skills at the same generality level
to avoid comparing apples to oranges. For example, it is not fair to compare general skills
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Figure S9: Nestedness Contribution of Skills based on NODF[66]. Extreme values arise from
large denominators for some of the skills.

to specific skills as they have more edges. Given that general skills mass at the root of
those dense dependency webs, we show more closely examine the nestedness contribution
of intermediate and specific skills, and use the measurement to split them into categories
of nested and un-nested.

Table S2 shows the resulting split of skills into categories or subtypes based on the
checkerboard score [65] also shown in Fig. S7. To be clear, we refer to the result of our skill
clustering based on generality skill clusters (general, intermediate, and specific) and refer
to the further split made based on nestedness skill categories or skill subtypes (general,
nested intermediate, nested specific, un-nested intermediate, un-nested specific.).

Table S2: The Skill Split Resulting from Nested Contribution of Skills.

Skill Category Skill Titles

Nested Specific (18
skills)

Biology, Chemistry, Design, Fine Arts, Foreign Language, Geography, History
and Archeology, Management of Financial Resources, Management of Material
Resources, Medicine and Dentistry, Philosophy and Theology, Physics, Pro-
gramming, Science, Sociology and Anthropology, Technology Design, Telecom-
munications, Therapy and Counseling

Un-nested Specific
(28 skills)

Building and Construction, Dynamic Flexibility, Dynamic Strength, Equip-
ment Maintenance, Equipment Selection, Explosive Strength, Extent Flexibil-
ity, Food Production, Glare Sensitivity, Gross Body Coordination, Gross Body
Equilibrium, Installation, Mechanical, Multilimb Coordination, Night Vision,
Operation and Control, Peripheral Vision, Rate Control, Reaction Time, Re-
pairing, Response Orientation, Sound Localization, Spatial Orientation, Speed
of Limb Movement, Stamina, Static Strength, Troubleshooting, Wrist-Finger
Speed
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Table S2: The Skill Split Resulting from Nested Contribution of Skills.

Skill Category Skill Titles

Nested Intermedi-
ate (25 skills)

Communications and Media, Economics and Accounting, Far Vision, Flexi-
bility of Closure, Fluency of Ideas, Instructing, Law and Government, Learn-
ing Strategies, Management of Personnel Resources, Mathematical Reasoning,
Mathematics Skills, Memorization, Negotiation, Number Facility, Operations
Analysis, Originality, Personnel and Human Resources, Persuasion, Psychol-
ogy, Sales and Marketing, Selective Attention, Service Orientation, Speed of
Closure, Systems Analysis, Systems Evaluation

Un-nested Interme-
diate (18 skills)

Arm-Hand Steadiness, Auditory Attention, Control Precision, Depth Percep-
tion, Engineering and Technology, Finger Dexterity, Hearing Sensitivity, Man-
ual Dexterity, Operation Monitoring, Perceptual Speed, Production and Pro-
cessing, Public Safety and Security, Quality Control Analysis, Time Sharing,
Transportation, Trunk Strength, Visual Color Discrimination, Visualization

General (31 skills) Active Learning, Active Listening, Administration and Management, Category
Flexibility, Clerical, Complex Problem Solving, Computers and Electronics,
Coordination, Critical Thinking, Customer and Personal Service, Deductive
Reasoning, Education and Training, English Language, Inductive Reasoning,
Information Ordering, Judgment and Decision Making, Mathematics Knowl-
edge, Monitoring, Near Vision, Oral Comprehension, Oral Expression, Problem
Sensitivity, Reading Comprehension, Social Perceptiveness, Speaking, Speech
Clarity, Speech Recognition, Time Management, Writing, Written Comprehen-
sion, Written Expression

2.4 Alternative Approach for Deriving Skill Categories

We split the skills of each cluster (general, intermediate, and specific) based on their
correspondence with general skills. We measure such correspondence 𝐶 by calculating
the correlation between the importance of given skill 𝑖, and the importance of each of the
general skills 𝑗 :

𝐶<𝐿𝑒𝑣𝑒𝑙>
𝑖, 𝑗∈<general> =

Σ𝑜 (𝐿𝑒𝑣𝑒𝑙𝑖,𝑜 − 𝜇𝐿𝑒𝑣𝑒𝑙𝑖 ) (𝐿𝑒𝑣𝑒𝑙 𝑗 ,𝑜 − 𝜇𝐿𝑒𝑣𝑒𝑙 𝑗 )√︃
Σ𝑜 (𝐿𝑒𝑣𝑒𝑙𝑖,𝑜 − 𝜇𝐿𝑒𝑣𝑒𝑙𝑖 )2Σ𝑜 (𝐿𝑒𝑣𝑒𝑙 𝑗 ,𝑜 − 𝜇𝐿𝑒𝑣𝑒𝑙 𝑗 )2

(3)

Aggregating values of 𝐶𝑖, 𝑗 over general skills 𝑗 , we obtain a measure of correspondence
between skill 𝑖 and the set of general skills, 𝐶𝑖,<𝑔𝑒𝑛𝑒𝑟𝑎𝑙>. Then, we compare skill 𝑖 to
other skills 𝑙 in the same cluster 𝑘 to which 𝑖 belongs— given our assignment from
supplementary section 1. To do so, for skills 𝑙 of cluster 𝑘 ∈ {intermediate, specific}, we
calculate the mean correlation to general skills:

𝐶<𝑚𝑒𝑎𝑛>
𝑘 = 𝑚𝑒𝑎𝑛𝑙∈𝑘𝐶𝑖,<𝑔𝑒𝑛𝑒𝑟𝑎𝑙> (4)
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Finally, we suggest a skill 𝑖 of cluster 𝑘 ∈ 𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐, 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 is nested if it depends
on general skills above the mean level and call it ’nested ’ if 𝐶𝑖,<𝑔𝑒𝑛𝑒𝑟𝑎𝑙> ≥ 𝐶<𝑚𝑒𝑎𝑛>

𝑘
, and

suggest it is independent of general skills and call it ’un-nested ’, otherwise. Table S3
shows the resulting assignment of skills based on this approach. One obtains a similar
split of skills if the Importance measure instead of Level is used.
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Table S3: The Skill Split Resulting from Correlation Dependence Analysis described above.

Skill Category Skill Titles

Nested Specific (20
skills)

Biology, Building and Construction, Chemistry, Design, Fine Arts, Food Pro-
duction, Foreign Language, Geography, History and Archeology, Management
of Financial Resources, Management of Material Resources, Medicine and Den-
tistry, Philosophy and Theology, Physics, Programming, Science, Sociology and
Anthropology, Technology Design, Telecommunications, Therapy and Counsel-
ing

Un-nested Specific
(26 skills)

Dynamic Flexibility, Dynamic Strength, Equipment Maintenance, Equipment
Selection, Explosive Strength, Extent Flexibility, Glare Sensitivity, Gross Body
Coordination, Gross Body Equilibrium, Installation, Mechanical, Multilimb
Coordination, Night Vision, Operation and Control, Peripheral Vision, Rate
Control, Reaction Time, Repairing, Response Orientation, Sound Localiza-
tion, Spatial Orientation, Speed of Limb Movement, Stamina, Static Strength,
Troubleshooting, Wrist-Finger Speed

Nested Intermedi-
ate (23 skills)

Communications and Media, Economics and Accounting, Flexibility of Closure,
Fluency of Ideas, Instructing, Law and Government, Learning Strategies, Man-
agement of Personnel Resources, Mathematical Reasoning, Mathematics Skills,
Memorization, Negotiation, Number Facility, Operations Analysis, Originality,
Personnel and Human Resources, Persuasion, Psychology, Sales and Marketing,
Service Orientation, Speed of Closure, Systems Analysis, Systems Evaluation

Un-nested Interme-
diate (20 skills)

Arm-Hand Steadiness, Auditory Attention, Control Precision, Depth Percep-
tion, Engineering and Technology, Far Vision, Finger Dexterity, Hearing Sensi-
tivity, Manual Dexterity, Operation Monitoring, Perceptual Speed, Production
and Processing, Public Safety and Security, Quality Control Analysis, Selec-
tive Attention, Time Sharing, Transportation, Trunk Strength, Visual Color
Discrimination, Visualization

General (31 skills) Active Learning, Active Listening, Administration and Management, Category
Flexibility, Clerical, Complex Problem Solving, Computers and Electronics,
Coordination, Critical Thinking, Customer and Personal Service, Deductive
Reasoning, Education and Training, English Language, Inductive Reasoning,
Information Ordering, Judgment and Decision Making, Mathematics Knowl-
edge, Monitoring, Near Vision, Oral Comprehension, Oral Expression, Problem
Sensitivity, Reading Comprehension, Social Perceptiveness, Speaking, Speech
Clarity, Speech Recognition, Time Management, Writing, Written Comprehen-
sion, Written Expression
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3 Conditional Skill Dependencies

To obtain the skill structure, as seen in main Fig. 2, we extract conditional probabilities
of the appearance of a skill 𝑢, given the appearance of another, 𝑣, in the skill-occupation
matrix, which was used for nested structure in the previous section [40].

3.1 Skills-Occupation Matrix

The original skill-occupation matrix’s entry is a continuous variable (indication of the
degree, or point along a continuum, to which a particular descriptor is required or needed
to perform the occupation). But most conventional nestedness analyses, used in section
2, and conditional probability measures for main Fig. 2, require binary entries. Thus,
we employ a disparity filter to make the matrix binary entries of statistically significant
presences [122].

We chose this method for two reasons. First, it allows the user to set different re-
strictions on the skill and occupation sides of the bipartite network. This feature is
desirable given the differences in the strength and degree distributions of occupations
and skills. Second, it accommodates heterogeneous degree distribution, which we know is
a key characteristic of our skill side. In choosing the parameters, we ensured the resulting
binary network satisfied the following conditions. First, the filtered network has to re-
main faithful to the skill and occupation degree distributions (macro-level features). We
show that the filter indeed kept the distribution shapes in Fig. S10 for the skills strength
distribution and Fig. S11 for occupations’ strength correlations. The Pearson correlation
between skills’ strengths (sum of edge weights) and their transformed degree is 0.95. The
ranking of skills across these two measures is also preserved (correlation is 0.97). Note
that we used comparisons between node strengths and node degrees because of our id-
iosyncratic empirical data structure. Each occupation includes a survey for every skill,
resulting in every occupation having every skill entry with numbers ranging from 0 to
7. The surviving skills preserve the distribution and ranking of occupations (correlations
between occupations’ strength and ranking before and after transformation are 0.79, and
0.79, respectively).

