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Abstract. We study fluctuations of the current at the boundary for the half
space asymmetric simple exclusion process (ASEP) and the height function of the
half space six vertex model at the boundary at large times. We establish a phase
transition depending on the effective density of particles at the boundary, with
GSE and GOE limits as well as the Baik–Rains crossover distribution near the
critical point. This was previously known for half space last passage percolation,
and recently established for the half space log-gamma polymer and KPZ equation
in the groundbreaking work of Imamura, Mucciconi, and Sasamoto [24].

The proof uses the underlying algebraic structure of these models in a crucial
way to obtain exact formulas. In particular, we show a relationship between the
half space six vertex model and a half space Hall–Littlewood measure with two
boundary parameters, which is then matched to a free boundary Schur process via
a new identity of symmetric functions. Fredholm Pfaffian formulas are established
for the half space ASEP and six vertex model, indicating a hidden free fermionic
structure.

Contents

1. Introduction 1
2. The half space six vertex model and half space Hall–Littlewood measure 9
3. An identity of symmetric functions 22
4. Fredholm Pfaffian formulas 26
5. Asymptotics: Preliminaries 31
6. Asymptotics: Crossover, GSE, and GOE asymptotics 35
7. Asymptotics: Gaussian asymptotics 47
Acknowledgment 56
References 56
Appendix A. Fredholm Pfaffians 58

1. Introduction

Tremendous progress has been made in recent years towards our understanding
of universal fluctuations for models in the Kardar–Parisi–Zhang (KPZ) universality
class, including particle systems, polymers and the KPZ equation. However, the
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introduction of a boundary to these models introduces many difficulties, and our
understanding of the asymptotic fluctuations in these models remains incomplete.

While one point fluctuations for a wide variety of models without a boundary
have been established, see e.g. [1,18,42], and indeed there are now classes of models
for which we even have multipoint and process convergence to the limiting universal
objects [20,30,36,45,48], the analysis of systems with boundary is usually much more
complicated. Models with a single boundary, which we will call half space models,
are expected to exhibit universal behavior with a phase diagram depending on the
boundary strength. Some progress towards this has been made in zero-temperature
models [2,5,39], hinting that similar phase transitions should hold for all half space
models in the KPZ universality class, but progress in positive temperature models
has been more difficult.

This problem was first considered by Kardar [25], and has been studied in the
physics literature using a replica Bethe Ansatz approach [21,26,27,31], culminating
in work of De Nardis, Krajenbrink, Le Doussal, and Thiery [31], where a phase
transition for the one point distribution at the boundary of the half space KPZ
equation was found. In the physics work of Borodin, Bufetov, and Corwin [17],
nested contour integral formulas were found for certain moments, some of which
were then proven rigorously in work of Barraquand, Borodin, and Corwin [7], but
these still did not lead to mathematically rigorous asymptotics. For a long time, the
only mathematically rigorous result on this phase transition for positive temperature
models was work of Barraquand, Borodin, Corwin, and Wheeler [8] on the half
space asymmetric simple exclusion process (ASEP) and KPZ equation, and this was
restricted to the critical boundary strength.

Recently, the groundbreaking work of Imamura, Mucciconi, and Sasamoto [24]
established a phase transition for the one point distribution at the boundary for the
free energy of the half space log-gamma polymer and the solution to the half space
KPZ equation. This was the first work which rigorously established this phase tran-
sition for a positive temperature model. They found a connection to a free fermionic
model via a bijective approach, resulting in formulas amenable to asymptotics. How-
ever, this left the problem of studying a variety of other discrete models including
the ASEP, which contains an additional boundary parameter.

Beyond just the phase transition studied in this paper, there has been tremen-
dous progress in understanding half space models at positive temperature and their
algebraic structure, see e.g. [9,12,13,22,32,43,44]. For some additional recent works
on half space models, see [6, 16, 19, 33, 34, 47], and also relevant work in the physics
literature [10,11,17].

1.1. Overview of results and proof. In this paper, we study the ASEP on the
non-negative integers, a system of particles which can jump to unoccupied sites, and
with particles allowed to enter and exit at 0. Initially, the system starts with no
particles. From known results for zero temperature models (see e.g. [2, 5, 39]), it is
expected that the fluctuations for the total number of particles in the system, which
we call the current, has a phase transition depending on the effective density ρ of
particles at the boundary, which depends on the rates at which particles enter and
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exit. In particular, Tracy–Widom GSE and GOE fluctuations are expected when
ρ > 1

2 and ρ = 1
2 respectively, with τ1/3 scaling at time τ , and Gaussian fluctuations

with τ1/2 scaling are expected when ρ < 1
2 . However, for the ASEP, results are

currently only known at the critical point ρ = 1
2 , and only for a specific choice of

parameters, by work of Barraquand, Borodin, Corwin, and Wheeler [8].
Our main result is to establish these asymptotics as well as the appearance of the

Baik–Rains crossover distribution introduced in [5] if the boundary strength is tuned
appropriately, subject only to a condition that the direction of the asymmetry at
the boundary matches that of the bulk. This restriction only affects the Gaussian
regime, and still allows for all possible densities at the boundary. We expect that
this condition can be removed, but the methods in this paper do not seem to be
able to handle this. We are also able to study the half space stochastic six vertex
model, and we establish the same phase transition for the fluctuations of the height
function at the boundary.

In order to obtain asymptotics, we find exact Fredholm Pfaffian formulas for the
distribution functions after a random shift. This suggests that there is some hid-
den free fermionic structure responsible for these formulas, even though the systems
themselves are not free fermionic. The proof for these formulas involves relating the
half space stochastic six vertex model to the half space Hall–Littlewood measure
(Theorem 2.5), a probability distribution on partitions, using a Yang–Baxter argu-
ment taking advantage of integrability of the model. In particular, we show that
the half space six vertex model with two boundary parameters falls into the class of
half space Macdonald processes, something not known before this work. This half
space Hall–Littlewood measure is then related to the free boundary Schur process
introduced by Betea, Bouttier, Nejjar, and Vuletić [14, 15] (Theorem 1.7) via an
identity of symmetric functions (Theorem 3.1) which we establish using a bijection
of Imamura, Mucciconi, and Sasamoto [23]. Exact contour integral formulas are
known for the free boundary Schur process, and we are able to extract asymptotics
via a steepest descent analysis. Since the ASEP can be obtained as a limit of the six
vertex model, we also obtain exact formulas for it, from which we are able to extract
asymptotics.

Let us remark that currently, results in the literature on asymptotics in half space
models only consider models with a single boundary parameter, whereas our models
have two boundary parameters. We believe that this will allow for potentially more
applications, especially as the six vertex model is known to give many other stochastic
models via various fusion and limiting procedures.

1.2. ASEP. Our main result is a phase transition for the asymptotic current in the
half space ASEP, which we now define. The half space asymmetric simple exclusion
process (ASEP) is a continuous time Markov chain on configurations of particles
on N. Initially, the system begins with no particles. At 0, particles enter or exit
at rates α and β respectively (we can think of a reservoir connected to 0 from
which particles can enter or exit), and in the bulk they jump left and right at rates
q < 1 and 1 respectively, except that if a particle would jump to a site occupied by
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reservoir

q 1β

α

Figure 1.1. Configuration of the ASEP along with some possible
transitions and their rates. Particles which would jump to an occu-
pied site are blocked. Note that since the site at 0 is empty, particles
enter at rate α. If it were occupied, the particle would instead leave
at rate β.

another particle, this is blocked. See Figure 1.1 for an example of a configuration
and the possible transitions. Note there is no loss of generality in these restrictions,
since rescaling the rates corresponds to rescaling time, and by reversing the roles of
particles and holes, we swap 1 and q.

A key quantity associated to the system is the effective density of particles at 0,

ρ =
1

1 + ν−1
,

where

ν−1 =
1− q + β − α+

√
(1− q + β − α)2 + 4αβ

2α
.

This quantity arises as the density for which the product Bernoulli measure is station-
ary for the ASEP dynamics, and indeed ρ solves α(1−ρ)+qρ(1−ρ)−βρ−ρ(1−ρ) = 0.
We will often write formulas in terms of ν, which simplifies certain expressions. We
will let t = β/α, and note that νt < 1. We will be interested in studying the number
of particles within the system at time τ , which we will denote by N(τ).

We will make the assumption that q, t < 1. The assumption that q < 1 is needed
so particles will drift into the system, but the requirement that t < 1 is a technical
one that should not be needed. Since νt < 1 always holds, this restriction is only
relevant in the Gaussian regime when ν < 1. In particular, we do not assume
Liggett’s condition that α+ β/q = 1 [28]. Previously asymptotics were only known
in the special case that α = 1

2 and β = q
2 [8].

For the definitions of the Tracy–Widom distributions FGOE and FGSE , and the
Baik–Rains crossover distribution Fcross(s, ξ), see Definition 5.1.

Theorem 1.1. Let N(τ) denote the number of particles within the system at time
τ in the half space ASEP started from the empty configuration, and let ρ denote the
effective density of particles at 0. Assume that t < 1. Then depending on ρ, as
τ → ∞,

(ρ > 1
2) P

−
N
(

τ
1−q

)
− τ

4

2−4/3τ1/3
≤ s

→ FGSE(s),
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(ρ = 1
2) P

−
N
(

τ
1−q

)
− τ

4

2−4/3τ1/3
≤ s

→ FGOE(s),

(ρ < 1
2) P

−
N
(

τ
1−q

)
− µτ

στ1/2
≤ s

→ Φ(s),

where FGSE and FGOE are the Tracy–Widom GSE and GOE distribution functions,
Φ is the distribution function for a standard Gaussian, and

µ =
ν

(1 + ν)2
, σ2 = ν−2 1− ν

(1 + ν−1)3
.

Furthermore, if ρ = 1
2 + 2−2/3ξ

τ1/3
and t is fixed, then

(ρ ↓ 1
2) P

−
N
(

τ
1−q

)
− τ

4

2−4/3τ1/3
≤ s

→ Fcross(s, ξ),

where Fcross is the Baik–Rains crossover distribution.

Remark 1.2. Our results require that we study the current at the boundary. It is
interesting to ask about the number of particles which have passed a macroscopi-
cally far location. While certain results in this paper, in particular the connections
between the six vertex model and the Hall–Littlewood measure, extend to this case,
the connection to the free boundary Schur process is still not understood. It would
be very interesting to develop a theory which could handle these observables. Based
on results for zero-temperature models [2, 35, 39] and universality considerations,
it should be expected that suitably normalized, the number of particles past some
point x by time τ (both going to ∞) exhibits the Baik–Ben Arous–Péché phase
transition [3] as the boundary strength varies, with either FGUE , F 2

GOE , or Gaussian
fluctuations. It would be very interesting to show this for any positive temperature
model in the half space KPZ universality class. Another possible application would
be to understand the distribution of the solution to the half space KPZ equation at
finite times.

Remark 1.3. Although the half space ASEP is known to converge to the half space
KPZ equation with Neumann boundary data [19, 33], formulas and asymptotics for
the KPZ equation were already derived in [24] via the log-gamma polymer. We thus
do not attempt to take a KPZ equation limit or derive asymptotics for the KPZ
equation.

The proof of Theorem 1.1 involves finding exact Fredholm Pfaffian formulas via
an algebraic approach which gives distributional identities relating N(τ) to models
where formulas are known. These formulas can then be studied via a steepest descent
analysis. The formulas must be established at the level of the half space stochastic
six vertex model, a more complicated model which give the ASEP as a limit, and is
of independent interest.
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h(4, 4) = 3

Figure 1.2. A configuration of the six vertex model and its height
function at (4, 4).

Configuration:

Probability: pi,j 1− pi,j q|i−j|pi,j 1− q|i−j|pi,j 1 1

Figure 1.3. Probabilities for sampling outgoing arrows at a vertex
(i, j). The black line represents an arrow and the dashed line repre-
sents no arrow.

1.3. Half space six-vertex model. We are also able to study the half space six
vertex model with a certain family of weights. In fact, part of the proof requires
working in this level of generality.

The model is a probability distribution on certain configurations of arrows in
the lattice N2 (see Figure 1.2), which can be described with the following sampling
procedure. We begin with arrows entering from the left and no arrows entering from
the bottom. We then sample the outcome of vertices (i, j) with i ≥ j in a Markovian
fashion, starting with vertices whose left and bottom edges are determined, using
certain integrable stochastic weights for the outcome. The outcome of vertices (j, i)
are determined by what occurs at (i, j) in a symmetric manner. In particular, an
arrow crosses an edge if and only if no arrow crosses the corresponding edge given
by reflection across x = y. The observable which we will study is the height function
h(i, j), which counts the number of arrows passing at or to the left of the point (i, j).

The weights depend on parameters ai associated to rows/columns, a bulk parame-
ter q, and boundary parameters t and ν (here q and t are the asymmetry parameters).
For convenience we let qi = q if i > 0 and q0 = t. We let

pi,j = p|i−j|(aiaj) =


1−aiaj
1−qaiaj

if i ̸= j,
1−a2i

(1−νtai)(1+ 1
ν
ai)

if i = j.

