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THE BURNSIDE PROBLEM FOR ODD EXPONENTS

AGATHA ATKARSKAYA, ELIYAHU RIPS, AND KATRIN TENT

Abstract. We show that the free Burnside groups B(n,m) are infinite for n > 557
and m > 2. The proof uses iterated small cancellation theory where the induction
based on the nesting depth of relators. The main instrument at every step is a new
concept of a certification sequence. This decreases the best known lower bound in
the Burnside problem for odd exponents from 665 to 557.

1. Introduction

In 1902 Burnside asked whether any finitely generated group of finite exponent is
necessarily finite. This question was first answered in the negative in 1964 by Golod
and Shafarevitch who constructed an infinite finitely generated torsion group. However,
their example has unbounded exponent raising the question whether the so-called free
Burnside group

B(m,n) = Fm/〈〈wn : w ∈ Fm〉〉

of exponent n is finite where Fm is the free group in m generators. For exponents
n = 2, 3, 4 and 6 it is known by work of Burnside [3], Sanov [18], and M. Hall [11] that
the free Burnside group is indeed finite for any finite number m of generators. On the
other hand, in 1968 Adian and Novikov gave the first proof that the free Burnside group
B(m,n) is infinite for odd n > 4381 [2]. Later on, Adian improved the bound to odd
n > 665 [1]. The case of even exponent n turned out to be much harder. This case
was treated by Ivanov in 1992 [12], he established that B(m,n) is infinite for n > 248

[12]. Then Lysenok in 1996 improved the exponent for the even case to n > 8000 [14].
Together with the work of Adian [1], this yields that B(m,n) is infinite for all m > 1 and
all n > 8000. The proofs of Adian and Novikov use a very involved induction process
with a list of 178 assumptions. So Ol’shanskii’s geometric proof based on a deep study of
van-Kampen diagrams was an important step. It resulted in the paper [16] for exponents
n > 1010. The proof is much shorter and more transparent than the one by Adian and
Novikov, at the expense of a significantly larger exponent.

Another more geometric approach to free Burnside groups of odd exponent was sug-
gested by Gromov and Delzant in [10]. This has been further developed by Coulon [5].
However, their arguments also require a very large exponent n.

Date: March 29, 2024.
AA: atkarskaya.agatha@gmail.com.
ER: Hebrew University, Jerusalem, eliyahu.rips@mail.huji.ac.il.
KT: Universität Münster, tent@wwu.de.
The first and third author were partially supported by the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) under Germany’s Excellence Strategy EXC 2044-390685587, Mathematics
Münster: Dynamics-Geometry-Structure and SFB 1442, and by their stay at the Oberwolfach Research
Institute. The first author was supported by an ISF fellowship and wishes to thank E. Plotkin for
constant support and encouragement.

MSC: 20F05, 20F06.

1

http://arxiv.org/abs/2303.15997v5


2 AGATHA ATKARSKAYA, ELIYAHU RIPS, AND KATRIN TENT

Note that the restricted version of the Burnside problem asks whether there exist
finitely many different finite groups in m generators of exponent n, up to isomorphism.
This question was solved in positive by Zelmanov in 1989, [19], [20], for arbitrary expo-
nents.

While arguably the Burnside question has thus long been settled, the precise lower
bound for the infiniteness of B(m,n) remains open. Experience shows that decreasing
the exponent requires huge efforts even for small steps. We hope that our methods pave
the way for further reductions and we believe that an exponent around 300 might be in
reach.

We also believe that it is important to provide readable and accessible proofs which
give useful lower bounds for the infiniteness of B(m,n) and that the methods developed
in this paper are applicable for addressing other Burnside type questions, for instance
Engel and quasi-Engel problems, which deal with identities equal to Engel and quasi-
Engel words.

Our proof works inductively by choosing a canonical representative for every coset
in B(m,n). The induction is based on the rank of a word w ∈ Fm where we (roughly
speaking) define the rank rk(w) to be greater or equal to k+1 with respect to our nesting
constant τ if the word w (cyclically) contains a subword of the form vτ for some word
v ∈ Fm with rk(v) > k.

We define

Nk = 〈〈wn : rk(w) 6 k〉〉.

Thus, we obtain an ascending sequence of normal subgroups

N0 6 N1 . . . 6 Ni 6 . . .
⋃

Ni = N = 〈〈wn : w ∈ Fm〉〉.

We inductively define the canonical form cank(w) for a word w as a canonical represen-
tative for wNk. In particular, for all w0, w1 ∈ Fm we have

w0Nk = w1Nk if and only if cank(w0) = cank(w1)

and we can define a group operation on the set of canonical forms of rank k making this
group isomorphic to Fm/Nk.

In order to define the canonical form cank(w) on the basis of cank−1(w) we use the
concept of a certification sequence. We think of it as carefully choosing the sides of the
relators in a given word. The important point is that for any w ∈ Fm, the canonical
form stabilizes, i.e. for any w ∈ Fm there is some k such that cank(w) = canl(w) for all
l > k and thus cank(w) will be the canonical representative for wN ∈ B(m,n).

In this way we obtain a section can : Fm/N −→ Fm i.e. we have

can(w) = can(w′) if and only if wN = w′N ∈ B(m,n).

The set of canonical forms can(Fm) with the appropriate multiplication then forms a
group isomorphic to B(m,n).

Thus, the main thrust of the paper lies in inductively defining cank(w) for any k based
on 13 induction hypotheses. We will see that any cube-free element of Fm is already in
canonical form and so the infinity of the Burnside group follows immediately from the
fact that there are infinitely many cube-free words on two letters.

For our method to give a relatively short and accessible proof, we currently need the
exponent n to be at least n > 36 · 15 + 16 = 556. However, we expect that this can still
be much improved. The proof also yields (the previously known result) that the infinite
free Burnside groups are not finitely presented.
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2. The set-up

Let F = 〈x1, . . . , xm〉 be the free group with free generators x1, . . . , xm, m > 2. Then

B(m,n) = F/〈〈x1, . . . , xm | wn, w ∈ F 〉〉

is called the free Burnside group of rank m and exponent n.
In this paper we prove the following

Theorem 2.1. The free Burnside group B(m,n) is infinite for m > 2 and odd exponents
n > 557.

Throughout the paper n is an odd natural number > 557. Section 3 and Section 4
describe an inductive process for the definition of a canonical form. We apply the results
of this induction in Section 8 and show that B(m,n) is infinite for m > 2 and odd
exponents n > 557.

The free generators {x1, . . . , xm} of F and their inverses {x−1
1 , . . . , x−1

m } are called let-
ters, sequences of letters are called words. A word without cancellations is called a reduced
word.

We say that a word w cyclically contains a word A if A is a subword of a cyclic shift
of w.

A prefix of a reduced word is any (not necessarily proper) initial segment of this word.
Similarly, a suffix of a reduced word is any (not necessarily proper) final segment of it.

If N is a normal subgroup of G and w1, w2 ∈ G represent the same element in G/N ,
we say that w1 and w2 are equivalent mod N and we write

w1 ≡ w2 mod N.

We write w1 = w2 to denote equality of (reduced) words in the free group.
Let A,B ∈ F. We denote their product by A ·B. If we just write AB this implies that

A · B has no cancellation. In particular, if we write Am for some exponent m ∈ Z, this
indicates that A is cyclically reduced.

We will frequently use the following easy observation:

Remark 2.1. Suppose that A and B are reduced words. Then the product A ·B−1 has
cancellation if and only if A and B have a non-trivial common suffix. Similarly, A−1 ·B
has cancellation if and only if A and B have a non-trivial common prefix.

For any word w we denote the number of letters in w by |w| and call it the length of
w.

Remark 2.2. Note that if w 6= 1 is a reduced word in the free group, then Cen(wn) = 〈w〉
if and only if w is not a proper power. In this case we say that w is primitive.

3. The list of induction hypotheses

The purpose of the induction is to define the canonical form of rank i, cani(A), of A,
for all words A in the alphabet {x1, . . . , xm} ∪ {x−1

1 , . . . , x−1
m } and for all i > 0. Then

Cani denotes the set of canonical forms of rank i. To start the induction, Can−1 is the
set of all words (not necessarily reduced) and the canonical form of rank 0 of a word in
Can−1 is its reduced form, i.e. Can0 is the set of all reduced words. Then we inductively
define the canonical form of rank i for all A ∈ Cani−1 and extend the definition to all
words in Can−1 via

cani(A) = cani(cani−1(. . . can0(A) . . .)).
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The elements of Cani are called canonical words of rank i.
Furthermore, we will specify pairwise disjoint sets Reli ⊂ {wn : w ∈ F primitive} of

relators which are invariant under inverses and cyclic shifts. Note that relators from Reli
may not belong to Cani−1.

Throughout the paper we fix our nesting constant τ = 15.

Definition 3.1 (Fractional powers and Λi-measure). If u is a subword of ak for some
k ∈ Z, we call u a fractional power of a and put

Λa(u) =
|u|

|a|
.

If an ∈ Reli, we call u a fractional power of rank i and if k > τ+1 we put Λi(u) = Λa(u).
If k < τ + 1 we only define its Λi-measure if it is clear from the context with respect to
which relator from Reli the measure is taken.

We say that u has Λi-measure at most m for m > τ if either Λi(u) 6 m or the
Λi-measure of u is not defined.

We show inductively for i > 0 that Cani is a group with respect to an appropriately
defined multiplication.

The induction hypothesis at stage r: At stage r we assume inductively that the
following statements hold for i = 0, . . . , r − 1. Here and in what follows we will refer to
Induction Hypothesis 1 as IH 1 etc.

IH 1. The canonical form of rank i of every word of Cani−1 is uniquely defined and

Cani = {cani(w) | w ∈ Cani−1}.

IH 2. Cani ⊆ Cani−1.
IH 3. The sets Reli, 0 6 i 6 r − 1, are closed under cyclic shifts and inverses and

pairwise disjoint. We have Rel0 = {1}, and Reli ⊆ {wn | w ∈ F primitive} for
1 6 i 6 r − 1.

IH 4. If A ∈ Cani−1 does not contain fractional powers of rank i of Λi-measure >
n
2 − 5τ − 2, then A ∈ Cani.

Remark 3.2. Note that by IH 4 we also have cani(1) = 1 ∈ Cani where 1 denotes the
empty word, and cani(x) = x ∈ Cani for every single letter x.

The small cancellation condition is contained in the following induction hypothesis
(see Lemma 4.9):

IH 5. Let xn ∈ Reli, y
n ∈ Relj , 1 6 i 6 j 6 r− 1, and let c be their common prefix. If

i < j, then |c| < 2|y| and if i = j and |x| 6 |y|, then |c| < min{(τ + 1)|x|, 2|y|}.
IH 6. If A ∈ Cani, then A = cani(A).
IH 7. cani(A

−1) = (cani(A))
−1.

Remark 3.3. By IH 6 we have cani(B) = cani(cani(B)) for every B ∈ Can−1. In other
words, cani is an idempotent operation equivariant with respect to taking inverses by
IH 7.

The following axiom states that the canonical form picks unique coset representatives:

IH 8. Let A,B ∈ Can−1. Then A ≡ B mod 〈〈Rel0, . . . ,Reli〉〉 if and only if cani(A) =
cani(B).

Remark 3.4. Note that for i > 0 the set Cani is a group with respect to the multipli-
cation defined by

A ·i B = cani(A ·B), A,B ∈ Cani,
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with identity element 1 = cani(1) and inverses given by inverses in the free group.
In particular, (Can0, ·0) is precisely the free group F.
Notice that if A ≡ B mod 〈〈Rel0, . . . ,Reli〉〉 andA ∈ Cani, then cani(B) = cani(A) =

A by IH 8 and IH 6.
For A ∈ Can−1 we thus have A ≡ cani(A) mod 〈〈 Rel0, . . . ,Reli 〉〉. Furthermore,

since cani(1) = 1, we have cani(v) = 1 for v ∈ Reli, 1 6 i 6 r − 1.

These previous remarks can be rephrased as:

Corollary 3.5. Let A,B ∈ Can−1. Then for i > 0 we have

cani(A) ·i cani(B) = cani(cani(A) · cani(B)) = cani(A · cani(B))

= cani(cani(A) · B) = cani(A ·B).

IH 9. Any non-empty subword of a word from Cani, i > 0, is not equal to 1 in the
group F/〈〈 Rel0, . . . ,Reli 〉〉.

Definition 3.6. A reduced word A is α-free modulo rank i if A it does not contain
subwords of the form aα where a is primitive and an /∈ Rel1 ∪ . . . ∪ Reli.

A reduced word A is α-free of rank i if it does not contain subwords of the form aα

with an ∈ Reli.
We call a triple of words (D1, D2, D3) a canonical triangle of rank i if they are τ-free

modulo rank i+ 1 and D1 ·D2 ·D
−1
3 ≡ 1 mod 〈〈Rel0, . . . ,Reli〉〉.

The following axiom is crucial:

IH 10. (Canonical triangle hypothesis) For A,B ∈ Cani there is a canonical triangle
(D1, D2, D3) of rank i such that A = A′D1X, B = X−1D2B

′ (where X ·X−1 is
the maximal cancellation in A ·B) such that

cani(A · B) = A′D3B
′.

Furthermore, if (D
(i)
1 , D

(i)
2 , D

(i)
3 ) is a canonical triangle of rank i − 1 such that

A = A′′D
(i)
1 X, B = X−1D

(i)
2 B′′ and cani−1(A · B) = A′′D

(i)
3 B′′, then A′ is a

prefix of A′′ and B′ is a suffix of B′′ and if D1 = D
(i)
1 , D2 = D

(i)
2 , then D3 = D

(i)
3 .

Note that if D1 = D
(i)
1 , D2 = D

(i)
2 , then A′ = A′′ and B′ = B′′ since the maximal

cancellation is independent of i.
The multiplication A ·i B = cani(A · B) in the group (Cani, ·i) can be graphically

expressed as follows:

A′ D3 B′

D1 D2

X

cani(A ·B)

A B



6 AGATHA ATKARSKAYA, ELIYAHU RIPS, AND KATRIN TENT

Note that A·B and cani(A·B) represent the same element in F/〈〈Rel0, . . . ,Reli〉〉 by IH 8.
Hence after cancelling A′ from the left and B′ from the right it follows that D1 ·D2 and
D3 represent the same element in F/〈〈Rel0, . . . ,Reli〉〉. In particular, if two of D1, D2, D3

are equal to 1, then so is the remaining one by IH 9.
The triangles constitute the ’smoothing process ’ in the multiplication of canonical

words. So IH 10 states that in this smoothing process the perturbation on both sides
of the multiplication seam is very limited and, furthermore, in order to obtain higher
canonical forms the smoothing area given by the canonical triangles may need to increase
(but will never shrink).

IH 11. If L1A
τR1, L2A

τR2 ∈ Cani for A primitive, An /∈ Rel0 ∪ . . . ∪ Reli then
L1A

NR2 ∈ Cani for any N > τ .
IH 12. If A1 is a prefix of A ∈ Cani, there is a canonical triangle (D1, 1, D3) such that

A1 = A′
1D1 and cani(A1) = A′

1D3.

By taking inverses IH 12 implies also that for a suffix A2 of A ∈ Canr−1 there is a
canonical triangle (E1, E2, 1) such that cani(A2) = E3A

′
2 and A2 = E2A

′
2.

IH 13. If A ∈ Can−1 and An /∈ 〈〈Rel0, . . . ,Reli〉〉, then there are natural numbers K,M0

and words W,Z depending only on A and i such that

cani(A · . . . ·A︸ ︷︷ ︸
M times

) = WÃM−KZ for all M > M0,

and A and Ã are conjugate in the group F/〈〈Rel0, . . . ,Reli〉〉.

We now collect a few immediate consequences of the induction hypotheses which will
be widely used throughout:

Corollary 3.7. Let LaN1AaN2R ∈ Cani where A may be empty, a is primitive, an /∈
Rel0 ∪ . . . ∪ Reli and N1, N2 > 2τ . Then

cani(La
N1) = LaN1−τX,

cani(a
N2R) = Y aN2−τR,

cani(a
N1AaN2) = Y aN1−τAaN2−τX,

where X ≡ Y ≡ aτ mod 〈〈Rel0, . . . ,Reli〉〉 and X,Y only depend on a and i.

Proof. By IH 12, there is a canonical triangle (D1, 1, D3) of rank i such that

LaN = LaN−γa1D1 and cani(La
N ) = LaN−γa1D3

for some γ 6 τ and a prefix a1 of a. Write X = aτ−γa1D3, so LaN−γa1D3 = LaN−τX .
Since D1 ≡ D3 mod 〈〈Rel0, . . . ,Reli〉〉, we have

aτ = aτ−γa1D1 ≡ aτ−γa1D3 = X mod 〈〈Rel0, . . . ,Reli〉〉.

Since N > 2τ , by IH 11 we have L1a
KX ∈ Cani for any K > τ and any L1 such that

L1a
τ is a prefix of a word from Cani. Now L1a

K+τ ≡ L1a
KX mod 〈〈Rel0, . . . ,Reli〉〉,

hence by Remark 3.4 we obtain that cani(L1a
K+τ ) = L1a

KX . So, X depends only on
a and i. By taking inverses and applying the previous case on both sides the remaining
claims follow. �

For convenience we also note the following:

Corollary 3.8. Let LaN1+N2R ∈ Cani, N1 + N2 > τ , where a is primitive and an /∈
Rel0 ∪ . . . ∪ Reli. Let M ∈ Can−1 be such that M ≡ aα mod 〈〈Rel0, . . . ,Reli〉〉. Then

cani(La
N1 ·M · aN2R) = LaN1+N2+αR.
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Proof. Since M ≡ aα mod 〈〈Rel0, . . . ,Reli〉〉, we see that

LaN1 ·M · aN2R ≡ LaN1+N2+αR mod 〈〈Rel0, . . . ,Reli〉〉.

IH 11 implies that LaN1+N2+αR ∈ Cani. Therefore Remark 3.4 implies the result. �

Since canonical triangles are τ -free of rank i, fractional powers of rank i and Λi-
measure > τ block the influence of the smoothing process obtained from the canonical
triangles in the computation of the canonical form for subwords and products:

Corollary 3.9. Let A = A′D1X, B1 = X−1D2MaτR ∈ Cani and cani(A · B1) =
A′D3MaτR for some canonical triangle (D1, D2, D3) of rank i and primitive a with
an /∈ Rel1 ∪ . . . ∪ Reli (where M may be empty).
If B2 = X−1D2MaτR1 ∈ Cani, then cani(A ·B2) = A′D3MaτR1.

Proof. By IH 11 applied to A′D3Maτ and aτR1 we have A
′D3MaτR1 ∈ Cani. Since D1 ·

D2 ≡ D3 mod 〈〈Rel1, . . . ,Reli〉〉, we see that A
′D3MaτR1 ≡ A·B2 mod 〈〈Rel1, . . . ,Reli〉〉.

Thus, Remark 3.4 implies the claim. �

Clearly the corresponding statement for A1 ·B,A2 ·B follows from this by considering
inverses. Similarly we have

Corollary 3.10. Let A = LaτMbτWR, A1 = L1a
τMbτWR1 ∈ Cani where a, b are

primitive and an, bn /∈ Rel1∪. . .∪Reli (where M,W may be empty). Then cani(L1a
τMbτW )

is obtained from cani(La
τMbτW ) by replacing L by L1.

Proof. By IH 12 there is a word D τ -free of rank i+ 1 such that

cani(La
τMbτW ) = LaτMXD

where X is non-empty and bτW ≡ XD mod 〈〈Rel1, . . . ,Reli〉〉. By IH 11 applied to
L1a

τ and aτMXD we have L1a
τMXD ∈ Cani. Since

L1a
τMXD ≡ L1a

τMbτW mod 〈〈Rel1, . . . ,Reli〉〉,

Remark 3.4 implies the claim. �

4. The induction

In this section we start showing that the induction step works. We first establish the
induction basis for i = 0. Note that although we have defined Can−1 with index −1,
ranks of the canonical form and canonical triangles start from 0.

4.1. Induction basis.

Proposition 4.1. The sets Rel0, Can0, and Can−1 satisfy IH 1–13.

Proof. Since Rel0 = {1} and the canonical form of rank 0 of a word from Can−1 is its
reduced form, all the induction hypotheses are easily verified. In particular, all sides of
canonical triangles of rank 0 are equal to 1. �

Note that IH 4, IH 5 and IH5 are not defined for i = 0, but will be verified for i > 1
inside the proofs.

Now assume that IH 1–13 hold for Can−1, . . . ,Canr−1, Rel0, . . . ,Relr−1. In order to
prove the induction step, we now construct Relr and Canr such that Can−1, . . . ,Canr,
and Rel0, . . . ,Relr also satisfy IH 1–13.
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4.2. Cyclically canonical words. The multiplication of canonical words requires the
smoothing process given by canonical triangles at the seam between the words (see IH 10).
Hence in general cani(A) · cani(A) 6= cani(A) ·i cani(A) = cani(A · A). We now define
cyclically canonical words of rank i, i = 0, . . . , r − 1, for which equality holds at least
approximately:

Definition 4.2 (cyclically canonical words). We say that a word A is cyclically canonical
of rank 0 if it is cyclically reduced. We call a cyclically reduced word A cyclically canonical
of rank i for i > 1 if Aτ is a subword of a word in Cani and A = AK

1 for a primitive
word An

1 /∈ Rel0 ∪ . . . ∪ Reli.
The set of all cyclically canonical words of rank i, i > 0, is denoted by Cycli.

Clearly can0(A
K) = AK for every A ∈ Cycl0 and K > 0 and if A = AK

1 is cyclically
canonicalof rank i, then so is A1.

The following are immediate consequences of the induction hypotheses:

Lemma 4.3. (1) Cycli ⊆ Cycli−1.
(2) Cycli is closed under taking cyclic shifts and inverses.
(3) If A ∈ Cycl0 and AN1 ∈ Cycli, then AN2 ∈ Cycli for all N1, N2 > 1.
(4) Cycli ∩ (Rel0 ∪ . . . ∪ Reli) = ∅.
(5) If A ∈ Cycli, i > 0 and K > 4τ , then cani(A

K) = T1A
K−2τT2 where T1, T2 only

depend on A and i.

Proof. (1) and (2) are clear and (3) follows from IH 11.
(4) This follows directly from the definition.
(5) is a consequence of IH 11 and Corollary 3.7. �

4.3. Sets of relators Relr and their common parts. Recall that Rel0 = {1}, Cycl0
is the set of all cyclically reduced words and that throughout the paper we fix the nesting
constant τ = 15. We put

Rel1 = {xn ∈ Cycl0 | |x| = 1},

Rel2 = {xn ∈ Cycl1 | Cen(x) = 〈〈x〉〉, |x| > 1 and x does not

cyclically contain aτ for a ∈ Cycl0 \ {1}
}
.

For r > 3 we define:

Relr =
{
xn ∈ Cyclr−1 | Cen(x) = 〈x〉 and if x cyclically contains aτ for

a ∈ Cycl0, Cen(a) = 〈a〉, then an ∈ Rel1 ∪ . . . ∪ Relr−1

}
.

Remark 4.4. Note that by definition for r > 3, if xn ∈ Cyclr−1 and x does not cylically
contain a subword aτ with an ∈ Relr−1, then xn ∈ Rel1 ∪ . . . ∪ Relr−1. In this way
the sets of relators Reli for i > 2 are defined by the nesting depth of power words that
contain at least τ periods (see Corollary 4.8).

After completing the induction process we prove in Corollary 8.7 that by organizing
the relators according to their nesting depth, we obtain

B(m,n) ∼= F/

〈〈
⋃

i

Reli

〉〉
.

Since Cyclr−1 is closed under inverses and cyclic shifts, if xn ∈ Cyclr−1 is such that
x cyclically contains some aτ with an ∈ Rel1 ∪ . . . ∪ Relr−1, then so does x−n and any
cyclic shift of xn. So with Lemma 4.3(4) and IH 3 for ranks < r we obtain:
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Lemma 4.5. IH 3 holds for Relr.

Corollary 4.6. If xn, yn ∈ Reli, i > 1, then xτ is not cyclically contained in y.

Proof. This follows directly from Reli∩Relj = ∅ for i 6= j and the definition of Reli. �

We also note the following:

Lemma 4.7. If x ∈ Cyclr−1 is primitive, then either xn ∈ Rel1 ∪ . . . ∪ Relr, or x
cyclically contains aτ for some an ∈ Relr if r > 3, (or an ∈ Rel1 ∪ Rel2 if r = 2).

Proof. If x does not cyclically contain any subwords of the form aτ , then, by definition,
xn ∈ Rel2. If x cyclically contains only subwords of the form aτ with an ∈ Rel1 ∪ . . . ∪
Relr−1, then, again by definition, xn ∈ Rel1 ∪ . . .∪Relr. So assume x cyclically contains
a subword aτ where a is primitive and an /∈ Rel1 ∪ . . . ∪ Relr−1. Then |a| < |x|, and
by Lemma 4.3(4) and induction on |x|, we have an ∈ Relr or a (and hence x) cyclically
contains bτ for some bn ∈ Relr if r > 3, (or bn ∈ Rel1 ∪ Rel2 if r = 2). By Corollary 4.6
the cases are mutually exclusive. �

Lemma 4.7 and Lemma 4.3(3) with r − 1 in place of r now imply:

Corollary 4.8. If xn ∈ Relr, then x cyclically contains aτ for some an ∈ Relr−1 if
r > 3, (or an ∈ Rel1 ∪ Rel2 if r = 2).