In the end, the parameter pair (𝛼𝑖𝑛 = 0.4, 𝛼𝑜𝑢𝑡 = 0.275) results in 33,865 (29%) edges.
We also conducted validity checks on the choice of parameters by examining the sampled
results (5% of occupations). The test compares the survived and eliminated skills to
common sense. For example, have the links between “Surgeon” and the skill “Medicine
and Dentistry”, and “Programmer” and skill “Programming” survived? Conversely, has
the link between “Mathematician” and ”Explosive Strength”, defined as The ability to
use short bursts of muscle force to propel oneself (as in jumping or sprinting), or to
throw an object, been eliminated? The goal of this exercise is to ensure the parameters
are not set too strictly or too lenient, and that the retained information in ties conforms
to expectations.

3.2 Skill Dependency from Conditional Probabilities

We first account for the significant conditional appearances, and discount for noise from
independent co-appearances (of two skills in occupation) by random chance with a z-score
threshold, 𝑧𝑡ℎ [40]. That is, we account only for those skills that appear together more
than randomly expected by 𝑧𝑡ℎ magnitude. Here, 𝑧𝑡ℎ is a threshold for the extent to
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Figure S10: Skill Degrees as Validity Check on Choosing Parameters of Obtaining Skill-
occupation Network Backbone. The figure compares the degree distribution of skills in each skill
group before and after the transformation. Our emphasis is on the distinction between the distribution
of three types of skills (their overlap) and their relative position to the raw data. Indeed, the Pearson
correlation between skills’ strengths (sum of edge weights) and their transformed degree is 0.95. The
ranking of skills across these two measures is also preserved (correlation is 0.97).

which we eliminate chance from two skills appearing in the same occupation.

𝑧𝑢,𝑣 =
𝑁 (𝑢, 𝑣) − 𝜇

𝜎
> 𝑧𝑡ℎ (5)

Where 𝜎2 =
𝑁 (𝑢).𝑁 (𝑣)

∥𝑂∥
∥𝑂∥−𝑁 (𝑣)

∥𝑂∥
∥𝑂∥−𝑁 (𝑢)
∥𝑂∥−1 and 𝜇 =

𝑁 (𝑢).𝑁 (𝑣)
∥𝑂∥ , are the standard deviation

and mean of a hypergeometric distribution for the expected co-occurrence of skills (that
arise the under the null model of a bipartite configuration model that preserves skill
degrees [40].) 𝑁 (𝑢) and 𝑁 (𝑣) denote the number of occupations that demand skill 𝑢 and
𝑣, respectively and ∥𝑂∥ denotes the total number of occupations.

We now estimate conditional probabilities 𝑃(𝑢 |𝑣) and 𝑃(𝑣 |𝑢) and assign a direction
to them. The direction, 𝑢 → 𝑣, is determined when 𝑃(𝑢 |𝑣) is substantially greater than
𝑃(𝑣 |𝑢). Once again, we wouldn’t consider every 𝑃(𝑢 |𝑣) that is insignificantly greater
(smaller) than 𝑃(𝑣 |𝑢), but only those that are sufficiently greater (smaller) to be consid-
ered as a dependent structure. 𝛼𝑡ℎ sets the minimum difference between two conditional
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Figure S11: Occupational Degrees as Validity Check on Choosing Parameters of Obtaining
Skill-occupation Network Backbone. The figures compare the degree distribution of occupations
before and after the transformation. Our emphasis is faithfulness across each of the five skill subtypes.

probabilities so that they are considered to have directional dependence. This thresh-
old has to be differentially applied to each skill pair due to the heterogeneous skill node
degrees. Therefore, the threshold 𝛼𝑡ℎ is weighted by ( 𝑘𝑚𝑎𝑥

𝑚𝑖𝑛(𝑘𝑢,𝑘𝑣) ) to be applied to filter
[𝑃(𝑢 |𝑣) − 𝑃(𝑣 |𝑢)] ≠ 0

|𝑃(𝑢 |𝑣) − 𝑃(𝑣 |𝑢) | > ( 𝑘𝑚𝑎𝑥

𝑚𝑖𝑛(𝑘𝑢, 𝑘𝑣)
) × 𝛼𝑡ℎ (6)
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Where 𝑘 denotes the number of other skills with ties to the focal skill, and 𝑘𝑚𝑎𝑥 denotes
the biggest degree observed among skills.

The magnitude of the dependence between 𝑢 and 𝑣, 𝑤𝑢→𝑣, follows the parametric
function introduced by [40]:

𝑤𝑢→𝑣 =
𝑚𝑖𝑛(𝑘𝑢, 𝑘𝑣)

𝑘𝑚𝑎𝑥

(𝑁 (𝑢, 𝑣)
𝑁 (𝑣) − 𝑁 (𝑢, 𝑣)

𝑁 (𝑢)

)
(7)

In simple terms, the direction of arrows shows whether by observing skill 𝑣 in an
occupation, it is (more) likely also to observe skill 𝑢 (than the other way around). The
magnitude of dependence, used as weights in the main Fig. 2, is a parameteric function
of the difference between the conditional probabilities of observing 𝑢 and 𝑣, and the null
model that corresponds to the estimated number of shared occupations between them,
given the degrees of 𝑢 and 𝑣. The final network is shown in Fig. S14 and used across
all analysis, but for the main Fig. 2 and 7 that depict the parsimonious versions, from a
directed acyclic graph (DAG) [40].

Choice of Parameters

There are two parameter choices 𝑧𝑡ℎ and 𝛼𝑡ℎ. Here, we present results across different
parameters to ensure the robustness of our findings. We choose the first parameter, 𝑧𝑡ℎ, in
such a way that we remove about two-thirds of the edges. Fig. S12 shows the distribution
of z-scores for all skill co-appearance edges.

Figure S12: Histogram of Z-scores Resulting from Equation 5 for Skill Co-appearances.
The x-axis shows the 𝑧𝑡ℎ values derived from equation 5 on our data, and the y-axis shows the number
of co-appearance links falling into a given range of 𝑧𝑡ℎ values. We focus on 𝑧𝑡ℎ values between 4 and 6.

Ideally, one chooses 𝛼𝑡ℎ as strictly as possible to remove insignificant links without
the loss of skills. If all edges associated with a given skill are removed as a result of the
two steps of the algorithm, the skill is eliminated from the resulting dependency network.
However, as our sensitivity analysis shows, retaining too many statistically insignificant
links weakens our ability to extract conditional dependencies robustly. Therefore, retain-
ing more statistically significant edges inevitably impose the cost of losing several skills.
Fig. S13 offers a sensitivity analysis on the interaction of 𝑧𝑡ℎ and 𝛼𝑡ℎ. Ideally, no more
than 5% of skills are eliminated, while about 95% of ties between skills were removed as
statistically insignificant. The combination 𝑧𝑡ℎ = 4.75 and 𝛼𝑡ℎ = 0.05 is a possible solution
used in the main text. At this level, only five skills are eliminated from the network.
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Figure S13: Sensitivity Analysis on Parameters Used for Obtaining Significant Skill Depen-
dencies. The x-axis shows the 𝛼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 values. Each panel shows a certain 𝑧𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 as in equation
5, and the y-axis shows the rate of node survival or edge elimination. Ideally, no more than 5% of
skills are eliminated, while about 95% of ties between skills were removed as statistically insignificant.
𝑧𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 4.75 and 𝛼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.05 is a possible solution used in the main text. The resulting back-
bone from a number of combinations is offered in the following.

A consideration is whether the shape of the skill dependency in Fig. 2 (b and c)
is influenced by the choice of parameters. We conduct a robustness check wherein we
visualize the resulting networks from the combination of values of 𝑧𝑡ℎ between 4 and 5.5
and values of 𝛼𝑡ℎ between 0.01 and 0.1.

Throughout, a disjointed structure emerges, wherein a set of specialized skills (blue
and gray) have closer connections with the general skills (red), than other specialized
skills. Even in networks obtained from a lenient 𝛼𝑡ℎ, the hierarchical structure is visible,
and in most, one can distinguish between a more closely knit web of skills that manifest
stronger dependence on generals skills (manifest higher connection to red nodes), and
a second set of skills, decoupled from the first, which manifest a comparatively shallow
dependency web. We withdrew the visualized network for the sake of brevity. These
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visuals are sharable upon request.
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Visualizing the Skill Hierarchy

The main Fig. 2 is the backbone of a network with parameters 𝑧𝑡ℎ = 4.75 and 𝛼𝑡ℎ = 0.05.
Fig. S14 shows the full skill network, which contains 115 nodes and 1,796 dependency
relationships. The following skills are eliminated from the graph because neither of their
dependency relationships passed the statistical significance test: Installation, Explosive
Strength, Sound Localization, Food Production, Public Safety, and Security. In the back-
bone network, any direct path is eliminated where there exists an indirect path through
dependencies. As a result, the backbone contains only 395 edges, accommodating vi-
sualization. Nonetheless, we perform all calculations on the skill network and not its
backbone.

For both the skill network and its backbone, we use a layout technique inspired by [52,
136]. We determine the vertical placement of a skill based on its local reaching centrality
[52], defined as the number of nodes achievable from the focal node. This highly correlates
with a skills’ demand, defined as the total level values, across occupations (Pearson
correlation 0.89). The horizontal position is proportional to the skill’s association with
education, calculated as the weighted education of occupations (using levels as weights).
We pass normalized values for both the vertical and horizontal axes through a Lambert
cylindrical projection to Gephi for visualization. Fig. S15 shows the network in the main
Fig. 2 (b) with all nodes labeled and the position of nodes adjusted to accommodate
labels.

Figure S14: Skill Dependency Network. The layout is adjusted to accommodate the labels. The
original layout (without overlap) is shown in the top right corner.
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Figure S15: Labeled Skill Dependency Backbone. Node positions are adjusted to accommodate
labels.

3.3 Linkage to Skill Co-occurrence Networks

Our work builds on a vast literature that conceptualizes the landscape of skills as a
co-occurrence network [15, 17, 20, 22]. Indeed, without directionally, the hierarchical
network is in excellent agreement with such previously constructed skill networks. Here,
we follow the approach used in [17] that identifies communities of cognitive versus physical
from a pairwise co-occurrence network. We obtain such a network in two steps (using
O*NET skill data from 2019):

1. Measuring the ”effective use of skill” by occupation based on RCA as follows:

𝑅𝐶𝐴(𝑠, 𝑗) = 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑠, 𝑗)/Σ𝑠′∈𝑆 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑠, 𝑗 ′)
Σ 𝑗 ′∈𝐽 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑠′, 𝑗 ′)/Σ𝑠′∈𝑆, 𝑗 ′∈𝐽 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑠′, 𝑗 ′) (8)

where 𝑠 denotes a given skill, and 𝑗 a given occupation. 𝑆 and 𝐽 denote the popu-
lation of skills and occupations respectively. An skill-occupation is ’effective’— i.e.,
𝑒(𝑖, 𝑗) = 1 if 𝑅𝐶𝐴(𝑠, 𝑗)— and is not— i.e., 𝑒(𝑖, 𝑗) = 0, otherwise.