The weights are then given in Figure 1.3. We let h(n, n) denote the height function
at (n, n), defined as the number of arrows leaving a vertex upwards at or to the left
of the vertex (n, n). See Figure 1.2 for an example.
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Theorem 1.4. Let ai = a for all i, let h(n, n) denote the height function of the
half space six vertex model at (n, n), and let ρ = 1

1+ν−1 . Assume that a ∈ (0, 1) and
q, t, tν ∈ [0, 1). Then depending on ρ, as n → ∞,

(ρ > 1
2) P

h(n, n)− 2a
1+an

(a(1−a))1/3

1+a n1/3
≤ s

→ FGSE(s),

(ρ = 1
2) P

h(n, n)− 2a
1+an

(a(1−a))1/3

1+a n1/3
≤ s

→ FGOE(s),

(ρ < 1
2) P

(
h(n, n)− µn

σn1/2
≤ s

)
→ Φ(s),

where FGSE and FGOE are the Tracy–Widom GSE and GOE distribution functions,
Φ is the distribution function for a standard Gaussian, and

µ =
2a2 + a(ν + ν−1)

(1 + aν)(1 + aν−1)
, σ2 =

a(1− a2)(ν−1 − ν)

(1 + aν)2(1 + aν−1)2
.

Furthermore, if ρ = 1
2 + 2−2/3ξ

n1/3 and t is fixed, then

(ρ ↓ 1
2) P

h(n, n)− 2a
1+an

(a(1−a))1/3

1+a n1/3
≤ s

→ Fcross(s, ξ),

where Fcross is the Baik–Rains crossover distribution.

Remark 1.5. Our exact formulas apply to the general inhomogeneous half space
stochastic six vertex model, and so in principle more general asymptotic results could
be obtained, say for periodic parameters. We do not pursue the details.

Since we obtain results for the half space stochastic six vertex model, it should
in principle be possible to obtain formulas and thus asymptotics for other models
obtained from the six vertex model via limits and a procedure known as fusion.
While many of these models fall into the class of half space Macdonald processes as
studied in [7,24], our work allows for two boundary parameters, both an asymmetry
and a density, and so applies to a larger class of models.

Our method to obtain Fredholm Pfaffian formulas require the generality of the six
vertex model. In the course of establishing these formulas, we find non-trivial distri-
butional identities relating the six vertex model to two other probabilistic models,
the half space Hall–Littlewood measure, and the free boundary Schur process.

1.4. Algebraic identities. At the heart of our approach are two unexpected dis-
tributional identities relating the half space six vertex model with two other objects,
the half space Hall–Littlewood process, and then the free boundary Schur process.
This allows Fredholm Pfaffian formulas derived in [14, 15] to be applied to the six
vertex model, and ultimately the ASEP via a limiting procedure. We now state
these identifications.
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Note that for these algebraic results, no assumptions on the parameters are needed
if the distributional equalities are treated formally. Thus, we will interpret the follow-
ing statements as equalities of formal power series, which give genuine distributional
equalities if the relevant distributions are actually probability distributions, and the
relevant power series converge.

We let

hn(x; q) =
n∑

k=0

(
n

k

)
q

xk

denote the Rogers–Szegö polynomials, and for a partition λ, we let

hλ(q, t, ν) =
∏

i even

hmi(λ)(−t, q)
∏
i odd

(−tν)mi(λ)hmi(λ)

(
− 1

ν2t
, q

)
,

where mi(λ) denotes the number of occurrences of i in the partition λ. We de-
fine the half space Hall–Littlewood measure HL(q,t,ν)

a to be a (signed) probability
measure on partitions proportional to hλ(q, t, ν)Pλ(a; q), where Pλ denotes a Hall–
Littlewood polynomial. Note that this generalizes1 previous definitions of half space
Hall–Littlewood measures in the literature, e.g. [7].

Theorem 1.6. Let h(n, n) denote the height function at (n, n) in the half space
six vertex model with parameters (a1, . . . , an), and let λ be distributed according to
HL(q,t,ν)

a . Then

h(n, n)
(d)
= l(λ).

Theorem 1.6, which relates the half space six vertex model with the half space
Hall–Littlewood measure, is a special case of the more general Theorem 2.5, which
applies to the joint distribution of h(i, n) for all i. It generalizes a result in [8], which
proved the t = ν = 1 case. The proof uses vertex models, and in particular the
Yang–Baxter equation. As a corollary, we obtain contour integral formulas for the
q-moments of the height function for the half space six vertex model, see Corollary
2.7.

We let FBS(q,t,ν)â be a (signed) probability measure on partitions λ proportional
to ∑

ρ

γ
o(ρ′)
1 γ

o(λ′)
2 (q1/2)|ρ|sλ/ρ(â),

where γ1 = ν−1q−1/2, γ2 = −νt, o(λ) indicates the number of odd rows in λ, the
sum is over all partitions ρ ⊆ λ, and â is a particular specialization of the Schur
functions defined in terms of a1, . . . , an. This is a specific specialization of the free
boundary Schur process as defined in [14,15]. See Section 4.1 for further details.

We then state the following result which relates the half space Hall–Littlewood
measure with the free boundary Schur process, after a random shift. We write

1Strictly speaking, this is non-trivially equivalent to previous definitions, see Lemma 2.4.
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χ ∼ RS(q, t) (for what we call the Rogers–Szegö distribution, a possibly signed
probability measure) if

P(χ = k) = (q; q)∞(−t; q)∞
qkhk(−t/q; q)

(q; q)k
.

Theorem 1.7. Let λ and µ have distributions HL(q,t,ν)
a and FBS(q,t,ν)â . Then

P(l(λ) + χ ≤ s) = P(µ1 ≤ s),

where χ ∼ RS(q, t) is independent of λ.

This is equivalent to an identity of symmetric functions (Theorem 3.1), which
generalizes a result in [23]. The proof uses a bijection found in [23].

Remark 1.8. Let us remark that at certain points, the formulas we obtain involve
signed probability measures. This is a technical obstacle which can be overcome, as
long as these measures are exponentially decaying. We will continue to use proba-
bilistic notation even in this case.

To ensure absolute convergence of all power series, it suffices to assume that
ai, q, t, ν

−1 ∈ [0, 1) and ν2t < 1. These conditions are restrictive, but can be lifted
via analytic continuation to obtain Fredholm Pfaffian formulas.

1.5. Outline. In Section 2, we give a formal definition of the half-space six vertex
model and Hall–Littlewood measure, and explain their connection. In Section 3, we
establish an identity of symmetric functions connecting Schur and Hall–Littlewood
functions, and in Section 4, we define the free boundary Schur process and use the
identity from the previous section to connect it to the half space Hall–Littlewood
measure. We then derive Fredholm Pfaffian formulas for the ASEP and the six-
vertex model through known formulas for the free boundary Schur process. Section
5 gives some useful tools and formulas for the asymptotic analysis, which is done in
Sections 6 and 7 for the ρ ≥ 1

2 and ρ < 1
2 regimes respectively.

1.6. Notation. We will use (a; q)n =
∏n−1

i=0 (1 − aqi) to denote the q-Pochhammer
symbol (with n = ∞ allowed), (a1, . . . , ak; q)n = (a1; q)n · · · (ak; q)n, and(

b

a

)
q

=
(q; q)b

(q; q)a(q; q)b−a

to denote the q-binomial coefficient.

We use
(d)
= to denote equality in distribution between two random variables. We

use IS to denote the indicator function for a statement S.
We will use c and C to denote small and large constants respectively which may

change from line to line.

2. The half space six vertex model and half space Hall–Littlewood
measure

In this section, we formally define the half space stochastic six vertex model and
Hall–Littlewood process, and prove a result relating their observables.
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2.1. Half space six vertex model. We start with parameters ai for i ∈ N, q, t
and ν. We will sometimes use the notation qi = q if i > 0 and q0 = t to unify
certain expressions. We call the ai rapidities. Initially, we will assume that they
are chosen so all weights defined below are probabilities, but later on we will view
the weights as rational functions in these parameters, which will then be treated as
formal variables. Recall that

pi,j = p|i−j|(aiaj) =


1−aiaj
1−qaiaj

if i ̸= j,
1−a2i

(1−νtai)(1+ 1
ν
ai)

if i = j.

We will refer to the argument of p|i−j|, the aiaj , as the spectral parameter.
We consider certain configurations of arrows on the edges of N2. Each edge con-

tains at most one arrow. Initially, we begin with arrows entering on the left along
the y-axis, and no arrows entering from the bottom along the x-axis. See Figure 1.2
for an example of such a configuration. We will refer to vertices (i, j) with i ̸= j as
bulk vertices and vertices (i, i) as boundary vertices. Vertices (1, j) and (i, 1) will be
referred to as incoming vertices.

We now describe a Markovian sampling procedure to generate configurations. At
a vertex (i, j) with i ≤ j where both the left and bottom incoming edges already have
arrows assigned, we sample outgoing arrows at the top and right according to the
probabilities given in Figure 1.3. If the vertex is not a boundary vertex (i.e. i < j),
we then also symmetrically set the outcome in vertex (j, i) by requiring that if an
edge is occupied by an arrow, then its reflection about x = y is not, and vice versa.
Repeating this process inductively, we define a random configuration on N2. Note
that as long as we choose the parameters correctly, we obtain a genuine probability
distribution on configurations. For this reason, we will assume from now on that
0 < ai < 1 for all i, 0 ≤ q, t < 1, ν > 0, and νt < 1, which guarantees that we indeed
obtain a probability distribution.

The bottom half of the model contains no additional information, and so it is
possible to consider the model only on vertices (i, j) with j ≥ i, which we will
sometimes do. In this case, boundary vertices should be thought of as having only
one incoming and one outgoing edge, with the same probabilities as described above.

We let h(n, n) denote the height function at (n, n), defined as the number of arrows
leaving a vertex upwards at or to the left of the vertex (n, n). See Figure 1.2 for an
example. Given a configuration, we define the path string S = (s1, . . . , sn) (within
some fixed box of size n) to be the sequence of 0’s and 1’s indicating whether an edge
is occupied with an arrow or not at the top of the box. We have

∑
i si = h(n, n). In

the example given by Figure 1.2, S = (1, 1, 0, 1).
The identification of certain parameters in the ASEP and the six vertex model

is not an accident. Indeed, it is known that under a certain scaling, the six vertex
model converges to the ASEP. Ultimately, we need the six vertex model as parts of
the proof use vertex model techniques. The formulas we obtain for the ASEP are
derived as a limit of ones for the six vertex model.



HALF SPACE CURRENT FLUCTUATIONS 11

2.2. Symmetric functions. We will use symmetric functions in an essential way.
We thus collect some basic background and notation which will be useful throughout
the paper. We refer the reader to [29] for further background.

A partition is a finite sequence of non-increasing numbers non-negative integers.
For a partition λ = (λ1, . . . , λn), we will write l(λ) = n for the length, mi(λ) for
the number of occurrences of i in λ, and λ′ for the conjugate partition given by
transposing its Young diagram. We let o(λ) denote the number of odd rows in λ.
We will also sometimes allow 0 as a part, with the obvious modifications to the above
definitions when this is done.

We let x = (x1, . . . , ) denote a formal alphabet. We will let pλ(x) denote the
power sum symmetric functions, defined by pλ(x) =

∏
pλi

(x), where pn(x) =
∑

xni .
These form a basis for the ring of symmetric functions, which we denote by Λ. It
is a fact that the pn are an algebraically independent generating set for the ring of
symmetric functions, i.e. Λ ∼= C[p1, p2, . . . ]. We define a specialization a to be an
algebra homomorphism a : Λ → C (or possibly some other field). Since the pn are
algebraically independent and generate Λ, a specialization a is equivalent to a choice
of where to send pn for all n.

There is a natural family of specializations, given by plugging in xi = ai for
ai ∈ C and i ≤ n, and xi = 0 for i > n. For this reason, we will use the notation
f(a) = a(f) for a a specialization and f ∈ Λ, even if a is not of this form. One other
family of specializations which we will use is the q-beta specialization. We define an
automorphism of Λ by

pn(x̂) = (−1)n−1(1− qn)pn(x),

and for any specialization a, we let â denote its composition with this automorphism.
We will normally consider the case when a is given by plugging in complex numbers
a = (a1, . . . , an).

Finally, we will deal with three other families of symmetric functions (all indexed
by partitions). The Schur functions, which we denote sλ, are crucial in defining the
free boundary Schur process. The other two families, the Hall–Littlewood polynomials
Pλ(x; q) and q-Whittaker polynomials Q̂λ(x; q), are related by

Q̂λ(x̂; q) = Pλ′(x, q).

We will ultimately need more properties of these symmetric functions, but we will
introduce these as needed.

2.3. Half space Hall–Littlewood measures. Recall that

hn(x; q) =

n∑
k=0

(
n

k

)
q

xk

denotes the Rogers–Szegö polynomials. They satisfy the recurrence

hn+1(x; q) = (1 + x)hn(x; q) + x(qn − 1)hn−1(x; q),
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with h0(x; q) = 1 and h1(x; q) = 1 + x. We will also define

hλ(q, t, ν) =
∏

i even

hmi(λ)(−t, q)
∏
i odd

(−tν)mi(λ)hmi(λ)

(
− 1

ν2t
, q

)
.