The following important statement is proved in [7].

Lemma 4.9. Let xn, yn be two reduced words such that x and y do not centralize each
other in F . Let c be a common prefix of xn and yn. Then |c| < |x| + |y| − gcd(|x|, |y|),
where gcd(|x|, |y|) is a greatest common divisor of |x| and |y|.

Lemma 4.10. Let xn, yn ∈ Reli, i > 1, x 6= y, and c be a common prefix of xn and yn.
Assume |x| 6 |y|. Then |c| < min{2|y|, (τ + 1)|x|}.

Proof. For r = 1, by definition of Rel1, we have |x| = |y| = 1, so the claim is obvious. Now
let i > 2. Since xn 6= yn ∈ Reli we have Cen(x) = 〈x〉, Cen(y) = 〈y〉 and 〈x〉∩ 〈y〉 = {1}.
So it follows from Lemma 4.9 that |c| < |x|+ |y| 6 2|y|.

From |c| < |y|+ |x| we see that if |c| > (τ+1)|x|, then we must have |y| > τ |x|. Since c
is a common prefix of xn and yn, this implies that y contains xτ as a prefix, contradicting
Corollary 4.6. �

Corollary 4.11. Let x, y be primitive, x ∈ Cyclr−1, x
n /∈ Rel0∪ . . .∪Reli, y

n ∈ Reli, 1 6

i < r, and let c be a common prefix of xn and yn. Then |c| < 2|x|.

Proof. If i = 1, then y is a single letter and since x is primitive, we have |c| < |x|. Thus
the claim holds for i = 1.

If i > 2, then x cyclically contains a subword aτ with an ∈ Reli by Corollary 4.8. If
|c| > 2|x|, then |x| < |y| by Lemma 4.9 and since any cyclic shift of x is a subword of x2

and hence of y2, we see that y also cyclically contains aτ , contradicting Corollary 4.6. �

Now Lemma 4.10, Corollary 4.11 and Reli ∩ Relj = ∅ for i 6= j directly imply:

Corollary 4.12. IH 5 and IH 5 hold for Reli, i = 1, . . . , r.
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4.4. Turns of rank r. If u is a fractional power of a, there exists a cyclic shift â = a2a1
(a1, a2 may be empty) of a = a1a2 such that u can be written in the form

(1) u = âka2 or u = â−ka−1
1 , k ∈ N ∪ {0}.

The set of fractional powers of rank j, 1 6 j 6 r, is defined as

{u | u is a subword of RN , R ∈ Relj , N ∈ Z}.

Note that since Relj is closed under cyclic shifts and inverses, this coincides with

{u | u is a prefix of RN , R ∈ Relj , N ∈ N}.

Remark 4.13. If u is a fractional power of rank j, 1 6 j 6 r of Λj-measure > τ + 1,
then by IH 5 (for 1 6 j < r) and Lemma 4.10 (for j = r) there exists a unique relator
an ∈ Relj such that u is a prefix of aK ,K > 0. So u can be written uniquely as

(2) u = aka1, where an ∈ Relj , a = a1a2, k ∈ N ∪ {0}.

Clearly, any fractional power u of rank j can be represented as in (2). However,
without the condition that u contains > τ + 1 periods of a relator, the relator an ∈ Relj
need not be unique, which is why we require in Definition 3.1 that either k > τ + 1 or
that the corresponding relator is clear from the context.

The following simple definition is a crucial concept for everything that follows:

Definition 4.14 (occurrences of rank j, 1 6 j 6 r). Let U be a subword of A ∈ Can−1.
Then the occurrence of U in A is determined by its position inside A. We say that
an occurrence U is properly contained in A if it is neither prefix nor suffix of A.

Let A = LuR ∈ Canr−1 where u is a fractional power of rank j. If u is not properly
contained inside an occurrence u1 in A which is also a fractional power of rank j, then
u is called a maximal occurrence (of rank j) in A.

I.e. if A = LUR = L′UR′ with L′ 6= L,R′ 6= R, then A contains two different
occurrences of U .

Note that for any prefix u of ak with k ∈ N and suffix w of a, the word wu is reduced
and contained in ak+1. This motivates the following definition:

Definition 4.15 (Prolongation of occurrences of fractional powers). Let an ∈ Relr and
suppose u,w are occurrences in aK for some K ∈ N. If u is properly contained in w, we
call an occurrence of w in A ∈ Canr−1 a prolongation of the occurrence u in A.

Remark 4.16. If u = aka1 with an ∈ Relr, then all prolongations of u with respect to
a are fractional powers of a. If k > τ + 1, then for prolongations of u we do not have
to mention a by Remark 4.13 as a is unique (up to cyclic shift). However, if u contains
< τ + 1 periods of a, then u may also be a prefix of another relator bn ∈ Relr. In that
case it is possible that u has no proper prolongation in A with respect to a, but u does
have a proper prolongation in A with respect to b.

For further reference we can now state the following characterization of maximal oc-
currences:

Remark 4.17. Suppose A = LuR ∈ Canr−1 with u = aka1, a
n ∈ Relj , 1 6 j 6 r,

a = a1a2 (where a2 can be empty) and k ∈ N ∪ {0}. Then by Remark 2.1, u does not
have a proper prolongation in A with respect to a if and only if there are no cancellations
in the words L · a−1 and a−1

1 a−1
2 ·R.

In particular we see that if vu and wu are prolongations of u with respect to a, then
v is a suffix of w or conversely and the word v · w−1 is not reduced.
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Corollary 4.18. Let A ∈ Canr−1 and let u = aka1, k > τ + 1, an ∈ Relj , a = a1a2, for
some 1 6 j 6 r. Then there exists a unique maximal occurrence of rank j containing u
and it coincides with the maximal prolongation of u in A.

Proof. This follows directly from Lemma 4.10 and the previous remark. �

For further reference we now record the following version of Lemma 4.10. Here and
in what follows we say that a word c is an overlap of words v, w if c is a suffix of v and
prefix of w.

Corollary 4.19. Let A ∈ Canr−1, let u1 be a maximal occurrences of rank r in A, let
u2 be an occurrence in A of rank r not contained in u1. Write u1 = aka1, u2 = bsb1,
where an, bn ∈ Relr, a = a1a2, b = b1b2, and |a| 6 |b|. If c is the overlap of u1 and u2,
then |c| < min{(τ + 1)|a|, 2|b|}.

Proof. By taking inverses if necessary we assume that c is a suffix of u1 and prefix of u2.
Then we can write c as c = âk1 â1, where â is a cyclic shift of a and â = â1â2 and k1 > 0.
Then c is a common prefix of âN and bN for some N ∈ N and a cyclic shift â of a. Since
u1 is a maximal occurrence and u2 is not contained in u1 we see that â 6= b and hence
the claim follows from Lemma 4.10. �

If u = aka1 is a proper prefix of the relator an ∈ Relr, a = a1a2, we call v = a−n ·
u = ak−n+1a−1

2 the complement of u with respect to the relator an. Clearly, v is the
complement of u with respect to an if and only if u · v−1 = v−1 · u = an.

Remark 4.20. Let A = LuR ∈ Canr−1 where u = aka1, k > 0, an ∈ Relr, is a maximal
occurrence of rank r in A and put v = a−n · u. If v 6= 1, then we have L · v ·R = LvR: if
k < n there are no cancellations in L · v ·R by Remark 4.17 as u is a maximal occurrence
and if k > n there are no cancellations in L · v · R because there are no cancellations in
the initial word LuR = Laka1R. In particular, if k > n, then v has no prolongation with
respect to a.

Note also that if u contains > τ+1 periods of the relator an (that is, if |u| > (τ+1)|a|),
then an is the unique relator in Relr with prefix u by Remark 4.13. So, the complement
of u is defined without referring to the particular relator and in this case we will simply
call v the complement of u.

The next definition is central to our approach:

Definition 4.21 (turns of rank r). Let A = LuR ∈ Canr−1 where u = aka1, a =
a1a2, k > 0, an ∈ Relr, is a maximal occurrence of rank r in A. Let v = a−n · u. The
transformation

A = LuR 7−→ canr−1(LvR)

is called a turn of rank r in A, or, more specifically, the turn of u in A.

Note that we may have k > n and that the reduced form of v is one of the following:

(3) v =

{
ak−na1 if k > n,

ak−n+1a−1
2 if k < n.

The following observation will be convenient:

Remark 4.22. (i) Let a = a1a2 be a cyclically reduced word and â = a2a1 a cyclic shift
of a. For any t, k ∈ N we have

a−t · (aka1) = ak−t · a1 = a1 · (a2a1)
k−t = a1(a2a1)

k · (a2a1)
−t
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= aka1 · (a2a1)
−t = (aka1) · â

−t.

Hence if A = LuR ∈ Canr−1 where u = aka1 is a maximal occurrence of rank r in A
with complement v = a−n ·u, then we see that we can move the multiplication with a−n

to any position across u by using the appropriate cyclic shift ân of an:

LvR = L · a−n · uR = Lu′ · â−n · u′′R

where u = u′u′′ and u′′ is a prefix of âN for some N > 0.
(ii) Note that this also shows that if u is a not necessarily maximal occurrence of

rank r in A ∈ Canr−1, u = aka1 for some an ∈ Relr with k > τ + 1, then if we multiply
u from the left by a−n (and take its canonical form), we automatically turn the maximal
prolongation of u with respect to a.

Remark 4.23. Let A = LuR ∈ Canr−1 where u = aka1 is a maximal occurrence of
rank r in A with complement v = a−n · u. Then by Remark 3.4 and Remark 4.22 the
result canr−1(LvR) of turning u in A satisfies

canr−1(LvR) = canr−1(L · a−n · uR) ≡ L · a−n · uR

≡ Lu′ · â−n · u′′R mod 〈〈Rel0, . . . ,Relr−1〉〉,

for any decomposition u = u′u′′, where ân is the appropriate cyclic shift of an.

In order to describe the resulting word after a turn of rank r we first establish the
following general lemma:

Lemma 4.24. Suppose an ∈ Relr, a2, a3 are (possibly empty) suffixes of a, La2a
M and

R−1a3a
K are prefixes of words in Canr−1 and assume a3a

K is a maximal occurrence,
Λr(a2a

M ) − τ > Λr(a3a
K) > 2τ . Then there exists a canonical triangle (D1, D2, D3)

such that

canr−1(La2a
M · a−Ka−1

3 R) = L̃D3R
′, L̃D1 = La2a

M · a−Ka−1
3 , R = D2R

′.

Furthermore, if Λr(a2a
M ) − τ > Λr(a3a

K), then L̃ = Lw0 for a prefix w0 of a2a
M

with Λr(w0) > Λr(a2a
M · a−Ka−1

3 )− τ .

Note that by considering inverses and using the fact that Canr−1 and Relr are closed
under inverses, for the case 2τ 6 Λr(a2a

M ) 6 Λa3a
K − τ we also obtain

canr−1(La2a
M · a−Ka−1

3 R) = L′D3w0R,L = L′D1, D2w0R = a2a
M · a−Ka−1

3 R

for a suffix w0 of a−Ka−1
3 and some canonical triangle (D1, D2, D3).

Proof. By Corollary 3.5 we have

canr−1(La2a
M · a−Ka−1

3 R) = canr−1(canr−1(La2a
M ) · canr−1(a

−Ka−1
3 R)).

By Corollary 3.7 we have

canr−1(La2a
M ) = LaM−τX and canr−1(a

−Ka−1
3 R)) = X−1a−K+τa−1

3 R.

So canr−1(La2a
M · a−Ka−1

3 R) = canr−1(La2a
M−τX ·X−1a−K+τa−1

3 R).

Put W = a3a
K−τX . Since a3a

K is maximal, W · W−1 is the maximal cancellation in
this product. By IH 10 there is a canonical triangle (D1, D2, D3) such that

La2a
M−τX = LwW = L̃D1W and X−1a−K+τa−1

3 R = W−1R = W−1D2R
′

for a prefix w of a2a
M−K , prefix L̃ of Lw and suffix R′ of R such that

canr−1(La2a
M−K · a−1

3 R) = L′D3R
′.
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If Λr(a2a
M · a−Ka−1

3 ) > τ , then L̃ = Lw0 for a nonempty prefix w0 of a2a
M with

Λr(w0) > Λr(a2a
M · a−Ka−1

3 )− τ . �

The following proposition describes the resulting word after a turn of a maximal
occurrence of rank r of Λr-measure > τ . Below is an illustration that presents both
A = LuR and the result B of the turn of u in A with complement v. Note that the
canonical triangles (D1, D2, D3) and (E1, E2, E3) could intersect. In fact, the relative
position of these two triangles on the circle corresponds to the Types 2. and 3. in the
following proposition.

E1

u

D2

v′

u′

an
D1

D3

L′
E2

E3

R′

Lemma 4.25. Let A = LuR ∈ Canr−1 where u = aka1 is a maximal occurrence of
rank r in A, an ∈ Relr, k > τ , and a = a1a2 (where a1 can be empty). Let v = a−n · u
and consider the turn of rank r in A:

LuR 7−→ LvR 7−→ canr−1(LvR) if v 6= 1;

LuR 7−→ L ·R 7−→ canr−1(L ·R) if v = 1.

Put m = τ − 1 if k < n and m = τ + k − n if k > n.

(i) The result of the turn is of the form

L′QR̃

where L′ is a prefix of L, R̃ is a proper suffix of uR and we have one of the following
three possibilities:

Type 1.

canr−1(LvR) = LvR, L′ = L,Q = v is a fractional power of a and R̃ = R;

Type 2.

canr−1(LvR) = L′D3v
′E3R

′, L = L′D1, R = E2R
′, v = D2v

′E1,

where the remainder v′ of v is non empty, and (D1, D2, D3) and (E1, E2, E3)
form canonical triangles of rank r − 1. Here v is a fractional power of a−1 and
Q = D3v

′E3.
Type 3.

canr−1(LvR) = L′D′
3E3R̃, L = L′D1, Q = D′

3E3,

where D′
3 is a not-empty prefix of a side of a canonical triangle of rank r− 1, D1

and E3 are a sides of canonical triangles of rank r − 1, L′ is a prefix of L and R̃
is a proper suffix of ama1R.
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Type 4.

canr−1(LvR) = L′E3R̃, Q = E3,

where E3 is a side of a canonical triangle of rank r− 1, L′ is a prefix of L and R̃
is a proper suffix of ama1R.

(ii) If k > n + τ , the result is of Type 1 and if τ 6 Λr(u) 6 n − 2τ (or equivalently,
n− τ > Λr(v) > 2τ), the result is of Type 2 with Λr(v

′) > Λr(v) − 2τ > 0.

(iii) Unless Q = D3v
′E3 with |v′| > (τ + 1)|a| or Q = v with |v| > (τ + 1)|a|, Q is

(3τ + 1)-free of rank r.

Proof. First assume k − n > τ . Since LuR = Laka1R ∈ Canr−1 and k, k − n > τ , it
follows from IH 11 that LvR = Lak−na1R ∈ Canr−1 as well. Hence canr−1(LvR) = LvR
by IH 6 and so the result is of Type 1.

Now suppose that τ 6 k < n+τ . Then v = ak−n+1 ·a−1
2 and this product is reduced if

and only if k < n. While we would like to compute canr−1(LvR) by applying Lemma 4.24
to La−n · uR, we do not know that La−n is a prefix of a word in Canr−1. Therefore
we appeal to Corollary 3.5 and first write LvR as a product of suitable subwords from
Canr−1. To this end we take N > 2τ and rewrite LvR as follows:

LvR = Lak−n+1 · a−1
2 R = (LaN+τ ) · (a−N−τ ·ak−n+1 · a−1

2︸ ︷︷ ︸
v

a−1
1 a−N−τ ) · (aN+τa1R)

= (LaN+τ ) · (a−2N−2τ+k−n) · (aN+τa1R).

Since A = LuR = Laka1R ∈ Canr−1 and k > τ , it follows from IH 11 that also
LaKa1R ∈ Canr−1 for any K > τ . Therefore, LaN and aNa1R are prefix and suffix,
respectively, of a canonical word of rank r − 1. Since Canr−1 is closed under taking
inverses, also a−2N−2τ+k−n is a subword of a word from Canr−1. Thus, Corollary 3.7
applies to the words LaN , aNa1R, a−2N−2τ+k−n yielding

Z1 = canr−1(La
N+τ ) = LaNX,

Z2 = canr−1(a
−2N−2τ+k−n) = X−1a−2N+k−nY −1,

Z3 = canr−1(a
N+τa1R) = Y aNa1R.

(4)

Hence canr−1(Z1 · Z2) = canr−1(La
NX ·X−1a−2N+k−nY −1)

= canr−1(La
N · a−2N+k−nY −1).

By Lemma 4.24 applied to LaN and Y a2N−k+n (see the comment after the lemma) we
find a canonical triangle (D1, D2, D3) such that

Z = canr−1(Z1 · Z2) = L′D3v0Y
−1 with L = L′D1, D2v0Y

−1 = a−N−n+kY −1.

Clearly if v is a fractional power of a−1 (i.e. if k < n), then v is a prefix of D2v0Y
−1.

Now canr−1(LvR) = canr−1(Z · Z3) = canr−1(L
′D3v0Y

−1 · Y aNa1R)

= canr−1(L
′D3v0 · a

Na1R).

Let v′0 be the prefix of v0 (if any) that is not cancelled in the product v0 ·a
Na1. Note that

v0 may have a proper prolongation ṽ = v1v0 in L′D3v0 with respect to a−1. We again
apply Lemma 4.24 to L′D3v0, aNa1R or their inverses and obtain another canonical
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triangle (E1, E2, E3) and the following cases according to the position of this triangle
relative to D3:

Type 2

canr−1(Z · Z3) = L′D3v
′E3R

′

where L = L′D1, R = E2R
′, and v = D2v

′E1. So in particular Λr(v
′) > Λr(v)− 2τ , and

this happens exactly if v′0 is not contained inside E1:

L′ D3

D2

D1

v′ E3

E2
E1

R′

v = ak−n+1a−1

2

canr−1(LvR)

Types 3 and 4 If v′0 is contained in E1 (in particular if v0 cancels completely), then

canr−1(Z · Z3) = L′D′
3E3R̃ or canr−1(Z · Z3) = L′′E3R̃,

where D′
3 is a non-empty prefix of D3, L

′′ is a prefix of L′ and R̃ is a suffix of ama1R.
Notice that the suffix of aNa1R remaining after cancellation with L′D3v0 is a proper

suffix of ama1R, so R̃ is a proper suffix of ama1R. If E1 is properly contained in D3v
′
0,

the we obtain the first formula that gives Type 3. Otherwise we obtain the second formula
that gives Type 4.

L′ D′

3

v′
0 E2

E1

E3 R̃

canr−1(LvR)

Now we prove the last part: if Q = D′
3E3 or Q = E3, then Q is 2τ -free of rank r,

because D′
3 and E3 are τ -free of rank r.

Let Q = D3v
′E3 and |v′| < (τ+1)|a|. Assume that Q contains b3τ+1, where bn ∈ Relr.

Since D3 and E3 are τ -free of rank r, we obtain that v′ contains bτ+1. Hence, it follows
from Lemma 4.10 that a−1 is a cyclic shift of b. Therefore, |v| > (τ + 1)|b| = (τ + 1)|a|,
a contradiction.

Let Q = v and |v| < (τ + 1)|a|. Assume that Q contains b3τ+1, where b ∈ Relr. Then
it follows from Lemma 4.10 that a is a cyclic shift of b. Therefore, |v| > (3τ + 1)|b| >
(τ + 1)|a|, a contradiction.

�

By considering inverses and using IH 7 we also obtain the following “left” version of
Type 3 in Lemma 4.25 (instead of the current “right” version). It is important to note
that while the description of the canonical form may differ, it is in fact uniquely defined
and therefore, these two versions agree.

Remark 4.26. In the situation of Lemma 4.25 (and with the same notation) we obtain
the following “left” description of canr−1(LvR) for Types 3 and 4:
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Type 3’ and 4’.

canr−1(LvR) = L̃F3G
′
3R

′,

where R′ is a suffix of R, F3 is a side of a canonical triangle of rank r − 1, G′
3 is a

(possibly empty) suffix of a side of a canonical triangle of rank r − 1, and L̃ is a proper
prefix of Lama1.

Convention 4.27. If A = LuR ∈ Canr−1 for some maximal occurrence u of rank r
with τ 6 Λr(u) < n we say that the turn A 7→ canr−1(LvR) = B is of Type 2 provided
B = L′D3v

′E3R
′, L = L′D1, R = D2R

′, v = D2v
′E1 as in Type 2 of Lemma 4.25.

Corollary 4.28. Let A1 = Lu1R1, A2 = Lu2R2 ∈ Canr−1 where u1 = aka1, u2 =
ama2 are maximal occurrences of rank r, u1 is a prefix of u2 and τ 6 Λr(u1) 6 Λr(u2) 6
n − 2τ . Let vi, i = 1, 2, be the complement of ui. Then there is a canonical triangle
(D1, D2, D3) such that the result Bi of turning ui in Ai, i = 1, 2, is of the form

B1 = L′D3v
′
1E3R

′
1 and B2 = L′D3v

′
2F3R

′
2

where v′2 and v′1 have a common a prefix of Λr-measure > n−Λr(u2)− 2τ , R′
i is a suffix

of Ri, i = 1, 2, and E3, F3 are sides of respective canonical triangles of rank r − 1.

Proof. Consider the decomposition of Lv1R1 and Lv2R2 into three factors Z1, Z2, Z3 as
in the proof of Lemma 4.25. Then the factor Z1 = LaNX is identical in both cases, the
factor Z2 is of the form X−1a−2N+k−nY −1 and X−1a−2N+m−nY −1, so differs only in
the exponent of a by m − k, and the third factor is of the form Y aNaiRi, i = 1, 2. By
Corollary 3.9 we see that in either case the product Z = canr−1(Z1 · Z2) is of the form
L′D3v0,1Y

−1 and L′D3v0,2Y
−1, respectively, where Λr(v0,1) = Λr(v0,2)+Λr(u2)−Λr(u1).

Thus, looking at the proof of Lemma 4.25 we see that after multiplying either of these
results with Z3 the product will have a prefix of the form L′D3v

′
i for some prefix v′i of

v0,1 of Λr-measure > n− Λr(u2)− 2τ . �

Corollary 4.29. Let A = LuR ∈ Canr−1 where u is a maximal occurrence of rank r
with τ 6 Λr(u) 6 n− 2τ and let B = L′D3v

′E3R
′ be the result of turning u in A. Let w

be an occurrence of rank r in R with Λr(w) > τ . Then R′ contains a non-empty suffix
w′ of w with Λr(w

′) > Λr(w)− τ .

Proof. By Lemma 4.25 B is of the given form. By the description of Type 2, we have
R = E2R

′ where E2 is τ -free of rank r. So w cannot be entirely contained in E2, so
Λr(w

′) > Λr(w)− τ . �

Corollary 4.30. Let Ai = LuMbτRi ∈ Canr−1, i = 1, 2, where u is a maximal occur-
rence of rank r with τ 6 Λr(u) 6 n − 2τ , bn ∈ Relr, and assume that the result B1 of
turning u in A1 is of the form

B1 = L′D3v
′E3M

′bτR1,

where M ′ is a suffix of M and (D1, D2, D3), (E1, E2, E3) are canonical triangles of
rank r − 1. Then the result B2 of turning u in A2 is of the form

B2 = L′D3v
′E3M

′bτR2

with the same canonical triangles.

Proof. This follows directly from Corollary 4.29, IH 11, IH 6, and IH 8 (see also the
proofs of Corollaries 3.9 and 4.28). �
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The following statement is a useful particular case of Corollary 4.30 with M =
M1a

τM2:

Corollary 4.31. Let Ai = LuM1a
τM2b

τRi ∈ Canr−1, i = 1, 2, where u is a maximal
occurrence of rank r with τ 6 Λr(u) 6 n− 2τ , an, bn ∈ Relr. Then there are canonical
triangles (D1, D2, D3), (E1, E2, E3) such that the result Bi, i = 1, 2, of turning u in Ai is
of the form

Bi = L′D3v
′E3M

′
2b

τRi

where M ′
2 contains a non-empty suffix of aτ , i.e. the canonical triangles do not depend

on Ri.

4.5. Inverse turns. From now on we will fix the following notational conventions:

Convention 4.32. For A = LuR ∈ Canr−1 where u is a maximal occurrence of rank r
with τ 6 Λr(u) 6 n−2τ (i.e. the turn of u is of Type 2) we use the following conventions:

(1) v denotes the complement of u;
(2) v′ denotes the remainder of v after turning u in A;
(3) B = canr−1(LvR) = L′D1v

′E1R
′ is the result of turning u in A for canonical

triangles (D1, D2, D3) and (E1, E2, E3) where L = L′D1, R = E2R
′ and v =

D2v
′E1;

(4) if Λr(v
′) > τ + 1, then v̂ is the maximal prolongation of v′ in B (and coincides

with the maximal occurrence of rank r in B containing v′).