2. Using 𝑒(𝑖, 𝑗) values, authors derive pairwise skill ”complementarity” proportional
to the number of times skills 𝑠 and 𝑠′ co-appeared in an occupation as follows:

𝜃 (𝑠, 𝑠′) =
Σ 𝑗∈𝐽𝑒(𝑠, 𝑗).𝑒(𝑠′, 𝑗)

𝑚𝑎𝑥
(
Σ 𝑗∈𝐽𝑒(𝑠, 𝑗), Σ 𝑗∈𝐽𝑒(𝑠′, 𝑗)

) (9)
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There are two key messages. First, we explain that the cluster of General skills
resides at the center of such a skill co-occurrence network— in fact, the ordering of skill
specificity based on our skill clusters is predictive of how far the skills lie towards the
fringes of the skill co-occurrence network. Second, the dichotomy of cognitive versus non-
cognitive skills has tight connections with the disjointed structures we found and called
nested and un-nested skills, respectively.

Fig. S16 shows a network representation of skills based on the pairwise ”comple-
mentarity” values manifests the bi-modal structure reported by [17]. There are several
departure points, however. First, we restrict our workplace skills to the so-called knowl-
edge, abilities, and skills, disregarding work activities, while the latter is commonly used
in co-occurrence networks constructed using O*NET. Our rationale for not including
work activities is that they are job descriptions (i.e., generalized forms of job tasks that
are specific to jobs). In contrast, abilities, knowledge, and skills are characteristics of
workers’ expertise, which are our primary concern.

Second, the community on the right is an ensemble of ”cognitive” skills, while the
left group corresponds to mostly ”physical” skills, which are consistent with our nested
and un-nested skills, respectively. However, several skills, such as Physics, Design, and
Chemistry seem out of place at the bottom end of the left community, and are classified
by our approach as nested skills— which appear consistent with their wage and educa-
tional associations. The key advantage of our method is that we can predict numerous
implications of skills based solely on the informationed embedded in the occupation-skill
networks, without the need for knowing the content of the skill, as labeled by cognitive or
physical skills. Our skill hierarchy, in effect, offers an explanation for why certain skills,
known to be cognitive, are more valuable, based on the investments necessary to satify
their dense and nested web of dependencies.

3.4 Skill Hierarchy Captures Career Progress (Specialization)

A key advantage of integrating the conceptual distinction between general and niche skills
with a structural network approach to studying skills is that the aggregation of pairwise
skill interdependencies reveals pathways of progress (what has come to be known as
“specialization”). However, the structure of our skill hierarchy implies that progress
entails co-development in certain niche skills and the prerequisites, often more general
skills.

Here, we explore a case study of such progress based on the skill requirement differen-
tials of registered nurses (RNs) versus nurse practitioners (NPs). Compared to RNs, NPs
prescribe medicine and diagnostic tests and command higher wages (Fig. S17 e). Without
any cost, someone equipped with the skills of an RN would ideally prefer to work as a
nurse practitioner to benefit from higher payoffs. However, as Fig. S17 (a) shows, only a
subset of individuals who are RNs early on in their careers (i.e., for whom RN appears
most in their first three jobs listed in their Burning Glass Technology resume) manage
the switch to the better-paid NP jobs later in their careers (i.e., NP appears most after
their third jobs listed in their Burning Glass Technology resume). The fact that most
NPs were initially RNs (81.5%) corroborates our interpretation of the path from RN to
NP as one that entails career progress. The transition statistics captured in Fig. S17 (a)
are also consistent with the higher experience and the more extended training needed for
nurse practitioners to develop the necessary skills (Fig. S17 c-d).

The correlation between education and wages observed at the cross-section of RNs
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Figure S16: Network of Pairwise Skill ”Complementarity.” In this figure, edges denote skill
complementarity relationship if they passed the threshold of 𝜃 (𝑠, 𝑠′) > 0.5— authors used a threshold of
𝜃 (𝑠, 𝑠′) > 0.6 which leads to several isolated nodes in 2019 data. We assign an average education value
to each skill based on the educational requirements of occupations. A skill’s associated education level
is only impacted by occupations that use the skill ’effectively’— i.e., ∀ 𝑗 : 𝑅𝐶𝐴(𝑠, 𝑗), nodes are colored
based on their modularity communities.

and NPs agrees with the economic theory narrative. However, only a structural approach
can reveal the skill development involved in such a transition, highlighting skill growth
pathways, seen in Fig. S17 (b). While RNs require high levels of medicine and therapy
(niche skills), psychology (intermediate skill), coordination, and social perceptiveness
(among many other general skills), the transition into an NP requires further levels of
those skills as well as significant development of science, biology, chemistry (among other
niche skills), persuasion (intermediate skill), as well as higher knowledge of math, time
management, complex problems solving, administrative and computer skills (among other
general skills). In contrast, arm-hand steadiness used at high levels by RNs is not as
intensely utilized by NPs.

Comparing RNs’ with NPs’ skills showcases that our approach teases out meaningful
progression (or specialization) pathways embedded in the skill requirement of occupations.
The co-development of niche and the relevant general skills underpin what we call a nested
specialization path. In the following, we offer evidence that the pattern observed in RNs’
and NPs’ careers emerges across individuals in other occupations.

3.5 Skill Hierarchy Captures Skill Entrapment

As the main Fig. 6 and SI Sec. 7 show, Hispanics tend to possess relatively high levels
of un-nested skills but are underprivileged in gender nested skills. This unbalance leads
to skill entrapments with possibly early rewards and long-term wage penalties, as SI
Fig. S30. Our skill hierarchy allows us to explore one possible driver of this skill unbalance
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Figure S17: Transition between Registered Nurses (RNs) and Nurse Practitioners (NPs).
(a) uses resume data from Burning Glass Technology to capture the transition statistics between RNs
and NPs. We restrict the analysis to individuals with at least five listed occupations in their resume and
define their early career occupations as the most appeared occupation in the first three jobs, similarly
late career occupations as the most appeared in the fourth jobs and onward. We disregard individuals
whose early and late careers are neither RN nor NP. Including these individuals would not change the
result but significantly complicate the exposition. One expects that higher wages for NPs would attract
RNs (e). Indeed, most NPs were RNs early on. However, only a subset of RNs progresses to NP
jobs, suggesting barriers to entry, summarized in higher experience and educational requirements (c-
d). (b) captures the skill requirements of RNs and NPs, highlighting the advantage of integrating the
conceptual distinction between general and niche skills with a structural network approach to studying
skills in revealing pathways of progress (also known as “specialization”). The structure of our skill
hierarchy also implies that progress entails co-development in certain niche skills and the prerequisite,
often more general skills.

for Hispanics.
We suspect language skills are barriers to some hispanic workers, particularly early on

in their careers in the US, hampering the acquisition of (language-related) general and
(the downstream) nested specific skills, but less so the acquisition of un-nested skills. To
test this, we split the sample of individuals from the CPS into four subgroups, ordered
based on their likely level of English proficiency: Hispanics born outside of the US who
immigrated less than a year before the survey, Hispanics born outside the US who have
been in the US for more than a year, Hispanics born inside of the US, and White workers.
We map the average skill levels of each of the above subgroups for each skill category in
Fig. S18, below. As hypothesized,the foreign-born Hispanics who recently migrated to
the US have the lowest levels of general and nested skills and have the highest unnested
skills. The suspected ranking of English proficiency of each subgroup is consistent with
their ranking in terms of general, nested and unnested skills. Next, we investigate the
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Figure S18: Comparison of the Skill Levels of Hispanic Immigrants and White Workers
We distinguish between four groups of workers (i. foreign-born Hispanics who have migrated less than
a year to the US from the time of survey, ii. foreign-born Hispanics who have been in the US for more
than a year, iii. US-born Hispanics, and iv. the White workers) and map their average skill levels for
each skill category. Recently migrated foreign-born Hispanics have the least levels of general and nested
skills and most un-nested skills.

role of language skills directly Fig. S19.
Our network allows us to directly identify which nested skills more closely depend on

language general skills. To do so, we first identify six general skills as “language-related”:
i. English Language, ii. Oral Expression, iii. Oral Comprehension, iv. Written Expres-
sion, v. Written Comprehension, and vi. Speaking. One can quantify the dependence
of each nested skill, i, on each of the mentioned language skills, j, by deriving the ar-
rival probability of a random walk starting from the mentioned language general skills,
𝑃<𝑎𝑟𝑟𝑖𝑣𝑎𝑙>
𝑖, 𝑗

. Aggregating these probabilities over the language general skills, we obtain

𝑃<𝑎𝑟𝑟𝑖𝑣𝑎𝑙>
𝑖

= Σ 𝑗𝑃
<𝑎𝑟𝑟𝑖𝑣𝑎𝑙>
𝑖, 𝑗

. We flag nested specific skills at the top 25% of skills in terms

of their average arrival probability, 𝑃<𝑎𝑟𝑟𝑖𝑣𝑎𝑙>
𝑖, 𝑗

, obtaining the following skills: i. History
& Archeology, ii. Management of Material Resources, iii. Management of Financial Re-
sources, iv. Programming, v. Philosophy & Theology. Splitting general and nested skills
by their language associations (general skills into Language-related and Non-language
skills, and nested skills into Language dependent and Language independent), we obtain
the average skill levels of individuals for the previously defined subgroups of workers (His-
panic and White based on their place of birth and time since immigration). In Fig. S19,
we show the ratios of skills levels for the different Hispanic subpopulation groups rel-
ative to White workers for the Language-related and non-language general skills and
Language-dependent.

The results show that the skill gaps between Hispanic subpopulations and White
workers mimic the implied language gradient: the less proficient in English a subgroup
will be, the larger the gap is to White workers in language-dependent nested skills but
not in language-independent specific skills. This supports our hypothesis that the skill
gaps for Hispanic workers as a whole are, at least in part, due to language barriers.
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Figure S19: Language Barriers Manifest in Lower Levels of Language-related Nested Skills
for Hispanics. The figure depicts, for the Language-related and non-language general skills and
Language-dependent (defined as the skills in the top 25% arrival probability to the mentioned lan-
guage skills) and Language-independent nested skills, the ratios of skills levels for the different Hispanic
subgroups relative to White workers. The results depict that the language-dependent nested skills vary
significantly more across the Language-dependent subset, supporting our suspicion that Hispanic work-
ers, at least in part, suffer from their language skills, which prevents them from acquiring/applying
downstream skills.
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4 Skill Categories in Career Trajectories

Main Fig. 4 supplements our inference of the skill structure from O*NET, which relies on
cross-sectional data, with longitudinal evidence in line with the notion that one actually
acquires or advances general skills when they progress in their career and acquire more
specific skills. Here, we provide additional evidence and robustness checks on the analysis
of main Fig. 4, based on resume (Burning Glass) data, occupational median age, and skill
acquisition reflected in synthetic birth cohorts we created using CPS microdata.