Due to the identity hn(x
−1, q) = x−nhn(x; q), hλ(q, t, ν) is invariant under the sub-

stitution ν 7→ (−νt)−1, which has the effect of swapping ν−1 and −νt. We also note
the easy bound

(2.1) |hn(x; q)| ≤
n|x|n

(q; q)n
,

valid if 0 < q < 1 and |x| ≥ 1.

Remark 2.1. We note that if 0 < q, t, ν2t < 1, then hλ(q, t, ν) is always non-
negative, because the even factors are always non-negative from the recurrence, and
the odd factors are non-negative as the sign of hmi(λ)

(
− 1

ν2t
, q
)

is (−1)mi(λ), which
can be proven by induction as in the recurrence, 1 + x is negative and x(qn − 1) is
positive.

Let q, t ∈ [0, 1) and ν > 0 such that ν2t < 1 be parameters, and let a denote a
specialization of the Hall–Littlewood polynomials of parameter q such that Pλ(a; q) ≥
0 for all λ. We define the half space Hall–Littlewood measure2 to be

HL(q,t,ν)
a (λ) =

1

Π(a; q, t, ν)
hλ(q, t, ν)Pλ(a; q),

where Π normalizes this to sum to 1. If a = (a1, a2, . . . ), we have

(2.2) Π(a; q, t, ν) =
∏ (1− aiνt)(1 + ai/ν)

1− a2i

∏
i<j

1− qaiaj
1− aiaj

.

The fact that this sums to 1 is equivalent to a Littlewood identity of Warnaar
(Theorem 1.1 of [46]). This section will give an independent proof of this, see Remark
2.12.

For a specialization a = a1 + a2 + · · ·+ an (if the ai are alphabets, this notation
means concatenation), we define the half space Hall–Littlewood process to be the
measure on ascending sequences of partitions of length n, given by

HL(q,t,ν)
a (λ⃗) =

1

Π(a; q, t, ν)
hλ(n)(q, t, ν)

∏
i

Pλ(i)/λ(i−1)(ai; q),

where λ⃗ = (λ(1) ⊆ . . . ⊆ λ(n)) is an ascending sequence of partitions, and λ(0) = ∅.
The λ(n) marginal is the half space Hall–Littlewood measure, which follows from the
branching rule for Hall–Littlewood polynomials (see (5.5′) of [29])∑

ρ

Pλ/ρ(x; q)Pρ/µ(y; q) = Pλ/µ(x, y; q).

2Note that in general this is a signed probability measure. See Lemma 2.2 for conditions on the
parameters which ensure it is a genuine probability measure.
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More generally, one could define measures on sequences of partitions which are both
ascending and descending, as done in [7], but we leave this to the interested reader.

Lemma 2.2. If q, t, ai, νt, ν−1ai ∈ [0, 1), ν2t < 1, then HL(q,t,ν)
a is a genuine proba-

bility measure. If the condition that ν2t < 1 is dropped, then it is a signed probability
measure which is absolutely summable.

Proof. First, we note that if t ∈ [0, 1) and ν2t < 1, then hλ(q, t, ν) ≥ 0. We have
hλ(q, t, ν) decays exponentially in l(λ) if t ∈ [0, 1) and ν−1 < 1. The condition that
ν−1 < 1 can be relaxed to ν−1ai < 1 for all i, as by homogeneity of Pλ(a; q), we can
replace ai with ν−1ai. □

Remark 2.3. Although the half space Hall–Littlewood process is seemingly more
general than those previously considered in the literature, e.g. in [7, 8, 23], which
correspond to ν = t = 1, it is actually possible to obtain it via the usual half space
Hall–Littlewood process by a plethystic substitution, which is more or less explained
in [46] at the level of the Littlewood identity. However, this does not appear to have
been noticed, and certainly the connection to the half space ASEP with general
boundary seems to be new. This does mean that all general results on half space
Macdonald processes should apply (see e.g. [7]), although often the results are stated
for positive specializations and so do not immediately apply in our setting (but the
proofs should still work). We note that this specialization is special because the
factor hλ factorizes, something which does not happen in general.

Since the argument given in [46] is not quite enough to match to [7] and the
substitution itself is non-trivial, we give an explanation in the following lemma.

Lemma 2.4. Following the notation of [7] (except that we have exchanged the roles
of q and t), we have

Eλ(b) =
∑

µ′ even

belµ (q)Qλ/µ(b) = hλ(q, t, ν),

where b is the specialization defined using plethysm as

b =
{1,−1} − {νt,−ν−1}

1− q
.

Alternatively, b can be defined by

pk(b) =
1 + (−1)k − (νt)k − (−ν)−k

1− qk
.

In particular, the half space Hall–Littlewood process considered in this paper can be
obtained via the specialization b from the one defined in [7].

Proof. Starting from the identity (see e.g. Equation 30 in [7]),∑
λ

Pλ(x; q)Eλ(b) = Π(x, b)
∏
i<j

1− qxixj
1− xixj

,
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it suffices to check that

Π(x; b) =
∏
i

(1− νtxi)(1 + xi/ν)

1− x2i
,

as the Pλ(x; q) are a basis for Λ and we already have an expansion with coefficients
hλ(q, t, ν). This computation can be readily checked. □

Note that if a = (a1, . . . , an) and each ai is a single variable, then the lengths of the
partition increase by at most 1. When a = (a1, . . . , an), we write [λ⃗] = (s1, . . . , sn)
to denote the binary sequence of length n with si = Il(λ(i))=l(λ(i−1))+1, called the
support of λ⃗.

We now state the main result of this section, which gives a distributional rela-
tionship between the half space six vertex model and the half space Hall–Littlewood
measure.

Theorem 2.5. Let a = (a1, . . . , an) and q, t, ν denote the rapidities and other pa-
rameters in the half space six vertex model, and let S denote the path string of a
configuration from the six vertex model. Then

P(S = s) = HL(q,t,ν)
a ([λ⃗] = s).

In particular, we have

(h(i, n))ni=1
(d)
= (l(λ(i)))ni=1.

Remark 2.6. As in Remark 4.6 of [8], we expect a more general statement to be
true, relating a Hall–Littlewood process with ascending and descending partitions to
h(i, j) for (i, j) following a jagged path. Since this is not needed in this paper, we
do not pursue this further.

Using Theorem 2.5 and known contour integral formulas for certain q-moments of
the half space Hall–Littlewood process [7], we obtain the following formulas for the
q-moments of the height function.

Corollary 2.7. Let 1 ≤ n ≤ m and let k ∈ N, and let h(n,m) denote the height
function of the half space six vertex model. Then

E
(
q−kh(n,m)

)
=q(

k
2)

1

(2πi)k

∮
C1

dz1 · · ·
∮
Ck

dzk
∏
i<j

zi − zj
zi − qzj

1− qzizj
1− zizj

×
k∏

j=1

(
1

zj

1− qz2j
(1− νtzj)(1 + zj/ν)

m∏
i=1

1− aizj
1− qaizj

n∏
i=1

zj − ai/q

zj − ai

)
,

with the contours Ci are positively oriented, contain 0 and ai, are contained in the
open ball of radius 1, and are nested such that for i < j, Ci does not contain any
part of tCj.

Proof. The proof follows the same ideas as Corollary 5.8 of [7]. In particular, we
can use Theorem 2.5 and Lemma 2.4 to relate the expectation to a half space Hall–
Littlewood process in the sense of [7], with ρ = (an+1, . . . , am) + {1,−1}−{νt,−ν−1}

1−q .
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The result in [7] is only stated when ρ = (an+1, . . . , am), but the same proof works
in this more general case. In particular, this change only affects the integrand by a
factor of

∏
i

1−z2i
(1−νtzi)(1+zi/ν)

, and the new poles are outside the unit circle and so do
not interfere with the contour manipulations done in the proof. □

Remark 2.8. This formula cannot be deformed to the ASEP limit, as this requires
ai → 1 while the contours must contain ai but not 1, which would cause the poles
zi = z−1

j to become an issue. However, in [9], formulas for q-moments are derived in
terms of a residue expansion (under Liggett’s condition on the jump rates). It would
be interesting to understand the relationship between these formulas, and whether
the formulas found in [9] could be extended to more general rates.

Remark 2.9. The restriction on the parameter ν, that ν2t < 1, will ultimately need
to be removed. Fortunately, this is not an issue, since we will only need to study
the first part of λn, and this marginal is a probability distribution even if ν2t ≥ 1.
Furthermore, Theorem 2.5 holds as an equality of rational functions. Thus, even if
the parameters are arbitrary, the result remains true, although the two sides may be
negative.

Remark 2.10. Since hλ(q, t, ν) is invariant under ν 7→ (−νt)−1, and so is Π(a; q, t, ν),
the half space Hall–Littlewood process is also invariant under this substitution. For
this reason, it’s completely harmless to assume ν ≥ 0 (except for the special case
t = 0 which will be discussed in detail in Remark 4.6). We note that the the half
space six vertex model also has this symmetry.

Remark 2.11. Given that we have defined a two-parameter generalization, it is
natural to wonder whether a Macdonald version of this process exists. Unfortunately,
although it is possible to define such a process, see e.g. [46] where a Littlewood
identity is proven, it lacks many of the nice features that the Hall–Littlewood process
has, and in particular the factor replacing hλ no longer factorizes. However, for some
one-parameter families of specializations, this property remains (see Proposition 1.3
in [46]), which suggests that these processes may also be of some interest. We do
not consider these questions here.

Remark 2.12. Since the proof of Theorem 2.5 does not require a priori knowledge of
the normalizing constant Π(a; q, t, ν), and the six vertex model does not require any
normalization, one can actually derive the formula (2.2) from it. This is equivalent
to Theorem 1.1 of [46], and so we have given a new vertex model proof of this result.

2.4. Deformed bosons. A key tool to prove Theorem 2.5 will be a deformed model
of bosons. This was used to establish a special case of Theorem 2.5 in [8] (when
ν = t = 1), and we extend their proof. In order to do so, we will need to introduce
some results from the paper. We will require two versions of this model, which we
now define.

Both models are models for arrows on a lattice, where the horizontal edges again
can have at most one arrow, but where the vertical edges can have any number of
arrows. The model has parameters (called rapidities) associated to each row and a
parameter q. The vertex weights given by
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m

m

m

m− 1

m

m+ 1

m

m

1 a (1− qm+1) a

(2.3)

where 0 ≤ a < 1 is the row rapidity, and m is the number of arrows entering from
below.

We will also need another version of this model with an alternative normalization.
It is defined in the same way, but with alternative vertex weights

m

m

m

m− 1

m

m+ 1

m

m

b 1 b(1− qm+1) 1

(2.4)

where again, 0 ≤ b < 1 is the row rapidity and m is the number of arrows entering
from below.

In both cases, we will use a graphical notation to write partition functions. For a
single row, we will write wa(·) around a picture to represent the sum over all internal
edges of the products of the vertex weights, with external edges fixed and a denoting
the row rapidity. If there is more than one row, we will instead simply give the
picture with row rapidities identified.

We will also wish to consider infinite rows, formally defined as a limit of longer
finite rows. For finitely supported sequences of non-negative integers mi and ni, we
will let

wa

 0 j

m1

n1

m2

n2

m3

n3

· · ·

· · ·

· · ·

· · ·


= lim
N→∞

wa

 0 j

m1

n1

m2

n2

m3

n3

· · ·

· · ·

· · ·

· · ·

mN

nN

 ,
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and similarly for the second deformed boson model, except with an arrow entering
from the left. These limits are well-defined, because the mi and ni are finitely
supported, so eventually the weights will all be 1. Note that if an arrow entered the
left (or no arrow entered in the second deformed boson model), the weights would
eventually be a, and not 1, and the limit would simply be 0 since a < 1.

Finally, we will introduce an extra feature which we call a boundary vertex, which
corresponds to the boundary of the half space six vertex model. We will use a dot
on a horizontal edge to denote it visually, and it has the effect of probabilistically
outputting an arrow depending on the input, with probabilities

• • • •

aν−1(1−tν2)+(1−t)
(1−aνt)(1+a/ν)

t(1−a2)
(1−aνt)(1+a/ν)

1−a2

(1−aνt)(1+a/ν)
aν−1(1−tν2)+a2(1−t))

(1−aνt)(1+a/ν)

where a is the row rapidity. Note these are equal to the boundary vertex weights in
the half space six vertex model. Here, the weights are the same in both models.

The reason this model is useful to show Theorem 2.5 is that it shares the same
R-matrix as the six vertex model, but its partition functions are given by Hall–
Littlewood polynomials. These two statements are given in the following lemmas.
We will use a crossing rotated by 45◦ to denote a Yang–Baxter vertex, a vertex
with the same weights as those of the six–vertex model with corresponding row and
column parameter.