We next prove that a turn of Type 2 of a maximal occurrence u with complement v
has a natural inverse turn, namely the turn of the maximal prolongation v̂ of v′ in B
(provided v̂ is a maximal occurrence).

Lemma 4.33. Let A = LuR ∈ Canr−1, where u is a maximal occurrence of rank r in
A with τ 6 Λr(u) < n− (3τ + 1) and let B = L′D3v

′E3R
′ be the result of turning u in

A. Then the result of turning v̂ in B is equal to A.

canr−1(L
′D3 · ã

n · v′E3R
′) = A

where u is a prefix of an ∈ Relr and v′ a prefix of some cyclic shift ã−n of a−n.

L′
D3

v1

v′

v2

E3 R′
D1

D2
E1

E2

u

an

v̂L1 R1

Thus, if the maximal prolongation v̂ of v′ with respect to a−1 is a maximal occurrence
of rank r in B, then the turn of v̂ in B is defined and by Remark 4.22, (ii), the result of
turning v̂ in B is equal to A.

Proof. Suppose that u is a prefix of an ∈ Relr and so v′ a prefix of some cyclic shift ã−n

of a−n.
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We see that ãn · v′ = D−1
2 uE−1

1 and by the properties of canonical triangles we have

D1uE2 ≡ D3 ·D
−1
2 uE−1

1 ·E3 mod 〈〈Rel0, . . . ,Relr−1〉〉. Hence

A = L′(D1uE2)R
′ ≡ L′(D3 ·D

−1
2 uE−1

1 · E3)R
′

= L′D3 · ã
n · v′E3R

′ mod 〈〈Rel0, . . . ,Relr−1〉〉

Since A ∈ Canr−1 by assumption, the claim now follows from IH 8 and IH 6. �

Remark 4.34. Note that turns of Type 3 do not have inverses. Furthermore, if the
remainder v′ after a turn of Type 2 has Λr-measure < τ +1, then the maximal prolonga-
tion v̂ of v′ with respect to a−1 need not be a maximal occurrence, so again the inverse
turn need not exist.

In turns of Type 2, the Λr-measure of the maximal prolongation of v′ in either direction
is bounded by τ :

Lemma 4.35. Let A = LuR ∈ Canr−1, where u is a maximal occurrence of rank r in A
with τ 6 Λr(u) < n. Let u be a prefix of an ∈ Relr and put v = a−n ·u. Assume that the
result B of turning u in A is of Type 2 and write B = canr−1(LvR) = L′D3v

′E3R
′. Let

v̂ = v1v
′v2 be the maximal prolongation of v′ in L′D3v

′E3R
′ with respect to a−1. Then

|v1| 6 max{|D2|, |D3|} and |v2| 6 max{|E1|, |E3|}. Thus, Λr(vi) < τ, i = 1, 2 and

n− Λr(u)− 2τ < Λr(v
′) 6 Λr(v̂) < Λr(v

′) + 2τ 6 n− Λr(u) + 2τ.

L′
D3

v1

v′

v2

E3 R′
D1

D2

v1 v2

E1 E2

u

an

Proof. Assume towards a contradiction that |v1| > |D2|, |D3|. Let zD2 denote the max-
imal common suffix of u−1D2 and v1. If z 6= u−1, then zD2 = v1. Otherwise Λr(v1) > τ
since Λr(u) > τ . Since D3 is τ -free of rank r, we see that |zD2| > |D3| in either case.
Thus, L′D3 = L′′zD2 = L′′z′D3 and hence z′D1z

−1 is a subword of A. However, since
D3 ·D

−1
2 ≡ D1 mod 〈〈Rel0 ∪ . . . ∪Relr−1〉〉 by the definition of a canonical triangle, we

have z′D1z
−1 ≡ z′D3 ·D

−1
2 z−1 ≡ 1 mod 〈〈Rel0 ∪ . . .∪Relr−1〉〉, contradicting IH 9. �

For further reference we note the following immediate consequence of the previous
lemma:

Corollary 4.36. Let A = LuR ∈ Canr−1 where u = aka1 is a maximal occurrence of
rank r with τ 6 Λr(u) 6 n− (3τ +1) and let B = L′D3v

′E3R
′ be the result of turning u.

Then the maximal occurrence v̂ of rank r in B containing v′ is the maximal prolongation
of v′ with respect to a−1 by Corollary 4.18 and

Λr(v̂) < Λr(v
′) + 2τ 6 Λr(v) + 2τ = (n− Λr(u)) + 2τ.

Hence at least one of u and v̂ has Λr-measure < n
2 + τ , at least one of u and v̂ has

Λr-measure > n
2 − τ , and the turn B 7→ A of turning v̂ in B is inverse to the turn

A 7→ B.
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Proof. Since v′ has Λr-measure > τ +1 by Lemma 4.25 (ii), the maximal prolongation v̂
in B with respect to a−1 is a maximal occurrence of rank r in B and its turn is inverse
to the turn of u in A by Lemma 4.33. The bound on Λr(v̂) is given in Lemma 4.35.
Furthermore if Λr(u) >

n
2 + τ , then Λr(v̂) < n− (n2 + τ) + 2τ = n

2 + τ . �

For convenience we will say that a turn of an occurrence u is a turn of Λr-measure
Λr(u).

4.6. Influence of turns on other maximal occurrences. In this subsection we de-
scribe the effect that a turn of a maximal occurrence has on other maximal occurrences
in the original word. We will use the following conventions:

Convention 4.37. We will say that an occurrence u in A is to the left (right) of an
occurrence w in A if the starting point of u is left (right, resp.) of the starting point of
w and between occurrences w and w′ if the starting point is.

Convention 4.38. Let A ∈ Canr−1 and assume that u1, . . . , ut is a sequence of max-
imal occurrences of rank r in A. We use the notation A = Lpu1 . . . utqR (thereby, in
slight abuse of notation, ignoring overlaps between the occurrences or subwords separat-
ing them) where L,R are prefix and suffix of A which may have overlaps with u1, ut,
respectively, of Λr-measure < τ + 1.

If the word is clear from the context we may also ignore the prefix and suffix and
simply write A = pu1 . . . utq, especially in power words.

Convention 4.39. Let A ∈ Canr−1 and let u1, u2 be maximal occurrences of rank r. Let
B1 be the result of turning u1 in A. Clearly, when turning u1 the occurrence u2 might be
truncated to a subword u′′

2 or even be canceled completely. However, if Λr(u
′′
2) > τ+1, the

maximal prolongation ũ2 of u′′
2 in B1 is uniquely defined and coincides with the maximal

occurrence containing u′′
2 by Corollary 4.18. We call ũ2 the occurrence corresponding to

u2. For ease of notation we may then also write Λr(u2, B1) to refer to the Λr-measure
of ũ2 in B1.

Turns of occurrences and multiplication of canonical words introduce perturbations
on the boundaries of these operations that are captured by the introduction of canonical
triangles. Since the sides of these triangles are τ -free in the corresponding ranks, an
occurrences u measure > τ in the corresponding rank absorbs the effect of the canonincal
triangle and protect the remaining word from further perturbation. In other words, we
will see that if A = LuR for a maximal occurrence u of Λr-measure > τ , then a turn of
rank r of Type 2 inside L will have no effect on R and vice versa. Therefore we introduce
the following terminology:

Definition 4.40. Let A = Lu1Wu2R be a reduced word and u1 and u2 maximal occur-
rences of rank r. We say that u1, u2 are isolated in A if W contains an occurrence aτ

and strongly isolated from each other if W contains a subword of the form aτM1b
τM2c

τ

with an, bn, cn ∈ Relr (where M1,M2 may be empty) and in this case we call W a strong
isolation word (in rank r). We say that u1 and u2 are close neighbours in A if they are
not isolated from each other.

Furthermore, we say that u1 and u2 are essentially non-isolated if there are f1 ∈
{u1, v1} and f2 ∈ {u2, v2} such that turning fi in W = Lpf1f2qR

′ does not leave fj
invariant for {i, j} = {1, 2}.

We say that a word W is a strong separation word (in rank r) from the right if in any
word A = LuWR ∈ Canr−1 the maximal occurrence u of rank r is strongly isolated from
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any maximal occurrence of rank r in A which has overlap with R (and similarly for the
left).

Examples 4.41. Words of the following form are strong separation words from the right:

• If A = Lu1Wu2R is a reduced word such that u1 and u2 are essentially non-
isolated maximal occurrences with τ 6 Λr(ui) 6 n − (3τ + 1), then W does
not contain a subword of the form aτM1b

τM2c
τ with an, bn, cn ∈ Relr by Lem-

mas 4.25, 4.33 and 4.35.
• W = aτ0M1a

τ
1M2a

τ
2M3a

τ+1
3 M4, where an0 , a

n
1 , a

n
2 , a

n
3 ∈ Relr, M1,M2,M3 can be

empty, M4 is not empty and aτ+1
3 cannot be prolonged to the right.

• W = aτ0M1a
τ
1M2a

τ
2M3a

τ+1
3 , where an0 , a

n
1 , a

n
2 , a

n
3 ∈ Relr, M1,M2,M3 may be

empty, aτ+1
3 cannot be prolonged to the left.

• W = aτ0M0a
τ
1M1a

τ
2M2a

τ
3M3a

τ
3 , where an0 , a

n
1 , a

n
2 , a

n
3 ∈ Relr, M0,M1,M2 can be

empty, and M3a
τ
3 is a primitive word (in particular, M3 is not empty).

Proof. Clearly every W is a strong isolation word. We have to show that if W = W1y for
some fractional power y = bkb1 of rank r, then W1 is still a strong isolation word. For the
first two cases this follows directly from Lemma 4.19. For the third case, this is immediate
if |b| < |a3| from Corollary 4.19. If |b| > |a3|, then |b| < τ |a3| by Corollary 4.6. Hence by
Lemma 4.9 comparing the suffixes of bkb1 and aτ3M3a

τ
3 we see that |y| < |M3a

τ
3 |+ |b| <

|aτ3M2a
τ
3 |. �

If u1 and u2 are isolated from each other in A, then u2 is not affected from turning
u1 and vice versa:

Lemma 4.42. Let A = Lu1Mu2R ∈ Canr−1, where u1, u2 are maximal occurrences of
rank r isolated from each other in A and τ 6 Λr(u1) 6 n− 2τ . Let B1 denote the result
of turning u1. Then

B1 = L′D3v
′
1E3M

′u2R for some non-empty suffix M ′ of M.

In particular ũ2 = u2 (as words occurring in B1 and A, respectively, see Conven-
tion 4.39).

If u1, u2 are strongly isolated, then v̂1 (if it is defined) is isolated from ũ2 in B1

Proof. Since M contains an occurrence w of rank r with Λr(w) > τ , both claims follows
from Corollary 4.29 and Lemma 4.35. �

In order to consider the influence of a turn on a close neighbour we first note the
following:

Lemma 4.43. Consider Dv′, where D is τ-free of rank r and v′ is a fractional power
or rank r. If z is a maximal occurrence of rank r in Dv′ not containing v′, then Λr(z) <
2τ + 1.

Proof. Write z = z0z1 where z0 is a suffix of D and z1 a prefix of v′. Since D is τ -free of
rank r, we have Λr(z0) < τ and by Lemma 4.10 we have Λr(z1) < τ + 1. �

Lemma 4.44. Let A = LuR ∈ Canr−1 where u, z are distinct maximal occurrences of
rank r in A with Λr(u) > τ + 1 and Λr(z) > 3τ + 2. Let B be the result of turning u in
A. If B = L′D3v

′E3R
′ is of Type 2 with Λr(v

′) > τ + 1, the occurrence z̃ corresponding
to z in B is well-defined and

Λr(z)− (2τ + 1) < Λr(z̃) < Λr(z) + (2τ + 1).
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Proof. Since z does not contain u, by symmetry we may assume that z is contained in
Lu = L′D1u. Thus we may write z = z′X where z′ is contained in L′ and X is a prefix
of D1u. By Lemma 4.43 we have Λr(X) < 2τ + 1 and so Λr(z

′) > τ + 1. Hence the
the corresponding occurrence z̃ = z′Y in B is well-defined and cannot contain v′ by
Lemma 4.35 since Λr(v

′) > τ +1 and Λr(z
′) > τ . So z̃ = z′Y where Y is a proper prefix

of D3v
′. Again by Lemma 4.43 we have Λr(Y ) < 2τ + 1 and the result follows. �

We call z′ the remainder of z after turning u (in analogy to v′ in Lemma 4.25).

Remark 4.45. In the previous lemma, both z and z̃ are prolongations of z′. Since
Λr(z

′) > τ + 1, either z = z̃ or one is a proper prefix of the other by Remark 4.16.

Remark 4.46. If A = LuR ∈ Canr−1 where u, z are as in Lemma 4.44 and the result
B = L′QR′ of turning u is of Type 3 or of Type 1 or 2 with Λr(v

′) < τ + 1, then z̃ may
contain Q and we may have Λr(z̃) > Λr(z) + (2τ + 1). On the other hand, if the turn is
of Type 3 in Lemma 4.25, it is also possible that the occurrence z is completely cancelled
and has no trace in the result of the turn.

Corollary 4.47. Let A ∈ Canr−1 and let u1, u2 be maximal occurrences of rank r in A
and 2τ +1 6 Λr(u1),Λr(u2) 6 n−2τ . Write A = Lu1R and assume that u2 is contained
in u1R. Let v1 be the complement of u1. Then the result of turning u1 in A is of the
form

canr−1(Lv1R) = L′D3v
′
1E3M

′u′
2R

′ for a suffix M ′u′
2R

′ of R

where u′
2 is a non-empty suffix of u2 with Λr(u

′
2) > Λr(u2) − (2τ + 1) and u′

2 = u2 if
M ′ 6= 1.

Proof. This follows immediately from (the symmetric version of) Lemma 4.44 applied
with u = u1 and z = u2. �

Remark 4.48. Let A ∈ Canr−1 and let u1, u2, u3 be maximal occurrences of rank r in
A enumerated from left to right. By Lemma 4.10 the overlap of u2 with u1 and u3 has
Λr-measure < τ + 1. So if Λr(u2) > 2τ + 2, then there is a subword of u2 of Λr-measure
> Λr(u2) − (2τ + 2) not contained in either u1 or u2. In particular, if Λr(u2) > 3τ + 2
(or > 5τ + 2, respectively), then u1, u3 are isolated (strongly isolated, respectively) in A
(by a subword of u2).

The previous remark implies the following:

Corollary 4.49. Let A ∈ Canr−1 and let X be a set of maximal occurrences of rank r
in A of Λr-measure > 3τ + 2. Then any maximal occurrence in X to the left of u ∈ X
is isolated from any maximal occurrence in X to the right of u, and so any u ∈ X has
at most one close neighbour in X on either side. Similarly, if all occurrences in X have
Λr-measure > 5τ + 2, then on either side of u there is at most one maximal occurrence
in X which is not strongly isolated from u.

Lemma 4.50. Let A ∈ Canr−1 and let u1, u2, u3 be maximal occurrences of rank r in A
enumerated from left to right and of Λr-measure > 3τ+2. Suppose Λr(u2) 6 n−k(τ+1)
where k is the number of close neighbours of u2. Let B be the result of turning u2. Then
ũ1 and ũ3 are isolated in B (witnessed by a subword of v′2) and strongly isolated in B if
Λr(u2) 6 n− (5τ + k · (τ + 1))

Proof. By Lemma 4.25 (ii) we have Λr(v
′
2) > n − Λ(u2) − 2τ and by Lemma 4.44 we

know that Λr(ũ1),Λr(ũ2) > τ +1 and so the corresponding occurrences are well-defined.
Since ũi, i = 1, 3, can have an overlap with v̂2 only if ui is a close neightbour of u2, the
claim follows from Corollary 4.19. �
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4.7. Commuting turns of rank r. Our next aim is to show that the result of turning
maximal occurrences of appropriate measures in A ∈ Canr−1 is independent of the order
in which we perform these turns.

Corollary 4.51. Let A = Lu1Mu2R ∈ Canr−1, where u1, u2 are maximal occurrences
of rank r in A isolated from each other. If τ 6 Λr(u1),Λr(u2) 6 n− 2τ , then the result
C of turning u1 and u2 is independent of the order in which we perform these turns and
we have

C ≡ L · a−n
1 · u1M · a−n

2 · u2R mod 〈〈Rel0, . . . ,Relr−1〉〉.

Proof. By Lemma 4.42 we know that the result B1 of turning u1 in A satisfies:

B1 = canr−1(Lv1Mu2R) = L′D3v
′
1E3M

′u2R

≡ L · a−n
1 · u1Mu2R mod 〈〈Rel0, . . . ,Relr−1〉〉.

It follows from this that for M = M0M
′ we have

(5) L · a−n
1 · u1M0 ≡ L′D3v

′
1E3 mod 〈〈Rel0, . . . ,Relr−1〉〉.

Similarly, for the result C of turning u2 in B1 we obtain

canr−1(L
′D3v

′
1E3M

′v2R) ≡ L′D3v
′
1E3M

′ · a−n
2 · u2R mod 〈〈Rel0, . . . ,Relr−1〉〉.

Combining this with (5) we thus obtain

C ≡ L · a−n
1 · u1M0M

′ · a−n
2 · u2R mod 〈〈Rel0, . . . ,Relr−1〉〉.

By considering inverses and using Remark 4.23 we see that first turning u2 and then
u1 yields the same result. So the claim follows from IH 6 and IH 8. �

Definition 4.52. Let A ∈ Canr−1 and let u1, . . . , ut be maximal occurrences of rank r
in A enumerated from left to right with τ 6 Λr(ui) 6 n− (3τ+1). Put Z = {u1, . . . , ut}.
We call an occurrence u /∈ Z, solid in A with respect to Z if after turning any subset of
Z in any order the remainder of u (see the definition after Lemma 4.44) is an occurrence
of measure > τ +1. We call the sequence u1, . . . , ut solid if each ui, 1 6 i 6 t, is solid in
A with respect to Z \ {ui}.

We say that the sequence (u0, . . . , ut) has a gap at i if ui and ui+1 are strongly isolated.

The conditions imply in particular that all ui, vi, i = 1, . . . , t, have Λr-measure > τ+1
(and hence their maximal prolongations are unique).

Note that for a solid set of occurrences each turn of one of the occurrences is of Type
2 and has an inverse turn. Clearly any subset of a solid set is again solid.

Lemma 4.53. Let A = Lpu1, u2qR ∈ Canr−1, where u1, u2 is a solid sequence of maxi-
mal occurrences of rank r in A. Then the result of turning u1 and u2 is independent of
the order of the turns.

Proof. As in the proof of Corollary 4.51 the statement follows directly from the fact that
both results of turns are equivalent mod 〈〈Rel0, . . . ,Relr−1〉〉 and IH 8. �

We now write ε = 2τ + 1.

Proposition 4.54. Let A ∈ Canr−1 and let u1, . . . , ut be maximal occurrences of rank r
in A enumerated from left to right and suppose that ui is an initial segment of ani ∈ Relr,
i = 1, . . . , t. Assume

(c1) all occurrences ui, 1 6 i 6 t, are solid in A with respect to u1, . . . , ut;
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(c2) τ + 1 6 Λr(ui) 6 n − (4τ + 1 + k · ε) if ui has k close neighbours1 among uj,
j 6= i.

Then the result of turning (the occurrences corresponding to) the ui, i = 1, . . . , t, (in the
sense of Remark 4.39) is well-defined and independent of the order of the turns.

Proof. We know from Corollary 4.51 and Lemma 4.53 that under the given assumptions
the turns of any two occurrences ui, uj, i 6= j, commute. Therefore the result follows once
we establish that after turning an occurrence ui the maximal occurrences corresponding
to the remaining occurrences uj, j 6= i, still satisfy the assumptions of this proposition.

By assumption on Λr(ui) and Lemma 4.25 Type 2 we have Λr(v
′
i) > τ +1+k ·ε where

k is the number of close neighbours of ui among the uj . Furthermore, if v′i has overlap
with ũm, m ∈ {i− 1, i+ 1}, then by Lemma 4.42, ui was a close neighbour of um. Since
the overlap of ũm and v′i has Λr-measure bounded by τ +1, we see that after turning ui,
the occurrences ũi−1, ũi+1 are isolated from each other. Furthermore, Λr(ũj) = Λr(uj)
if uj and ui were isolated from each other, and Λr(ũj) < Λr(uj) + ε if um and ui were
close neigbours for m ∈ {i − 1, i + 1}, in which case the number of close neighbours of
ũm among the ũj , j 6= i, is exactly one less than the number of close neighbours of um

among the uj. Since by Condition (c1) we have Λr(ũj) > τ + 1 we see that Condition
(c2) holds for {ũj, 1 6 j 6= i 6 t}.

Since after turning ui the occurrences ũi−1, ũi+1 are isolated from each other, clearly
Condition (c1) continues to hold for {ũj, 1 6 j 6= i 6 t} by Lemma 4.42. �

Definition 4.55. We call a sequence of maximal occurrences in A ∈ Canr−1 stable if it
satisfies Conditions (c1) and (c2) from Proposition 4.54.

Remark 4.56. Note that if A ∈ Canr−1 and X is a set of maximal occurrences of
rank r in A where for each u ∈ X we have 5τ +3 6 Λr(u) 6 n− 8τ − 3, then X is stable.
Furthermore, ui, uj ∈ X are isolated for |i− j| > 2.

To simplify notation we may now use the following convention:

Convention 4.57. If A ∈ Canr−1 and u1, . . . , ut is a stable sequence of maximal oc-
currences of rank r in A with complements v1, . . . , vt and B is the result of turning a
subset of Z = {u1, . . . , ut}, then by Proposition 4.54 we may simply denote the maximal
occurrences ũi or v̂i in B by ui, vi, respectively.

Turning an occurrence ui can be considered as choosing the side vi in the relator
uiv

−1
i . Hence for choices fi ∈ {ui, vi}, 1 6 i 6 t, we will write B = L′pf1 . . . ftqR

′ for
the result of turning members of {ui ∈ Z : fi = vi} in A, extending Convention 4.38.

Note that the proof of Proposition 4.54 shows the following important property:

Corollary 4.58. Let A ∈ Canr−1, let u1, . . . , ut be a stable sequence and let B be the
result of turning ui. Then the sequence (of occurrences corresponding to) uj, j 6= i, is a
stable sequence in B.

Informally speaking, solid occurrences prevent a turn of an occurrence on one side to
influence occurrences on the other side:

Lemma 4.59. Let A ∈ Canr−1 and u1, . . . , ut be a stable sequence of maximal occur-
rences of rank r in A and let w be a solid maximal occurrence of rank r in A with respect
to u1, . . . , ut. Then there exists a unique maximal occurrence w̃ that corresponds to w in

1Note that 0 6 k 6 2 by Condition (c1).
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the result of the turns of u1, . . . , ut. Furthermore if w is between ui, ui+1 and not isolated
from k of them, then |Λr(w) − Λr(w̃)| < kε if k 6= 0 and w = w̃ if k = 0.

Proof. By Proposition 4.54, we can turn u1, . . . , ut in any order. We do induction on
k = 0, 1, 2. The case k = 0 follows from Lemma 4.42. Now assume k > 0 and let
ui be a close neighbour of w. Then after turning ui we have |Λr(w) − Λr(w̃)| < ε by
Lemma 4.44. Note that w̃ is uniquely defined because w was assumed to be solid with
respect to u1, . . . , ut and w̃ isolated from ui−1 by Condition (c2) of a stable sequence.
Furthermore, w̃ lies between ui−1, ui+1, is solid with respect to the stable sequence
u1, . . . , ui−1, ui+1, . . . , ut and is not isolated from k − 1 of them. Thus the claim follows
by induction. �

Remark 4.60. Lemma 4.59 shows that w̃ only depends on the turns of ui, ui+1.

Lemma 4.61. Let A ∈ Canr−1 and S = (q1, . . . , qt) be a stable sequence of maximal
occurrences of rank r in A. Let S0 = (u1, . . . , us) be a subsequence with complements
v1, . . . , vs such that Λr(v̂i) > 5τ+3. Let B be the result of turning u1, . . . , us and assume
that all maximal occurrences in B have Λr-measure 6 n − 8τ − 3. Then the maximal
occurrences {Q ∈ S \ S0} ∪ {v̂i | i = 1, . . . , s} form a stable sequence of rank r in B.

Proof. It suffices to verify that these occurrences are solid in B. By Proposition 4.54,
Corollary 4.58, Lemma 4.59 and Remark 4.60 it is enough to check that qi is solid in A
with respect to qi−1, qi+1 and v̂j is solid in the result of turning uj in A with respect to the
occurrences corresponding to qj−1, qj+1. This follows from the initial assumptions. �

Lemma 4.62. Let A = LCNR ∈ Canr−1. Suppose C = pu1 . . . ukq where u1, . . . , uk is
a stable sequence of maximal occurrences > 5τ +3, k > 2. Then for i = 1, . . . k, the result
Bi of turning all periodic shifts of ui in CN is of the form

B1 = L′D3v
′
1E3pu2 . . . ukq(pv1u2 . . . ukq)

N−1R;

Bi = L(pu1 . . . ui−1viui+1 . . . ukq)
NR for i 6= 1, k;

Bk = L(pu1 . . . uk−1vkq)
N−1pu1 . . . uk−1qD3v

′
kE3R

′.