4.1 Resume Data

Unlike O*NET, Burning Glass resume data offers longitudinal observation of skill ac-
quisition and will allow us to conduct a more strict test of our skill structure. We keep
track of one’s occupations in the resume data, from which longitudinal skill acquisition
is inferred.

Preparing Burning Glass Data

The following discussion describes choices made in cleaning the data, revealing robustness
to such choices in terms of the direction of the results, although the magnitude may vary
slightly. We studied over 20 million resumes from the Burning Glass data, which amounts
to over 70 million job moves. For each move, we link the source and destination occu-
pations to skills from O*NET in 2019. Excluding all within-occupation moves— which
amount to no skill change— we calculate a skill level change across our skill categories
and show the result. Fig. S20 as the distribution of career moves for resumes in the
Burning Glass sample— after removing within-occupational career moves.

As can be seen in Fig. S20, A minority of career moves produce extreme values,
stretching the skill change distributions’ tails. Table S4 shows a few such cases from the
data. For instance, the resume with the ID 652855, serves as a janitor for a short period
(4 months) before seemingly claiming a Chief Executive role. Resume with ID 1723696
held overlapping jobs as a Medical Health Technician and a Middle School Teacher.
Studying the career moves that correspond to such skill changes, we noticed a significant
proportion arise from short job stints and coinciding jobs— some seemingly voluntary
part-time commitments.

We removed such jobs from our resume sample. Particularly, we kept jobs if they
lasted at least 12 months— we arrived at the threshold after studying the career moves
that correspond to the thousand largest absolute skill changes. Furthermore, sorting jobs
for each resume based on starting date and end date, we removed any job that had a
shorter length and overlapped with another— that is, we remove a job 𝑗𝑟 from a resume
𝑟, if it had a later or equal start date with another job 𝑗 ′𝑟 , but did not have a later end
date. We also removed jobs for which we could not extract the start and end date—
we used Python’s dateparser version 1.1.1. for the extraction. The resulting sample was
9,382,602 career moves and 5,361,751 resumes. Fig. S21 shows the resulting skill change
distributions.

The main text analyzes the levels and patterns of skill change across general and
(nested and un-nested) specific skills. Fig. S22 shows the net effects, i.e., the average
change in levels resulting from job moves across all skill categories, and the correlation
between the change in the levels of general skills and changes in the level of other skill cat-
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Figure S20: Changes in Skill Levels in Individuals’ Career Moves. The distribution shows the
Burning Glass resume data. A minority of career moves produce extreme values, stretching the skill
change distributions’ tails due to imperfect data.

egories resulting from job transitions. Fig. S23 supplements main Fig. 4 (i) by providing
the changes in all skill category levels resulting from consecutive job transitions.

Table S4: A Select List of Job Sequences in Burning Glass data that yield extreme Skill Changes.

ID Start End Occupation

1 652855 Oct 2011 Feb 2012 Janitors & Cleaners, Except Maids & Housekeeping
Cleaners

2 Jun 2012 Aug 2012 Chief Executives
3 1723696 Sep 1981 Sep 1991 Janitors & Cleaners, Except Maids & Housekeeping

Cleaners
4 Sep 1991 Sep 1994 Medical Records & Health Information Technicians
5 Sep 1993 Sep 1993 Middle School Teachers, Except Special & Career or

Technical Education
6 Sep 1994 Sep 1999 Lodging Managers
7 18075175 Jun 2007 Jun 2007 Chief Executives
8 Aug 2009 Aug 2009 Janitors & Cleaners, Except Maids & Housekeeping

Cleaners
9 Aug 2010 Aug 2010 Cashiers
10 Aug 2011 Aug 2011 Retail Salespersons
11 Dec 2012 Dec 2012 Retail Salespersons
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12 Feb 2013 Feb 2013 Cashiers
13 18325881 Jun 2022 Oct 2022 Medical & Health Services Managers
14 Oct 2022 Jan 2022 Medical & Health Services Managers
15 Jan 2022 May

2022
Human Resources Specialists

16 May
2022

Sep 2022 Models
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Figure S21: Changes in Skill Levels in Individuals’ Career Moves. Most career moves amount
to small changes in skills. On aggregate, general, nested skills experience increases on aggregate, while
un-nested skills record non-positive changes. Nested skill changes closely correlate with changes in general
skills. In contrast, there is almost no noticeable relationship between changes in general and un-nested
skills. Importantly, randomizing the sequence of job transitions (bootstrap) eradicats the direction of
skill acquisition in the observed data.

Expected Skill Change from Random Job Transition

Furthermore, we bootstrapped our resume sample to produce a benchmark and compare
it with the skill changes we obtained from observed career moves. For each resume in our
sample, we randomly permuted the order of career moves and measured the skill changes
again. Fig. S24 shows one such bootstrap. It is visible in Fig. S24 that the randomization
eradicated the direction of skill changes we had obtained from the observed career moves—
in Fig. S21.

Fig. S25 further shows the distribution of average skill changes for 100 bootstraps. The
fact that resulting skill changes from a null model differ significantly from our observed
results ensures our results are meaningful signals of individuals’ career moves, pointing
to the dependencies between (general and nested) skills.
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Figure S22: Expected Changes of Skill Levels for Each Career Moves. For each career move,
we linked the source and destination occupations to skills from O*NET in 2019. We calculate a skill
level change across our five skill subtypes. For each skill sub-type, we measure changes in skill levels, Δ𝑠,
corresponding to each career move as the average of differences between the skill levels of the target and
source occupations. (a) shows average changes in skill levels for skill subtypes. On aggregate, general,
nested skills experience increases on aggregate, while un-nested skills record non-positive changes. (b)
shows the correlation between general skills and each skill category resulting from individuals’ career
moves. Nested skill changes are closely related to changes in general skills. In contrast, there is almost
no noticeable relationship between changes in general and un-nested skills.
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Figure S23: Changes in all skill category levels in consecutive job transitions.

Figure S24: Changes in Skill Levels in Bootstrapped Individuals’ Career Moves. The distri-
bution of changes in skill levels visibly differs from what we obtain from the observed career moves.
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Figure S25: Distribution Skill Changes from Bootstrapped Career Moves.
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4.2 Occupational Median Age

Fig. S26 shows the trends of average skill levels and the average levels of the top 5 skills
in each category against occupations’ median age. This analysis supplements the main
Fig. 4 (a-c).

Figure S26: Median Age of Workers in Occupation and Changes in Skill Categories.

4.3 Individuals’ Age and Skills

Fig. S27 shows the trends of average skill levels and the average levels of the top 5 skills in
each category as individuals age, accounting for the year effect. This analysis supplements
the main Fig. 4 (d-f) by controlling for varying annual economic situations. The top 5
skills are determined based on the highest levels of skills in each category and are inferred
for the individual based on their occupation. The results are consistent with the main
figure.

As robustness checks, we also show that the skill development observed in the main
Fig. 4 continues long after education (Fig. S28) and also emerges for individuals without
a college education (Fig. S29).
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Figure S27: Individuals’ Skill Acquisition and Age.

Figure S28: Evolution of skill, age and education. To measure education, we have used educational
attainment and the fraction of individuals who attend school as functions of age, both taken from the
Current Population Survey (CPS). The education attainment variable ranges from 2 (i.e., no schooling)
to 125 (i.e., doctorate degree). To obtain the fraction of the sample attending school, we utilized
the information in the CPS variable SCHOOLCOL that documents attending high school (1 or 2) or
college/university (3 or 4) or not attending school (5). We transformed the information so that if an
individual attends school (1,2,3 or 4), it receives a value of 1, and if not attending, it has a value of 0.
Even though by the age of 30, education plateaus and school attendance drops significantly, skill growth
continues, manifesting the presence of other mechanisms for skill accumulation apart from education.
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Figure S29: Skill Acquisition and Age for Individuals with no College Education. The figure
replicated the skill-age analysis (Fig. 4) for the subset of individuals who have obtained no more than
a high school diploma (values of less than or equal to 073 on the CPS education attainment variable.)
The patterns resemble the skill accumulation across the population, even though the levels of general
and nested skills are lower compared to the population-level estimates.
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5 Skill Investment and Payoffs

5.1 Investment and Payoffs of Skill Subtypes

Figure S30 shows “wage curves” that depict wages as a function of age for individuals
in the most nested and the most un-nested occupations. The figures capture entrapment
due to un-nested skills. To obtain wage curves, we averaged over the levels of nested and
un-nested skills of each occupation in our sample. We picked occupations at the top 20%
of the nested skills as the most nested, and occupations at the top 20% of the un-nested
skills as the most un-nested. Matching these occupations to the individuals in the CPS,
we can obtain estimates of wages for individuals in these occupations at different ages. To
avoid conflating long-run economic factors, we show the wage-age curves for four distinct
periods of 5-years: 1983-1987, 1993-1997, 2003-2007, 2013-2017. In three of the four
periods, un-nested jobs have an early wage lead, which quickly evaporates with age. The
pattern is consistent with the notion that learning is steeper in occupations with more
complex tasks [30, 73]. To arrive at a complete picture, one would need to account for
the higher cost of education associated with nested occupations. Hence, the wage offsets
observed in the figure may occur later in individuals’ lives in terms of real earnings once
the cost of education is accounted for.

Figure S30: Wage Curves for Occupations with Primarily Nested vs. Primarily Un-nested
Skills. We average over the levels of nested and un-nested skills of each occupation in our sample and
pick occupations at the top 20% of the nested skills as the most nested and occupations at the top 20% of
the un-nested skills as the most un-nested. Matching these occupations to the individuals in the CPS, we
can obtain estimates of wages for individuals in these occupations at different ages. To avoid conflating
long-run economic factors, we show the wage-age curves for four 5-year periods: 1983-1987, 1993-1997,
2003-2007, 2013-2017. Un-nested jobs have an early wage lead which quickly evaporates with age.