Proposition 2.13 ([8, Proposition 4.8]). For any finitely supported sequences ni

and mi, and any j1, j2 = 0, 1, we have

(
1− ab

1− qab

)∑
pi

a j2

b j1

m1

p1

n1

m2

p2

n2

· · · · · · =
∑

pi,k1,k2

b

a

k1

j1
k2

j2

m1

p1

n1

m2

p2

n2

· · · · · · ,

where on the left, a and b indicate the row rapidities, and the left boundary conditions
are given by the arrows as indicated.

Lemma 2.14 ([8, Lemma 4.11]). For any partitions λ and µ, we have

wa

 0 0

m1(λ)

m1(µ)

m2(λ)

m2(µ)

m3(λ)

m3(µ)

· · ·

· · ·

· · ·

· · ·

 = Il(λ)=l(µ)Pλ/µ(a; q),
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wa

 0 1

m1(λ)

m1(µ)

m2(λ)

m2(µ)

m3(λ)

m3(µ)

· · ·

· · ·

· · ·

· · ·

 = Il(λ)=l(µ)+1Pλ/µ(a; q),

wa

 1 0

m1(µ)

m1(λ)

m2(µ)

m2(λ)

m3(µ)

m3(λ)

· · ·

· · ·

· · ·

· · ·

 = Il(λ)=l(µ)+1Qλ/µ(a; q),

wa

 1 1

m1(µ)

m1(λ)

m2(µ)

m2(λ)

m3(µ)

m3(λ)

· · ·

· · ·

· · ·

· · ·

 = Il(λ)=l(µ)Qλ/µ(a; q).

Both these results were already used in [8] to study a special case of Theorem
2.5. The key new tool to extend the methods of [8] to show Theorem 2.5 is the
following lemma, which extends Proposition 4.9 of [8] and shows that the more
general boundary for the half space six vertex model in this paper remains compatible
with this deformed boson model. Note that due to the differences in the weights for
the even and odd columns, we must pass the boundary vertices through two at a
time.

Lemma 2.15. For any choice of i, j = 0, 1 and n1, n2 ∈ N, we have

∞∑
m1,m2=0

hm2(−t, q)(−tν)m1hm1

(
− 1

ν2t
, q

)
wa


m2

n2

m1

n1

i j•



=

∞∑
m1,m2=0

hm2(−t, q)(−tν)m1hm1

(
− 1

ν2t
, q

)
wa


m2

n2

m1

n1

i j•

 .

Proof. Although the sums over m1 and m2 are infinite, for any fixed choice of i,
j, n1, and n2, there are only finitely many possible choices which give a non-zero
weight. Thus, we verify the equality directly for each possible choice of i, j, n1, and
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n2. It turns out that the only input needed is the recurrence for the Rogers–Szegö
polynomials, so this is an easy but fairly tedious computation.

This is done via a symbolic computation in SageMath. Since for fixed n1 and n2,
m1 ∈ {n1 − 1, n1, n1 + 1} and m2 ∈ {n2 − 1, n2, n2 + 1}, we simply view hn(x, q) as
a formal variable and use the recurrence to write hn1+1 in terms of hn1 and hn1−1,
and similarly for hn2+1. A bit of care is needed when n1 = 0 or n2 = 0, as the
recurrence is only stated for n ≥ 1, but remains valid for n = 0 by defining h−1 = 0
and extending the deformed boson model to allow −1 arrows to enter from below,
with weight 0. The code used to run this computation can be found in "symbolic
check.sage". □

By iterating Lemma 2.15, we obtain the following proposition.

Proposition 2.16. Let n1, n2, . . . be a finitely supported sequence of non-negative
integers. We have

∑
λ

hλ(q, t, ν)wa

 1 • j

m1(λ)

n1

m2(λ)

n2

m3(λ)

n3

· · ·

· · ·

· · ·

· · ·


=
∑
λ

hλ(q, t, ν)wa

 1 • j

m1(λ)

n1

m2(λ)

n2

m3(λ)

n3

· · ·

· · ·

· · ·

· · ·
 ,

where the sums are over partitions λ.

Proof. The sum over λ is equivalent to a sum over finitely supported sequences mi

of non-negative integers. We then apply Lemma 2.15, where we note that after
restricting to l(λ) ≤ 2N , we require only finitely many applications, and taking
N → ∞ gives the desired equality, as the term on the left hand side with an arrow
entering the row converges to 0, the left hand side converges since any arrow entering
from the bottom needs to travel to the first non-zero ni, giving geometric decay, and
the right hand side is a finite sum. □

Remark 2.17. Note that Proposition 2.16 only holds if an arrow is entering from
the left. At the finite level, it does not matter whether an arrow enters or not, but
there are issues with taking a limit of the right hand side since without an arrow to
block potential arrows from entering at the bottom, arrows will want to enter from
the bottom at the left hand side. Heuristically, one would want to allow arrows to
enter from the bottom infinitely far to the left on the right hand side in order to
make sense of this case.
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2.5. Proof of Theorem 2.5. With the tools developed in the previous section,
the proof of Theorem 2.5 follows the proof in [8], using a Yang–Baxter graphical
argument.

Proof of Theorem 2.5. We have by Lemma 2.14 that HL(q,t,ν)
a ([λ⃗] = s) is equal to

1

Π(a; q, t, ν)

∑
λ

hλ(q, t, ν)

sn

s1a1

...
...

an

m1(λ)m2(λ)m3(λ)· · ·

000· · ·

where the boundary conditions on the left are empty (the ai indicate the row ra-
pidities) and the boundary conditions on the right are indicated by the si. We
can introduce a boundary vertex at the left on the bottom row, at the cost of a

1−a2n
(1−anνt)(1+an/ν)

factor (which will cancel with a factor in Π(a; q, t, ν)), since if an
arrow enters the row the weight will be 0 so only one outcome is possible. We then
use Lemma 2.16 to move the boundary vertex to the right, resulting in the expression

1−a2n
(1−anνt)(1+an/ν)

× 1
Π(a;q,t,ν)

∑
λ hλ(q, t, ν)

•

sn−1

sn

s1a1

...
...

an−1

an

m1(λ)m2(λ)m3(λ)· · ·

000· · ·



HALF SPACE CURRENT FLUCTUATIONS 21

Next, we use Proposition 2.13 to swap the bottom row all the way to the top, at
the cost of a

∏
i

1−aian
1−qaian

factor, coming from Π(a; q, t, ν), resulting in the expression

1−a2n
(1−anνt)(1+an/ν)

∏
i<n

1−aian
1−qaian

× 1
Π(a;q,t,ν)

∑
λ hλ(q, t, ν) •

s1

sn−1

sn

a1

...

an−1

an

m1(λ)m2(λ)m3(λ)· · ·

000· · ·

Repeating this process, we obtain

∑
λ

hλ(q, t, ν)

•

sn

•••••

s1

an

...

a1

m1(λ)m2(λ)m3(λ)· · ·

000· · ·

where we note that the resulting constant after performing all these operations ex-
actly cancels the Π(a; q, t, ν) factor.

Since the deformed boson portion is frozen as all arrows entering from the left must
continue rightwards since no arrows exit from the top, the only non-zero summand
is λ = ∅, for which the weight of the deformed boson portion is 1. Moreover,
the remaining portion is exactly the half space six vertex model where the boundary
condition has arrows entering from the left, and so is equal to P(S = (s1, . . . , sn)). □
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3. An identity of symmetric functions

The goal of this section is to prove the following symmetric function identity. This
will be used in the following section to relate the half space Hall–Littlewood measure
to the free boundary Schur measure. Recall that o(λ) denotes the number of odd
parts in λ.

Theorem 3.1. We have as an identity in the ring of symmetric functions,
k∑

l=0

qlhl(z
2/
√
q; q)

(q; q)l

∑
λ:λ1=k−l

h′λ(q, z, w)Q̂λ(x; q) =
∑

λ,ρ:λ1=k

zo(λ
′)+o(ρ′)wo(λ′)−o(ρ′)q|ρ|/2sλ/ρ(x),

where

h′λ(q, z, w) =
∏

i even

hλi−λi−1
(
√
qz2)

∏
i odd

(zw)λi−λi−1hλi−λi−1
(
√
qw−2).

The proof of Theorem 3.1 follows that of Theorem 10.12 in [23], who proved the
w = 1 case. We now introduce some of the results from [23] needed for the proof.

3.1. Sagan–Stanley skew RSK correspondence. A weighted biword is a triple
π = (π(1), π(2), π(3)) of words of the same (finite) length (with alphabets N), such
that the words are lexicographically ordered, with the reverse order for π(3) (i.e.
π
(1)
i ≤ π

(1)
i+1, and if they are equal, π

(2)
i ≤ π

(2)
i+1, and if they are also equal, then

π
(3)
i ≥ π

(3)
i+1). We refer to π

(3)
i as the weight of that position. We let A+

n denote the
set of weighted biwords where π(1) and π(2) use the alphabet {1, . . . , n}, and π

(3)
i ≥ 0

for all i.
A biword is simply a weighted biword where all positions have weight 0, in which

case we can forget about the weights. We will let π denote the corresponding biword
obtained by forgetting π(3).

We define the transpose πT by swapping π(1) and π(2), and sorting the entries
of all three words to satisfy the above constraints. We say that π is symmetric if
πT = π, and analogously for unweighted biwords.

We let wi(π) denote the biword given by taking the subword of π positions of
weight i. A fixed point of π is a position i such that π

(1)
i = π

(2)
i , and we let fix(π)

denote the number of fixed points, and fix−(π) =
∑m

i=0(−1)i fix(wi(π)) denote the
signed count, where m is the maximal weight appearing in π. We let wt(π) =

∑
i π

(3)
i

denote the sum of the weights in π.
The Sagan–Stanley skew RSK correspondence, introduced in [38], is a bijection

between pairs (π, ν) of a symmetric weighted biword and a partition ν, and a tableaux
P . We refer the reader to [38] for its definition and more details, and here we simply
summarize its key properties that we will require.

It is obtained via iterating an insertion operation on biwords, once for each weight
starting from the maximal weight appearing in π, and ending at 0. This insertion
operation takes a symmetric biword π = (π(1), π(2)) and a skew tableau P of shape
λ/ρ, and outputs a skew tableau Q of shape α/λ, where the numbers appearing in
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Q are the union of the numbers appearing in P and π(1) (and by symmetry also
π(2)). The procedure begins with the empty tableaux on the shape ν/ν. Note that
even if the biword is empty, this insertion operation results in a different output,
unlike the usual RSK insertion operation. We will label the sequence of shapes
for the tableau which appear by λ(i)/λ(i−1), starting from λ(−1)/λ(−2) = ν/ν and
ending at λ(m)/λ(m−1), which is the shape of the final tableaux after all insertions
are completed.

Lemma 3.2. If the Stanley–Sagan correspondence sends (π, ν) to T , where T has
shape λ/ρ and π is a weighted biword with maximal weight m, then

fix(π) + 2o(ν ′) = o(λ′) + o(ρ′),

fix−(π) = o(λ′)− o(ρ′).

Proof. The first equality is given by Corollary 4.6 of [38], and the proof is similar to
that of the second equality given below.

From the definition of the Sagan–Stanley correspondence, we have that S is ob-
tained by starting from the empty diagram ν, and repeatedly applying the ba-
sic skew RSK insertion on the subwords of π by weight. The basic skew RSK
insertion is a correspondence (π, S) ⇐⇒ T where S has shape α/ρ and T has
shape λ/α. This satisfies fix(π) + o(ρ′) = o(λ′) (see Corollary 3.6 of [38]). In
our situation, if λ(i) are the outer shapes under applying RSK insertion, we have
that we start with α = ρ = ν, and have fix(wm−i(π)) + o((λ(i−2))′) = o((λ(i))′),
where λ(−1) = λ(−2) = ν. Then summing these with a factor of (−1)m−i gives∑

i fix(wi(π))(−1)i = o((λ(m))′)−o((λ(m−1))′), which is exactly what we want, since
the final shape is λ/ρ = λ(m)/λ(m−1). □

3.2. A bijection of Imamura–Mucciconi–Sasamoto. We now introduce the it-
erated skew RSK correspondence introduced in [23] which we need for the proof.
Since we will not need the details of the construction, we will treat the bijection as
a black box, and simply state the needed properties, all of which are proved in [23],
and we refer the reader there for more details.

A vertically strict tableaux (VST) of shape µ is a filling of µ which is strictly
increasing in the columns, and has no condition on the rows. We denote the set of
VSTs of shape µ by V ST (µ). We will require certain statistics on VSTs called the
intrinsic energy, denoted H(V ), and the local energies, Hi(V ), for a VST V . The
exact definitions are unimportant, so we refer the reader to [23] for details. We also
require a statistic, µ(π) called the Greene invariant, for which we again refer the
reader to [23] for the definition. Before we discuss the bijection itself, we record the
following fact about the Sagan–Stanley RSK correspondence. It follows immediately
from Theorem 1.2 and Corollary 1.3 of [23].