Furthermore, if C = puq contains a single maximal occurrence u with 5τ + 3 6 Λr(u) 6
n− (3τ +2), i.e. A = LpuqNR, the result B of turning all periodic shifts of u inside CN

is of the form

B = L′D3v
′E3(pvq)

N−2F3v
′′G3R

′

where v′ and v′′ are respective remainders of the complements of maximal prolongations
of u.

Proof. This follows from Corollaries 4.28 and 4.31 and their corresponding right version.
�

4.8. λ-semicanonical forms of rank r. Recall that ε = 2τ + 1.

Definition 4.63 (κ > n
2 ). A word in Can−1 is κ-bounded of rank r if all occurrences of

rank r have Λj-measure 6 κ. A κ-bounded word from Canr−1 is called κ-semicanonical
of rank r and SCanκ,r denotes the set of all κ-semicanonical words of rank r.

If A,A′ ∈ Canr−1, A′ ∈ SCanκ,r and A′ and A represent the same element of the
group F/〈〈Rel1, . . . ,Relr〉〉, then A′ is called a κ-semicanonical form of rank r of A.

We emphasize that κ-semicanonical forms of rank r are not unique and that, by
definition, SCanκ,r ⊆ Canr−1. Eventually we will have Canr ⊂ SCann

2
+3τ+1,r.
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Definition 4.64. Let A,C ∈ Canr−1 and suppose that either Z = L′QR′ ∈ Canr−1 is
the result of a turn of a maximal occurrence u of rank r in A = LuR where Q is (3τ +1)-
free or Z = A ·r−1C = A′QC′ where Q is τ-free of rank r. Suppose that L′, R′ and A′, C′

are κ-bounded. If there is a unique maximal occurrence w of Λr-measure > κ + ε in Z,
then we call w a seam occurrence (with respect to κ). A seam turn is a turn of a seam
occurrence.

We collect a number of useful observations:

Lemma 4.65 (κ > n
2 + τ). Let A = LuR ∈ Canr−1, where L,R are κ-bounded in rank r

and u is a maximal occurrence of rank r in A with κ 6 Λr(u) < n. Let B = L′QR′ be
the result of turning u in A.

(i) If Λr(v
′) > τ + 1, then B ∈ SCanκ+ε,r.

(ii) If B /∈ SCanκ+ε,r, then Λr(u) > n− (3τ + 1).

(iii) If B contains a maximal occurrence w of Λr-measure > κ+τ+1 containing Q, then
w is the unique maximal occurrence of Λr-measure > κ+ τ + 1.

(iv) B contains at most two maximal occurrences w of Λr-measure > κ+ τ +1, one from
the left of Q and one from the right.

(v) If B /∈ SCanκ+ε, then B contains a unique occurrence of Λr-measure > κ+ ε.

Proof. We first note that Q is κ-free. This is clear if the turn A 7→ B is of Type 3 or of
Type 2 with Λr(v

′) < τ + 1 and follows from n − κ 6 n
2 − τ 6 κ− 2τ and Lemma 4.35

in case it is of Type 2 with Λr(v
′) > τ + 1.

(i) We have τ + 1 6 Λr(v
′) 6 κ− 2τ by Lemma 4.25. Thus, Λr(v̂) < κ by Lemma 4.35

and the Λr-measure of any other maximal occurrence in L and R can increase from the
turn of u at most by Λr-measure < ε by Lemma 4.43. Hence B ∈ SCanκ+ε.

(ii) If B /∈ SCanκ+ε,r, then Λr(v
′) < τ + 1 by part (i). Hence Λr(u) > n− (3τ + 1).

(iii) Let w be a maximal occurrence in B of Λr-measure > κ + τ + 1 containing Q.
If Λr(Q) > τ + 1, then w is the unique occurrence containing Q by Lemma 4.10. If
Λr(Q) < τ + 1, then w contains a suffix of L′Q and a prefix QR′ each of Λr-measure
> τ + 1 and hence w is the unique occurrence containing Q by Lemma 4.10. If w′ is
another maximal occurrence in B of Λr-measure> κ+τ+1, then w′ is properly contained
in L′Q or QR′ and the overlap of w′ with Q must have Λr-measure > τ + 1. Hence the
overlap of w and w′ has Λr-measure > τ + 1 again contradicting Lemma 4.10.

(iv) If there are at least two maximal occurrences in B of Λr-measure > κ+τ+1, then by
part (iii) they must be contained in L′Q or QR′. Since L′, R′ and Q are κ-bounded, any
maximal occurrence of Λr-measure > κ+ τ + 1 in L′Q contains both a suffix of L′ and
a prefix of Q of Λr-measure > τ + 1 (and similarly for QR′). Hence such an occurrence
is unique by Lemma 4.10.

(v) If B /∈ SCanκ+ε, then Λr(v
′) < τ +1-free by part (ii) and so the turn is of Type 1 or

2 with Λr(v
′) < τ + 1 or of Type 3. If the turn A 7→ B is of Type 3, then Q is 2τ -free.

Hence any maximal occurrence of Λr-measure > κ + ε contains Q and so is unique by
part (ii).

Now assume that the turn A 7→ B is of Type 1 or 2 and Q = Dv′E where D,E are
τ -free and Λr(v

′) < τ + 1 so that Q is 3τ + 1-free. In this case any maximal occurrence
w of Λr-measure > κ + ε must contain a prefix of Dv′ER′ and a suffix of L′Dv′E of
Λr-measure > ε and hence there can only be one such w by Lemma 4.10. �
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Lemma 4.66 (κ > n
2 + τ). Suppose A,B ∈ SCanκ,r. Then

Z = canr−1(A · B) = A′D3B
′ ∈ SCanκ+ε,r

unless Z contains a seam occurrence.

Proof. Since D3 is τ -free and A,B are κ-semicanonical, any occurrence of Λr-measure
> κ + ε in A′D3B

′ must contain both a suffix of A′ and a prefix of B′ of Λr-measure
> τ + 1, and hence is unique. �

For a sufficiently big constant µ the natural greedy algorithm of turning occurrences
of Λr-measure > µ converges and leads to a µ-semicanonical form of rank r of the word:

Lemma 4.67 (µ > n
2 + 9τ , α = 5τ + 3). If A ∈ Canr−1 and A = LuR 7→ B is the turn

of the maximal occurrence u of rank r in A with Λr(u) > µ, then d(B) < d(A) where
d(X) denotes the sum of the Λr-measures of all maximal occurrences of rank r in X of
Λr-measure > α for X ∈ Canr−1.

Proof. Note that d(A)−d(B) > Λr(u)−S where S is the sum of Λr-measures of maximal
occurrences in B = L′QR′ that did not contribute to d(A) but count for d(B). These
arise from maximal occurrences in B of Λr-measure > α having nontrivial overlap with
Q. Note that if w = ℓq is a maximal occurrence in A that contained in L′Q, where ℓ
is a suffix of L′ with Λr(ℓ) > α, then only Λr(q) may contribute to S, and similarly for
maximal occurrences contained in QR′. So in order to compute an upper bound for S,
we may assume in such cases that Λr(ℓ) < α and hence Λr(ℓq) < α + Λr(q). Note that
by Lemma 4.25 (iii) and Lemma 4.43 we have Λr(q) < 3τ + 1.

If Q is 3τ +1-free, any maximal occurrence in B that contributes to S must contain a
suffix of L′ or prefix of R′ (or both) and at least one of the suffix or prefix must have Λr-
measure > τ + 1. By Lemma 4.10 there can be at most one such occurrence from either
side of Q and only one if both overlaps with L′ and R′ are of Λr-measure > τ +1. Hence
we can estimate the contributions in S by S < 2(α + 4τ + 2) = 18τ + 10 < µ < Λr(u)
(because n > 18τ + 20).

By Lemma 4.25 (iii) it remains to consider the case that the turn is of Type 2, so
Q = D3v

′E3 (where D3, E3 may be empty) with Λr(v
′) > τ + 1.

Here contributions to S can arise from v̂ and, as before, from maximal occurrences
containing a suffix of L′ or a prefix of R′. By Lemma 4.35 we have Λr(v̂) < Λr(v) + 2τ ,
and so Λr(u) − Λr(v̂) > Λr(u) − (n − Λr(u) + 2τ) > 2(9τ) − 2τ = 16τ . Furthermore
the occurrences containing a suffix of L′ or a prefix of R′ may contribute at most 2α +
2(2τ + 1) = 14τ + 8. Hence again Λr(u)− S > 16τ − 14τ − 8 > 0, and this finishes the
proof. �

The previous lemma immediately implies:

Corollary 4.68 (µ = n
2 + 9τ > n− 7τ − 3). Any A ∈ Canr−1 can be transformed into

a µ-semicanonical form of rank r of A by a sequence of turns of occurrences of rank r of
Λr-measure > µ, starting from A.

While the previous algorithm is the most intuitive way to obtain a semicanonical form,
the bound µ = n

2 +9τ will not be good enough for our purpose. Therefore we will further
improve this bound below.

For future reference we record the following observation:

Lemma 4.69 (κ > n
2 + τ). If A 7→ B with A,B ∈ SCanκ,r is the turn of a maximal

occurrence u in A of Type 2, then n− κ− 2τ < Λr(u) 6 κ.
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Proof. By Lemma 4.25 (ii) we have n− Λr(u)− 2τ < Λr(v
′) 6 κ.

�

The following lemma will be used in Section 6 to define an auxilliary group structure:

Lemma 4.70 (n2 + τ 6 κ 6 n− 7τ − 3). Let A,C ∈ SCanκ,r and Z = canr−1(A · C) =
A1D3C1. Then there is a sequence of seam turns

Z = A1D3C1 7→ Z2 = A2Q2C2 7→ . . . 7→ Zk = AkQkCk = Z ′ ∈ SCanκ+(3τ+1),r

such that Ai+1, Ci+1, i 6 k − 2, are proper prefix and suffix of Ai, Ci, respectively, Qi is
(3τ +1)-free of rank r for i < k, the last turn has Λr-measure > κ+3τ +1 and all other
turns have Λr-measure > n− (3τ + 1). We write Z ′ = prodκ+(3τ+1),r(A · C).

Proof. If Z = A1D3C1 /∈ SCanκ+ε,r, then, by Lemma 4.66, Z contains a seam occurrence
w of Λr-measure > κ + ε that properly contains D3. Hence the result of turning w in
Z is of the form Z2 = A2Q2C2 where A2, C2 are proper prefix and suffix of A1, C1,
respectively. If Z2 /∈ SCanκ+(3τ+1),r, then Λr(w) > n− (3τ + 1) by Lemma 4.65 (ii) and
Z2 contains a unique maximal occurrence w2 of Λr-measure > κ+(3τ+1) by Lemma 4.65
(v). Since n − 3τ − 1 > κ + 3τ + 1), w2 has non-trivial overlap both with A2 and C2.
Let Z3 be the result of turning w2 in Z2. If Λr(w2) 6 n− (3τ +1), then Z3 ∈ SCanκ+ε,r

by Lemma 4.65 (ii), and we are done. Otherwise w2 is the seam occurrence in Z2 (of
Λr-measure > n−3τ−1). We continue until Zk = Z ′ ∈ SCanκ+3τ+1,r. Since at each step
we obtain a proper prefix of Ai and Bi by the description in Lemma 4.25, this process
stops with Z ′ = prodκ+3τ+1,r,(Z) after finitely many turns. �

Lemma 4.71 (n2 + 3τ + 1 6 µ2 6 µ1 6 n − 7τ − 3). For A ∈ SCanµ1,r there exists a
sequence of turns of rank r and Λr-measure > µ2 − ε

A = C1 7→ C2 7→ . . . 7→ Cl ∈ SCanµ2,r

such that all Ci are (µ1 + ε)-semicanonical of rank r.

Proof. Let (u0, . . . , um) be an enumeration of all maximal occurrences in A of Λr-measure
> µ2 − 2ε enumerated from left to right. Note that this forms a stable sequence (see
Remark 4.56) and hence ui, uj are isolated for |i − j| > 2. Let u = ui be the left-most
maximal occurrence of rank r in A of Λr-measure > µ2 − ε and write A = LuR. Then L
is (µ2 − ε)-bounded of rank r and R is µ1-bounded. Since n− (3τ + 1) > µ1 > Λr(u) >
µ2 − ε, the result B = L′v̂R′ of turning u belongs to SCanµ1+ε by Lemma 4.65(i) and
Λr(v̂) < µ2 − ε by Lemma 4.25. Furthermore, L′v̂ is µ2-bounded by Lemma 4.44.

We consider in B the left-most maximal occurrence w in v̂R′ of Λr-measure > µ2 − ε.
Then w corresponds to uj , j > i, in the original sequence. Since Λr(u) 6 µ1 6 n −
(3τ +1), by Lemma 4.65 (i) B ∈ SCanµ1+ε. Moreover, there exists at most one maximal
occurrence of Λr-measure > µ1 in B and if it exists, it is contained in v̂R′ and must
agree with w. Write B = L1wR1. Then R1 is µ1-bounded. Now we turn w and argue
as above. Let L′

1ẑR
′ be the result of the turn. Although L1 is not µ2 − ε-bounded now,

since Λr(v̂) > 3τ + 2, all maximal occurrences in B from the left of v̂ stay unchanged in
the result of the turn. Therefore L′

1ẑ is µ2-bounded. We continue to argue in the same
way until we reach the end of the sequence (u0, . . . , um). �

From now on we fix λ = n
2 + 3τ + 1.

Corollary 4.72. Every A ∈ Canr−1 has a λ-semicanonical form of rank r.
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Proof. By Lemma 4.68 every A ∈ Canr−1 has a (n2 +9τ)-semicanonical form. Now apply
Lemma 4.71 with λ = µ2 6 µ1 = n

2 + 9τ 6 n− 7τ − 3. �

While by Proposition 4.54 the result of a number of turns is independent of the order
of the turns, the properties of the intermediate results may depend on the order.

Lemma 4.73 (κ > 5τ + 3). Let A ∈ SCanκ,r and let u1, . . . , ut be a stable sequence of
maximal occurrences of rank r in A enumerated from left to right. Let B be the result of
turning all ui, i = 1, . . . , t, and assume B ∈ SCanκ,r.

If A = X0 7→ X1 7→ . . . 7→ Xt = B is the sequence of turns from left to right, then
Xi ∈ SCanκ+ε,r for i = 1, . . . , t.

Proof. Assume towards a contradiction that Xi /∈ SCanκ+ε,r for some i. Let w be a
maximal occurrence of rank r in Xi that does not correspond to ui+1. If there are
occurrences to the left of u that are not yet turned in Xi, then w is to the right of ũi+1.
Since ui+1 is solid with respect to u1, . . . , ui, the occurrence corresponding to w in A is
equal to w as a word. So, Λr(w) 6 κ.

If Λr(w) > κ + ε, then by Lemma 4.59 w does not correspond to any uj , j > i + 1.
So all occurrences that are not yet turned in Xi are to the right of w and w is solid with
respect to them. By Lemma 4.59 the occurrence corresponding to w in B has Λr-measure
> κ, a contradiction. �

Corollary 4.74 (µ = n− 8τ − 3). Let X0 7→ X1 7→ . . . 7→ Xl be a sequence of turns of
rank r and Λr-measure > 9τ + 5, where X0 ∈ SCanµ,r and Xi ∈ Canr−1. Then there
exists a stable sequence of maximal occurrences u1, . . . , ut of rank r and Λr-measure
> 5τ + 3 in X0 such that the result of the corresponding turns is equal to Xl.

Proof. The proof is by induction on l. If l = 1, there is nothing to prove. So consider
l > 1 and assume inductively that there exists a stable sequence (q1, . . . , qs) of maximal
occurrences of Λr-measure > 9τ + 5 in X0 whose turns results in Xl−1. If we turn them
from left to right, then by Lemma 4.59 every turn is of Λr-measure < µ+ ε = n− 6τ − 2.
Hence the maximal occurrence that contain the remainder of the complement has Λr-
measure > 4τ + 2. So again by Lemma 4.59 the corresponding maximal occurrence in
Xl−1 is well defined has Λr-measure > 2τ + 1. Let z1, . . . , zs be maximal occurrences in
Xl−1 that correspond to the remainders of the complements of q1, . . . , qs.

Assume that Xl−1 7→ Xl is the turn of an occurrence ũ. Then either ũ coincides with
some zi, or ũ lies between zi, zi+1 for some i. If ũ coincides with some zi, we put u = qi.
Now consider the second possibility. By the initial assumptions, Λr(ũ) > 9τ+5. Hence qi
and qi+1 are isolated in X0 and X0 = LqiMqi+1R. When we first turn the qj , j 6= i, i+1,
then by Lemma 4.59 the result is of the form L1q̃iMq̃i+1R1, where Λr(q̃i),Λr(q̃i+1) <
µ + ε = n − 6τ − 2. Since ũ > 9τ + 5, we obtain that Xl−1 = L2w

′
iE3M

′F3w
′
i+1R2,

where wi, wi+1 are complements of q̃i, q̃i+1 and w′
i, w

′
i+1 are their remainders. Hence

the common part of M ′ and ũ has Λr-measure > 5τ + 3. So its maximal prolongation u
in X0 is unique. We denote it by u.

If u = qi for some i ∈ {1, . . . , s}, then we claim that {q1, . . . , qs} \ {qi0} is the required
set of occurrences. Clearly, they form a stable sequence. By Proposition 4.54 we may
assume that turning qi is the last turn and hence the turn Xl−1 7→ Xl is its inverse.
Therefore, Xl is the result of turning the occurrences in {q1, . . . , qs} \ {qi}.

If u /∈ {q1, . . . , qs}, then {q1, . . . , qs} ∪ {u} is the required set of occurrences. Indeed,
since 5τ + 3 6 Λr(qi),Λr(u) 6 n− 8τ − 3, they form a stable sequence and clearly Xl is
the result of their turns. �
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We need the following lemma in Section 6.

Lemma 4.75 (µ = n−8τ−3, λ = n
2 +3τ+1). Let A ∈ SCanµ,r and A1, A2 ∈ SCanλ+τ,r.

Assume that A1 and A2 are obtained from A by sequences of turns of Λr-measure > 9τ+5.
Then A1 can be obtained from A2 by a sequences of turns where all intermediate words
are in SCanλ+τ+ε,r.

Proof. By Lemma 4.74, there exist stable sets X1,X2 of maximal occurrences of rank r
in A of Λr-measure > 5τ + 3 such that Ai is the result of turning the occurrences
in Xi, i = 1, 2. Since all occurrences in Xi, i = 1, 2 satisfy the restrictions 5τ + 3 6

Λr(u) 6 µ, X = X1 ∪X2 is a stable set. Therefore Lemma 4.61 implies that the maximal
occurrences in A1 that correspond to X (and to remainders of complements of turned
occurrences) form a stable set Y in A1. Clearly turns of some subset of Y in A1 give A2.
Using Lemma 4.73, we turn them from left to right and obtain the required sequence of
turns. �

We next aim to show that turns commute (under suitable conditions) with the multi-
plication of canonical words. This will be used in Section 6.

Lemma 4.76. Let A = LuX,C ∈ Canr−1 for a maximal occurrence u = aka1, a
n ∈ Relr,

and let B be the result of turning u. Assume that canr−1(A · C) = A′DC′ where A′, C′

are prefix and suffix of A and C, respectively, and D is τ-free of rank r. Let u′ be the
(possibly empty) common part of u and A′. Then the following holds:

(1) If Λr(u
′) > τ + 1, and ũ is the maximal occurrence containing u′ in A′D3C

′, then
the following diagram commutes:

A = LuX
turn of u

B

canr−1(A · C) canr−1(B · C)
turn of ũ

(2) If Λr(u) > n
2 − 3τ − 1 and Λr(u

′) < 2τ + 1, then C = X−1c−1R, where X−1c−1

is the maximal cancellation in uX · C. Then c−1 is a fractional power of a−1 with
Λr(c

−1) > n
2−(6τ+2). Let ŵ be the maximal occurrence in canr−1(B·C) corresponding to

c−1 (note that ŵ then also corresponds to v̂, if this is defined). Then Λr(ŵ) > n−(4τ+1)
and the following diagram commutes:

A = LuX
turn of u

B

canr−1(A · C) canr−1(B · C)
turn of ŵ

Proof. In the first case we can write canr−1(A · C) = LũR1 and let Z be the result of
the turn of ũ. Then Z ≡ La−n · ũR1 ≡ La−n · uX · C ≡ canr−1(La

−n · uX) · C = B · C
mod 〈〈Rel0, . . . ,Relr−1〉〉. So the first part follows from IH 6 and IH 8.

For the second case if Λr(u) >
n
2 −3τ−1 and Λr(u

′) < 2τ+1, then Λr(c) >
n
2−(6τ+2).

So canr−1(B · C) = canr−1(La
−n · u · c−1R) = canr−1(LwR), where w = a−n · u · c−1 is

a fractional power of a−1 with Λr(w) > n− (3τ + 1).
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Now write LwR = LaN ·a−NwR. Since Λr(u),Λr(c) > τ , IH 11 and then Lemma 4.24
are applicable and imply that canr−1(LwR) = L′F3w

′R, where w′ is a suffix of w with
Λr(w

′) > Λr(w) − τ > n − (4τ + 1). So w′ has a unique maximal prolongation ŵ and
by Remark 4.22 and IH 8 the result of the turn of ŵ is equal to canr−1(La

n · wR) =
canr−1(La

n · (a−n · u · c−1)R) = canr−1(A · C). �

Note that by symmetry, if both ũ and ŵ are defined in canr−1(A ·C) and canr−1(B ·C),
respectively, then both diagrams in the above situation commute. Furthermore, if v̂ is
defined in Lemma 4.76, then ŵ comes from merging of v̂ and c−1 (this effect is described
in Remark 4.46).

Similarly to Lemma 4.76 (2) the following extension of Lemma 4.53 holds.

Lemma 4.77. Let A = Lpu1u2qR ∈ Canr−1 be such that Λr(u1) > n
2 − τ , u1 is a

fractional power of an ∈ Relr, u2 is solid with respect to u1 and u1 is not solid with
respect to u2. Then A = Lpu1u2qXc−1R1, where c−1 is a fractional power of a−1 with
Λr(c

−1) > n
2 − (9τ + 3). Let Bi be the result of turning ui in A and C be the result of

turning the remainder of u2 in B1. Then there exists ŵ a maximal occurrence of rank r
in C that corresponds to c−1 (and to v̂1 if it is defined) such that Λr(ŵ) > n− (4τ + 1),
and the following diagram commutes:

A
turn of u1

B1

B2 C
turn of ŵ

turn of u2 turn of u
′

2

Proof. We can write A = Lu′
1Mu2R, where u′

1 is a prefix of u1 with Λr(u
′
1) > Λr(u1)−

τ − 1, u′
1 = u1 if M 6= 1. Let Z1 = canr−1(Lu

′
1M), Z2 = canr−1(u2R), W1 be the

result of turning the occurrence that corresponds to u′
1 in Z1 (which has Λr-measure

> Λr(u1) − 2τ − 1 > n
2 − 3τ − 1), and W2 be the result of tuning the occurrence that

corresponds to u2 in Z2. Then by IH 8 and Remark 4.22 B1 = canr−1(W1 · Z2), B2 =
canr−1(Z2 ·W2) and C = canr−1(W1 ·W2). So the result follows from Lemma 4.76 (2)
applied to Z1,W1,W2. �

5. Defining the canonical form of rank r

5.1. Determining winner sides. Recall that τ = 15, ε = 2τ+1 and let µ = n−8τ−3 >
n
2 + 9τ.

In this section we define the canonical form of rank r of A ∈ SCanµ,r ⊆ Canr−1.
For this we consider all maximal occurrences of rank r in A ∈ SCanµ,r of Λr-measure
> 5τ + 3. Since µ = n − (4τ + 1 + 2ε), these occurrences form a stable sequence in
A and their complements are defined. Hence the result of turning any subset of these
occurrences in A is well-defined by Proposition 4.54 and the canonical form canr(A) is
the result of turning a specific subset of these occurrences. Roughly speaking, for every
maximal occurrence of rank r in A of Λr-measure > τ +1+2ε we decide whether or not
to turn it using a threshold of Λr-measure roughly n

2 . For every maximal occurrence u
in A at least one of u or its complement will be below this threshold (see Corollary 4.36).
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5.2. Rank r = 1. This case is much simpler than the general case because relators in
Rel1 are of the form xn, where x is a single letter, so maximal occurrences of rank 1
have no overlaps. Since canonical triangles of rank 0 are trivial (i.e. all sides are equal
to 1), a turn of a rank 1 occurrence consists simply of replacing an occurrence by its
complement. Furthermore, for a maximal occurrence u of rank 1 we have Λ1(u) = |u|.
Since the exponent n is odd, either u or its complement has Λ1-measure < n

2 .
Now for A ∈ SCanµ,1, the canonical form of A of rank 1, denoted by can1(A), is

defined as the word obtained from A by replacing all maximal occurrences of rank 1 of
Λ1-measure > n

2 by their respective complements.