Figures S31-S33 capture a similar analysis to the main Fig. 5 for all skill subtypes,
separating the relationship between skills and occupation educational requirement, oc-
cupation workplace experience, and wages, respectively. In each figure, the upper panel
depicts the bivariate relationship between each nested or un-nested and intermediate or
specific skill subset and a corresponding work measure (educational requirement, work-
place experience, and wages). The inset shows the relationship between general skills.
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The lower panels control for general skills when regressing the work measure on the cor-
responding skill subset. The residualized form shows the partial association between the
skill subtype and work measure. For nested skills, the relationship with education weak-
ens but for experience and wages it almost disappears, consistent with the main text and
our intuition that general skills derive a large part of the signal. For un-nested skills,
the predominantly negative relationships reverse to modest positive, consistent with the
intuition that cetris paribus, un-nested skills behave as if human capital. Hence, they
require training, accumulate experience, and contribute to wages, albeit modestly.

Figure S31: Relationship between Occupations’ Educational Requirement and Skill Sub-
types.

Figs. S34-S36 repeat the above analyses with the minor difference that the skill level is
calculated not as the average of all skills that belong to a subtype, but as the average level
of each occupations’ top 5 skills in each skill category. The nature of the relationships is
robust to this change— while slopes vary modestly.

Table S5 supplements previous figures by comparing the partial effect of nested and
un-nested categories for each skill group on wages. It also introduces conventional control
variables of human capital, such as education, experience, and training. The slopes are
consistent with previous results and are robust (both statistically and in magnitude)
to adding human capital controls. Note that we do not run a regression including all
subtypes because of the biases introduced by adding pre-treatment variables— general
skills are prerequisites to nested skills.
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Figure S32: Relationship between Occupations’ Workplace Experience and Skill Subtypes.

Figure S33: Relationship between Occupational Wages and Skill Subtypes.

5.2 Automation Risk and Skills

Given the broad interest in understanding human capital and automation risk, we plot
occupations’ automation risk index [62] against their average levels in each skill category
in Fig. S37.
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Figure S34: Relationship between Educational Requirement and Occupation’s Top 5 Skills
in Subtypes.

Figure S35: Relationship between Workplace Experience and Occupation’s Top 5 Skills in
Subtypes.

5.3 Skill Payoffs for Different Occupations

Fig. S38 relates returns to skills for each major occupational group— 1-digit SOC. The
key pattern is that all occupational groups, despite varying in their skill endowments,
benefit from higher levels of nested skills. However, un-nested skills only improve wages
of Professional occupations and Skilled traders.
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Figure S36: Relationship between Wages and Occupation’s Top 5 Skills in Subtypes.

Table S5: Wage Regression on Skill Endowment.

𝑙𝑜𝑔(𝑊𝑎𝑔𝑒2019)
(1) (2) (3) (4) (5) (6)

𝐺𝑒𝑛𝑒𝑟𝑎𝑙 0.251∗∗∗ 0.135∗∗∗

(0.237,0.264) (0.109,0.161)

𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑁𝑒𝑠𝑡𝑒𝑑 0.260∗∗∗ 0.120∗∗∗

(0.245,0.274) (0.098,0.141)

𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑈𝑛𝑛𝑒𝑠𝑡𝑒𝑑 0.015∗∗ 0.034∗∗∗

(0.002,0.028) (0.020,0.047)

𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑁𝑒𝑠𝑡𝑒𝑑 0.199∗∗∗ 0.042∗∗∗

(0.182,0.215) (0.020,0.064)

𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑈𝑛𝑛𝑒𝑠𝑡𝑒𝑑 −0.051∗∗∗ 0.003
(-0.063,-0.039) (-0.011,0.017)

Education 0.024∗∗∗ 0.034∗∗∗ 0.042∗∗∗

(0.018,0.030) (0.029,0.039) (0.036,0.048)

Experience 0.014∗∗∗ 0.014∗∗∗ 0.023∗∗∗

(0.008,0.021) (0.008,0.021) (0.016,0.030)

Training 0.038∗∗∗ 0.027∗∗∗ 0.042∗∗∗

(0.029,0.048) (0.017,0.037) (0.031,0.052)

Constant 3.909∗∗∗ 4.069∗∗∗ 4.550∗∗∗ 3.969∗∗∗ 4.043∗∗∗ 4.223∗∗∗

(3.861,3.956) (4.017,4.121) (4.520,4.581) (3.908,4.031) (3.997,4.090) (4.182,4.264)

Observations 789 789 789 789 789 789
R2 0.622 0.607 0.470 0.686 0.703 0.653
Adjusted R2 0.622 0.606 0.469 0.684 0.701 0.651
Residual Std. Error 0.119 0.122 0.142 0.109 0.106 0.115
F Statistic 1,297.040∗∗∗ 607.527∗∗∗ 348.362∗∗∗ 428.084∗∗∗ 370.741∗∗∗ 294.761∗∗∗

Note: OLS regressions are shown, with 95-percentile confidence intervals in parentheses (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01). 𝑅2, coefficient
of determination, and adjusted 𝑅2 is normalized for the models’ number of variables.
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Figure S37: Occupations’ Automation Risk Index Against their Average Levels in each
Skill Category.

Figure S38: Wage Returns to Different Types of Skill Endowment for each Major Occu-
pational Group. Each point corresponds to an occupation. The setup supplements the main Fig. 5,
highlighting the benefits of higher levels of nested skills. However, un-nested skills only improve wages
of Professional occupations and Skilled traders. This in itself underpins multi-dimensionality skills.

Interestingly, managerial occupations command high general skills. Section 9.1 of the
supplementary document examines (and finds evidence against) the possibility that the
returns to general skills are largely a managerial phenomenon.

5.4 Skill Investment and Payoffs in 2005

In Fig. S39, we repeat our analysis of investment and payoffs to skills (main Fig. 5) for
2005, finding results consistent with the growing importance of general skills. The figures
show lower associated education and payoffs to general skills than the main figure (5).
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Figure S39: Investment and Payoffs of Different Specific Skills in 2005.
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6 Skills’ Geographic Distribution

An in-depth analysis of how skills interface with urban growth is beyond the scope of
this work, we provide a brief descriptive analysis, here. Overall, urban areas are more
endowed with general skills. In contrast, rural areas are less likely to carry general
skills. This is consistent with the concentration of more innovative and complex economic
activity [81, 82] and the concentration of managerial and administrative occupations
in larger cities. We test and find support for the hypothesis that skills, in particular
concentration of general skills, explain away part of the urban wage premiums. Upon
grouping cities by manufacturing employment relative to the national average, we find
that cities highly specialized in manufacturing tend to exhibit lower levels of nested
specialization but higher levels of unnested specializations (Fig. S46). This shows that
cities indeed specialize in distinct directions. Interestingly, skill patterns shift in a non-
linear fashion across cities with increasing concentrations of manufacturing employment.
Both a strong dependence on and a complete absence of manufacturing correlate with
adverse skill bases, i.e., skill bases dominated by unnested skills and a lower prevalence of
general and nested skills. Conversely, skills that typically command high wage premiums
are overrepresented in cities with intermediate levels of manufacturing activity.

6.1 Counties’ Skill Endowments

Using the occupational employment for Metropolitan and nonmetropolitan areas1 pub-
lished by the Bureau of Labor Statistics (BLS), one can map the geographical distribution
of skills. BLS uses Core-based Statistical Areas (CSAs) as geographic units, which are
more coarse than the county level. US counties follow the Federal Information Process-
ing System (FIPS) taxonomy. To obtain employment at the level of FIPS and map skill
information onto US counties, we used a crosswalk also provided by BLS 2. We aggregate
occupation skills at the level of general, nested intermediate and specific, and un-nested
intermediate and specific. Taking an average for each US county using the county em-
ployment of occupations as weights, we derive a regional measure of skill endowment for
each skill sub-type.

Overall, our analysis (Figs. S40 through S44) show a clear concentration of general
skills in densely populated urban areas, reflecting the diverse and complex economic
activities found in these locales [24, 80–84, 137, 138]. Large cities tend to have higher
levels of general and nested skills (also seen in Fig. S45). For instance, New York and
Washington D.C. harbor significant financial and state employment. Moreover, even in
states with comparatively rural structures, such as Indiana, Iowa, Nebraska, and Kansans,
state capitals, where the local state is likely to reside, command a higher level of general
skills— than their neighboring counties. A secondary driver of the abundance of general
skills in urban areas is the specialization needed for accomplishing complex economic
tasks. For instance, Boston, Seattle, and San Francisco (the latter not shown on the
map) are tech hubs and command a strong stock of general (, and as seen in Fig. S42,
specific) skills3. However, the starkest disparities between smaller and larger cities are

1
https://www.bls.gov/oes/

2
https://www.bls.gov/oes/current/msa_def.htm

3Finer-grained insights can also be obtained from these maps. For instance, the most extreme con-
centration of general skills (or lack thereof) is observed in less populated cities that are specialized in
a certain industry. The significant proportion of the focal industries’ workers relative to the total em-
ployment highlights the skills used by those workers. The most extreme concentrations of general skills
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Table S6: General Skills Explain Urban Wage Premiums.

Dependent variable:

Log(Wage)

OLS

(1) (2) (3) (4)

Population ¿ 1M 0.082∗∗∗ 0.054∗∗∗ 0.056∗∗∗ 0.059∗∗∗

(0.080,0.084) (0.053,0.056) (0.054,0.058) (0.057,0.060)

General Skills 0.269∗∗∗ 0.281∗∗∗

(0.268,0.270) (0.278,0.283)

Nested Specific Skills 0.248∗∗∗ 0.007∗∗∗

(0.246,0.250) (0.005,0.010)

Un-nested Specific Skills −0.073∗∗∗ 0.026∗∗∗

(-0.074,-0.072) (0.025,0.027)

Constant 4.671∗∗∗ 3.787∗∗∗ 4.471∗∗∗ 3.709∗∗∗

(4.670,4.673) (3.783,3.792) (4.469,4.474) (3.702,3.717)

Observations 635,554 635,554 635,554 635,554
R2 0.012 0.200 0.141 0.203
Adjusted R2 0.012 0.200 0.141 0.203
Residual Std. Error 0.368 (df = 635552) 0.331 (df = 635551) 0.343 (df = 635550) 0.331 (df = 635549)
F Statistic 7,845.032∗∗∗ (df = 1; 635552) 79,439.180∗∗∗ (df = 2; 635551) 34,872.520∗∗∗ (df = 3; 635550) 40,451.410∗∗∗ (df = 4; 635549)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

seen in the prevalence of unnested skills, which are significantly less common in cities with
over a million inhabitants, a known threshold for cities transitioning towards innovative
economic specializations [81]. While most workers with nested skills need general s kills,
the concentration of managerial and other supporting roles also needs high levels of
general skills. Hence, examine and find evidence consistent with the hypothesis that the
accumulation of general skills indeed explains part of the value generated in large cities
(Tab. S6).