Lemma 3.3. If (π, ν) corresponds to T under the Stanley–Sagan correspondence,
where T has shape λ/ρ, then

λ1 = ν1 + µ(π)1.
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Now we turn to the bijection itself. For a partition µ, we define the set

K(µ) = {(κ1, . . . , κµ1) | κi ≥ κi+1 if µ′
i = µ′

i+1}.

This should be thought of as a collection of partitions κ(i) "hanging off of" µ, in the
sense that the length of κ(i) is µi − µi+1. In [23], a bijection Υ̃ is given between
symmetric weighted biwords with µ(π) = µ and pairs (V, κ) with V ∈ V ST (µ) and
κ ∈ K(µ). First, use the Sagan–Stanley skew RSK correspondence to map (π, ∅)
to a tableau P1. We then define dynamics by defining Pt+1 to be obtained from
Pt via insertion of an empty word into Pt. This means that under the skew RSK
correspondence, Pt corresponds to (π(t), ∅), where π(t) is simply π with the weights
shifted up by t−1 (this has the effect of causing t−1 weights with no entries starting
from 0, which means we end with t− 1 many empty insertions). We then obtain V
and κ via studying the asymptotics of Pt as t → ∞. Their exact definitions are a
little complicated, so we refer the reader to [23] and just state the needed results.

The following result is essentially given by Corollary 8.2 of [23], together with
the observation that since the Sagan–Stanley skew RSK correspondence restricts to
a bijection between symmetric biwords and a single tableau, the map Υ̃, which is
defined via iterating the Sagan–Stanley correspondence, does as well.

Theorem 3.4 ([23, Corollary 8.2]). The map Υ̃ is a bijection between symmetric
weighted biwords with weights in {0, . . . , n} and µ(π) = µ, and pairs (V, κ), where
V ∈ V ST (µ) and κ ∈ K(µ), such that

wt(π) = 2H(V ) + |κ|.

The following lemma is a restatement of Equations 10.17 and 10.18 in [23].

Lemma 3.5. Let Pt denote the skew RSK dynamics defining Υ̃ with P0 corresponding
to (π, ∅) under the skew RSK correspondence. Let λ(t)/ρ(t) denote the shape of Pt.
Then for large enough t, we have

(λ(t))′i = 2Hi(V ) + κi + tµ′
i,

(ρ(t))′i = 2Hi(V ) + κi + (t+ 1)µ′
i,

where Υ̃(π) = (V, κ).

Lemma 3.6. If µ(π) = µ and Υ̃(π) = (V, κ), we have

fix(π) = o(κ) + o(κ+ µ′)

fix−(π) = −o(κ) + o(κ+ µ′).

Proof. The first statement is given by Lemma 10.5 of [23], and we follow their proof
closely for the second statement.

Consider the skew RSK dynamics (Pt, Pt) associated to the initial data (P, P ),
where P corresponds to (π, ∅) under the Sagan–Stanley correspondence, and let
λ(t)/ρ(t) denote the shape of Pt. We let π(t) correspond to Pt in the same man-
ner. Then π(t) is given by π with the weights shifted by t − 1. Thus, fix−(π(t)) =



HALF SPACE CURRENT FLUCTUATIONS 25

(−1)t−1 fix−(π). Now by Lemma 3.2, this implies that fix−(π) = (−1)t−1(o((λ(t))′)−
o((ρ(t))′)).

On the other hand, by Lemma 3.5, we have for large enough t,

(λ(t))′i = 2Hi(V ) + κi + tµ′
i

(ρ(t))′i = 2Hi(V ) + κi + (t+ 1)µ′
i.

Thus, when t is even, o((λ(t))′) = o(κ) and o((ρ(t))′) = o(κ+ µ′), and when t is odd,
the opposite occurs, and in both cases our desired equality holds. □

3.3. Proof of Theorem 3.1. We require the following expansions. First, recall
that sλ/µ(x1, . . . , xn) =

∑
P∈SST (λ/µ,n) x

P , where SST (λ/µ, n) denotes the set of
semistandard Young tableau of shape λ/µ, filled with numbers 1, . . . , n, and xP is
the product of a factor of xi for each occurrence of i in P .

We let P̂µ(x; q) =
∏

i(q; q)µi−µi+1Q̂µ(x; q).

Lemma 3.7 ([23, Proposition 10.1]). We have

P̂µ(x; q) =
∑

V ∈V ST (µ)

qH(V )xV .

Lemma 3.8 ([23, Lemma 10.6]). We have

qnhn(z
2/
√
q; q)

(q; q)n
=
∑

ν:ν1=n

q|ν|/2z2o(ν
′)

and
hn(

√
qz2; q)

(q; q)n
=
∑

ν:ν1≤n

q|ν|/2z2o(ν
′).

Proof of Theorem 3.1. We follow the proof of Theorem 10.12 in [23]. Note that to
prove the identity in the ring of symmetric functions, it suffices to prove the identity
for an arbitrarily large finite collection of variables x1, . . . , xn, which we fix. Then∑

λ,ρ:λ1=k

zo(λ
′)+o(ρ′)wo(λ′)−o(ρ′)q|ρ|/2sλ/ρ(x)

=
∑

λ,ρ:λ1=k

∑
P∈SST (λ/µ,n)

zo(λ
′)+o(ρ′)wo(λ′)−o(ρ′)q|ρ|/2xP

=
∑
µ,ν

µ1+ν1=k

∑
π∈A+

n

π−1=π,µ(π)=µ

q|ν|/2+wt(π)/2zfix(π)+2o(ν′)wfix−(π)xp(π)

=

k∑
l=0

 ∑
ν:ν1=l

q|ν|/2z2o(ν
′)


×

∑
µ:µ1=k−l

 ∑
κ∈K(µ)

q|κ|/2zo(κ)+o(κ+µ′)w−o(κ)+o(κ+µ′)

 ∑
V ∈V ST (µ)

qH(V )xV

 ,
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where the first equality is the usual expansion of skew Schur functions in terms of
semistandard Young tableau, the second equality is given by the Sagan–Stanley skew
RSK correspondence along with Lemmas 3.3 and 3.2, and the third equality is given
by the bijection Υ̃ of Theorem 3.4 along with Lemma 3.6.

We then decompose κ into partitions κ(i) and rewrite the sum over κ as a product
over i. Note that if i is odd, then o(κ(i) + (iµi−µi+1)) = e(κ(i)) and if i is even,
o(κ(i) + (iµi−µi+1)) = o(κ(i)) (with the caveat that κ(i) has exactly µi − µi+1 rows,
and so 0’s are counted). Then the even factors are given by∑

κ(i),l(κ(i))≤µi−µi+1

q|κ
(i)|/2z2o(κ

(i))

and the odd factors are given by

(zw)µi−µi+1
∑

κ(i),l(κ(i))≤µi−µi+1

q|κ
(i)|/2w−2o(κ(i)).

Finally, we can compute all these quantities using Lemmas 3.8 and 3.7, as well as
the identity

∏ 1
(q;q)µi−µi+1

P̂µ(x; q) = Q̂µ(x; q). The desired equality immediately
follows. □

Remark 3.9. The special case of Theorem 3.1 when w = 1 was given in [23]. Our
proof follows the same ideas, the only difference being that we keep track of an extra
statistic o(λ′)− o(ρ′) through the variable w. Summing over k gives the Littlewood
identity of Warnaar [46, Theorem 1.1], and the above proof thus gives a fully bijective
proof (the special case w = 1 is Theorem 10.3 in [23]). This identity is also somewhat
similar to certain bounded Littlewood identities proven in [37]. It is unclear if there
there is any direct relationship, and this seems to be an interesting avenue for further
exploration.

4. Fredholm Pfaffian formulas

In this section, we obtain Fredholm Pfaffian formulas for the half space six vertex
model and the half space ASEP. This is done via the free boundary Schur process,
which is introduced and related to these models in this section. However, while
Fredholm Pfaffian formulas for the free boundary Schur process are available in [14],
they require restrictions on the parameters, which require analytic continuation to
lift. We will deal with this in later sections.

4.1. Free boundary Schur process. We recall that sλ and pλ denote the Schur
and power sum symmetric functions respectively. Let a, b denote specializations, and
let q, t, ν, z be parameters. We will let

H(a; b) = exp

∑
n≥1

1

n
pn(a)pn(b)

 ,
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and

H̃(a) = exp

∑
n≥1

p2n−1(a)

2n− 1
+

pn(a)
2

2n

 .

For later use, we will note that if a = (a1, . . . ), then

(4.1) H(â; z) =
∏ 1 + aiz

1 + qaiz
.

We let

Φ(a; q, t, ν) =
1

(q; q)∞(−t; q)∞

∏
n≥0

H̃(qna)H(qna; {νt,−ν−1}/(1− q)),

where {νt,−ν−1}/(1− q) is defined to be the specialization

{νt,−ν−1}/(1− q) = (νt,−ν−1, qνt,−qν−1, q2νt,−q2ν−1, . . . ).

With the specialization â given by pn(â) = (−1)n−1(1 − qn)pn(a), which will ulti-
mately correspond to the six vertex model and the ASEP, we have

Φ(â; q, t, ν) =
1

(q; q)∞(−t; q)∞
Π(a; q, t, ν),

where we recall that Π is the partition function for the half space Hall–Littlewood
measure.

For convenience, we will introduce parameters γ1 = ν−1√q−1 and γ2 = −tν,
and let a be a specialization. The free boundary Schur measure FBS(q,t,ν)a is the
probability on partitions defined by

FBS(q,t,ν)a (λ) =
1

Φ(a; q, t, ν)

∑
ρ

γ
o(ρ′)
1 γ

o(λ′)
2 (q1/2)|ρ|sλ/ρ(a).

This was introduced in a more general fashion in [14]. The fact that Φ(a; q, t, ν) is
the correct normalization is shown in [14]. Alternatively, Theorem 3.1 actually gives
a new proof of this.

Remark 4.1. Note that due to the sign, the free boundary Schur process we consider
is not really a probability measure on partitions. However, the marginal λ1 is a
genuine random variable, at least when t ≤ q (this can be seen from Theorems
1.6 and 1.7). Moreover, as long as t < 1 and ν−1 < 1, the definition gives an
absolutely summable signed probability measure, and the expression P(λ1 ≤ s) =∑

x≤s FBS
(q,t,ν)
a (x) is analytic in t and ν. Thus, the formulas we will derive for

P(λ1 ≤ s), which are also analytic functions of t and ν, will continue to apply even
when λ1 is not a random variable.

Recall that χ ∼ RS(q, t) if

P(χ = k) = (q; q)∞(−t; q)∞
qkhk(−t/q; q)

(q; q)k
.

Note that this always sums to 1 by the q-binomial theorem. If t ≤ q, then this defines
a genuine probability distribution, since the probabilities are always non-negative.



HALF SPACE CURRENT FLUCTUATIONS 28

If 1 > t > q, then these probabilities may be negative, but still decay as k → ∞.
For a random variable X, we will continue to write P(X+χ ≤ s) =

∑
s1+s2≤s P(χ =

s1)P(X ≤ s2) even if 1 > t > q. We note that there will be no convergence issues
since P(χ = s) is absolutely summable if t < 1. When t < 1, one can recover the
distribution of X from P(X + χ ≤ s), but when t ≥ 1, this distribution no longer
decays, and it is not clear whether one could extract asymptotic information after
convolution against it. See Section 5.3 for details.

We now give a proof of Theorem 1.7, which follows easily from Theorem 3.1.

Proof of Theorem 1.7. This follows immediately from Theorem 3.1, taking zw = −tν
and z/w = (ν

√
q)−1. In particular, since the identity holds at the level of symmetric

functions, we can simply apply the involution pn(a) 7→ pn(â) which takes Q̂λ(a; q)
to Pλ′(a; q). In particular, this swaps the roles of λ1 and l(λ). □

4.2. Fredholm Pfaffian formulas. We now present Fredholm Pfaffian formulas
for the free boundary Schur process, and thus the half space six vertex model and
ASEP. For more details on Fredholm Pfaffians, see Appendix A. Let ζ ∈ (0, 1) be an
auxiliary parameter. We write S ∼ Theta(ζ2, q2) to indicate that S is distributed
according to

P(S = k) =
qk

2
ζ2k

θ3(ζ2; q2)
.

Here, θ3(ζ; q) = (q; q)∞(−√
qζ; q)∞(−√

q/ζ; q)∞ is the Jacobi theta function, and
the fact that this sums to 1 is the Jacobi triple product identity.

We will let D
(γ2)
x denote the difference operator defined by

(4.2) D(γ2)
x f(x) =

(1− γ2)
2

2

∞∑
i=1

γi−1
2 (f(x+ i)− f(x− i))

in the (discrete) variable x. Note that this definition converges absolutely for any
function with a bound of the form |f(x)| ≤ Cγ−|x| for some γ > |γ2| (and in
particular can be defined even if the function does not decay).