Lemma 5.1. Let A ∈ SCanµ,1, and let A 7→ B be a turn of rank 1. Assume that
B ∈ SCanµ,1. Then can1(A) = can1(B).

Proof. Since a turn of rank 1 just consist of replacing an occurrence by its complement,
it does not change any other maximal occurrences and so this follows directly from the
definition of the canonical form of rank 1. �

5.3. Rank r > 2. From now on until the end of Section 5.1 we consider the general case,
namely, rank r > 2 and we fix the following set-up:

Let A be in µ-semicanonical form, and let u be a maximal occurrence of rank r in
A = LuR of Λr-measure > τ + 1 + 2ε where u = ata1, for some an ∈ Relr, a = a1a2 (a1
can be empty).

We now state conditions whether or not to turn u when we construct canr(A). Let λ1

and λ2 be two constants with the following properties:

(λ1) n− (11τ + 5) > λ1 > λ2 > n
2 + 5τ + 2.

(λ2) λ1 − λ2 > ε

For n > 36τ + 16 the interval [n2 + 5τ + 2, n− (11τ + 5)] has length > 2τ + 1 and hence
such λ1, λ2 exist.

We will use the fact that there exist sequences m : N −→ {1, 2} without subsequences
of the form BBb [4] where b is a nontrivial initial segment of B. By Proposition 4.72
we know that we can obtain λ2-semicanonical forms by making a number of appropriate
turns. In the certification process we test whether a given occurrence can be made short
enough by appropriate turns without significantly increasing other occurrences. The
cubic-free sequence given by m will ensure that we are not creating new power words (of
higher rank) in the process.

We first note the following:

Lemma 5.2. Let u1, . . . , uk be maximal occurrences of rank r in a word W = Dpu1 . . . ukqE
such that ui, ui+1 are not essentially isolated and Λr(ui) > τ + 1 for all i. Suppose
that D,E are τ-free of rank r. Let u be a maximal occurrence of rank r in W with
Λr(u) > 5τ + 2. Then u coincides with one of the ui.

Proof. Clearly, if u has nontrivial overlap with D or E, then u = u1 or uk respectively
by Corollary 4.19. If u has a common part with the gap between ui, ui+1 for some
1 6 i 6 k − 1, this common part has Λr-measure < 3τ . Since Λr(u) > 5τ + 2, the
overlap of u with ui or ui+1 has Λr-measure > τ + 1 and hence u coincides with that
occurrence. �

Recall that in a stable sequence any turn of a member of the sequence has an inverse
turn by Lemma 4.33.
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Definition 5.3 (certification sequence). Let A ∈ SCanµ,r. Then a stable sequence
(u = u0, u1, u2, . . . , ut), t > 1, of maximal occurrences of Λr-measure > 5τ + 2 in
A = Lpu0 . . . utqR (enumerated from left to right) with complements v = v0, v1, v2, . . . , vt
is called a certification sequence in A to the right of u (with respect to m : N → {1, 2})
if the following holds

(1) u1 is essentially non-isolated from u0;
(2) there is a choice fi ∈ {ui, vi}, 0 6 i 6 t, such that in W = L′pf0f1 . . . ftqR

′ the
maximal occurrences (corresponding to) fi for i = 1, . . . , t satisfy Λr(fi) 6 λm(i).

(3) After turning f0 in W and denoting the occurrence corresponding to f1 in the

result by f̃1 we have Λr(f̃1) > Λr(f1). Moreover if Λr(f̃1) = Λr(f1), then f0 = u0.
(4) For 2 6 i 6 t, after turning fi in W the occurrence corresponding to fi−1 has

Λr-measure > λm(i−1).
(5) If there is a maximal occurrence w in A of Λr-measure > 5τ + 3 to the right of

ut, then after turning (the occurrence corresponding to) w in W , in the resulting
word we still have Λr(ft) 6 λm(t).

We say that the sequence certifies f1 to the right of u, i.e. either f1 = u1 or f1 = v1
is certified by the sequence. W is called the witness for the certification (of u1 or v1,
respectively), exhibiting the choices fi ∈ {ui, vi}.

We let YR(u) = YR(u,A) denote the set of sides f1 which are certified by a certification
sequence to the right of u. (Note that if f1 = v1 this is not an occurrence in A.) Similarly
we define YL(u,A) as the set of inverses of YR(u

−1, A−1) and put Y(u) = YL(u)∪YR(u).
Note that YL(u),YR(u) contain at most two elements and are empty if there are no
maximal occurrences of Λr-measure > 5τ + 3 essentially non-isolated from u from the
left or right, respectively.
We say that a stable sequence (u = u0, u1, u2, . . . , ut), t > 1, is an un-certification se-
quence if it satisfies 1., 3. and 4. above and in place of 2. and 5. it satisfies the
following:

2’. there is a choice fi ∈ {ui, vi}, 0 6 i 6 t, such that in W = L′pf0f1 . . . ftqR
′ the

maximal occurrences (corresponding to) fi for i = 1, . . . , t − 1 satisfy Λr(fi) 6

λm(i) and Λr(ft) > λm(t).
5’. If there is a maximal occurrence w in A of Λr-measure > 5τ + 3 to the right of

ut, then after turning (the occurrence corresponding to) w in W , in the resulting
word we still have Λr(ft) > λm(t).

Similarly we define (un-)certification sequences to the left in the obvious way by con-
sidering inverses. We then say that a maximal occurrence w or its complement of Λr-
measure > 5τ+3 contained in uR is certified (or uncertified, respectively) in A to the left
of u by a stable sequence (ut, . . . , u = u0) enumerated from right to left if (u−1

0 , . . . , u−1
t )

is an (un-)certification sequence for w−1 to the rigth of u−1 in A−1.
If there is no maximal occurrence of Λr-measure > 5τ + 3 to the right of u and

essentially non-isolated from u, then we say that (u = u0) is both the certification and
uncertification sequence to the right of u.

Remark 5.4. Let A = LuR ∈ SCanµ,r and let (u = u0, . . . , us) be an enumeration of all
maximal occurrences of Λr-measure > 5τ +3 in uR enumerated from left to right. Then
ui, ui+2 are strictly isolated, and hence, essentially isolated from each other. Combining
Conditions 1, 2, 4, we see that (un-)certification sequences have no gaps. Therefore, any
(un-)certification sequence to the right of u is an initial segment of (u = u0, . . . , us).
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For an (un-)certification sequence to the right of u it suffices to check Conditions 5
and 5’ for the left most occurrence w to the right of ut with Λr(w) > 5τ + 3 because all
maximal occurrences of rank r in A to the right of w are strictly isolated from ut.

We first record the following remarks, which follow directly from Definition 5.3:

Remark 5.5. Let A = LuR ∈ SCanµ,r and let (u = u0, . . . , ut) be an (un-) certification
sequence to the right of u in A.

(1) By Condition 4, a proper prefix of (u = u0, . . . , ut) can be neither a certification
nor an un-certification sequence.

(2) For i = 0, . . . t − 1, the members ui and ui+1 are essentially non-isolated by
Condition 4 and λ2 − 2ε < Λr(ui) < µ. In particular, any (un-)certification
sequence is stable.

(3) If in A we have Λr(u1) < λm(1) − ε for a maximal occurrence u1 not essentially
isolated from u, then by Condition 3 and Lemma 4.44, u1 is certified with the
sequence (u, u1) and witness A. Since λ2 − ε > n

2 + τ , at least one of u1 and v1
is certified in A by Corollary 4.36 with certification sequence (u, u1). So for at
most one of u1 and v1 we have a certification or un-certification sequence that
contains > 2 occurrences.

(4) Suppose (u0 = u, u1, u2, . . . , ut) is an (un-)certification sequence to the right of
u with witness W = L′pf0 . . . ftqR

′. If in W we have Λr(fi,W ) 6 λm(i) − ε
(or Λr(fi,W ) > λm(i) + ε, respectively) for some 1 6 i 6 t, then i = t by
Conditions 2, 2’ and 4.

(5) If y is certified in A to the right of u, then by Lemma 4.59 Λr(y) < λm(1) + kε
where k is the number of close neighbours of y among u0, . . . , ut .

Lemma 5.6. Let A = LuR ∈ SCanµ,r where Λr(u) > 5τ + 3. Let u1 be a maximal
occurrence of rank r in uR essentially non-isolated from u with Λr(u1) > 5τ + 3. Then
for any choice f1 ∈ {u1, v1} either there exists a unique certification sequence or a unique
un-certification sequence for f1. In either case, the witness W is unique.

Proof. Let (u0 = u, u1, . . . , us) be an enumeration of all maximal occurrences of Λr-
measure > 5τ + 3 in uR enumerated from left to right. Any (un-)certification sequence
for u is an initial segment of this sequence by Remark 5.4.

Clearly there exists a unique choice for f0 ∈ {u0, v0} such that (u0, u1) (for the choice
for f1) satisfies either Conditions 1–3, or Conditions 1, 2’, 3. If it also satisfies one
of Conditions 5 and 5’, then (u0, u1) is a certification or an un-certification sequence,
respectively. If it satisfies neither Condition 5, nor Condition 5’, then there exists u2

such that (u0, u1, u2) satisfies either Conditions 1–4, or Conditions 1, 2’, 3, 4. Therefore
adding ui one by one, we eventually obtain either a certification, or an un-certification
sequence. Moreover, by Conditions 2 and 4 the choice of fi ∈ {ui, vi} for every added
occurrence, i > 1, is unique. �

Remark 5.7. Lemma 5.6 implies that f1 ∈ {u1, v1} cannot be both certified and “un-
certified”. So if there exists an un-certification sequence for f1, then f1 is not certified
to the right of u.

The proof of Lemma 5.6 shows that certification sequences are equivariant under turns
in the following sense:

Corollary 5.8. Let A = Lpu0 . . . utqR ∈ SCanµ,r where (u0 = u, . . . , ut), t > 1, is the
(un-) certification sequence in A for f1 ∈ {u1, v1}. Let w be a maximal occurrence in
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utR of Λr-measure > 5τ + 3 with complement y and assume C ∈ SCanµ,r is the result
of turning w in C. Then the following holds:

(i) If Λr(ut, C) < 5τ + 3, then (u0 = u, . . . , ut−1), is the certification sequence for f1 in
C.

(ii) If Λr(ut, C) > 5τ + 3 and C does not contain an occurrence between ut and y of
Λr-measure > 5τ + 3, then (u0 = u, . . . , ut) is the (un-)certification sequence for f1 in
C.

(iii) If Λr(ut, C) > 5τ+3 and C contains an occurrence z between ut and y of Λr-measure
> 5τ + 3, then (u0, . . . , ut) or (u0 = u, . . . , ut, z) are the (un-)certification sequence for
f1 in C.

Furthermore, f1 is certified in C to the right of u if and only if this holds in A.

(iv) If t = 0 and C contains a maximal occurrence z essentially non-isolated from u with
Λr(z, C) > 5τ + 3, then the complement of z is not certified to the right of u in C by
Remark 5.5(5).

Proof. (i) and (ii) follow directly from the definition and the proof of Lemma 5.6.
For part (iii) assume that there exists a maximal occurrence z of rank r in C with

Λr(z, C) > 5τ + 3 with Λr(z, A) < 5τ + 3. Then by Lemma 4.44 Λr(z̃) < 7τ + 4. If
(u0, . . . , ut) in C still satisfies Condition 5 or 5’, then (u0, . . . , ut) is a (un-)certification
sequence in C. So assume that (u0, . . . , ut) in C violates the corresponding condition
(5 for a certification sequence and 5’ for an un-certification sequence). This can happen
only because of z. Consider the sequence (u0, . . . , ut, z) and the choice of ft+1 ∈ {z, y},
where y is the complement of z, such that this sequence satisfies Condition 2 or 2’.
Since (u0, . . . , ut) does not satisfy Condition 5 or 5’, we see that (u0, . . . , ut, z) satisfies
Condition 4. If ft+1 = z, then both (u0, . . . , ut) in A and (u0, . . . , ut, z̃) in C satisfy
Conditions 2 and 5, so they both are certification sequences.

Assume that ft+1 = y. Since (u0, . . . , ut) in A satisfies Conditions 2’ and 5’, the
occurrence that corresponds to ft+1 = y after turning ui such that fi = vi, 0 6 i 6 t,
has Λr-measure > n − Λr(z) − 2τ − ε > n − (11τ + 5) > λ1. Hence (u0, . . . , ut, z) in
C satisfies Conditions 2’. To see that it satisfies also Condition 5’, let A′ be the result
of turning z. Then Λr(y,A

′) > n − (5τ + 3) − 2τ > λ1 + 2ε. Let g be the complement
of w. Then g is essentially non-isolated in C from z and Λr(g) > 5τ + 3. So, we check
Condition 5’ for (u0, . . . , ut, z) in C using g. Thus the occurrence that corresponds to
ft+1 = y after turning ui such that fi = vi, 0 6 i 6 t, and the turn of the occurrence
(corresponding to) g has Λr-measure > Λr(y,A

′)− 2ε > λ1. Therefore, (u0, . . . , ut, z) in
A satisfies Condition 5’ as required.

For part (iii) we see that (u0, . . . , ut) satisfies Conditions (1) – (4) of Definition 5.3.
If it also satisfies (5) or (5’), then (u0, . . . , ut) is the (un-)certification sequence for f1 in
W . Now suppose it does not satisfy either (5) or (5’) and (u0, . . . , ut) is a certification
sequence for f1 in A. Then after turning z in C the occurrence corresponding to ft has
Λr-measure > λm(t). Since Λr(ft, C) 6 λm(t) and Λr(z, C) < 7τ + 4, it follows that
(u0, . . . , ut, z) is the certification sequence for f1 in C.

On the other hand, if (u0, . . . , ut) is an un-certification sequence for f1 in A, let x be
the complement of z and D be the result of turning z in C. Then Λr(ft, D) < λm(t).
Since Λr(z, C) < 7τ + 4, it follows that Λr(x,D) > n− 9τ − 4. Hence by (u0, . . . , ut, z)
is the certification sequence for f1 in C. �
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Corollary 5.9. Let A ∈ SCanµ,r, and let (u0, . . . , ut) be an (un-)certification sequence
to the right of u0 in A with witness W = Lpf0 . . . ftqR. Let gi ∈ {ui, vi}, i = 0, . . . , t, let
C be the result of turning all occurrences ui in A with gi = vi and suppose C ∈ SCanµ,r
and Λr(g0, C) > 5τ + 3. Then the following hold:

(i) Λr(gi, C) > 5τ + 3 for 0 6 i 6 t− 1.

(ii) If Λr(gt, C) < 5τ + 3 and t > 2, then the sequence (corresponding to) (g0, . . . , gt−1)
in C is an (un-)certification sequence to the right of g0 for the side that corresponds to
f1.

(iii) Assume that t = 1 and Λr(g1, C) < 5τ + 3. If g1 = u1, then v1 is not certified in A
to the right of u. If g1 = v1, then u1 is not certified in A to the right of u.

(iv) Assume that Λr(gt, C) > 5τ + 3. Then either the sequence (corresponding to)
(g0, . . . , gt) in C, or (g0, . . . , gt, z̃) is a (un-)certification sequence to the right of g0 for
the side that corresponds to f1, where z̃ corresponds to some maximal occurrence z in A
with Λr(z) < 5τ + 3.

Furthermore, the choices for gi in (un-)certification sequences in (ii) and (iv) agree with
the choices fi in the initial sequence (u0, . . . , ut).

Proof. If t = 1, then (i) immediately holds. So let t > 2 and assume towards a
contradiction that Λr(gi, C) < 5τ + 3 for some 1 6 i 6 t − 1. If gi = fi, then
Λr(fi,W ) < Λr(gi, C) + 2ε < 9τ + 5 < λ2 − ε, contradicting Remark 5.5 (iii). If
gi 6= fi (i.e. gi ∈ {ui, vi} \ {fi}), then Λr(fi,W ) > n− Λr(gi, C) − 2τ − 2ε > λ1, which
contradicts to Condition 2 or 2’.

(ii)–(iv) are proved as in Corollary 5.8. �

Lemma 5.10. Let A ∈ SCanµ,r, let u be a maximal occurrence of Λr-measure > 5τ + 3
and let (u = u0, . . . , ut), t > 1, be an (un-)certification sequence for f1 ∈ {u1, v1} in
A to the right of u. Let κ = Λr(ft,W ). Write (in the notation of Convention 4.38)
A = Lpu0 . . . utqMR and let B = L′v′tEM ′R be the result of turning ut in A, where M ′

is a suffix of M and E is τ-free of rank r, such that

• if κ 6 λm(t)−ε or κ > λm(t)+ε, then M or EM ′ contain an occurrence aτM0b
τ ,

an, bn ∈ Relr;
• if λm(t) − ε < κ < λm(t) + ε, then M or EM ′ contain a strong separation word
(see Definition 4.40).

Then for any A′ = Lpu0 . . . utqMR′ ∈ SCanµ,r the corresponding sequence (u0, . . . , ut), t >
1, in A′ is still an (un-)certification sequence for the corresponding f1 in A′ (with the
same choices for all fi ∈ {ui, vi}).

Proof. This follows directly from the definition, Corollaries 4.30 and 4.31 and Defini-
tion 4.40. �

Definition 5.11. Let A = LuMR ∈ SCanµ,r, where u is a maximal occurrence of rank r
with n

2 − 5τ − 2 < Λr(u) < n
2 + 5τ + 2. We say that uM is a right context for u in

A if any (un-)certification sequence on the right of u in A is properly contained in uM
and for any word A′ = LuMR′ ∈ SCanµ,r the sequence of corresponding occurrences is
an (un-)certification sequence to the right of u in A′ for the same f1.

Note that such M might not exist and in this case the right context is not defined.

Let A = LuR ∈ SCanµ.r for a maximal occurrence u of rank r. When we decide for an
occurrence u in a word A ∈ SCanµ,r whether to turn it (and thus replace it essentially by



36 AGATHA ATKARSKAYA, ELIYAHU RIPS, AND KATRIN TENT

the complement) we need to take into account the effect the turn has on the neighbouring
occurrences because we want the canonical form to be invariant under certain turns. We
therefore make this decision after also considering the neighbours of u and their possible
turns. We first note that an occurrence with sufficiently small Λr-measure will always
be shorter than its complement no matter which neighbours we turn, and, conversely, if
the Λr-measure of an occurrence is sufficiently large, then no matter which neighbours
we turn, it will always be the longer than its complement:

Lemma 5.12. Let A = Lpy1, u, y2qR ∈ SCanµ,r, u, y1, y2 be maximal occurrences of
rank r with complements v, z1, z2, respectively, and assume that Λr(yi) > 3τ + 2, i =
1, 2. Let B be the result of turning u in A and for choices fi, gi ∈ {yi, zi}, i = 1, 2, let
A′ = L′pf1, u, f2qR

′, B′ = L′′pg1, v, g2qR
′′,

(1) If 5τ + 3 6 Λr(u) 6
n
2 − 5τ − 2, then Λr(u,A

′) < Λr(v,B
′).

(2) If n
2 + 5τ + 2 6 Λr(u) 6 µ, then Λr(u,A

′) > Λr(v,B
′).

Proof. 1. If Λr(u) 6 n
2 − 2ε − τ , then Λr(v) = n − Λr(u) > n

2 + 2ε + τ . So after
possibly turning neighbours of u by Lemma 4.44 the corresponding occurrence u satisfies
Λr(u,A

′) < Λr(u) + 2ε 6 n
2 − τ whereas Λr(v,B

′) > Λr(v,B)− 2ε > Λr(v)− 2τ − 2ε >
n
2 − τ .

2. If Λr(u) > n
2 + 2ε + τ , then Λr(v,B) 6 n

2 − 2ε − τ . By Lemma 4.44 we have that
Λr(u,A

′) > Λr(u,A) − 2ε > n
2 + τ and Λr(v,B

′) < Λr(v,B) + 2ε < Λr(v) + 2τ + 2ε 6
n
2 + τ . �

So in these cases, no matter which neighbours we turn, the occurrence corresponding
to u remains shorter (or longer, respectively) than the one corresponding to v. Thus,
according to our definition we never turn an occurrence u of Λr-measure 6 n

2 − 5τ − 2
and we always turn an occurrence u of Λr-measure > n

2 +5τ +2. Therefore we can now
restrict our attention to occurrences u with n

2 − 5τ − 2 < Λr(u) <
n
2 +5τ +2. Note that

in this situation all occurrences to the left of u are strictly isolated from all occurrences
to the right of u. Therefore we can consider the left and right side separately.

We now define ũ to be the shortest occurrence among the occurrences corresponding
to u when we turn neighbours of u of Λr-measure > 5τ + 3 according to the certified
sides in Y(u). If Y(u) = ∅, then ũ = u. Also we define ṽ to be the shortest occurrence
among the occurrences corresponding to v̂ using the same set Y(u).

If |ũ| 6= |ṽ|, then we choose the shorter occurrence as the winner side. Since the
canonical form is equivariant with respect to inversion, we need to make sure that the
choice for A = LuR is consistent with the choice for A−1. Therefore we use the following
more intricate procedure to determine the winner side in case |ũ| = |ṽ|:

Consider an ∈ Relr as a cyclic word. Let Iu be the starting point of u, Fu be the end
point of u. Since u contains at least one period of a, Iu and Fu are fixed up to a cyclic
shift by some number of periods of a. Following the construction of ũ and ṽ from u, we
mark the initial and the final points of ũ and ṽ in an with respect to the points Iu and
Fu. Denote them by Iũ, Fũ, Iṽ and Fṽ respectively. Notice that ũ and ṽ may or may not
have overlaps in the cyclic word an and so the overlaps or gaps between ũ and ṽ have
measure < 3τ + 1.

Consider the subword of an with endpoints [Iũ, Iṽ] of Λr-measure < 3τ + 1 and let c
denote the middle letter if the length of this is odd, otherwise let c mark the mid point
between the two middle letters. Similarly, consider the subword of an with endpoints
[Fũ, Fṽ] and define d in the same way. We denote the segment corresponding to c and d,
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respectively, by the (possibly empty) intervals [P1, P
′
1] and [P2, P

′
2] (see diagram below).

Let u0 be the subword of an starting at P ′
1 and ending at P2, and let v0 be the subword

of a−n starting at P1 and ending at P ′
2. So, we have a partition of an into four segments:

u0, d, v
−1
0 , c, where |c|, |d| 6 1.

u0

P ′

1

P1

v0

c d

P2

P ′

2an

Now we are ready to specify the conditions for turning u in A in order to construct
canr(A).

Remark 5.13. Note that for an ∈ Relr we have an 6= Z2 for all Z ∈ Cycl0: if a
n = Z2,

then Z ∈ Cen(an). By definition of Relr we have Cen(an) = 〈a〉, so Z = ak for some
k ∈ Z. Then Z2 = a2k 6= an since n is odd.

The following is well-known:

Lemma 5.14. Let b 6= 1 be cyclically reduced. If b = xy where |x| > 1
2 |b|, then no cyclic

shift of b contains x−1 as a subword.

Proof. Suppose otherwise. Then either there exists an occurrence of x−1 in b, or b =
x−1
1 zx−1

2 , where x = x1x2. Since |x| > b
2 and b is a reduced word, in either case we

obtain that x and x−1 have an overlap which is impossible. �

Recall that an ∈ Relr as a cyclic word is separated into four parts u0, d, v
−1
0 , c, where

c and d are either empty, or a single letter (independently from each other).

Lemma 5.15. For an ∈ Relr, r > 2, the sets of words

{u0, u−1
0 , cu0, u0d, u−1

0 c−1, d−1u−1
0 },

{v0, v−1
0 , c−1v0, v0d

−1, v−1
0 c, dv−1

0 }.

are not equal to each other.

Proof. Since Relr is invariant under cyclic shifts by IH 3, we may assume an = u0dv
−1
0 c.

Now assume to the contrary that

{u0, u−1
0 , cu0, u0d, u−1

0 c−1, d−1u−1
0 } = {v0, v−1

0 , c−1v0, v0d
−1, v−1

0 c, dv−1
0 }.

The words u0 and u−1
0 are the shortest in the left-hand set, and similarly v0 and

v−1
0 are shortest on the right-hand side. Hence, either u0 = v0, or u0 = v−1

0 . Since
v0 is a subword of a−n and Λr(u0),Λr(v0) > 1, by construction, we have u0 6= v0 by
Lemma 5.14 and so u0 = v−1

0 . If both c and d are empty, then an = u0v
−1
0 = u2

0,
contradicting Remark 5.13. So, we may assume that at least one of c and d is not empty.
By symmetry assume that d 6= 1.

For the sets to be equal, we must have u0d ∈ {c−1v0, v0d
−1, v−1

0 c, dv−1
0 }. Since u0 =

v−1
0 , we have u0d /∈ {c−1v0, v0d

−1} by Lemma 5.14. If u0d = v−1
0 c = u0c, then c = d

and hence an = (u0d)(v
−1
0 c) = (u0d)

2, contradicting Lemma 5.13. And finally if u0d =
dv−1

0 = du0, then d ∈ Cen(u0) and hence u0 ∈ 〈〈d〉〉. Since Λr(u0) > 1, we also have
a ∈ 〈〈d〉〉. However, since r > 2 we have |a| > 1 by definition. This contradiction proves
the lemma. �
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Definition 5.16 (deglex order). Fix an ordering on the set of letters. For reduced
words C1, C2 we say that C1 <deglex C2 if either |C1| < |C2|, or |C1| = |C2| and C1 is
lexicographically smaller than C2 with respect to the order that we fixed on the letters. For
finite sets of words U 6= V, we put U <deglex V if the minimal element of U ∪ V \ (U ∩ V)
belongs to U .