6.2 Skills and Population

We divide cities into four mutually exclusive groups by population (below 10 thousand,
below 50 thousand, below 1 million, and more than a million inhabitants) based on 2010
Census population estimates. Skill endowment for each city group is taken as the average
of counties, and 95% confidence intervals are shown. Fig. S45 shows for cities of different
size the levels of all skill categories.

We also test the hypothesis that the accumulation of general skills indeed explains part
of the value generated in cities [24, 37, 139]. we test that hypothesis directly by utilizing
the CBSA size (CBSASZ) variable from CPS microdata, which carries information about

(or lack thereof) are observed in less populated cities that are specialized in a certain industry. The
significant proportion of the focal industries’ workers relative to the total employment highlights the
skills used by those workers. The five most and least endowed counties with general skills are shown on
the map— as italicized text. For instance, St. Mary County (Maryland) is an air force and aerospace
hub with companies such as Lockheed Martin and Boeing, and military naval air station Patuxent River
among the top employers. Another example is Chatham and its neighboring counties, Durham (hosting
Duke University), Orange (hosting the University of Carolina at Chapel-Hill), and Person, which have
fostered one of the fastest growing tech sectors in the US, earning the nickname of Research Triangle.
Other notable concentration points of general skills are Limestone and Madison (Alabama), hosting nu-
merous aerospace and automobile manufacturing facilities, and Washtenaw county (Michigan) hosting
the University of Michigan Ann Arbor and its off-sprung businesses. In contrast, Madera (California),
and its neighboring counties, Tulare, Kings, and Monterey)Highlands (Florida), Yuma (Arizona), Hall
(Georgia), and Kalawao (Hawaii) are primarily designated agricultural areas, accruing unnested skills.
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Figure S40: Geographic Distribution of Average General Skills Weighted by Employment.
The bottom histogram shows the distribution of the corresponding stock of skills across the US economy.
The y-axis shows the number of unique FIPS with the respective skill level. Overall, urban areas are
more endowed with general skills— seen in red. In contrast, rural areas are less likely to carry general
skills— seen in blue. This is consistent with the concentration of more innovative and complex economic
activity [81, 82] and the concentration of managerial and administrative occupations in cities.

the size of the metropolitan area in which the surveyed individual resides (since 2004).
The values range from 0: areas of < 100, 000 inhabitants that do not meet the threshold
of a metropolitan area to 6: over 5 million inhabitants. We transform these brackets to
cities below and above 1M population [81].

In the model (1) of Tab. S6, we first regressed the log wage reported by individu-
als to CPS on the size of the metropolitan area in which they reside, obtaining partial
correlations that signify the urban wage premiums (the baseline is areas of < 1𝑀 inhab-
itants.) In the second model of the table, we add general skills of individuals (which we
obtain from matching to O*NET the occupation associated with each individual in the
CPS microdata). That means that large cities tend to have more people in occupations
with general skills. This bias toward more general-skill intensive activities explains over
one-third of the urban wage premiums [37, 84, 85, 139]. Adding nested and un-nested
specific skills first without and then with general skills in models 3 and 4, respectively,
have similar effects.
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Figure S41: Geographic Distribution of Average Nested Intermediate Skills Weighted by
Employment. The bottom histogram shows the distribution of the corresponding stock of skills across
the US economy. The y-axis shows the number of unique FIPS with the respective skill level.

Figure S42: Geographic Distribution of Average Nested Specific Skills Weighted by Em-
ployment.The bottom histogram shows the distribution of the corresponding stock of skills across the
US economy. The y-axis shows the number of unique FIPS with the respective skill level.
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Figure S43: Geographic Distribution of Average Un-nested Intermediate Skills Weighted
by Employment.The bottom histogram shows the distribution of the corresponding stock of skills
across the US economy. The y-axis shows the number of unique FIPS with the respective skill level.

Figure S44: Geographic Distribution of Average Un-nested Specific Skills Weighted by
Employment.The bottom histogram shows the distribution of the corresponding stock of skills across
the US economy. The y-axis shows the number of unique FIPS with the respective skill level.
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Figure S45: Population Size and Skills The figure shows for cities of different size the levels of all
our skill categories, highlighting the statements for nested and un-nested specific skills also hold for the
corresponding intermediate skills.

6.3 Skills and Manufacturing Industries

We divide cities into four mutually exclusive groups based on the intensity of their manu-
facturing industries. We use US Census County Business Patterns from 2019 that report
industry employment for metropolitan areas to quantify manufacturing presence. At the
2-digit naics codes, we take 31-33 as manufacturing industries and calculate the location
quotient of manufacturing employment (the ratio of manufacturing employment from the
metro area total employment over the nationwide ratio). Matching metro areas to coun-
ties, we designate counties with no manufacturing employment to group ”None”, and
group the rest based on quotient 33% and 66% quantiles of the measure into bottom,
middle, and top. Fig. S46 shows for cities of different manufacturing concentrations the
levels of all skill categories.

Figure S46: Intensity of Manufacturing Industries and Skills The figure shows for cities of
different manufacturing concentrations the levels of all skill categories, highlighting the statements for
nested and un-nested specific skills hold also for the corresponding intermediate skills.
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7 Skills’ Demographic Distribution

Using the CPS household data between 1980 and 2022, we derive the skill endowment
across racial (White, Black, Hispanic/Latinx, and White) and gender (Female and Male)
groups in each skill category. Restricting to full-time workers employed at the time of
the survey, who are between 18 and 55, we apply the mentioned features to examine the
prevalence of skills among individuals of different gender and racial groups. Individuals’
skills are infered based on their coded occupations in the CPS data by linking it to
the occupational skill requirement in O*NET. The two datasets, however, use different
occupational taxonomies. As a result, one needs to map CPS and O*NET occupations.
We use a crosswalk offered by BLS4, which maps a CPS occupation to 542 out of 968
occupations in O*NET 8-digit SOC codes. Note that CPS offers various racial categories.
We use Whites, Blacks, and Asians, which constitute the bulk of the sample. CPS data
also contains a separate (from race) variable for identifying Hispanic individuals. We
create a fourth racial category for Hispanics and associate any individual of Hispanic
background with that category. Next, we calculate the endowment of each skill category
for each of the resulting four demographic categories and (binary) gender groups.

Figure S47 replicates the main Fig. 6, adding the information on intermediate skills
and annual wage. We omit the weekly wage results for brevity.

Figure S47: Skill Disparity in Demographic Distribution of race/ethnicity and gender adding
the information on intermediate skills and annual wage.

As a robustness check, we used a different measurement of skills for demographics
and found similar results, following Tong et al. [87]. They group occupations of different
skill levels by corresponding workers’ dominant gender and race/ethnicity and calculate
skill endowment across occupations from the same group. In determining occupations’
“dominant” demographic characteristics, we link an occupation to a racial/gender group
if it is 1.5 times or more likely to be employed in the focal occupation than its fraction
in the sample. We then aggregated skill endowments across racial and gender categories
and show the results in Fig. S48. The results are consistent with our main Fig. 6 and SI

4
https://www.census.gov/topics/employment/industry-occupation/guidance/code-lists.html
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Fig. S47.

Figure S48: Skill Disparity in Demographic Distribution of race/ethnicity and gender with
an alternative aggregation. Similar to our main Fig. 6, we use CPS micro data, however, follow the
aggregation of [87]. The results are consistent with our main figure.

7.1 Parenthood and the Diverging Skills of Male and Female
Workers

An intriguing pattern in the main Figs. 4 (d-e) is the diverging general and nested skills
of men and women around the age of 30, when one expects some individuals to become
parents. Utilizing the number of children in the surveyed households recorded by CPS
microdoa, we split our birth cohort sample into individuals with and without children.
We replicate the analysis of the main Fig. 4 (d-f) by tracking the skills manifested in
the occupational compositions of birth cohorts as they age, splitting individuals based
on their binary gender (Male: lower panels; Female: upper panels of the below figure)
and their binary parental status (with child: square; without child: triangle in the below
figure) at the time of the survey. Fig. S49 shows the result of aggregating skills for each
subgroup. Each column shows the levels of a certain category of skills, while the rows
show the results for a gender. The solid line (and triangles) show the pattern for people
without children, while the dashed line (and squares) show the pattern for individuals
with children.

There is a pronounced gap in the general and nested skills between women with
and without children. Please note that the later convergence is likely to arise from
the fact that at higher ages, the “without” subgroup will mix families who never had
any children with families whose children have already left the household. In the latter
families, caregivers may have been disadvantaged in their early careers, leading to lower
skill levels at higher ages. Contrary to the negative correlation with general and nested
skills, women with children appear to sort into jobs that require higher un-nested skills
(the SI Sec. 7.2 offers partial evidence of female job sorting). Interestingly, men with
children tend to do better. Especially men in jobs that require general and nested skills
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Figure S49: Parenthood and the Diverging Skills of Male and Female Workers. We track
the skills manifested in the occupational compositions of birth cohorts as they age, splitting individuals
based on their binary gender (Make/Female) and whether they lived with children at the time of the
survey, obtaining the below figure. Each column shows the levels of a certain category of skills, while
the rows show the results for men and women. The solid line (and triangles) show the pattern for people
without children, while the dashed line (and squares) show the pattern for individuals with children,
highlighting the drop in general and nested skills of mothers.

tend to be more intriguing and for longer periods compared to their counterparts without
children. The latter pattern for men may arise from sample selection effects or from the
fact that the cost of raising children incentivizes acquiring skills that lead to better-paid
careers. Synthetic birth cohorts are not ideal data for this purpose, as they do not allow
for tracking individuals over time. However, it is reasonable to believe this approach
offers unbiased estimates of the population behavior.

7.2 Gender and Jobs Sorting

Another intriguing pattern in the main Fig. 4 (d-f) is the diverging patterns of skill
development between men and women, wherein women exhibit high levels of general
skills, surpassing their male counterparts at certain ages but do not manifest the high
levels of nested skills observed for male workers of the same age. Lower levels of nested
skills for women are also seen in the first column of the regression Tab. S7 that predicts
the gender of workers based on their general and nested skills in our CPS sample (Female
= 1): general skills are associated with greater, but nested skills with smaller shares of
women in an occupation.

One explanation for this pattern [77–79] is that women may avoid jobs with irregular
or long working schedules. This implies that despite their high levels of general skills and
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education, women may avoid jobs that require nested skills because of the working condi-
tions of such jobs. To examine that hypothesis, we examined whether adding descriptors
of work schedule to the same regression diminishes the correlation between skills and the
gender of the worker, as reported in column 1 of Tab. S7.