Theorem 4.2. Assume that |γ1
√
q| < 1, |γ2| < 1, and that pn(a) = O(cn) for some

c < 1. Let λ ∼ FBS(q,t,ν)a , and let S ∼ Theta(ζ2, q2). Then if 1 < r′ < r are close
enough to 1,

P(λ1 + 2S ≤ s) = pf(J −K)l2(Z>s),

where the correlation kernel K is given by

K =

(
k(x, y) −2D

(γ2)
y k(x, y)

−2D
(γ2)
x k(x, y) 4D

(γ2)
x D

(γ2)
y k(x, y) + (D

(γ2)
x −D

(γ2)
y )∆(x, y),

)

where ∆(x, y) is the indicator that x = y, D(γ2)
x is defined by (4.2),

k(x, y) =
(1− γ2)

−2

(2πi)2

∮
|z|=r

∮
|w|=r′

z−x−3/2w−y−5/2F (z)F (w)K(z, w)dzdw
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with

F (z) =
∏
n≥1

H(qna; z)

H(qna; z−1)

and

K(z, w) =
(q, q, w/z, qz/w; q)∞

(1/z2, 1/w2, 1/zw, qwz; q)∞

θ3(ζ
2z2w2; q2)

θ3(ζ2; q2)
g(z)g(w),

with

g(z) =
(γ1

√
q/z, γ2/z; q)∞

(γ1
√
qz, γ2qz; q)∞

.

Proof. This is essentially given in [14, 15] and the manipulations follow those in
Theorem 4.5 of [24]. We start with [14, Theorem 2.5] (see Theorem 2.10 along
with Section 3.3.2 in the preprint version for the most general statement needed
in our setting), although see also [15], with the specializations u =

√
q, v = 1,

γ1 = ν−1/
√
q, γ2 = −tν, ρ+ = a, and ρ− = ∅, which gives after some elementary

manipulations (including multiplying first/second row and column by (1−γ2)
−1 and

1− γ2 respectively) the formulas

K11(x, y) =
(1− γ2)

−2

(2πi)2

∮
|z|=r

∮
|w|=r′

z−x−3/2w−y−5/2F (z)F (w)K(z, w)dzdw

K12(x, y) =
1

(2πi)2

∮
|z|=r

∮
|w|=r′

z−x−3/2wy−1/2 F (z)

F (w)
K(z, 1/w)

(1− w2)

(1− γ2w)(1− γ2/w)
dzdw

K22(x, y) =
(1− γ2)

2

(2πi)2

∮
|z|=r

∮
|w|=r′

zx−3/2wy−1/2 1

F (z)F (w)
K(1/z, 1/w)

× (1− w2)(1− z2)

(1− γ2w)(1− γ2/w)(1− γ2z)(1− γ2/z)
dzdw,

and K21(x, y) = −K12(y, x).
Then the K11 entry is equal to k(x, y). The K12 entry is obtained by deforming

the contour to |w| = 1/r′ and substituting w 7→ w−1. Note that the differences in
the integral to the one defining the K11 entry amount to a factor of

(4.3) −(1− γ2)
2 w − w−1

(1− γ2w)(1− γ2w−1)
=

(1− γ2)
2

γ2

(
1

1− γ2w
− 1

1− γ2w−1

)
,

which matches the factor given by

2D(γ2)
y w−y =

(1− γ2)
2

γ2

(
1

1− γ2w−1
− 1

1− γ2w

)
w−y.

It is easy to see that the claimed formula for K21(x, y) equals −K12(y, x).
To check the formula for K22, we perform contour deformations and substitutions

for both z and w. However, when we deform the contours, we encounter a pole at
z = w−1 due to the 1−zw factor in the denominator of K(1/z, 1/w), after which the
same computations as above show the differences in the integrals amount to a factor
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matching the ones obtained from the difference operators. Since F (z−1) = F (z)−1

and K(w, 1/w) = (1− γ2w)(1− γ2/w)/(1− w2), the residue at z = w−1 is

1

2πi

∮
|w|=r′

wy−x−1 w−1 − w

(1− γ2w)(1− γ2/w)
dw.

By assumption, |γ2| < 1/r′ and so the partial fraction decomposition (4.3) can be
expanded into two power series, giving a residue of a|x−y|−1

i if |x − y| ≥ 1 and 0 if
x = y, which matches (D

(γ2)
x −D

(γ2)
y )∆(x, y). In particular, |γ2| < 1/r′ means the

exponential growth rate of k(x, y) is strictly smaller than γ−1
2 so D

(γ2)
x is well-defined

in the all the claimed expressions. □

Remark 4.3. Let us note that one needs to take

1 < r′ < r < min(ν, |γ2|−1,
√
q−1)

That is, all poles within the unit ball should be contained in the contours, and all
poles outside the unit ball should be outside these contours (and no poles should lie
on the unit sphere). From now on, we will always implicitly assume this when using
Theorem 4.2, and will simply say that r, r′ are sufficiently close to 1. This is quite
restrictive, and we will want to relax these assumptions to obtain formulas in the
ρ ≤ 1

2 regimes. This will require analytic continuation.

Let us record for later use the two specific cases we are interested in.

Corollary 4.4. Let h(n, n) denote the height function in the six vertex model at
(n, n). Then

P(h(n, n) + χ+ 2S ≤ s) = pf(J −K)l2(Z>s),

with

(4.4) F (z) =
∏ 1 + aiz

1 + ai/z
.

Proof. By Theorems 2.5 and 1.7, we have that h(n, n) + χ is distributed as λ1 in
a free boundary Schur process FBS(q,t,ν)â . The relevant specialization of H(a; z) is
given by (4.1), giving

H(â; z) =
∏
i

1 + aiz

1 + qaiz
,

which gives the stated formula for F (z). Furthermore, the restriction that ν2t < 1
can be removed, as both sides are analytic in ν and t, and make sense even without
this restriction. □

Corollary 4.5. Let N(τ) denote the current at 0 in the half space ASEP. Then

P(−N(τ) + χ+ 2S ≤ s) = pf(J −K)l2(Z>s),

where

(4.5) F (z) = e(1−q)τ 1
2

1−z
1+z .
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Proof. The ASEP can be obtained from the six vertex model. Specifically, setting
ai = 1− (1− q)ε/2, if n = τ/ε, we have as ε → 0,

n− h(n, n) → N(τ),

see for example Proposition 4.1 of [22]. Starting from (4.4), we can compute that
z−nF (z) converges to (4.5). The shift in z is due to the corresponding shift in x, y to
cancel the shift in s. As the integrands are bounded in ε (and in particular no poles
cross the contour as ε → 0), taking a limit of Corollary 4.4 and applying dominated
convergence gives the desired result. In particular, note that the parameters ν and
t in the six vertex model determine α and β, the boundary rates in the ASEP, in
such a way that the formula for ν−1 for the ASEP is satisfied. □

Remark 4.6. There is some subtlety in Corollary 4.5 when t = 0. Normally, the
correspondence between the parameters (α, β) and (t, ν) in the ASEP is bijective,
but this fails when t = 0. Indeed, for any α ≥ 1 − q, we have the density is 1 at
the boundary. Thus, while the formula given works for α < 1 − q, it doesn’t make
sense beyond this. Instead, one must allow ν ∈ (−∞,−1) to recover all values of α.
Normally, this would correspond to the symmetry exchanging −νt and ν−1 in the
six vertex model, but in this degenerate situation, it instead allows access to the full
range of parameters. Note that there are no issues with this in the formula (or in
the six vertex model) since t = 0, and in particular, the ν → ∞ and ν → −∞ limits
match, both giving the ASEP at α = 1 − q. This ultimately has no effect on the
asymptotic analysis, and so we will ignore this subtlety from now on.

5. Asymptotics: Preliminaries

Having established the algebraic identities needed to connect the half space ASEP
and six vertex model with free boundary Schur processes and obtaining exact for-
mulas, we now turn to the problem of computing asymptotics with these formulas.
In fact, our formulas currently only hold when ν > 1, and so much of the difficulty
will be to analytically continue this to all ν > 0. We first begin by giving Fredholm
Pfaffian formulas for our limiting distributions, and then establish some preliminary
tools. In the following two sections, we establish Theorems 1.1 and 1.4, first in the
ρ ≥ 1

2 regimes, and then the ρ < 1
2 regime.

5.1. Fredholm Pfaffian formulas for limiting distributions. The Tracy–Widom
GOE and GSE distributions arise as the distribution of the largest eigenvalue of cer-
tain matrix ensembles. Introduced in [41], they appear ubiquitously in the study of
random matrices and stochastic models in the KPZ universality class as a universal
scaling limit. The Baik–Rains crossover distribution was introduced in [4] as a family
of distributions interpolating between the GOE and GSE distributions.

We first give the limiting Fredholm Pfaffian kernels that we wish to show as limits.
These formulas were introduced in [24], although many other formulas are known.
For the purposes of this paper, these formulas will serve as definitions for the Tracy–
Widom GOE, GSE, and Baik–Rains crossover distributions.
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For δ ∈ R, we let Cδ denote the contour given by two lines starting at δ and
making a ±π/3 angle with the positive real line, oriented to start below and end
above the real axis.

Definition 5.1. The Baik–Rains crossover distribution is a family of distributions
Fcross(s; ξ) indexed by ξ ∈ (0,∞), with

Fcross(s; ξ) = pf(J −K(ξ)
cross)L2(s,∞),

with

K(ξ)
cross =

(
k
(ξ)
cross(u, v) −∂vk

(ξ)
cross(u, v)

−∂uk
(ξ)
cross(u, v) ∂u∂vk

(ξ)
cross(u, v)

)
,

where

k(ξ)cross(u, v) =
1

4

1

(2πi)2

∮
Cδ

∮
Cδ

(α− β)(ξ + α)(ξ + β)

αβ(α+ β)(ξ − α)(ξ − β)
e

α3

3
−αu+β3

3
−βvdαdβ,

and ξ > δ > 0. We define FGSE(s) = Fcross(s;∞), given by

FGSE(s) = pf(J −KGSE)L2(s,∞),

with

KGSE =

(
kGSE(u, v) −∂vkGSE(u, v)

−∂ukGSE(u, v) ∂u∂vkGSE(u, v)

)
,

where

kGSE(u, v) =
1

4

1

(2πi)2

∮
C1

∮
C1

α− β

αβ(α+ β)
e

α3

3
−αu+β3

3
−βvdαdβ.

Finally, we define FGOE(s) as Fcross(s; 0), given by the formula

FGOE(s) = pf(J −KGOE)L2(s,∞),

with

KGOE =

(
kGOE(u, v) −∂vkGOE(u, v)

−∂ukGOE(u, v) ∂u∂vkGOE(u, v)

)
,

where

kGOE(u, v) =
1

4

1

(2πi)2

∮
C1

∮
C1

α− β

αβ(α+ β)
e

α3

3
−αu+β3

3
−βvdαdβ + b(u)− b(v)

and

b(u) =
1

2πi

∮
C1

e
α3

3
−αu

2α
dα.

Remark 5.2. The extra summands in the definition of FGOE come from poles which
cross the contour as ξ → 0, see [24] for details. We will see the same phenomenon
for the pre-limiting kernels when we study asymptotics in the ρ = 1

2 regime.
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5.2. Summation by parts. We first establish some summation by parts formulas
for D(γ)

x , which we recall was defined by (4.2). The following result is easily seen by
comparing the two sides of the equality.

Lemma 5.3. Let f, g : Z → R be of sufficient decay. We have the summation by
parts formula∑

x>s

(D(γ)
x f)(x)g(x) = −

∑
x>s

f(x)(D(γ)
x g)(x) +B(γ)(f, g)(s) +B(γ)(g, f)(s),

where

B(γ)(f, g)(s) =
(1− γ)2

2

∑
i≥1

∑
1≤j≤i

γi−1f(s+ j)g(s+ j − i).

We will only need to use the following special case.

Lemma 5.4. Let f : Z2 → R be of sufficient decay, and let ∆(x, y) be the indicator
that x = y. Then∑
x,y>s

((D(γ)
x −D(γ)

y )∆(x, y))f(x, y) = −
∑
x>s

((D(γ)
y −D(γ)

x )f(x, y))|y=x+(B(γ)
x −B(γ)

y )f(s, s),

where |y=x means we substitute y = x into the expression, and

(B(γ)
x −B(γ)

y )f(s, s) =
(1− γ)2

2

∑
i≥1

∑
1≤j≤i

γi−1(f(s+ j− i, s+ j)− f(s+ j, s+ j− i)).

Proof. We simply apply the previous lemma. Note that B
(γ)
x (f(x, y),∆(x, y)) = 0

since each term contains a factor ∆(s+j−i, y) with j ≤ i and y > s, and similarly for
B

(γ)
y (f(x, y),∆(x, y)). The expression for (B

(γ)
x − B

(γ)
y )f(s) comes from evaluating

the remaining boundary terms. □

More generally, for variables x1, . . . , xn, we define analogously D
(γ)
M and B

(γ)
M for

any matching M (i.e. a set of disjoint pairs from [n]), with the convention that the
smaller index always appears as the first term.