Now let U = {u0, u
−1
0 , cu0, u0d, u

−1
0 c−1, d−1u−1

0 } and V = {v0, v
−1
0 , c−1v0, v0d

−1, v−1
0 c, dv−1

0 }.
By Lemma 5.15 we have U 6= V . If U <deglex V , we do not turn u and call u the winncer
side, otherwise we turn u and v is called the winner side.

Thus v is the winner side if and only if either |ũ| > |ṽ| (as defined above) or, in case
|ũ| = |ṽ|, if V is smaller than U with respect to the <deglex order.

Lemma 5.17. Let A = LuR ∈ SCanµ,r for a maximal occurrence u of rank r and
suppose that q is a maximal occurrence of Λr-measure > 5τ + 3 essentially non-isolated
from u to the right of u. Then the winner side for q is certified to the right of u.

Proof. Indeed, if the winner side for q is not certified, then by turning occurrences not
essentially isolated from q of Λr-measure > 5τ+3, the maximal occurrence corresponding
to the winner side can be made > λ2 = n

2 + 5τ + 2 contradicting Lemma 5.12. �

Definition 5.18 (canonical form for λ-semicanonical words, λ = n
2 + 3τ + 1). For

A ∈ SCanλ,r, consider the set of all maximal occurrences of Λr-measure > n
2 − 5τ − 2

and turn each one of them according to the decision process described above. The result
is denoted by canr(A).

By Proposition 4.54, the result canr(A) does not depend on the order in which we
perform the necessary turns.

Lemma 5.19. For A ∈ SCanµ,r we have canr(A) ∈ SCanλ,r.

Proof. Let A ∈ SCanµ,r and u some maximal occurrence of rank r in A, let f ∈ {u, v} be
the winner side for u and let q1, q2 be maximal occurrences in A of Λr-measure > 5τ +2
not essentially isolated from u on the left and right, respectively. (If no such q exists, the
statement follows from Corollary 4.36 and for only one such q, the proof is essentially
the same as here.)

Assume towards a contradiction that Λr(f, canr(A)) > λ = n
2 + 3τ + 1. Then the

shortest occurrence that corresponds to the side f has Λr-measure > n
2 + 3τ + 1− 2ε =

n
2 − τ − 1. Since the winner sides for q1, q2 are certified by Lemma 5.17, the shortest

occurrence that corresponds to the complement of f has Λr-measure < n−Λr(f̃)+2τ =
n
2 − τ − 1 contradicting our assumption that f is the winner side. �

Proposition 5.20. Let A,C ∈ SCanµ,r and let A 7→ C be the turn of a maximal
occurrence f in A of rank r and Λr-measure > τ + 1. Then canr(A) = canr(C).

Proof. Since A,C ∈ SCanµ,r, we have 5τ + 3 6 Λr(f) 6 µ by Lemma 4.69. Hence
the turn A 7→ C is of Type 2 with inverse turn C 7→ A of the maximal occurrence ĝ
where g is the complement of f . By symmetry we also have 5τ + 3 6 Λr(ĝ) 6 µ. Let
u be a maximal occurrence in A with Λr(u) > 5τ + 3. Assume that at least one of
Λr(u,A),Λr(u,C) 6 n

2 − 5τ − 2 or at least one of Λr(u,A),Λr(u,C) > n
2 +5τ +2. Then

as in Lemma 5.12 we obtain that both in A and C the winner side is u or v, respectively.
So we now assume that this does not happen.

Assume that there exists a maximal occurrence q to the right of u essentially non-
isolated from u with Λr(q) > 5τ + 3 and the complement z. We need to show that in
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A and in C the certified sides of q are the same. This is clear if f is to the left of u,
so we assume that either f = u, or f is to the right of u. Then the result follows from
Corollaries 5.8 and 5.9. If such occurrence q does not exist in A but exists in C, then we
consider the inverse turn C 7→ A and the result follows. �

6. An auxilliary group structure

In order to prove IH 8 we will need to show that for A,B ∈ Can−1 with A ≡ B
mod 〈〈Rel0 ∪ . . . ∪ Relr〉〉 we have canr(A) = canr(B). We begin with showing this
for A,B ∈ SCanλ+τ+ε,r by introducing a group structure on equivalence classes on
SCanλ+τ+ε,r where (as always) λ = n

2 + 3τ + 1. We will show that the equivalence
relation coincides with equality in F/〈〈Rel0, . . . ,Relr〉〉. Using this equivalence relation,
we will then define the canonical form of rank r of arbitrary words in Section 6.1.

Definition 6.1. For A1, A2 ∈ SCanκ+ε,r we define A1 ∼κ,r A2 if and only if there exists
a (possibly empty) sequence of turns of rank r of Λr-measure > τ

A1 = C1 7−→ C2 7−→ . . . 7−→ Ct = A2

with Ci ∈ SCanκ+ε,r for 2 6 i 6 t − 1. The same ∼κ,r is defined also for A1, A2 ∈
SCanκ,r.

In this section we will use the relation ∼κ,r with κ = λ+ τ = n
2 + 4τ + 1.

Remark 6.2. Since all Ci in this sequence belong to SCanλ+τ+ε,r, by Lemma 4.69 any
occurrence u which is turned in the sequence satisfies n

2 − 8τ − 2 < Λr(u) 6 λ + τ + ε.
Since n− (λ + τ + ε) = n

2 − 6τ − 2 > 12τ , such a turn is of Type 2 by Lemma 4.25 (ii)
with remainder v′ of Λr-measure > 10τ and hence has an inverse turn of Λr-measure
> 10τ by Lemma 4.33. Thus, if

A1 = C1 7→ C2 7→ . . . 7→ Ct = A2

is a sequence witnessing A1 ∼λ+τ,r A2, then A2 ∼λ+τ,r A1 is witnessed by its inverse
sequence

A2 = Ct 7→ Ct−1 7→ . . . 7→ C1 = A1.

By this observation we obtain:

Corollary 6.3. The relation ∼λ+τ,r is an equivalence relation on SCanλ+τ+ε,r and on
SCanλ+τ,r with finite equivalence classes. Moreover every equivalence class in SCanλ+τr

has a representative in SCanλ,r.

Proof. By Lemma 4.69 every turned occurrence in the sequence witnessing A1 ∼λ+τ,r A2

has Λr-measure > n
2 − 8τ − 2 > 9τ + 5. Hence Corollary 4.74 implies that there exists a

stable sequence of occurrences in A1 such that their turns giveA2. Therefore the members
of an equivalence class of A1 correspond to choices of sides in maximal occurrences u in
A such that Λr(u) > τ + 1, and there are only finitely many of these.

Lemma 4.71 implies that every equivalence class in SCanλ+τ,r has a representative in
SCanλ,r. �

The equivalence class of a word A ∈ SCanλ+τ+ε,r is denoted by [A]. Recall that in
Section 5.1 we defined canr for µ-semicanonical words, where µ = n − (8τ + 3). Since
λ+ τ + ε = n

2 + 6τ + 2 6 µ, Proposition 5.20 now implies:

Corollary 6.4. If A1, A2 ∈ SCanλ+τ+ε,r are ∼λ+τ,r-equivalent, then canr(A1) = canr(A2).
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We will now define an (auxilliary) group structure on SCanλ+τ,r/ ∼λ+τ,r and establish
that for A1, A2 ∈ SCanλ+τ,r we have A1 ∼λ+τ,r A2 if and only if A1 and A2 represent
the same element in F/〈〈Rel0, . . . ,Relr〉〉. Since we were not able to show directly that
different λ + τ -semicanonical forms of a given word are ∼λ+τ,r-equivalent, we need this
group structure to show that we obtain a well-defined canonical form of rank r of an
arbitrary word using an arbitrary λ+ τ -semicanonical form for it.

We first define the multiplication ×λ+τ,r on SCanλ+τ,r. For technical reasons we define
it on larger set SCanλ+τ+ε,r.

Definition 6.5. For A,C ∈ SCanλ+τ+ε,r, let Z
′ = prodλ+6τ+6,r(A ·C) ∈ SCanλ+6τ+2,r

and let Z ′′ be a λ+τ-semicanonical form of rank r of Z ′ obtained by turns of Λr-measure
> n

2 + 2τ (such sequence of turns exists by Lemma 4.71). Define A ×λ+τ,r C = [Z ′′] ∈
SCanλ+τ,r/ ∼λ+τ,r.

Remark 6.6. In Definition 6.5 we define the multiplication ×λ+τ,r in two steps: for
A,C ∈ SCanλ+τ+ε,r we find Z = canr−1(A · C), compute a specific (λ + 6τ + 2)-
semicanonical form Z ′ of Z and then find a λ+ τ -semicanonical form Z ′′ of Z ′.

Note that every word in SCanλ+6τ+2,r has a λ + τ -semicanonical form by Corol-
lary 4.72. Since λ+6τ + 2 = n

2 + 9τ +3 6 µ = n− 8τ − 3, Lemma 4.75 implies that the
resulting equivalence class does not depend on the particular λ + τ -semicanonical form
of Z ′ as long as the descent is obtained from turns of Λr-measure > 9τ + 5.

We will just write × for ×λ+τ,r if the parameters are clear from the context. We em-
phasis that A×λ+τ,rB is not a single word, but an equivalence class in SCanλ+τ,r/ ∼λ+τ,r.

Remark 6.7. It follows directly from the definition that for A,C ∈ SCanλ+τ,r (rather
than SCanλ+τ+ε,r) we have

(1) A×λ+τ,r 1 = [A];
(2) A×λ+τ,r A

−1 = [1]; and
(3) (A×λ+τ,r C)−1 = [C−1 ×λ+τ,r A

−1].

We next show that the multiplication factors through ∼λ+τ,r:

Proposition 6.8. For [A], [C] ∈ SCanλ+τ,r/ ∼λ+τ,r the multiplication [A]×[C] = [A×C]
is well-defined.

The crucial step for the proof is contained in the following lemma:

Lemma 6.9. Let A,B ∈ SCanλ+τ+ε,r. If A 7→ B is a turn of a maximal occurrence u
in A with Λr(u) > τ , then for any C ∈ SCanλ+τ,r we have A× C = B × C.

Proof. By Remark 6.2 the inverse turn B 7→ A is defined. Therefore by Corollary 4.36
we can assume that Λ(u) > n

2 − τ . Hence by Lemma 4.76 we may assume that the turn
of u commutes with the product with C. That is, we can assume that canr−1(A · C) 7→
canr−1(B · C) is a turn of measure > τ + 1 of maximal occurrence ũ.

Now consider the sequences of seam turns

X0 = canr−1(A · C) 7→ X1 7→ . . . 7→ Xm = prodλ+6τ+2,r(A · C) and

Y0 = canr−1(B · C) 7→ Y1 7→ . . . 7→ Yk = prodλ+6τ+2,r(B · C).

First assume that ũ is isolated from the seam occurrences in Xi for all 0 6 i 6 m.
Then Λr(ũ, Xm) = Λr(ũ, X0) > n

2 − τ . Recall from Lemma 4.70 that all but possibly
the last turns in each sequence have Λr-measure > n − (3τ + 1) and the last turn
has Λr-measure > n

2 + 8τ + 3. At each step the turn of ũ commutes with the seam
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turn by Lemma 4.53 and hence we see that m = k and we obtain Yk from Xk by
turning the occurrence corresponding to ũ in Xk. Since X,Yk ∈ SCanλ+6τ+2,r and
λ+ 6τ + 2 = n

2 + 9τ + 3 6 n− 8τ − 3, by Lemma 4.75 A× C = B × C.
Now we consider the general case. If X0 7→ Y0 is the seam turn (which is unique

by definition), then X1 = canr−1(B · C). Since all seam turns are uniquely defined, we
obtain that Xm = Yk. So as above the result follows from Lemma 4.75.

Assume that X0 7→ Y0 is not a seam turn. If u or v correspond to the seam occurrences
in X1 or Y1, respectively, then by Lemma 4.53 we see that X2 = Y1 or X1 = Y2. Hence
as above Xm = Yk and the result follows from Lemma 4.75.

If u does not correspond to the seam occurrence in X1 and its complement v does not
correspond to the seam occurrence in Y1, then X1 7→ Y1 is the turn of the occurrence
corresponding to u by Lemma 4.53. By Lemma 4.36 we can assume that it has Λr-
measure > n

2 − τ (otherwise we switch to the inverse turn) and denote the turning
occurrence by u1. Repeating the above argument for the turn of u1 until we reach the
end of one of the sequences, we obtain the required result.

Assume that the second sequence of seam turns is empty and the first sequence of
seam turns is not empty. This means that there are no seam occurrences in Y0, so the
occurrence in Y0 that corresponds the the seam occurrence in X0 is not a seam occurrence
in Y0. In particular it has Λr-measure< λ+6τ+2 and the corresponding seam occurrence
in X1 has Λr-measure < λ+6τ +2+ ε < n− (3τ + 1). So the first sequence is of length
one and X1 ∈ SCanλ+6τ+2,r. However, by Remark 6.6 we still can turn this occurrence in
Y0 and after that take its λ+ τ -semicanonical form. As above then X1 7→ Y1 is the turn
of the occurrence corresponding to u. Therefore the result follows from Lemma 4.75. �

Proof. (of Proposition 6.8) We denote the operation ×λ+τ,r for short by ×.
Let A1, A2, C ∈ SCanλ+τ,r with A1 ∼λ+τ,r A2. By Remark 6.7 (iii) it suffices to prove

that A1 × C = A2 × C. Since A1 ∼λ+τ,r A2, there exists a sequence of turns of rank r

A1 = X1 7−→ X2 7−→ . . . 7−→ Xt = A2

such that all Xi ∈ SCanλ+τ+ε,r for 2 6 i 6 t− 1 and all turns have Λr-measure > τ . By
Lemma 6.9 we have Xi × C = Xi+1 × C and hence A1 × C = A2 × C. �

Remark 6.10. Let C ∈ SCanκ,r.

(i) If C1 is a prefix of C, then by IH 12 we have canr−1(C1) = C′
1D for a prefix C′

1 of C1

and a τ -free side of a canonical triangle D, so canr−1(C1) ∈ SCanκ+τ,r.

(ii) If z = canr−1(z) is a single letter, then canr−1(C · z) = C′Dz′ for a prefix C′ of C, a
τ -free side D of a canonical triangle and z′ ∈ {1, z}, so canr−1(C · z) ∈ SCanκ+τ .

Lemma 6.11. Let C = z1 · · · zt be a reduced word such that for every initial segment
Cs = z1 · · · zs we have canr−1(Cs) ∈ SCanλ+τ,r. Then

(. . . (z1 × z2)× z3)× . . .)× zt = [canr−1(C)]

where × is ×λ+τ,r and zi, 1 6 i 6 s are single letters.

Note that by Remark 6.10 this applies in particular if C = z1 · · · zt ∈ SCanλ,r.

Proof. We prove (. . . (z1 × z2) × z3) × . . .) × zs = [canr−1(z1 · · · zs)] for all s 6 t by
induction on s.

For s = 1 there is nothing to prove, so assume inductively

(. . . (z1 × z2)× z3)× . . .× zs−1)× zs = canr−1(z1 · · · zs−1)× zs.



42 AGATHA ATKARSKAYA, ELIYAHU RIPS, AND KATRIN TENT

By Corollary 3.5 and Remark 6.10 we have

canr−1(canr−1(z1 · · · zs−1) · zs) = canr−1(z1 . . . zs) ∈ SCanλ+τ,r.

So canr−1(z1 · · · zs−1) × zs = [canr−1(z1 · · · zs)] and for s = t we obtain the required
result. �

In order to establish that SCanλ+τ,r/ ∼λ+τ,r is a group with respect to ×λ+τ,r, we
now show that the multiplication is associative.

Lemma 6.12. Let A,B,C ∈ SCanλ+τ,r. Then (A×B)×C = A× (B ×C), where × is
×λ+τ,r.

Proof. First we prove the statement for C = z a single letter. By Corollary 6.3, we
can assume that B ∈ SCanλ,r. Then by Remark 6.10, B ·r−1 z ∈ SCanλ+τ,r, therefore
B × C = [B ·r−1 z]. By definition A×B is calculated using a sequence of turns

A ·r−1 B = X0 7→ . . . 7→ Xm ∈ SCanλ+τ,r,

and A× (B × z) = A× (B ·r−1 z) is calculated using a sequence of turns

A ·r−1 (B ·r−1 z) = Y0 7→ . . . 7→ Yk ∈ SCanλ+τ,r.

Recall that all turns in these sequences are of Λr-measure > n
2 + 2τ . When we multiply

the first sequence by z, Lemma 4.76 implies that Xi ·r−1 z 7→ Xi+1 ·r−1 z are turns of
rank r and by Remark 6.10 they have Λr-measure > n

2 + τ .
If in at least one of the sequences there are no seam turns, then all maximal occurrences

inX0, Y0 are of Λr-measure< λ+τ+3τ+1+τ by Remark 6.10, soX0, Y0 ∈ SCann
2
+8τ+2,r.

Hence the result follows from Lemma 4.75. Assume that the first sequence has seam turns
and let Xi 7→ Xi+1 be a seam turn and Xi ·r−1z = Yi. Then either the corresponding turn
Xi ·r−1 z 7→ Xi+1 ·r−1 z is the seam turn in Yi so Xi+1 ·r−1 z = Yi+1, or the corresponding
occurrence in Yi has Λr-measure < λ+ τ +3τ +1. In the latter case Xi ∈ SCann

2
+8τ+2,r

by Remark 6.10 so the result again follows from Lemma 4.75. In the first case we repeat
the argument until we exhaust all seam turns in one the sequences.

Now let C = z1 · · · zs ∈ SCanλ,r, Ct be a prefix of C of length t and Zt = canr−1(Ct).
Then Lemma 6.11 implies that Zt−1 × zt = [Zt]. Therefore using induction on t we have

(A×B)× Zt = (A×B)× (Zt−1 × zt) = ((A×B)× Zt−1)× zt =

= (A× (B × Zt−1))× zt = A× ((B × Zt−1)× zt) =

= A× (B × (Zt−1 × zt)) = A× (B × Zt),

and for t = s we obtain the final result. �

By Proposition 6.8 and Lemma 6.12, we now have

Corollary 6.13. (SCanλ+τ,r/ ∼λ+τ,r,×λ+τ,r) is a group.

The main statement of this section is

Proposition 6.14. For A1, A2 ∈ SCanλ+τ,r the following are equivalent:

(1) A1 ∼λ+τ,r A2 ;
(2) A1 and A2 represent the same element in F/〈〈Rel0, . . . ,Relr〉〉;
(3) canr(A1) = canr(A2).
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For the proof we define an epimorphism

ϕ : F = 〈x1, . . . , xm〉 −→ SCanλ+τ,r/ ∼λ+τ,r : xi 7→ [xi].

By the universal property of free groups ϕ is well-defined. For a reduced word C =
z1 · · · zt ∈ Can0 we then have

ϕ(C) = ϕ(z1 · · · zt) = ϕ(z1)× . . .× ϕ(zt) = z1 × . . .× zt.

Remark 6.15. By Lemma 6.11 we have ϕ(C) = [C] for C ∈ SCanλ,r. Therefore ϕ is
surjective by Corollary 6.3.

Remark 6.16. We will repeatedly make use of the observation that, by the very defini-
tion of a turn, if A 7→ B is a turn of rank i 6 r, then A ≡ B mod 〈〈Rel0, . . . ,Reli〉〉.

Lemma 6.17. Let R = an = z1 · · · zt ∈ Reli, i 6 r. Write Rs = z1 · · · zs and let Vs

denote its complement. Then for s 6 t the following holds:

(1) If Λi(Rs) > 3τ + 1, then cani−1(Rs) = DR′
sE 7→ cani−1(Vs) is a turn of rank i

of the maximal prolongation of R′
s.

(2) If i < r, then

canr−1(Rs) = canr−1(Vs) =

{
cani−1(Rs) if cani−1(Rs) ∈ Cani,

cani−1(Vs) if cani−1(Vs) ∈ Cani.

Furthermore canr−1(Rs) is 6-semicanonical of rank r.

Proof. Part 1: By IH 12 we have cani−1(Rs) = DR′
sE for an appropriate subword R′

s

of Rs and τ -free of rank i words D,E. If Λi(Rs) > 3τ + 1, then Λi(R
′
s) > τ + 1 and

so the maximal prolongation of R′
s is a maximal occurrence. By Remark 3.4, IH 8 and

Remark 4.22, we have

cani−1(D · â−n ·R′
sE) = cani−1(a

−n ·Rs) = cani−1(Vs)

where â is the corresponding cyclic shift of a.
Part 2: If cani−1(Rs) /∈ Cani, then only the maximal prolongation of R′

s can have Λi-
measure > 3τ + 1. Hence by Part 1, turning R′

s in DR′
sE yields cani(Rs) = cani−1(Vs).

The word cani−1(Vs) is 6-free of rank > i by IH 5 and hence canj(Rs) = cani(Rs) for
j > i by IH 4. �

Corollary 6.18. Let R = an = z1 · · · zt ∈ Reli, i 6 r, Rs = z1 · · · zs. Then for s 6 ⌈ t
2⌉

we have

z1 × . . .× zs = [canr−1(Rs)].

Proof. Since canr−1(Rs) is 6-semicanonical of rank r for i < r by Lemma 6.17 and
canr−1(Rs) is

n
2 +2τ+1-semicanonical of rank r for i = r, the result follows immediately

from Lemma 6.11. �

For the proof of Proposition 6.14 we need

Lemma 6.19. 〈〈Rel0, . . . ,Relr〉〉 6 kerϕ.2

Proof. Let R = an = z1 · · · zt ∈ Reli, i 6 r, Rs = z1 · · · zs and Ts = zs+1 · . . . · zt. By
Corollary 6.18 we have

Z1 = z1 × . . .× z⌈ t
2
⌉ = [canr−1(R⌈ t

2
⌉)]

2In fact, one can show that kerϕ = 〈〈Rel0, . . . ,Relr〉〉.
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and similarly, by considering the appropriate cyclic shift,

Z2 = z⌈ t
2
⌉+1 × . . .× zt = [canr−1(T⌈ t

2
⌉)].

Then, by Definition 6.5, Z1 × Z2 = z1 × . . .× zt is computed from

canr−1(Z1 · Z2) = canr−1(R⌈ t
2
⌉ ·r−1 T⌈ t

2
⌉) = canr−1(R)

by first taking seam turns. However, if R ∈ Reli, i < r, then canr−1(R) = 1 by Re-
mark 3.4 and hence in this case no seam turn is necessary and ϕ(R) = canr−1(R) = 1.
In case R ∈ Relr, we have canr−1(R) = DR′E for some τ -free of rank r D,E, so by
Lemma 4.66 the maximal prolongation of R′ is a seam occurrence and the result of the
seam turn is equal to 1 by Lemma 6.17 part 1. �

Proof. (of Proposition 6.14) Let A1, A2 ∈ SCanλ+τ,r.

1.⇒ 2. and 1.⇒ 3.: If A1 ∼λ+τ,r A2, there is a sequence of turns of rank r such
that A1 = X0 7→ . . . 7→ Xk = A2. Thus we have A1 ≡ A2 mod 〈〈Rel0, . . . ,Relr〉〉 by
Remark 6.16 and canr(A1) = canr(A2) by Corollary 6.4.

2.⇒ 1.: Suppose A1 ≡ A2 mod 〈〈Rel0, . . . ,Relr〉〉. By Corollary 6.3 we may assume
A1, A2 ∈ SCanλ,r. Hence by Remark 6.15 and Lemma 6.19 we have [A1] = ϕ(A1) =
ϕ(A2) = [A2] and hence A1 ∼λ+τ,r A2.

3.⇒ 2.: Suppose canr(A1) = canr(A2). Since canr(Ai) is obtained from Ai, i = 1, 2, by
turns of rank r, we have

A1 ≡ canr(A1) = canr(A2) ≡ A2 mod 〈〈Rel0, . . . ,Relr〉〉

�

Corollary 6.20. If A,B are λ-semicanonical forms of rank r of some C ∈ Canr−1, then
canr(A) = canr(B).

Proof. If A,B arise from C by turns of rank r, then A ≡ C ≡ B mod 〈〈Rel0, . . . ,Relr〉〉,
so the claim follows Proposition 6.14. �

6.1. Canonical form of rank r of arbitrary words. Recall that since

µ = n− (8τ + 3) > λ =
n

2
+ 3τ + 1

for our choice of the exponent n, every λ-semicanonical form of rank r is also µ-semicanonical.

Definition 6.21 (canonical form of rank r). For A ∈ Canr−1 we define the canonical
form of rank r of A, canr(A), in two steps as follows:

(1) choose a λ-semicanonical form A′ of rank r for A.
(2) put canr(A) = canr(A

′) as defined in Section 5.1.

For A ∈ Can−1 we define canr(A) = canr(canr−1(. . . can0(A) . . .)).