Table S7: Regression analysis of the correlation between gender, skills, and irregular and
long work schedule. The first column offers a baseline model that predicts the gender (Female = 1) of
the worker based on general and nested skills, showing a negative correlation with nested skills. Adding
descriptors of irregular and long schedules in the second model explains away part of the predictive
power of nested skills for workers’ gender. As such, part of the reason why women manifest high level s
of general skills but comparatively low levels of nested skills is that jobs that require the latter categories
of skills likely impose long and irregular work conditions, which have been found to deter female workers.

Dependent variable:

Gender Dummy (Female = 1)

OLS

(1) (2)

General Skills 0.203∗∗∗ 0.150∗∗∗

(0.201,0.204) (0.148,0.153)

Nested Skills −0.357∗∗∗ −0.258∗∗∗
(-0.359,-0.355) (-0.261,-0.256)

Irregular Schedule −0.338∗∗∗
(-0.342,-0.334)

Long Hours Dummy (> 50 weekly) −0.176∗∗∗
(-0.178,-0.174)

Constant 0.097∗∗∗ 0.629∗∗∗

(0.092,0.101) (0.620,0.638)

Observations 1,493,142 1,096,362
R2 0.072 0.108
Adjusted R2 0.072 0.108
Residual Std. Error 0.463 (df = 1493139) 0.455 (df = 1096357)
F Statistic 57,942.160∗∗∗ (df = 2; 1493139) 33,058.290∗∗∗ (df = 4; 1096357)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

To implement this test, we matched individuals in the Current Population Survey
(CPS) aged 18 to 55 who were in the workforce between 1980 and 2020 to the follow-
ing information in the O*NET using their reported occupation code: skill information
(namely, general and nested specific skills) and occupational work schedule (irregular-
ity). Work schedule irregularity is collected as a part of the O*NET work context record
as a categorical variable with three levels of Regular (established routine, set schedule),
Irregular (changes with weather conditions, production demands, or contract duration),
and Seasonal (only during certain times of the year). This variable is reported for all
occupations with weights associated with each category. For example, Chief Executive
has the majority of weight in category 1, as it is primarily a job with a regular schedule.
A surgeon has more weight, in comparison, on the irregular category. Using the weights,
we obtained an aggregated “schedule irregularity” score for each occupation, wherein a
value closer to 1 denotes a more regular schedule, and a value closer to 3 denotes a more
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irregular schedule. Next, to proxy long working hours, we follow Cha et al. [140] to use
the number of hours worked during the week in the CPS data and form a dummy variable
that is one if the worker had worked more than 50 hours a week, and 0 otherwise.

Adding the descriptors of irregular schedules or long hours (in Tab. S7 column 2) in-
deed diminishes the correlation estimated in the baseline, per the baseline model (column
1). A unit increase in the nested specific skills required by a job, decreases the chances
of the worker being female by 36%. Adding schedule descriptors reduces that relation by
more than one third, to about 26%.

7.3 Skills and Wage Gaps Have Narrowed Over Years

Figures S50 and S51 below show the temporal dynamics of skill, education, and wage
gaps shown as averages in the main Fig. 6. These figures show the gaps have narrowed
over years.
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Figure S50: Skill and Economic Race/Ethnicity Gaps over Time. Following main Fig. 6, we use
White workers as the baseline and show each measure of other demographics as a ratio over the values
of White workers. In all cases, The 95% confidence intervals are obtained by a random sub-sampling. In
each iteration, we take 20% of the subpopulation of interest at a certain year, for instance, Asian male
and Asian female workers in 2020, and estimate all corresponding measures. Repeating this sampling and
estimation process in 10,000 iterations, we obtain the distribution for each estimate (of the subpopulation
of interest in that year) and derive the 95% confidential intervals.

7.4 Gender-Age Divergence of Skills across Demographic Groups

Fig. S52 replicates Fig. 4. However, it teases out time trends in skill acquisition for racial
groups. The skill differentials between male and female workers that start around the age
30s (main Fig. 4) manifest across racial and ethnic groups. In most cases, female workers’
(general and nested) skill accumulation plateaus in their mid-20s to 30s, while their male
counterparts’ skill stocks expand (even though slowly) up to their 40s and then plateaus.
Section 7.1 addresses the possible role of children in the divergence of skills. Fig. S53
replicate the exercise factoring in annual economic circumstances.
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Figure S51: Skill and Economic Inequality Across Genders over Time. Following main Fig. 6,
we use male workers in each racial group as the benchmark, showing the average value for women over
men for each measure and each demographic. In all cases, 95% confidence intervals are created as
explained in Fig. S50.
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Figure S52: Skill Acquisition Differences Across Gender and Race. Using CPS household data
between 1980 and 2022, we estimate the distribution of different skills over four racial categories, namely
White, Asian, Black/African-American, Hispanic/Latino, and for men and women. We infer individuals’
skills from the skill requirement of their detailed occupation according to O*NET 2019 and calculate
a skill endowment for a given race and gender in each skill subtype. We aggregate skill endowments
for racial and gender groups over age, allowing us to estimate the usage of workplace skills for these
subgroups as they age. Shaded areas show 95% confidence intervals.

Figure S53: Skill Acquisition Differences Across Gender and Race Conditional on Year
Effects. The setup follows Fig. S52 with the minor difference that skill levels are first residualized by a
year effect. The results are almost identical.
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8 Historical Patterns of Skill Change for Occupa-

tions

How have occupational skills (Level and Importance) changed over time? Do they man-
ifest our theorized co-evolution of skills at different rungs of the skill hierarchy? In other
words, can we observe our inferred conditional dependence and independence on the level
and importance of skills?

To answer these questions, we compared the level and importance of occupational
skills reported by O*NET in 2019 and 2005. When comparing levels and importance of
skills across the two years, we use a crosswalk, explained in the supplementary section
8.3, to account for the changes in the taxonomy between 2005 and 2019 [141]. We further
capture changes in the skill structure by comparing the skill structure of 2019 to a past
snapshot of O*NET from 2005. We produced the mentioned 2005 skill structure using
the same methodology and parameters as used for the 2019 skill dependency network.

8.1 Changes in the Skill Levels

Figure S54 shows the changes in the level of each skill across occupations between 2005
and 2019. For each occupation and skill, we subtracted the level O*NET reports in 2019
from the level in 2005. For each skill, we show the density plot of occupations based on
their corresponding level change. The white line for each skill denotes the median, and
the dashed line corresponds to no change.

Figure S54: Changes in the Level of Each Skill across Occupations between 2005 and 2019
as reported by O*NET.
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8.2 Changes in the Skill Dependency Network

Fig. S55 shows the backbone of the skill dependency network based on 2005, as appears
in Fig. 6 with skill labels attached.

Figure S55: Labeled Backbone of Skill Dependency for the year 2005.

In Fig. S56, we unpack the changes that manifest in distinct backbones of skill de-
pendency networks in 2019 compared with 2005 (as shown in Fig. 6). We compare the
dependency ties between all skills that are present in both 2005 and 2019 networks (In-
stallation, Explosive strength, Sound localization, Food production, Public safety, and
security in 2019 and Memorization, Food production, Chemistry, and Public safety and
security in 2005 are eliminated due to a lack of statistically significant ties.) We distin-
guish between three types of ties: 1) New edges : dependency ties that were statistically
insignificant in 2005 and became significant in 2019 (shown in green); 2) Constant edges :
dependency ties that were statistically significant in both 2005 and 2019 (shown in black);
3) Lost edges : dependency ties that lost statistical significance in 2019 while being sig-
nificant in 2005 (shown in orange). In Fig. S56, we used the layout of our main Fig. 2
(b), adjusting the distance between nodes slightly to visualize edges better. The edges
are replaced with the three types described above. The pattern of changes in dependency
ties offers insights into the widening gap between the nested and un-nested parts of the
skill structure over time. Most new edges (green) are massed in the nested section. Par-
ticularly, a noticeable number of edges tie general skills to the most niche nested skills—
these dependency ties are not visible in the backbone for better visualization. However,
they are taken into account in all calculations. There are virtually no new ties formed
between the general and un-nested sections. Few previously existing ties were no longer
statistically significant in 2019 (orange). Therefore, the figure highlights the increasing
intensity of dependencies in the nested part of the network, while a collapse of dependen-
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cies in the un-nested section. These patterns emphasize our findings about the changes
in the nature of work.

Figure S56: Changes in the Skill Dependency Networks between 2005 and 2019. We distin-
guish between three types of ties: (b) New edges: dependency ties that were statistically insignificant in
2005 and became significant in 2019 (shown in green); (c) Constant edges: dependency ties that were
statistically significant in both 2005 and 2019 (shown in black); (d) Lost edges: dependency ties that lost
statistical significance in 2019 while being significant in 2005 (shown in orange). (a) The combined figure
highlights the increasing intensity of dependencies in the nested part of the network, while a collapse of
vertical dependencies in the un-nested section.
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8.3 Occupation Taxonomy

Taxonomy has changed over time [131]. Our historical analysis comparing 2005 and 2019
data must consider such changes. 2005 O*NET complies to O*NET SOC 2000, while
2019 O*NET uses O*NET SOC 2010, with two other waves of taxonomy change between
(2006 and 2009). Therefore, identically encoded occupations may not be comparable
across these two years, and matching them requires a crosswalk.

While O*NET reports5 crosswalks between each consecutive taxonomy, there is no di-
rect crosswalk between 2005 and 2019. We created such a crosswalk to match occupations
in 2005 and 2019 using the consecutive crosswalks mentioned above6.

Our crosswalk matches 968 occupations in 2019 skill data and 941 unique occupations
in 2005 skill data. Out of 1,334 records in our crosswalk, 362 correspond to occupations
whose SOC codes have changed. Fig. S57 shows the number and percentage of occupa-
tions in the skill data we could match across both years. Groups such as Computer and
Math, Engineering, Health, Management, and Business have the most number of occu-
pations with skill information added between 2005 and 2019. Therefore, it is important
to consider the unbalanced nature of the data, when interpreting analysis on the changes
of skills using O*NET.

5https://www.onetcenter.org/taxonomy.html
6For instance, if occupation 𝑋2000 in taxonomy 2000 is linked to 𝑋2006 in taxonomy 2006, and 𝑋2006

is matched to 𝑋2009 in taxonomy 2009, and 𝑋2009 is matched to 𝑋2010 in taxonomy 2010, our crosswalk
will link 𝑋2000 to 𝑋2010.
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Figure S57: Percentage and Number of Occupations from Occupational Groups Matched
between 2005 and 2010.
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9 Robustness Checks with Management and Admin

Occupations and Social Skills

In this section, we offer supplementary analyses to our main findings and produce pieces
of evidence refuting several alternative explanations. We begin by examining whether
managerial occupations drive the importance of general skills. Next, we discuss whether
the general skills’ effect is driven primarily by social skills, whose importance has been a
topic of growing emphasis. We continue by offering more detailed analyses of historical
changes in skill requirements and skill acquisition with age.