We will need to repeatedly use a multivariate version of this integration by parts.
First, we introduce some notation. We let x = (x1, . . . , xn) and y = (y1, . . . , yn)

denote a set of 2n variables. For a subset I ⊆ [n] = {1, . . . , n}, we let D
(γ)
I =∏

i∈I(D
(γ)
xi − Dyi

(γ)) and B
(γ)
I =

∏
i∈I(B

(γ)
xi − B

(γ)
yi ). Note that since the different

operators act on disjoint sets of variables, they all commute.

Lemma 5.5. We let f : Z2n → R be of sufficient decay. Then∑
x1,...,xn>s
y1,...,yn>s

(D
(γ)
[n]

∏
∆(xi, yi))f(x, y) =

∑
I⊆[n]

(−1)|I|
∑

xi>s,i∈I
D

(γ)
I B

(γ)
Ic f(x, y)

∣∣∣∣∣ yi=xi,i∈I
xi=yi=s,i∈Ic

.

Proof. This follows immediately from applying the previous lemma to each pair of
variables and expanding. □
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Finally, we will eventually want to show that asymptotically, these boundary terms
vanish on functions which are skew-symmetric. The following simple estimate, which
follows from splitting the sum at i = N + 1, will suffice.

Lemma 5.6. Let f : Z2 → R such that |f(x)| ≤ C((1− c)γ−1)|x| for some c. Then
for all N ≥ 0,

|B(γ)f(s, s)| ≤ (1− γ)−2(C(1− c)N + ∥f |[s−N,s+N ]2∥∞).

5.3. Extracting asymptotics from signed measures. We needed to add random
shifts to our observables of interest to obtain exact formulas. Asymptotically, these
random shifts do not matter since they are of constant order and we scale non-
trivially. However, when t > q, χ ∼ RS(q, t) is not actually a random variable, but
rather a signed measure. We thus show that asymptotics can still be extracted in
this case.

We first show that RS(q, t) is itself the convolution of two simpler signed measures,
and that the signed portion has a convolutional inverse.

Lemma 5.7. We have
qnhn(−t/q; q)

(q; q)n
=
∑

k+l=n

qk

(q; q)k

(−t)l

(q; q)l
.

Proof. We compute
qnhn(−t/q; q)

(q; q)n
=
∑
k

qn−k(−t)k

(q; q)k(q; q)n−k

and the result follows. □

Lemma 5.8. We have ∑
k+l=n

(−t)k

(q; q)k

tlq(
l
2)

(q; q)l
=

{
1 if n = 0

0 if n > 0

Proof. We compute the generating function∑
k,l

(−t)k

(q; q)k

tlq(
l
2)

(q; q)l
zk+l =

∑
k

(−tz)k

(q; q)k

∑
l

(tz)lq(
l
2)

(q; q)l
= 1

using the q-binomial theorem on each factor. Taking the coefficient of zn gives the
desired result. □

Next, we show that convolution against a fixed signed measure of sufficient decay
has no effect on the asymptotics.

Lemma 5.9. Let f : N → R be a distribution function on N, and let Fn denote a
sequence of functions on Z such that

∑
x |Fn(x)| is uniformly bounded,

∑
Fn(x) = 1,

and supx≥a(n)+b(n)(s−1) |Fn(x)| → 0 as n → ∞, and∑
x≤a(n)+b(n)s

Fn(x) → µ(−∞, s)
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for functions a, b : N → N with b(n) → ∞ and µ a probability measure on R. Then∑
x+y≤a(n)+b(n)s

f(x)Fn(y) → µ(−∞, s)

Proof. It suffices to show∑
x≤ω(n)

f(x)
∑

y≤a(n)+b(n)s−x

Fn(y) → µ(−∞, s)

for ω(n) a function with ω(n) → ∞, since

∑
x>ω(n)

f(x)

∣∣∣∣∣∣
∑

y≤a(n)+b(n)s−x

F (y)

∣∣∣∣∣∣→ 0.

Take ω(n)2 to grow slower than (supx≥a(n)+b(n)(s−1) |Fn(x)|)−1, and slower than b(n).
Then we may replace the sum over y with a sum up to a(n) + b(n)s for all x, with
an error bounded by

ω(n)2 sup
a(n)+b(n)s−ω(n)≤y

|Fn(y)|,

which goes to 0 by the choice of ω(n). This then implies the desired result. □

6. Asymptotics: Crossover, GSE, and GOE asymptotics

In this section, we establish GSE, GOE, and crossover asymptotics for ν−1 ≥ 1.
The crossover and GSE regimes are very similar, while the GOE regime requires a
little extra work due to the crossing of poles through the contours. We leave the
Gaussian asymptotics for Section 7 as they are much more involved.

6.1. Crossover and GSE. Unfortunately, the kernel from Theorem 4.2 is not of
the same form as the kernels defining the limiting distributions. We must first use
summation by parts to obtain a kernel of the same form, and show that the boundary
terms appearing are negligible.

Let us now state the assumptions that we will require in this section. These
assumptions will need to be suitably modified in the other regimes, but we will
explain how to adapt the arguments here in each other case separately.

Assumption 6.1. Let k(x, y) : Z2 → R be a family of skew symmetric functions
indexed by τ (or n with the obvious adjustments below). Fix s ∈ R. We introduce
new variables u, v via x = µτ +στ1/3u and y = µτ +στ1/3v for some constants µ, σ.
We will assume that there exists c, C > 0 such that

(6.1)
∣∣∣∣(στ1/3D(γ2)

x

)i (
στ1/3D(γ2)

y

)j
k(u, v)

∣∣∣∣ ≤ Ce−c(u+v)

for i, j ≤ 2 and u, v > s, and

(6.2)
∣∣∣∣(στ1/3D(γ2)

x

)i (
στ1/3D(γ2)

y

)j
(k(u+ du, v + dv)− k(u, v))

∣∣∣∣ ≤ Cτ−1/6

for all i, j ≥ 0, u, v > s, and du, dv ∈ [−τ−1/6, τ−1/6].
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We study the ASEP and the six vertex model in this paper. For the half space
ASEP, µ = −1−q

4 and σ = 2−4/3(1 − q)1/3τ1/3. For the homogeneous six vertex

model with ai = a for all i, we have µ = 2a
1+a and σ = (a(1−a))1/3

1+a .

Lemma 6.2. Let k(x, y) : Z2 → R be a family of skew-symmetric kernels satisfying
Assumption 6.1. Then for any M a perfect matching of some even subset J of
{1, . . . , n} and M ′ ⊆ M , we have

∑
ui>s

i ̸∈J or (i,j)∈M ′

∣∣∣∣∣∣B(γ2)
(M ′)cD

(γ2)
M ′ pf(k(ui, uj))(2J)c

∣∣∣∣ui=uj=s,(i,j)∈(M ′)c

ui=uj ,(i,j)∈M ′

∣∣∣∣∣∣
≤C(2(n− |J |))(n−|J |)/2τ−|(M ′)c|/12Cn,

where the convention is that the Pfaffian is of the submatrix obtained by removing
rows and columns 2j for j ∈ J .

Proof. We can move the derivatives D(γ2)
M ′ inside the Pfaffian since D

(γ2)
M ′ affects only

variables for which one row has been removed from k, which means that the variables
appear in exactly one row/column. Thus, we obtain a new skew-symmetric kernel
of a very similar form, which in particular still satisfies the decay assumptions of
Assumption 6.1. We now apply Lemma 5.6, with N = τ1/6. Since the Pfaffian has
an exponential growth rate less than γ−1

2 due to the radius of the contour defining k,
the first term can essentially be ignored, so we focus on bounding the second term.
For this, we need a uniform estimate on

|D(γ2)
M ′ pf(k(xi, xj))Jc |ui=uj ,(i,j)∈M ′

for ui, uj ∈ [s− τ−1/6, s+ τ−1/6] for (i, j) ∈ (M ′)c.
We subtract column i from column j if (i, j) ∈ (M ′)c/2. Since |ui − uj | ≤ 2τ−1/6,

we know the corresponding matrix entries in column j are bounded by Cτ−1/6 for
some constant C. We also know that the other matrix entries are bounded by
Ce−cui where ui is the variable corresponding to the column (we’re absorbing the
row dependence into C). Then applying Lemma A.2, and taking a geometric average
with the bound obtained by subtracting column j from column i gives a bound of

(2(n− |J |))(n−|J |)/2τ−|(M ′)c|/12e−c
∑

ui ,

where the sum over i includes all variables in Jc and i for (i, j) ∈ M ′, and summing
over the remaining variables gives the desired bound. □

We now prove an approximate discrete analogue of an identity of Fredholm Pfaf-
fians (see Proposition 5.7 of [2]). This lets us avoid working with distribution-valued
kernels.
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Proposition 6.3. Let k(x, y) : Z2 → R be a family of skew-symmetric kernels
satisfying Assumption 6.1. Let

K =

(
k(x, y) −D

(γ)
y k(x, y)

−D
(γ)
x k(x, y) D

(γ)
x D

(γ)
y k(x, y)

)
,

K ′ =

(
k(x, y) −2D

(γ)
y k(x, y)

−2D
(γ)
x k(x, y) 4D

(γ)
x D

(γ)
y k(x, y) + (D

(γ)
x −D

(γ)
y )∆

)
.

Assume that the series expansion for pf(J − K)l2(Z>s) converges absolutely. Then
for all s, the series expansion for pf(J −K ′)l2(Z>s) converges absolutely, and∣∣pf(J −K)l2(Z>s) − pf(J −K ′)l2(Z>s)

∣∣ ≤ Cτ−1/12.

Proof. The idea is that if summation by parts held, the two kernels have the same
Fredholm Pfaffian. We thus show that the boundary terms appearing in Lemma 5.5
are small by Lemma 6.2. The details are essentially the same as in Proposition 5.7
of [2], and so we will only give the details when showing that the boundary terms
are small.

Write K ′ = A+E, with E being a matrix containing only the terms (D(γ)
x −D

(γ)
y )∆.

Using Lemma A.1 and the expansion of pf(EJ) in terms of matchings, we have that∑
x1,...,xn>s

pf(K ′(xi, xj))
n
i,j=1 =

∑
x1,...,xn>s

∑
J

∑
M

pf(AJc)D
(γ2)
J

∏
(i,j)∈M

∆(xi, xj),

where the sum is over even subsets J and matchings M of J . Note in particular that
J must be a subset of the even integers, since the odd rows/columns of E are 0.

Now we can use the summation by parts given by Lemma 5.5, giving a main term
where no boundary operators B are present, as well as the error term bounded by

∑
J

∑
M

∑
M ′⊊M

∣∣∣∣∣∣∣D(γ)
M ′B

(γ)
(M ′)c pf(AJc)

∣∣∣∣∣ xi=xj ,(i,j)∈M ′

xi=yj=s,(i,j)∈(M ′)c

∣∣∣∣∣∣∣ ,
where M ′ ̸= M .

First, let us briefly explain why the main terms sum to pf(J − K)l2(Z>s). Since
this is identical to the proof of Proposition 5.7 in [2], we will not give all the details.
The idea is that each pair of difference operator acts on a pair of variables which
each appear in exactly one row/column. For this reason, these operators may be
moved inside the Pfaffian. But notice that after setting the two variables equal, we
end up with two rows/columns for that variable of the same type as in K (up to
some factors of 2). The proof proceeds by then collecting and summing the different
coefficients for the terms corresponding to the same term in pf(J − K)l2(Z>s), and
showing that this is 1.

We now turn to the error terms. Note that all error terms are of the form appearing
in Lemma 6.2, which applies since we assume Assumption 6.1. The exponential
bound allows the integrals to be uniformly bounded in each variable. Then the total
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error in the nth term from the boundary terms after integrating is bounded by∑
J

∑
M

∑
M ′⊊M

C1τ
−1/12(2|Jc|)|Jc|/2Cn

2

≤C1τ
−1/12

n/2∑
k=0

(
n

2k

)
(2k)!

2kk!
2k(2n− 2k)(n−k)/2Cn

2

≤Cτ−1/12n!

n/2∑
k=0

e2k

k!

(√
2n− 2k

n− 2k

)n−k

Cn
2

≤Cτ−1/12n!cn,

for some small constant c > 0, using the fact that there are
(
n
2k

)
ways to pick the

even subset J and (2k)!/2kk! many matchings M of J . Summing this over n (with
the 1/n! factor), we have the error is bounded by

Cτ−1/12
∑
n≥0

cn = O(τ−1/12),

as desired.
Moreover, it’s clear from the above proof that the error terms are absolutely

summable, and since the series expansion for pf(J −K ′)l2(Z>s) converges absolutely,
this implies the same for pf(J −K)l2(Z>s). □

Remark 6.4. Note that the proof of Proposition 6.3 only relies on the fact that the
difference operator D(γ) satisfies an approximate summation by parts formula with
the uniform error estimates given by Lemma 5.6. Thus, it applies to any operator
satisfying these bounds.

We now show that the kernels in the Fredholm Pfaffian formulas for the ASEP and
the six vertex model converge to K

(ξ)
cross and KGSE in their respective regimes. We

then use a dominated convergence argument to show that this implies convergence
of the Fredholm Pfaffians themselves. To show convergence of the kernels, we do a
steepest descent analysis. This argument is fairly standard, see e.g. [2]. Note that we
also do the ν = 1 limit here, because the argument is essentially identical. However,
obtaining asymptotics for the distribution function requires additional work, and so
is delayed until Section 6.2.