Note that A ≡ A′ mod 〈〈Rel0, . . . ,Relr〉〉 by construction and canr(A) does not de-
pend on A′ by Corollary 6.20.

Lemma 6.22 (µ = n− (8τ +3)). If A ∈ SCanµ−ε2,r, then Definition 6.21 and choosing
winner sides from Section 5.1 give the same canr(A).

Proof. By Lemma 4.71 there exists a λ-semicanonical form A′ of A that is obtained from
A by a sequence of turns with all intermediate words µ-semicanonical. Thus the result
follows from Proposition 5.20. �
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Lemma 6.23. Let A ∈ Can−1. Then A ≡ canr(A) mod 〈〈Rel0, . . . ,Relr〉〉.

Proof. Let canr−1(A) = B. By definition, canr(A) = canr(B). By Remark 3.4, we
have B ≡ A mod 〈〈Rel0, . . . ,Relr−1〉〉. By definition, canr(B) is obtained from B by a
sequence of turns of rank r, therefore, B ≡ canr(B) mod 〈〈Rel0, . . . ,Relr〉〉. Thus,

A ≡ canr(B) = canr(A) mod 〈〈Rel0, . . . ,Relr〉〉.

�

We now verify some further induction hypotheses:

Proposition 6.24. IH 8 and IH 6 hold for rank r: for A,B ∈ Can−1 we have canr(A) =
canr(B) if and only if A ≡ B mod 〈〈Rel0, . . . ,Relr〉〉. In particular, A = canr(A) for
A ∈ Canr.

Proof. If canr(A) = canr(B) = C, then Lemma 6.23 implies that A ≡ C ≡ B mod 〈〈Rel0, . . . ,Relr〉〉.
Conversely, assume that A ≡ B mod 〈〈Rel0, . . . ,Relr〉〉. LetA

′, B′ be λ-semicanonical
forms of rank r of A,B, respectively. Then

A′ ≡ A ≡ B ≡ B′ mod 〈〈Rel0, . . . ,Relr〉〉.

Hence, Corollary 6.4 implies that canr(A) = canr(B).
If A = canr(B) ∈ Canr, then A ≡ B mod 〈〈Rel0, . . . ,Relr〉〉 and hence canr(A) =

canr(B) = A by the previous. �

Proposition 6.25. Inductive Hypotheses 1– 8 hold for canr.

Proof. IH 1–3 follow trivially from the definition of canr.
IH 4 follows from Lemma 5.12.
IH 5 and IH 5 are proved in Corollary 4.12.
IH 6 and 8 are proved in Proposition 6.24.
IH 7 follows from IH 7 for rank r − 1, and the decision process in Section 5.1.

�

Remark 6.26. If A ∈ Canr ⊆ SCanλ,r, then for every maximal occurrence u of rank r
in A it follows from IH 6 that u is the winner side in the process from Section 5.1.

Lemma 6.27. If A ∈ SCanλ+τ,r \ {1} for λ = n
2 = 3τ + 1, then A /∈ 〈〈Rel0, . . . ,Relr〉〉.

Proof. If A ≡ 1 mod 〈〈Rel0, . . . ,Relr〉〉, then A ∼λ,r 1 by Proposition 6.14. However,
this is not possible, because the equivalence class of 1 consists only of 1 itself. �

Corollary 6.28. IH 9 holds for rank r.

Proof. Let U be a subword of A ∈ Canr. Then canr−1(U) = DU ′E, where D and E are
sides of canonical triangles of rank r − 1. Since D and E are τ -free of rank r, it follows
from Lemma 5.19 that canr−1(U) is

(
n
2 + 5τ + 1

)
-semicanonical. Using Lemma 4.71

we find a λ-semicanonical form U1 of canr−1(U). In particular the lemma implies that
U1 6= 1. Then byLemma 6.27 U1 /∈ 〈〈Rel0, . . . ,Relr〉〉, and neither is U . �

7. Power subwords in canonical words of rank r

We start with the following natural definition:

Definition 7.1. Let A = LXKX1R ∈ Canr−1 where X is primitive, Xn /∈ Relr, and
X1 is a prefix of X. If u is a maximal occurrence of rank r in XKX1, a periodic shift
of u in XKX1 is a shift of u by ±k|X | in XKX1 contained in XKX1.
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If u is a maximal occurrence properly contained in XKX1, then clearly u is also a
maximal occurrence of rank r in A and so are all periodic shifts of u that are properly
contained in XKX1. However, if a periodic shift of u is a prefix or a suffix of XKX1, it
may have a prolongation in A.

Remark 7.2. Let x, a be primitive, not cyclic shifts of each other and let K > 2. If
xK contains a maximal occurrence u which is a fractional power of a with Λa(u) > 2,
then u is a prefix of a cyclic shift of xK . Hence, if |x| > |u|, then clearly a cyclic shift
of x contains u. Otherwise by Lemma 4.9 we have |x| < |u| < |x| + |a| and hence a
cyclic shift of x contains am where m = ⌊Λa(u)⌋. In particular, |u| < 2|x| and so u is
a proper subword of x3. Hence there exist > K − 2 different periodic shifts of u in xK .
Note that if (and only if) u is a prefix or suffix of xK , the periodic shifts of u may have
proper prolongations with respect to a in xK . If there exist precisely K − 2 different
periodic shifts of u in xK , then u is not a subword of x2 and so u = u1xu2 where u1, u2

are nonempty suffix and prefix, respectively, of x with 0 < Λa(u1) + Λa(u2) < 1 and
Λa(x) > Λa(u)− 1. In particular, all periodic shifts are proper subwords of xK and are
maximal occurrences in xK .

We state these observations for further applications in the following form:

Corollary 7.3. Let A = LXKR ∈ Canr−1, where K > 3 and X is primitive, Xn /∈ Relr,
and let u be a maximal occurrence of rank r in A that is contained in XK , Λr(u) > 2.
There exist > K − 2 different periodic shifts of u in XK that are maximal occurrences
of rank r in A. Moreover, there exist precisely K − 2 such periodic shifts of u in XK if
and only if u = u1Xu2 and 0 6 Λr(u1) + Λr(u2) < 1.

Further we use the notations from Definition 5.3.

Lemma 7.4. Let (u0, . . . , ut) be an (un-)certification sequence in A = Lpu0 . . . utqR to
the right of u0 and let i, j ∈ {1, . . . , t} with Λr(ui) = Λr(uj). If t ∈ {i, j} assume that
λm(t) − ε < Λr(ft,W ) < λm(t) + ε. Then fi = ui if and only if fj = uj.

Proof. Suppose fi = ui and fj = vj . Then in A by Condition 2 of Definition 5.3 we have

λm(i) + 2ε > Λr(ui) = Λr(uj) > λm(i) − 2ε >
n

2
+ τ.

Write Wj = L′pf0 . . . fjuj+1 . . . utqR
′ for the result of turning the necessary occurrences

ui, i 6 j. Then in Wj we have Λr(vj ,Wj) <
n
2 +3τ+1 6 λ2−ε. Thus j = t by Condition

4, contradicting our assumption on ft. �

Remark 7.5. SupposeW = Lpf0 . . . ftqR is the witness of an (un-)certification sequence
to the right of u = u0 in A. Let i, j ∈ {1, . . . , t−1}. Then Λr(fi,W ) = Λr(fj ,W ) implies
m(i) = m(j) since, by definition, λm(i) > Λr(fi,W ) = Λr(fj ,W ) > λm(i) − ε and the
intervals [λ1, λ1 − ε) and [λ2, λ2 − ε) are disjoint. In particular, by the choice of the
function m, there are no subsequences of the form BBb in Λr(f1,W ), . . . ,Λr(ft−1,W ).

We will need the following refinement of Lemma 4.9:

Lemma 7.6. Let u be a fractional power of B with Bn ∈ Relr. Let C = wM be primitive,
and assume that w = ama0 = a0(a1a0)

m,m > τ, is a maximal occurrence of rank r in
MwM = MC, where an ∈ Relr, a = a0a1 and Cn /∈ Rel0 ∪ . . .∪Relr, M 6= 1. Then the
following holds:

(1) If w is a subword of u and a is not a cyclic shift of B, then m = τ and a cyclic
shift of B is of the form aτ−1a2 for a prefix a2 of a;
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(2) wMa2 is not a subword of u;
(3) (a1a0)

2Mw is not a subword of u.

Proof. 1. If ama0,m > τ, is contained in u we see from Lemma 4.9 that |ama0| < |B|+|a|.
Hence by Corollary 4.6, we may assume (after taking a cyclic shift) that B = aτ−1a2 for
a proper prefix a2 of a. Hence m = τ by Lemma 4.9 and |B| < |C|.

2. If wMa2 is a subword of u and a is a cyclic shift of B, then w is not a maximal
occurrence in wM , contradicting to our assumption. So by Part 1, B = aτ−1a2, hence
for Ca2 = wMa2 to be a subword of u, C must be a prefix of BK for some K. Hence
we may write C = BkM ′ where k is maximal possible and M ′ is not empty. Then M ′

is a proper prefix of B and a non-empty suffix of C. Hence M ′ and M have a common
suffix. Notice that occurrences of a2 in BK arise only inside the maximal prolongations
of aτ . If Ca2 = BkM ′a2 is a prefix of BK , then M ′a2 is a prefix of BK−k. However, this
implies that M ′ has a common suffix with a, since |M ′| < |B|. Then M has a common
suffix with a contradicting our assumption that w is maximal in MwM .

3. follows from 2. by considering the inverses w−1, u−1 and M−1w−1M−1. �

Lemma 7.7. Let a,B,C be primitive and B = asa1 6= C = ata2 for 4 6 s 6 t 6 s + 1
and a1, a2 nontrivial prefixes of a. If D is a common prefix of Bm, Cm, |B| 6 |C|, then
|D| < |C|+ |a|.

Proof. Suppose |D| > |C|+|a|, then Ca is a prefix ofB2. So Ba is a prefix of C. Therefore
Ba is a common prefix of BK and aK , and we get a contradiction to Lemma 4.9 applied
to B and a. �

Remark 7.8. Let C ∈ Cyclr−1 is primitive and Cn /∈ Rel1 ∪ . . . ∪ Relr. Then by
Corollary 4.7 C cyclically contains âτ for some ân ∈ Rel. One can see that there exist a
and C0 cyclic shifts of â and C0, respectively, such that C0 = ama0C1, m > τ , a = a0a1,
and either C1 = 1, or ama0 is a maximal occurrence of rank r in C1a

ma0C1.

Lemma 7.9. Let A = LuMzR ∈ Canr−1, where u,w are maximal occurrences of rank r
with Λr(u),Λr(z) > τ +1. Let CN be a subword of uMz where C ∈ Cyclr−1 is primitive
and Cn /∈ Rel1 ∪ . . . ∪ Relr. Let C0 = ama0C1, m > τ , an ∈ Relr, be a cyclic shift of C
as in Remark 7.8. Then M contains > N − 4 occurrences of ama0.

Proof. Let ama0 = w and assume the contrary. Clearly uMz contains > N − 1 occur-
rences of w. By Corollary 4.11 each of u and z contain at most one occurrence of w, so
uMz contains precisely N − 1 occurrence of w and u and z properly contain occurrences
of w. Then wC1a

2 is a subword of z or (a1a0)
2C1w is a subword of u (since CN is a

subword of uMz and m > 4). If C1 6= 1, this contradicts to Lemma 7.6, otherwise this
contradicts to Lemma 7.7. �

Lemma 7.10. Let A = LDu0pu1 . . . utqR ∈ SCanµ,r where (u0, . . . , ut) is an (un-
)certification sequence to the right of u0 in A and D is τ-free of rank r. Let CN be a
subword of Du0pu1 . . . utq where C ∈ Cyclr−1 is primitive and Cn /∈ Rel1 ∪ . . .∪Relr. If

CN cyclically contains a2τ with an ∈ Relr, then N 6 5, otherwise N 6 6.

Proof. First assume that CN does not contain any of ui, 0 6 i 6 t. Since there is no gap
in the sequence (u0, . . . , ut), it follows from Lemma 7.9 that N 6 6. Assume moreover
that CN cyclically contains a2τ with an ∈ Relr. Then also by Lemma 7.9 N 6 5.

Hence we may assume that CN contains some ui. Let W = L′Epf0f1 . . . ftqR
′ be the

witness of the certification sequence (where L′ is a prefix of LD, E is τ -free of rank r if
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f0 = v0 and L′E = LD if f0 = u0). Let i 6 t be minimal such that ui is contained in CN

and all its periodic shifts in CN are maximal occurrences in CN . Let C0 be a cyclic shift
of C such that ui is a prefix of C2

0 . So CN−1
0 C′

0 is a subword of Du0pu1 . . . utq, where
C′

0 is a prefix of C0. By Convention 4.38 we write C0 = pui . . . ui+k−1q for some k > 1.
Then C′

0 = pui . . . ui+k−2q for k > 2, here ui+k−2 in C′
0 is a periodic shift of a prefix of

ui+k−2 with Λr-measure > 4τ + 2. Since Λr(uj) > 5τ + 3 for all 0 6 j 6 t, all periodic
shifts of us that are maximal occurrences in CN are equal to some uj by Lemma 5.2
(except possibly shifts that are a prefix and a suffix of CN ). Thus ui+j+sk are equal to
each other for 0 6 s 6 N − 1 with a fixed 0 6 j 6 k − 3, and are equal to each other for
0 6 s 6 N − 2 with a fixed j ∈ {k − 2, k − 1}. Moreover i + (N − 1)k + k − 3 6= t and
i+ (N − 2)k + k − 1 6= t for k > 2.

From now on we assume additionally that i 6= 0. If CN contains only u0, then clearly
N 6 2, so the result follows.

If k > 2, then by Lemma 7.4 the choices inW for fi+j+sk are the same for 0 6 s 6 N−1
with a fixed 0 6 j 6 k − 3, and and are the same for 0 6 s 6 N − 2 with a fixed
j ∈ {k − 2, k − 1}. Hence by Lemma 4.62 Λr(fi+sk,W ) are the same for 1 6 s 6 N − 2
and Λr(fi+j+sk,W ) are the same for 0 6 s 6 N − 3 with a fixed 1 6 j 6 k − 1 (we
put these indices in order to consider cases k = 2 and k > 3 simultaneously). So by
Remark 7.5 m(i+ sk) are equal to each other for 1 6 s 6 N − 2, and m(i+ j + sk) with
a fixed 1 6 j 6 k− 1 are equal to each other for 0 6 s 6 N − 3. Since m is BBb-free, we
must have N − 2 6 2, so N 6 4.

If k = 1, we write C0 = puiq, then ui = ui+1 = . . . = ui+N−3, i + N − 3 6= t, and
ui+N−2 has a prefix equal to ui. So the choices fj in the witness W are the same for uj

with i 6 j 6 i + N − 3. Hence by Lemma 4.62 and Remark 7.5 the m(j) are the same
for i + 1 6 j 6 i+N − 4. It follows from Corollary 4.28 that the turn of uj+1 have the
same influence on uj for all i 6 j 6 i + N − 2. If N − 2 > 4, then for one of uj with
i + 1 6 j 6 i + N − 3 any choice for uj+1 fits for a witness, since λ1 − λ2 > ε2. This
contradicts Condition 4 of Definition 5.3, so N − 2 6 3 and N 6 5. �

In fact the proof of Lemma 7.10 shows the following

Corollary 7.11. Let A = LDu0pu1 . . . utqR ∈ SCanµ,r where (u0, . . . , ut) is an (un-
)certification sequence to the right of u0 in A and D is τ-free of rank r. Let C6 be
a subword of Du0pu1 . . . utqR that properly contains some ui where C ∈ Cyclr−1 is
primitive and Cn /∈ Rel1 ∪ . . . ∪ Relr. Then Du0pu1 . . . utq contains 6 3 periodic shifts
of ui that are maximal occurrences of rank r in A different from u0 and ut.

Corollary 7.12. Let A = LuR ∈ SCanµ,r, where u is a maximal occurrence of rank r
with Λr(u) > 5τ + 3. Let C ∈ Cyclr−1 be primitive and Cn /∈ Rel1 ∪ . . . ∪ Relr. Let

CN be a subword of DuR, where D is τ-free of rank r suffix of L, N = 6 if C cyclically
contains a2τ with an ∈ Relr, and N = 7 otherwise. Then the prefix of R that ends at the
end point of CN is a right context for u.

Proof. Let (u = u0, u1, . . . , ut) be an (un-)certification sequence from the right of u
for side f1 and A = Lpu0, . . . , utqR1. Then CN is not contained in Dpu0, . . . , utq by
Lemma 7.10, so ut ends strictly from the left of the end of CN . Denote by M a prefix
of R that ends at the end point of CN and let R = MR1 and consider a word B =
LuMR2 ∈ SCanµ,r. First notice that (u = u0, u1, . . . , ut) is a certification or an un-
certification sequence for the side f1 in B, because it cannot be extended or shortened
by Lemma 7.10 and Conditions 4 and 5 or 5’.



THE BURNSIDE PROBLEM FOR ODD EXPONENTS 49

It remains to show that (u = u0, u1, . . . , ut) in B cannot change its status from certi-
fication sequence for f1 to un-certification sequence and vice versa. Let Q be a suffix of
M that starts at the end of ut. It is sufficient to show that Q contains a subword of the
form aτM1b

τ , an, bn ∈ Relr (because the only possible problematic case is when ft = vt
and Λr(ft) is different in the witnesses for A and for B). If CN does not contain any ui,
this follows from Corollaries 4.7 and 4.11.

If CN contains only ut, then the result is clear. So we can assume that CN properly
contains ut. Then by Corollary 7.11 Dpu0, . . . , utq contains 6 4 periodic shifts of ut

different from u0. Hence Q contains a periodic shift of a suffix of ut with Λr-measure
> 5τ + 1. This completes the proof. �

Corollary 7.13. Let A = LCNR ∈ SCanµ,r, N > τ , where C is primitive and Cn /∈
Rel1 ∪ . . . ∪ Relr. Let u be a maximal occurrence of rank r in A contained in CN

with Λr(u) > 5τ + 3 such that its periodic shifts are maximal occurrences in A (except
possibly the first and the last one). Then there exist periodic shifts of u that are contained
neither in LC6, nor in C6R. Furthermore the left and right contexts together for these
the periodic shifts of u are contained in C13 and the (un-)certification sequences are
periodic shifts of each other (certification sequences are shifted to certification sequences,
un-certification sequences are shifted to un-certification sequences).

Proof. The existence follows from Remark 7.2, since τ > 13. The second part follows
directly from Corollary 7.12. �

Corollary 7.14. Let A = LCNR ∈ SCanµ,r, where N > τ is a sufficiently big positive

number, C is primitive and Cn /∈ Rel1 ∪ . . .∪Relr. Then canr(A) = L̃Y N−γR̃, where C
and Y are conjugate in rank r, and γ does not depend on N .

Proof. By Corollary 7.13 the certification sequences for any maximal occurrence of rank r
in A that is contained in CN and is contained neither in LC6, nor C6R are contained
inside CN and are periodic shifts of each other. Hence the winner choice for periodic
shifts is the same and the result follows from Lemma 4.62. �

Remark 7.15. If A = LCτR ∈ Canr, then by Corollaries 7.12 and 7.13 we see that the
left and the right context together for any maximal occurrence u in A is contained in
either LC12, C13 or C12R. In particular, there is no maximal occurrence in A whose left
and right contexts have nontrivial overlap with both L and R.

Corollary 7.16. IH 11 holds for rank r.

For the proof we first note the following:

Lemma 7.17 (κ = µ− ε = n− 10τ − 4). Let A = L1C
N1R1, B = L2C

N2R2 ∈ SCanκ,r,
where C is primitive, Cn /∈ Rel1 ∪ . . . ∪Relr, and N1, N2 > τ . Then L1C

SR2 ∈ SCanκ,r
for any S > τ .

Proof. Since A,B ∈ SCanκ,r ⊆ Canr−1 and Cn /∈ Rel1 ∪ . . . ∪ Relr, we have L1C
SR2 ∈

Canr−1 by IH 11 in rank r − 1. If L1C
SR2 contains a maximal occurrence u of rank r

of Λr-measure > κ, then u is contained in L1C
2, in C2R2, or in C3 by Remark 7.2 and

Corollary 4.11. This is impossible since A,B ∈ SCanκ,r. �

Proof of Corollary 7.16. For r = 1 this follows directly from the definition of can1 in
Section 5.1. So assume r > 1. Let X1 = L1C

τR1, X2 = L2C
τR2 ∈ Canr. Then

L1C
SR2 ∈ SCanκ,r for any S > τ by Lemma 7.17. If all maximal occurrences in
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L1C
SR2 have Λr-measure 6 n

2 − 5τ − 2, the claim follows directly from Lemma 5.12. So

let u be a maximal occurrence in L1C
SR2 with Λr(u) >

n
2 − 5τ − 2. By Remark 7.15

we see that the left and right contexts of u are contained in LC12, C13 or C12R. So they
coincide with the corresponding ones in X1 or in X2. Since any occurrence u in X1, X2

is the winner side (because X1, X2 ∈ Canr), the same is true for u in L1C
SR2, proving

the claim. �

7.1. Multiplication and canonical triangles. We now prove that the multiplication
of canonical words of rank r can be described in terms of canonical triangles of rank r.

We say that a word W contains a gap if it contains a subword of the form aτMbτM ′cτ

where an, bn, cn ∈ Relr.

Lemma 7.18. Let A = LuW0FW1wR ∈ Canr−1 where u,w are maximal occurrences of
Λr-measure > τ +1, and W0,W1 do not contain strong separation words (from the right
and left, respectively). Assume that at least one of the following conditions holds:

(1) F is τ-free of rank r;
(2) W0, W1 do not contain gaps and F = DzE, where D,E are τ-free of rank r, and

z is an occurrence of rank r;
(3) at least one of W0, W1 is τ-free of rank r and F = DzE as above.
(4) W0 does not contain a gap, F = DE, where D,E are τ-free of rank r;
(5) W0 contains a subword b2τ+1, bn ∈ Relr, and F = DzE as above.

Let CN be a subword of uW0FW1w where C ∈ Can0 is primitive and Cn /∈ Rel1 ∪ . . . ∪
Relr. Then N < τ = 15.

Proof. If C /∈ Cyclr−1, then by Definition 4.2 A does not contain Cτ . So we suppose
that C ∈ Cyclr−1. Hence Lemma 7.9 implies that W0FW1 contains > N − 4 occurrences
of aτ , an ∈ Relr not overlapping with each other. If one of Conditions 1—4 holds, then
the result follows from Example 4.41 and Corollary 4.11 for a common part of CN and
z.

Under Condition 4 either CN is contained in uW0, or C cyclically contains b2τ . In
the first case the result follows from the above argument. In the second case we count
directly periodic shifts of b2τ and obtain N < τ . �

We now show a preliminary version of IH 10:

Proposition 7.19 (λ = n
2 + 3τ + 1). Let A,B ∈ Canr. Then canr(A · B) = A′

1M3B
′
1,

A = A′
1M1X, B = X−1M2B

′
1, where X ·X−1 is the maximal cancellation in A ·B, and

M3 is τ-free modulo r.

Proof. By IH 10 for rank r− 1, we know that canr−1(A ·B) = A′′EB′′, where E is τ -free
of rank r. Since by Lemma 5.19 we have that A,B ∈ SCanλ,r, we can apply Lemma 4.70
to A′′EB′′ and obtain C1 = A1QB1 ∈ SCanλ+3τ+1,r for a prefix A1 of A′′ and suffix B1

of B′′ by iterated turns of Λr-measure > λ+(3τ +1). By Lemma 4.25 Q = DzE, where
D,E are τ -free of rank r and z is an occurrence of rank r (any part can be empty).

Since λ+3τ +1 = n
2 +6τ +2 < n− (8τ +3)− 2τ − 1, by Lemma 6.22 C = canr(A ·B)

is obtained from C1 = A1QB1 by choosing the winner sides in the maximal occurrences
of rank r in C1. Clearly we can write C = A′

1M3B
′
1 for some prefix A′

1 of A1, suffix B′
1

of B1 and some word M3. We need to show that it is possible to take M3 τ -free modulo
r.

To determine the prefix A′
1 and the suffix B′

1, let u and w be the left- and right-
most occurrences, respectively, which are turned in C1. Let u = u0, . . . , us = w be an
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enumeration from left to right of all maximal occurrences in C1 = A1QB1 of Λr-measure
> 5τ + 3 between u and w. By Remark 5.4 an initial segment of u0, . . . , us is an initial
segment of a (un-)certification sequence to the right of u in C (and in A if u is a maximal
occurrence in A), a final segment of u0, . . . , us is a final segment of a (un-)certification
sequence to the left of w in C (and in B if w is a maximal occurrence in B).

First suppose that u is contained in A1 and w is contained in B1. Since the winner
side for u = u0 is different in A and in C, A1 cannot contain a right context for u0. Hence
if a common part of uk and A1 has Λr-measure > τ +1, then consecutive occurrences in
(u0, . . . , uk) are essentially not isolated. If a common part of uk and A1 has Λr-measure
> 5τ + 3, then (u0, . . . , uk) is an initial segment of an (un-)certification sequence in A
and in C1 by Condition 5 or 5’ of Definition 5.3. The corresponding properties hold for
(uk, . . . , us).