9.1 Role of Management and Administrative Occupations

Here, we test if the importance of general skills in the wage premium (Fig. 5) is driven
by management or administrative occupations. To do so, we identify such occupations,
exclude them from our analyses at various stages, and examine the resulting changes.
Table S8 lists these occupations with their annual wage and educational requirements. We
identify those using the Standard Occupational Code (SOC) at the 2-digit level, wherein
“11” denotes managerial occupations. In addition, we use descriptive terms for these
occupation titles (manager, administrator, and director) to identify relevant occupations
further using their titles. In total, we found and omitted a total of 75 occupations out of
968 occupations and collected them, sorted based on average annual wage and required
education, in Table S8.

Table S8: List of Manager Occupations and their Annual Wage and Education Requirements in our
Sample.

Code Title Wage Education

1 11-1011.00 Chief Executives $ 170.5K 7.540
2 11-1011.03 Chief Sustainability Officers $ 170.5K 6.920
3 11-9041.00 Architectural and Engineering Managers $ 135.8K 6.720
4 11-9041.01 Biofuels/Biodiesel Technology and Product Devel... $ 135.8K 6.480
5 11-2021.00 Marketing Managers $ 124.2K 6.680
6 11-3111.00 Compensation and Benefits Managers $ 124.1K 6.330
7 11-3021.00 Computer and Information Systems Managers $ 123.8K 5.550
8 11-2022.00 Sales Managers $ 122.3K 6.040
9 11-9121.00 Natural Sciences Managers $ 122.1K 8.130
10 11-9121.02 Water Resource Specialists $ 122.1K 6.860
11 11-9121.01 Clinical Research Coordinators $ 122.1K 6.060
12 11-3031.01 Treasurers and Controllers $ 117.7K 7.070
13 11-3031.02 Financial Managers, Branch or Department $ 117.7K 5.440
14 11-2011.00 Advertising and Promotions Managers $ 116.3K 5.210
15 11-3061.00 Purchasing Managers $ 114.3K 6.150
16 11-3131.00 Training and Development Managers $ 112K 6.630
17 11-3051.01 Quality Control Systems Managers $ 109.6K 6.030
18 11-3051.04 Biomass Power Plant Managers $ 109.6K 5.290
19 11-3051.03 Biofuels Production Managers $ 109.6K 4.980
20 11-3051.00 Industrial Production Managers $ 109.6K 4.920
21 11-3051.06 Hydroelectric Production Managers $ 109.6K 4.170
22 11-3051.02 Geothermal Production Managers $ 109.6K 4.060
23 11-3121.00 Human Resources Managers $ 109.4K 6.300
24 11-9033.00 Education Administrators, Postsecondary $ 106.1K 9.250
25 11-9111.00 Medical and Health Services Managers $ 104.8K 6.080
26 11-1021.00 General and Operations Managers $ 103.8K 4.920
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Table S8: List of Manager Occupations and their Annual Wage and Education Requirements in our
Sample.

Code Title Wage Education

27 11-9021.00 Construction Managers $ 95.7K 5.680
28 11-3071.03 Logistics Managers $ 94.1K 6.170
29 11-3071.02 Storage and Distribution Managers $ 94.1K 4.620
30 11-3071.01 Transportation Managers $ 94.1K 4.370
31 11-9032.00 Education Administrators, Elementary and Second... $ 91.6K 7.820
32 27-1011.00 Art Directors $ 88.7K 6.250
33 11-9039.01 Distance Learning Coordinators $ 84.6K 7.550
34 11-9039.02 Fitness and Wellness Coordinators $ 84.6K 6.580
35 15-2041.02 Clinical Data Managers $ 83.7K 6.100
36 11-9071.00 Gaming Managers $ 81.6K 3.680
37 11-9161.00 Emergency Management Directors $ 79.8K 6.120
38 11-9131.00 Postmasters and Mail Superintendents $ 77K 3.030
39 13-1011.00 Agents and Business Managers of Artists, Perfor... $ 76.7K 5.230
40 11-9013.01 Nursery and Greenhouse Managers $ 76.6K 4.960
41 11-9013.03 Aquacultural Managers $ 76.6K 4.420
42 11-9013.02 Farm and Ranch Managers $ 76.6K 3.880
43 19-1031.02 Range Managers $ 67.3K 5.950
44 11-9151.00 Social and Community Service Managers $ 66.8K 6.310
45 47-1011.03 Solar Energy Installation Managers $ 66.1K 3.680
46 25-9031.00 Instructional Coordinators $ 64.6K 7.700
47 27-2012.04 Talent Directors $ 62.9K 6.140
48 27-2012.05 Technical Directors/Managers $ 62.9K 5.770
49 27-2012.03 Program Directors $ 62.9K 5.080
50 27-2012.02 Directors- Stage, Motion Pictures, Television, ... $ 62.9K 4.570
51 11-9081.00 Lodging Managers $ 60.9K 4.890
52 11-9141.00 Property, Real Estate, and Community Associatio... $ 60.2K 5.040
53 11-9051.00 Food Service Managers $ 56.7K 2.540
54 39-4031.00 Morticians, Undertakers, and Funeral Directors $ 56.5K 4.810
55 27-2041.01 Music Directors $ 56.2K 8.210
56 11-9031.00 Education Administrators, Preschool and Childca... $ 49.2K 4.140
57 21-2021.00 Directors, Religious Activities and Education $ 48.9K 6
58 11-9199.03 Investment Fund Managers - 7.410
59 11-9199.01 Regulatory Affairs Managers - 6.500
60 15-1141.00 Database Administrators - 6.440
61 11-9199.04 Supply Chain Managers - 6.430
62 11-9199.07 Security Managers - 6.150
63 11-9199.11 Brownfield Redevelopment Specialists and Site M... - 6.120
64 11-2031.00 Public Relations and Fundraising Managers - 6.100
65 11-9199.10 Wind Energy Project Managers - 6.090
66 11-9199.09 Wind Energy Operations Managers - 5.860
67 15-1199.09 Information Technology Project Managers - 5.860
68 11-9061.00 Funeral Service Managers - 5.710
69 11-9199.02 Compliance Managers - 5.650
70 15-1142.00 Network and Computer Systems Administrators - 5.580
71 15-1199.03 Web Administrators - 5.350
72 11-9199.08 Loss Prevention Managers - 4.950
73 39-1021.01 Spa Managers - 4.220
74 11-3011.00 Administrative Services Managers - 3.960
75 53-1021.01 Recycling Coordinators - 3.890

In conclusion, our findings of skill clusters, skills wage premiums, and educational
requirements are robust to the presence/absence of managerial occupations. In Figs S58
through S60 we use 𝑘-mean clustering to group skills into profiles without considering
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managerial occupations. The results complement the supplementary section 1, estab-
lishing the robustness of our skill profiles. Fig. S62 shows that excluding managerial
occupations does not diminish the acquisition of general and nested skills over time by
analyzing occupational median age, skill composition of synthetic birth cohorts based on
CPS microdata, and analysis of our resume sample. Fig. S61 examines wage premiums
and educational requirements of occupations in general and specific skills while excluding
the information on managerial occupations in the analysis. We find these occupations
do not drive the wage premiums, and educational requirements persist. These findings
supplement the results in Fig. 5.

Figure S58: Determining 𝑘 for 𝑘-mean Clustering at the Absence of Managerial Occupa-
tions. Reproduction of Fig. S1 without management and administrative occupations. We use the Elbow
method, Gap statistic, and Silhouette analysis to test the optimal 𝑘.

Figure S59: Grouping Skills at the Absence of Managerial Occupations. Reproduction of
Fig. 1 without management and administration occupations.
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Figure S60: Detailed Assignment of Skills among Clusters. Reproduction of Fig. S2 without
management and administration occupations.

Figure S61: Reproduction of Fig. 5 in the main text without management and administration
occupations. Managerial occupations do not drive the wage premiums and the educational requirement.
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Figure S62: Reproduction of Fig. 3 without Management and Administration occupations.
The findings are consistent, suggesting managerial occupations are not the primary drivers of increases
in general or nested skills over time. (a-c) replicate the analysis of main Fig. 4 (a-c) on occupations’
median age in the absence fo managerial occupations. (d-f) follows analysis Fig. 4 (d-f) of synthetic
birth cohorts identified in CPS microdata except for excluding observations on individuals who held
managerial occupations. (g-i follows the analysis of Fig. 4 (g-i) on resume data except for excluding
observations on individuals who held managerial occupations.
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9.2 Role of Social Skills

Given the growing importance of social skills [109], we examine the extent to which
they shape the role we observed for general skills in our work. There are six social
skills in O*NET taxonomy. They are Social perceptiveness, the skill of being aware of
other’s reactions and understanding why they react as they do; Coordination, the skill
to adjust actions in relation to others’ actions; Persuasion, the skill to persuade others
to change their minds or behavior; Negotiation, bringing others together and trying to
reconcile differences; Instructing, the skill to teach others how to do something; and
Service orientation, actively looking for ways to help people.

In Fig. S63-(a), we annotated these social skills in our skill hierarchy of the main
text as well as the hierarchy of 2005 data (insets). We find these skills fall within our
categories of general (Coordination and Social perceptiveness) and nested skill categories
(Instructing, Service orientation, Persuasion, and Negotiation); and these skills are more
demanded in 2019 than in 2005 as shown in Fig. S63-(b).

The average levels at which occupations in 2019 use negotiation, persuasion, social
perceptiveness, and service orientation skills surpassed their levels in 2005. However,
social skills’ position in the skill dependency network has moderately moved away from the
most broadly used skills. This means their comparative role has specialized moderately
despite their absolute demand rise. Fig. S63 (c) shows the changes in the level of each
skill category resulting from omitting social skills. As these skills belong to general and
nested intermediate categories, scores across other categories do not change. However,
changes in the affected subgroups are also minimal, leading to a 0.998 correlation before
and after social skills omission. This offers evidence that social skills do not influence
the significance of general skills. We repeated analyses of wage premiums (Fig. 5 in the
main text) on categories excluding the aforementioned six social skills, ad our findings
are intact as shown in Fig. S63 (d-e).
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Figure S63: Analysis of the Social Skills and their Relationship with our Work. (a) Annotates
the skill hierarchy of main text Fig. 2 and that of the year 2005 with social skills included in O*NET.
(b) Skill profiles of social skills in 2005 (average shown as dashed line) and in 2019 (average shown as a
solid line). (c) The differences in skill levels when social skills are excluded. (d-e) The equivalent plots
of Fig. 4 without social skills in analyses.
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