Let i be the maximal index such that A1 does not contain ui as a suffix, and j be the
minimal index such that B1 does not contain uj as a prefix. Then 0 < j − i 6 4, since
Q = DzE.

We now turn all necessary occurrences in C1 according to the choices of the winner
sides. Denote the occurrences corresponding to uk in C by fk. Since A1, B1 do not
contain contexts for u0 and us, respectively, there exist at most 3 maximal occurrences
of Λr-measure > 5τ + 3 in C between fi and fj .

Corollaries 5.8 and 5.9 imply that either (f0, . . . , fi) is an initial segment of an (un-
)certification sequence in C from the right of f0, or Λr(fi) < 5τ + 3. Hence in the
second case there exist at most 3 maximal occurrences of Λr-measure > 5τ + 3 in C
between fi−1 and fj . The symmetric property holds from the other side. So we obtain
the following sequence of maximal occurrences of Λr-measure > 5τ + 3 in C between f0
and fs: (f0, . . . , fi0) is an initial segment of an (un-)certification sequence, where either
i0 = i − 1, or i0 = i, (fj0 , . . . , fs) is a final segment of an (un-)certification sequence,
where either j0 = j, or i0 = j + 1, and there exist at most 3 maximal occurrences of
Λr-measure > 5τ + 3 in C between fi0 and fj0 .

Let V be primitive such that V n /∈ Rel1∪. . .∪Relr. If V /∈ Cyclr−1, we are done by the

definition of Cyclr−1. So assume V ∈ Cyclr. Assume that V N contains some maximal
occurrence x with Λr(x) > 5τ + 3, and not as a prefix or suffix. Then by Corollary 7.11
and by the previous considerations V N contains 6 11 periodic shifts of x, so N 6 13.

Now assume that V N does not contain any occurrence with Λr-measure > 5τ + 3.
Clearly it is sufficient to consider a space between fi0 and fj0 , which is of the form
W1QW2, where W1,W2 do not contain strong separation words. If W1 does not have a
common suffix with A1 or W2 does not have a common prefix with B, then the result
follows from Lemma 7.18 (3). If Q = E, the result follows from Lemma 7.18 (1). Assume
that Q = DzE with non-empty z with Λr(z) < 5τ + 3. Then the last occurrence that is
turned in order to obtain C1 is of Λr-measure > n− (7τ+3). Hence it has common parts
both with A and B of Λr-measure > n

2 − 5τ − 2. Denote their maximal prolongations
by w1 and w2, respectively. If W1 contains a gap, then w1 is strongly isolated from fi0 .
Hence there must exist some x in A with Λr(x) > 5τ + 3 between fi0 and w1 (otherwise
the winner side for u0 is the same in A and C1). Since the space between fi0 and w1 is of
the form W1D1 with D1 τ -free of rank r, W1 contains b2τ+1, bn ∈ Relr. The symmetric
property holds for w2 and W2. So the result follows from Lemma 7.18 (2) and (5). If
Q = DE, then we argue in the same way but only from the left side. Then the result
follows from Lemma 7.18 (4)
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Finally we need to consider the case that u or w are not contained in A1, B1, respec-
tively. Suppose that u is not contained in A1. Then the sequence (u = u0, . . . , um = w)
contains at most three maximal occurrences not contained in B1 and similarly for the
other side. Thus we see from the previous arguments thatM3 is τ -free modulo rank r. �

Now we can finish the proof of IH 10 for rank r.

Corollary 7.20. Let A,B ∈ Canr and canr−1(A ·B) = A′′E3B
′′ by IH 10 for rank r−1.

There exists a canonical triangle (D1, D2, D3) of rank r such that canr(A ·B) = A1D3B1,
A = A1D1X, B = X−1D2B1, where X · X−1 is the maximal cancellation in A · B
and A1, B1 are prefix and suffix of A′′, B′′, respectively. Furthermore if A1 = A′′ and
B1 = B′′, then canr(A · B) = canr−1(A · B).

Proof. By Proposition 7.19 we have canr(A·B) = A′M3B
′, A = A′M1X , B = X−1M2B

′,
where X ·X−1 is the maximal cancellation in A ·B. By IH 10 for rank r−1 we have that
A = A′′E1X and B = X−1E2B

′′, where (E1, E2, E3) is a canonical triangle of rank r−1.
By construction we have that A′ is a prefix of A′′ and B′ is a suffix of B′′.

First suppose that A′ = A′′ and B′ = B′′. Then by construction all turns are done
in E3. However, since E3 is τ -free of rank r, it does not contain any occurrences of
rank r to turn. So there are no turns in A′′E3B

′′ in order to obtain canr(A · B), hence
canr(A ·B) = canr−1(A ·B) and we can put Di = Ei, i = 1, 2, 3.

By definition of ·r, we can write A ·r B = canr(A · B) = C. Therefore A = C ·r B
−1.

Now we apply Proposition 7.19 to A = C ·r B
−1 and obtain A = C′F3B

′−1
, where F3 is

τ -free modulo rank r, C′ is a prefix of C, B′−1
is a suffix of B−1. Since X ·X−1 is the

maximal cancellation in A ·B, we have that B′−1
is a suffix of X−1.

If C′ is a prefix of A′, then M1 is a subword of F3, since B′−1 is a suffix of X−1. So,
M1 is τ -free modulo rank r.

Otherwise A′ is a proper prefix of C′, so C′ = A′W . Since C′ is left after the maximal
cancellations in C ·B−1, we obtain that W is a prefix of M3. Then A′W is a prefix of A,
because C′ is also a prefix of A. If M1 is contained in W , then M1 is a subword of M3,
so it is τ -free modulo r. If W is a proper prefix of M1, then W is a common prefix of
M1 and M3. In this case we fold W in the sides M1 and M3 and obtain a new triangle

M̃1, M̃2 = M2, M̃3. Then M̃1 is a prefix of F3 and M̃3 is a suffix of M3. So, M̃1 and M̃3

are τ -free modulo rank r.
Assume that after the above procedure side E1 is not a suffix of M̃1 anymore. Then

instead of complete folding W we fold it until E1 plus one extra letter. Then M̃1 = xE1

for some single letter x. Since E1 is τ -free modulo rank r−1, M̃1 is τ -free modulo rank r
by Lemma 4.7.

After that we deal similarly with M̃2 = M2 in the new triangle and as a result obtain
the required canonical triangle (D1, D2, D3).

A′ M3 B′

M1 M2

X

C

A B

W

W
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In this case we can fold W in the sides D1 and D3 and obtain a new triangle D̃1,

D̃2 = D2, D̃3, where D̃1 is a prefix of F3 and D̃3 is a suffix of D3. So, D̃1 and D̃3 are
τ -free modulo rank r.

After that we deal similarly with D̃2 = D2 in the new triangle and as a result obtain
the required canonical triangle (D1, D2, D3). �

7.2. Canonical form of power words.
We start with some preliminary lemmas:

Lemma 7.21. Let A = XWX−1 ∈ Canr−1 and canr−1(A ·A) = X1W1(X1)
−1 where W

and W1 are cyclically reduced. If W is τ-free of rank r, then W1 is 3τ-free of rank r.

Proof. By IH 10 there exists a canonical triangle (D1, D2, D3) of rank r − 1 such that
XW = A′D1, WX−1 = D2A

′′ and canr−1(A · A) = A′D3A
′′. If A′ = XW ′ and A′′ =

W ′′X−1 (where W ′ or W ′′ may be empty), then X = X ′ and the claim is immediate.
Otherwise, either A′ = X ′, A′′ = W0X

−1
0 (X ′)−1, or symmetrically A′ = X ′X0W0,

A′′ = (X ′)−1, where X ′ is a prefix of X , X0 is τ -free subword of X and W0 is a subword
of W . Then again the claim is immediate. �

Lemma 7.22. Let W ′,W ′′ be 3τ-free of rank r and let D,E be τ-free of rank r. If
(EW ′DW ′′)N contains an occurrence u of Λr-measure > 11τ + 1, then EW ′DW ′′ = as

for some s > 0 and an ∈ Relr.

Proof. Let u = âkâ1 for ân ∈ Relr and k > 11τ + 1. If |â| > |EW ′DW ′′|, then by
Lemma 4.9 EW ′DW ′′ is a cyclic shift of â.

If |â| < |EW ′DW ′′|, the assumptions on W ′,W ′′, D,E imply that u contains a cyclic
shift Y of EW ′DW ′′, and Y is 11τ -free. So since Λr(u) > 11τ + 1, the common part of
u and (EW ′DW ′′)N has length > |Y |+ |â|. Hence by Lemma 4.9 EW ′DW ′′ = as for a
a cyclic shift of â. �

Lemma 7.23. Let A = XWX−1 ∈ Canr−1 where W is cyclically reduced and contains
an occurrence u of Λr-measure > 3τ . Then there is a canonical triangle (D1, D2, D3) of
rank r − 1 such that

Q = canr−1(A · . . . · A︸ ︷︷ ︸
Ntimes

) = XD2(MD3)
N−1MD1X

−1

where W = D2MD1. In particular, MD3 is conjugate to W in F/〈〈Rel0, . . . ,Relr−1〉〉.
Furthermore, if W is κ-bounded of rank r for some κ > 3τ , then either (MD3)

N is
2κ+ τ + 1-free of rank r, or MD3 = as for an ∈ Relr.

Proof. By IH 10 there is a canonical triangle (D1, D2, D3) of rank r − 1 such that
canr−1(A · A) = XW ′D3W

′′X−1 for some non-empty prefix W ′ and suffix W ′′ of W .

Since W contains u, we can write W = D2MD1 with non-empty M . Then W̃ = D1D2M
is a cyclic conjugate of W and we have

W̃ = D1D2M ≡ D3M mod 〈〈Rel0 ∪ . . . ∪ Relr−1〉〉.

Since D1 and D2 is τ -free of rank r, W ′ and W ′′ contain occurrences of Λr-measure > 2τ .
Hence by Corollary 3.9 we obtain

canr−1(A ·A ·A) = XW ′D3MD3W
′′X−1 and W ′ = D2M, W ′′ = MD1.
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Inductively Corollary 3.9 yields

Q = XW ′ D3M . . .D3M︸ ︷︷ ︸
N−2 times

D3W
′′X−1 = XD2(MD3)

N−1MD1X
−1.

The last sentence follows from Lemma 4.9. �

Lemma 7.24. Let A = XWX−1 ∈ Canr−1, where W is a cyclically reduced and 3τ-free
of rank r and Wn /∈ 〈〈Rel1, . . . ,Relr〉〉. By IH 13 for rank r − 1 write

canr−1(A · . . . · A︸ ︷︷ ︸
K times

) = T ÃK−γS for all K > γ,

where Ã, T, S, γ depend only on A and r, and A, Ã are conjugate in the group F/〈〈Rel1, . . . ,Relr−1〉〉.

Then ÃN is 11τ + 1-free of rank r for all N > 1 and hence

canr(A · . . . · A︸ ︷︷ ︸
K times

) = T ′ÃK−γ′

S′ for all K > γ′

where T ′, S′ and γ′ only depend on A and r. (Note that Ã does not change.)

Proof. Let As = canr−1(A · . . . · A︸ ︷︷ ︸
2s times

) = XsWsX
−1
s , where Ws is cyclically reduced.

First assume that Ws is 3τ -free for all s > 0. For all K = 2s we have T ÃK−γS =
XsWsX

−1
s . Notice that if an overlap of Xs and ÃK−γ contains a whole period Ã, then an

overlap of X−1
s and ÃK−γ cannot contain Ã. So if there exists s > γ+3 such that T, S are

contained inXs, X
−1
s , respectively, thenWs contains Ã

3. Otherwise |Xs| 6 max{|S|, |T |}

for s > γ + 3 because |S|, |T | do not depend on s. In this case Ws contains Ã3 for all

sufficiently large s. Thus Ã3 is 3τ -free of rank r, and so is ÃN1 for all N1 > 1.
Now let t > 1 be minimal such that Wt is not 3τ -free of rank r so Wt−1 is not τ -free

of rank r by Lemma 7.21. Therefore by IH 10, Wt = W ′
t−1EW ′′

t−1, where E is τ -free
of rank r, W ′

t−1,W
′′
t−1 are a non-empty suffix and prefix of Wt−1, respectively. Then it

follows from Lemma 7.23 that

canr−1(At · . . . · At︸ ︷︷ ︸
N times

) = XtD2(MD3)
N−1MD1Xt,

where Wt = D2MD1, and (D1, D2, D3) is a canonical triangle of rank r− 1. Since Wt−1

is 3τ -free of rank r, by construction, MD3 is of the form W ′E′W ′′D3, where E
′ is τ -free

and W ′,W ′′ are 3τ -free of rank r (some parts can be empty). Hence Lemma 7.22 implies
that either (MD3)

N−1 is 11τ + 1-free of rank r, or MD3 = ak for some an ∈ Relr.

For sufficiently large N and K = N · 2t, the common part of (MD3)
N−1 and ÃK−γ

has length > |MD3|+ |Ã|. Hence by Lemma 4.9 MD3 = Zk1 , Ã = Zk2 for some word Z.

So if (MD3)
N−1 is 11τ+1-free of rank r, ÃN1 is also 11τ+1-free of rank r for all N1 > 1.

If MD3 = ak, then Ã = ak2 , since a is primitive. Hence Ãn ∈ Relr, a contradiction.

For sufficiently large N by IH 12 we have canr−1(Ã
N ) = DÃ1Ã

N−δÃ2E, where

D,E are τ -free of rank r, Ã1, Ã2 are a suffix and prefix of Ã, respectively. By IH 11

D,E, Ã1, Ã2, δ do not depend on N . By Lemma 7.24 DÃ1Ã
N−δÃ2E is 12τ + 1-free of

rank r for big enough N . Since 12τ + 1 6 n
2 − 5τ − 2, it follows from Lemma 5.12 that
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canr−1(Ã
N ) ∈ Canr, so canr(Ã

N ) = canr−1(Ã
N ). For sufficiently large K we obtain

canr(A · . . . ·A︸ ︷︷ ︸
K times

) = canr(T ) ·r canr(Ã
K−γ) ·r canr(S)

= canr(T ) ·r

(
DÃ1Ã

K−γ−δÃ2E
)
·r canr(S) = T ′ÃK−γ′

S′.

�

Lemma 7.25 (µ = n− 8τ1 − 3). Let A ∈ Cyclr−1 such that An /∈ 〈〈Rel0 ∪ . . . ∪ Relr〉〉.

Then there exists B̃ conjugate to A in the group F/〈〈Rel0, . . . ,Relr〉〉 such that one of
the following holds:

• B̃ ∈ Canr−1 and its cyclically reduced part is 3τ-free of rank r.

• B̃ ∈ Cyclr−1 and B̃K is µ− τ-bounded for all K > 1.

Proof. Similarly to the proof of Lemma 4.67, we do induction on d′(A) = max{d(X)},
where X runs through all cyclic shifts of A and d(X) is the sum of all Λr-measures of all
maximal occurrences of rank r in X with Λr-measure > β = 3τ + 2.

Let Y = canr−1(A
N1) = LANR, N = N1 − δ, and let u be a maximal occurrence of

rank r properly contained in AN with Λr(u) > µ− τ . Since An /∈ 〈〈Rel0 ∪ . . . ∪ Relr〉〉,
by Remark 7.2 u is contained in A3 and there are periodic shifts of u starting in every
period of X that are maximal occurrences in Y .

We now turn the occurrence of u in Y starting in the second period of AN . Then
there are the following configurations in the resulting word.

1. There exists a cyclic shift V2V1 of A = V1V2 of the form LuR such that the result

of the turn of u in Y is of the form (LV1)(L
′QR̃)V2A · · ·AR, where L′ is a prefix of V2

that contains bτ1 and R̃ is a suffix of uR that contains bτ2 for some bn1 , b
n
2 ∈ Relr. Then

Corollary 3.9 implies that the result of the turns of all periodic shifts of u in A is equal

to (LV1)(L
′QR̃) · · · (L′QR̃)V2R, so L′QR̃ ∈ Cyclr−1. Clearly L′QR̃ and A are conjugate

in the group F/〈〈Rel0, . . . ,Relr〉〉.
We have

d(L′QR̃) 6 d(V2V1)− (µ− τ) + (n− µ+ 3τ) + 2β + 2ε =

= d(V2V1)− (µ− τ) + (n− µ+ 3τ) + 2(3τ + 2) + 2(2τ + 1) =

= d(V2V1)− (n− 30τ − 12).

Hence d′(L′QR̃) < d(L′QR̃) + 2β 6 d(V2V1)− (n− 30τ − 12) + 6τ + 4 = d(V2V1)− (n−
36τ − 16) < d′(A). So the claim holds by the induction hypothesis.

2. Assume that |u| 6 |A| and we are not in Case 1. Then for every cyclic shift of A of
the from LuR we see that L, R do not contain words of the form aτMbτ , an, bn ∈ Relr.
Consider canr−1(LuR) = L1ũR1, where Λr(u)− 2τ < Λr(ũ) < Λr(u)+2τ . Let us turn ũ
and let B be the resulting word. If the cyclically reduced part of B is 3τ -free of rank r,

then we take it as B̃ and we are done.
Let ṽ be the complement of ũ. Then the turn is of Type 2 and Λr(̂̃v,B) < n− (µ −

3τ) + 2τ = 13τ + 3. So B is 13τ + 3-bounded. Then by Lemma 7.23 the periodic part
of canr−1(B · . . . ·B) is 27τ + 7-bounded. Since 27τ + 7 < µ− τ = n− 9τ − 3, we take a

period of this periodic part as B̃.

3. The last case is |u| > |A|. Then there exists a cyclic shift of A equal to u1 a prefix of u
with Λr(u1) > Λr(u)− 1 > µ− τ − 1. Then we take canr−1(u1) = L1ũ1R1 and argue as
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above. Using the same notations, we have that Λr(̂̃v,B) < n−(µ−3τ−1)+2τ = 13τ+4,
so B is 13τ+4-bounded. Hence the periodic part of canr−1(B · . . . ·B) is 27τ+9-bounded.

Since 27τ + 9 < µ− τ = n− 9τ − 3, we take a period of this periodic part as B̃. �

Proposition 7.26. IH 13 holds for rank r.

Proof. By IH 8 and IH 13 for rank r− 1 we can assume that A ∈ Cyclr−1. Let B̃ be the

conjugate of A given by Lemma 7.25. If B̃ ∈ Canr−1 and its cyclically reduced part is
3τ -free of rank r, the result follows from Corollary 7.24.

If the second case of Lemma 7.25 holds, then canr−1(B̃
K) = Z1B̃1B̃

K−δB̃1Z2 ∈

SCanµ,r, where B̃1, B̃2 are a prefix and suffix ofB, respectively, Z1, Z2 are τ -free of rank r,

and δ does not depend on K. Then Corollary 7.14 implies that canr(B̃
K) = L̃X̃K−γR̃,

where X̃ and B̃ are conjugate in the group F/〈〈Rel1, . . . ,Relr〉〉, and X̃, γ do not depend

on K. Since A ≡ Y · B̃ · Y −1 mod 〈〈Rel1, . . . ,Relr〉〉, we have

canr(A · . . . · A︸ ︷︷ ︸
K times

) = canr(Y ) ·r canr(B̃
K) ·r canr(Y

−1).

So, A satisfies IH 13 with Ã = X̃ . �

8. Completion of the proof of Theorem 2.1

It is left to show that the canonical form stabilizes and that our relators
⋃

i∈N
Reli

yield a quotient group isomorphic to the free Burnside group B(m,n). We start with the
first point:

Lemma 8.1. Assume that A,B ∈ ∩∞
i=0Cani. Then there exists r0 such that canr0(A ·

B) ∈ ∩∞
i=0Cani.

Proof. Since A,B ∈ Cani for all i > 0, by IH 10 we have

cani(A · B) = AiD
(i)
3 Bi, A = AiD

(i)
1 X, B = X−1D

(i)
2 Bi,

where X ·X−1 is the maximal cancellation in A · B and (D
(i)
1 , D

(i)
2 , D

(i)
3 ) is a canonical

triangle of rank i, Ai+1 is a prefix of Ai and Bi+1 is a suffix of Bi. Let r0 > 0 be such
that for all i > r0 we have Ar0 = Ai, Br0 = Bi. Since the maximal cancellation X does

not depend on i, this implies D
(i)
1 = D

(r0)
1 and D

(i)
2 = D

(r0)
2 and hence, by IH 10, also

D
(i)
3 = D

(r0)
3 for all i > r0. We obtain cani(A · B) = Ar0D

(r0)
3 Br0 = canr0(A · B) for all

i > r0 and r0 is as required. �

Proposition 8.2. For every word A ∈ Can−1 there exists r0 such that canr0(A) ∈
∩∞
i=0Cani.

Proof. Clearly we may assume that A is reduced, so A ∈ Can0, and do induction on |A|.
If |A| = 1, then it follows from Remark 8.8 that A ∈ ∩∞

i=0Cani.
For the induction step assume that A = A1x, where x is a single letter. By our

induction assumption there is some s such that cans(A1), cans(x) = x ∈ ∩∞
i=0Cani. By

Lemma 8.1 and Corollary 3.5, there exists some r0 > s such that

canr0(A) = canr0(A1x) = canr0(canr0(A1) · x) ∈ ∩∞
i=0Cani.

�

By Proposition 8.2 the sequence cani(A), i > 0, stabilizes after a finite number of
steps (depending on A). Therefore we can now define:
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Definition 8.3. For A ∈ Can−1, the canonical form can(A) of A is defined as can(A) =
cani(A) where i is such that cani(A) ∈

⋂∞
i=0 Cani, and Can = { can(A) | A ∈ Can−1} =⋂∞

i=0 Cani.

It follows directly from the definition, IH 6 and Remark 3.4 that we have

Corollary 8.4. can(can(A)) = can(A) ≡ A mod 〈〈 Reli | i > 0 〉〉 for A ∈ Can−1.

Lemma 8.5. Let a be a primitive word and aτ be an occurrence in Ai ∈ Cani for every
i > 0. Then an ∈ Relr for some r > 0.

Proof. By the definition of Cycli, a ∈ Cycli for all i > 0. The proof is by induction on
|a|. If |a| = 1, then by definition an ∈ Rel1.

If |a| > 1 and a cyclically contains bτ , then |b| < |a|. By the induction hypothesis
bn ∈ Relj for some j. Let r be minimal such that a does not cyclically contain any
occurrence of the form bτ with bn ∈ Relr. Then we have that an ∈ Relr by the definition
of Relr. �

Proposition 8.6. If A = XWX−1 ∈ Can0 with W cyclically reduced, then Wn ∈
〈〈Reli | i ∈ N〉〉.

Proof. Write H = 〈〈Reli | i ∈ N〉〉 and suppose Wn /∈ H. By Corollary 8.4 we may
assume A = can(A). Let r be minimal such that A does not contain any maximal
occurrence of rank r of Λr-measure > 3τ . By IH 13 for all j > 0 we have

canj(A · . . . · A︸ ︷︷ ︸
K times

) = TjÃ
K−γj

j Sj for K > γj ,

where Ãj , Tj, Sj , γj depend only on A and j, and A and Ãj are conjugate in F/H.

Lemma 7.24 implies that Ãj = Ãr for all ranks j > r. Hence Ãτ
r is a subword of words

from Cani for all i. Thus by Lemma 8.5 Ãn
r ∈ H and hence Wn ∈ H, a contradiction. �

Since the sets Reli, i > 0, consist of n-th powers, we now obtain:

Corollary 8.7. The normal subgroup of F generated by 〈〈 Reli | i ∈ N〉〉 coincides with
the normal subgroup generated by all n-th powers.

Theorem 8.1. For every A,B ∈ Can−1 the words A and B represent the same element
of the group B(m,n) if and only if can(A) = can(B).

Proof. If can(A) = can(B), then A ≡ B mod 〈〈 Reli | i > 0 〉〉 by Corollary 8.4. Thus
clearly A and B represent the same element of the group B(m,n).

Converseley, if A and B represent the same element in B(m,n), then, by definition,
A ≡ B mod 〈〈wn

1 , . . . , w
n
k 〉〉 for some cyclically reduced words wi. By Corollary 8.7 we

have wn
i ∈ 〈〈Rel0,Rel1, . . . ,Relr〉〉 for some r and so A ≡ B mod 〈〈Rel0, . . . ,Relr〉〉.

Thus canr(A) = canr(B) by IH 8 and, by construction, can(A) = can(B). �

Finally we are ready to prove Theorem 2.1:

Remark 8.8. If A ∈ Can0 and all subwords of A of the form aka1, a = a1a2, satisfy
Λa(a

ka1) 6
n
2 − 5τ − 2, then by iterated application of IH 4 we have A ∈ ∩∞

i=0Cani.

The proof of Theorem 2.1. By Theorem 8.1 words A,B ∈ Can−1 represent the same
element in B(m,n) if and only if can(A) = can(B). Now consider the set of cube free
words in Can0, which is an infinite set by [6]. Clearly for our choice of the exponent n
we have 3 6 n

2 − 5τ − 2 and hence by Remark 8.8 every cube free word is in Can. Thus
Can is infinite and hence so is B(m,n). �
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