Lemma 6.5. Let x = −1−q
4 τ + 2−4/3(1 − q)1/3τ1/3u and y = −1−q

4 τ + 2−4/3(1 −
q)1/3τ1/3v. For i, j ∈ N, we have(

2−4/3τ1/3D(γ2)
x

)i (
2−4/3τ1/3D(γ2)

y

)j
k(x, y) → ∂i

u∂
j
vkGSE

if ν ≥ 1 is fixed, and(
2−4/3τ1/3D(γ2)

x

)i (
2−4/3τ1/3D(γ2)

y

)j
k(x, y) → ∂i

u∂
j
vk

ξ
cross(u, v)

if 1
ν = 1− 24/3ξ

τ1/3
. Moreover, k(u, v) satisfies Assumption 6.1.
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1

π
3

1 + rτ−1/3 R

Figure 6.1. The contour Cr,R.

Proof. We proceed by a steepest descent analysis. Since these statements are all
similar, we will show k(x, y) → kξcross(u, v) in detail, and note the differences for
the other statements. It should be noted that D

(γ2)
x in some sense converges to ∂u,

but this does not immediately imply the claimed statements, since the functions
the difference operators are applied to also vary with n. Instead, we directly show
convergence of the functions themselves.

Let Cr,R be the contour consisting of the shorter arc of the circle |z| = 1+ rτ−1/3

for some 1.5 > rτ−1/3 > 0 (if needed just take τ large enough) between the lines
y = ±

√
3(x−1), line segments along the lines y = ±

√
3(x−1) between the endpoints

of the arc and the circle |z| = R, and the longer arc of the circle |z| = R connecting
the endpoints of the line segments (see Figure 6.1).

For simplicity, let us rescale τ by 1/(1 − q), which has no effect on the τ → ∞
limit. We begin by deforming the contours |z| = r and |w| = r′ to contours Cr,R.
Here, we take r < 24/3ξ and R > 1 but small enough to avoid any poles.

Let

G(z) =
1

2

1− z

1 + z
+

1

4
log(z),

where the branch cut is the negative real axis. We note that G(1) = G′(1) = G′′(1) =
0 and G′′′(1) = 1

8 , and that (recalling that τ has been rescaled)

k(x, y) =
(1− γ2)

−2

(2πi)2

∮
Cr,R

∮
Cr,R

z−3/2w−5/2K(z, w)

× exp
(
τ(G(z) +G(w))− 2−4/3τ1/3(u log z + v logw)

)
dzdw.

(6.3)

The idea will be to show that the integral localizes near the critical point z = 1 and
w = 1, and near this point it converges to the desired limit as τ → ∞.
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If z = reiθ, we have

ℜ(G(z)) =
1

2

1− r2

(1− r)2 + 2r(cos(θ) + 1)
+

1

4
log r.

We can compute
d

dθ
ℜ(G(z)) = − r(r2 − 1) sin(θ)

(r2 + 2r cos(θ) + 1)2
,

which implies that ℜ(G(z)) is decreasing as you move away from the positive real
axis along the circular portions of Cr,R. Similarly, if z = x + iy, the real part of G
on the line y =

√
3(x− 1) is given by

−1

2

2x2 − 3x+ 1

2x2 − 2x+ 2
+

1

8
log(4x2 − 6x+ 3),

and so on this line,

d

dx
ℜ(G(z)) =

(x− 1)2(4x3 − 7x2 − 2x+ 3))

4(x2 − x+ 1)2(4x2 − 6x+ 3)
< 0

for 1 < x < 3/2, and so ℜ(G(z)) is also decreasing along the line segments of Cr.
Thus, we can conclude that ℜ(G(z)) attains a single maximum on the positive real
line, and is strictly decreasing along the upper and lower portions of the contour, i.e.
that Cr is steepest descent for ℜ(G(z)).

Plugging in any fixed x, we see that ℜ(G(z)) is uniformly bounded below 0, and
so the integrand decays exponentially in τ outside of any fixed ε neighbourhood of 1
and has exponential decay in u, v (the rest of the integrand has at most polynomial
growth in τ). Thus, we can neglect the contribution of that portion of the contour.
We let Cr,ε denote the portion of Cr,R excluding this negligible portion.

We now rescale by z = 1 + 24/3α
τ1/3

and w = 1 + 24/3β
τ1/3

, and we have G(z) =

τ−1α3/3+O(|α|4τ−4/3) and log(z) = 24/3τ−1/3α+O(|α|2τ−2/3), where the constants
depends only on ε. The error term in the exponent is thus bounded by cτ−1/3(|α|4+
|β|4 + |α|2 + |β|2) for some small c > 0. Note also that if ε is chosen small enough,
we can ensure τ−1/3|α| is small.

Using the bound |ex − 1| ≤ |x|e|x|, this approximation has an error bounded by

C

∮
C̃r,ε

∮
C̃r,ε

cτ−1/3
(
|α|4 + |β|4 + |α|2 + |β|2

)
exp

(
c(|α|3 + |β|3 + |α|+ |β|)

)
× exp

(
α3

3
− αu+

β3

3
− βv

)
|z−3/2w−5/2τ−2/3K(z, w)|dαdβ,

(6.4)

where we have changed variables and C̃r,ε denotes the rescaled contour. It’s easy to
see that

g(z) −→ −(1− γ2)(α+ ξ)

(α− ξ)
,
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and so

28/3τ−2/3K(z, w) −→ (α− β)

4αβ(α+ β)

(1− γ2)(α+ ξ)

(α− ξ)

(1− γ2)(β + ξ)

(β − ξ)
,

where the extra factor comes from the change of variables. Thus, as τ → ∞, the
rest of the integrand is bounded. Thus, the integral converges uniformly in τ , so the
error goes to 0. Moreover, the tails of the integral decay exponentially, and so can
be continued from C̃r,ε to Cδ with a uniformly decaying error. We can then take a
limit as τ → ∞ in

(1− γ2)
−2

(2πi)2

∮
C̃r,ε

∮
C̃r,ε

exp

(
α3

3
− αu+

β3

3
− βv

)
28/3K(z, w)

z3/2w5/2τ2/3
dαdβ,(6.5)

again using exponential decay of the tails to apply dominated convergence to obtain
the desired limit. Note that the limiting contour can be deformed to the one defining
KGSE , again due to exponential decay in the tails.

Note that the difference operators act by introducing a factor of(
−τ1/3(1− γ2)

2

27/3
z − z−1

(1− γ2z)(1− γ2z−1)

)i(
−τ1/3(1− γ2)

2

27/3
w − w−1

(1− γ2w)(1− γ2w−1)

)j

,

which converges to the corresponding factor (−α)i(−β)j coming from differentiating
k
(ξ)
cross by ∂i

u∂
j
v, and the rest of the asymptotic analysis is identical. If ν > 1 is fixed,

the same argument gives convergence to kGSE , with the only difference being that

g(z) → 1− γ2,

which what is expected when setting ξ = ∞. If ν = 1, again, the only difference is

g(z) → −(1− γ2),

which corresponds to ξ = 0.
The exponential decay of Assumption 6.1 comes from the fact that in (6.3), we have

a uniform bound on the real parts of G(z) and log(z) outside of a ε neighbourhood
of 1, and within this neighbourhood, (6.4) and (6.5) both clearly decay exponentially
in u, v as α, β are bounded away from 0.

Finally, if we perturb u (or v) by a term du of order at most τ−1/6, the same
asymptotic analysis applies, except after reaching (6.4), there is an extra factor of
the form z−d = exp(−d log z), which is an additive τ−1/6 error term. Thus,

|k(u+ du, v)− k(u, v)| ≤ Cτ−1/6,

and similarly even if difference operators are applied, or v is perturbed instead of u.
Again, this can be made uniform in u, v > s due to the exponential decay in u, v. □

Lemma 6.6. Let σ = (a(1−a))1/3

(1+a) , x = 2a
1+an+ σn1/3u and y = 2a

1+an+ σn1/3v. For
i, j ∈ N, we have(

σn1/3D(γ2)
x

)i (
σn1/3D(γ2)

y

)j
k(x, y) → ∂i

u∂
j
vkGSE
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if ν ≥ 1 is fixed, and(
σn1/3D(γ2)

x

)i (
σn1/3D(γ2)

y

)j
k(x, y) → ∂i

u∂
j
vk

ξ
cross(u, v)

if 1
ν = 1− ξ

σn1/3 . Moreover, k(u, v) satisfies Assumption 6.1.

Proof. Since the analysis is extremely similar to that of Theorem 6.5, we will simply
explain the essential differences. Note that only the F (z) and F (w) factors in the
integrals change. They are now of the form F (z) =

(
1+az
1+a/z

)n
, and so we pick

G(z) = log(1 + az)− log(1 + a/z)− 2a

1 + a
log z.

Again, we can compute G(1) = G′(1) = G′′(1) = 0, and G′′′(1) = 2a(1−a)
(1+a)3

.
If z = reiθ, we have

ℜ(G(z)) =
1

2

(
log(1 + 2ar cos θ + a2r2)− log(1 + 2a/r cos θ + a2/r2)− 2a

1 + a
log(r2)

)
,

and so
d

dθ
ℜ(G(z)) = − a(1− a2)r(r2 − 1) sin(θ)

(a2 + 2ar cos(θ) + r2)(a2r2 + 2ar cos(θ) + 1)

≤ −a(1− a2)r(r2 − 1) sin(θ)

(a− r)2(1− ar)2
,

which implies that ℜ(G(z)) is decreasing along the circular portions of Cr,R. If
z = x+ iy, then on the line y = ±

√
3x,

ℜ(G(z)) =
1

2

(
log(1 + 2ax+ 4a2x2)− log(a2 + 2ax+ 4x2)− 1− a

1 + a
log(4x2)

)
.

We have that d2

dx2ℜ(G(z)) at x = 1 is equal to 0, and d3

dx3ℜ(G(z)) at x = 1 is equal
to −32(1− a)a/(1 + a)3 < 0. Thus, we have that ℜ(G(z)) is decreasing along these
lines in a neighbourhood of z = 1 (depending only on a, which is fixed). Thus, for
R close enough to 0, we have that Cr,R is steepest descent for ℜ(G(z)). The rest of
the argument is entirely analogous, and involves Taylor expanding G(z) and log(z).
Note in particular that everything in the integrand except for the F (z) and F (w)
are identical. □

We now show that the convergence of the kernels implies convergence of the Fred-
holm Pfaffians.

Proposition 6.7. Under the scalings of Assumption 6.1, we have

pf(J −K)l2(Z>s) → pf(J −KGSE)L2(s,∞)

if ν > 1 is fixed, and

pf(J −K)l2(Z>s) → pf(J −K(ξ)
cross)L2(s,∞)

if 1
ν = 1− 24/3ξ

τ1/3
.
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Proof. By Proposition 6.3 and conjugating the kernel by 2−4/3τ1/3, it suffices to
show convergence of the modified kernels

K ′ =

(
24/3τ−1/3k(x, y) −D

(γ)
y (x, y)

−D
(γ)
x k(x, y) 2−4/3τ1/3D

(γ)
x D

(γ)
y k(x, y)

)
,

instead of K. We can replace the discrete functions by piecewise constant functions
and sums by integrals, accounting for a global factor of 24/3τ−1/3 for each vari-
able. By Lemma 6.5, we have pointwise convergence of the kernel. Moreover, the
exponential bounds of Lemma 6.5 imply via Lemma A.2 that

| pf(K ′(xi, xj))
n
i,j=1| ≤ Cnnn/2e−c

∑
ui .

This allows a dominated convergence argument to show that each term, and then
the whole sum of the series expansion for pf(J − K ′)l2(Z>s) converges to that of
pf(J −KGSE)L2(s,∞) or pf(J −K

(ξ)
cross)L2(s,∞), depending on how ν is scaled. □

Proposition 6.8. For the ASEP, if ρ = 1
1+ν−1 > 1

2 , we have

P

−
N
(

τ
1−q

)
− τ

4

2−4/3τ1/3
≤ s

→ FGSE(s),

and if ρ = 1
2 + 2−2/3ξ

τ1/3
, then

(ρ ↓ 1
2) P

−
N
(

τ
1−q

)
− τ

4

2−4/3τ1/3
≤ s

→ Fcross(s, ξ).

For the six vertex model, if ρ = 1
1+ν−1 > 1

2 , we have

P

h(n, n)− 2a
1+an

(a(1−a))1/3

1+a n1/3
≤ s

→ FGSE(s),

and if ρ = 1
2 + 2−2/3ξ

τ1/3
, then

(ρ ↓ 1
2) P

h(n, n)− 2a
1+an

(a(1−a))1/3

1+a n1/3
≤ s

→ Fcross(s, ξ).

Proof. The proofs in all cases are essentially the same, so we give the details for
one case. Note that by Proposition 6.7 and Corollary 4.5, we have the desired
convergence for −N(τ) + χ + 2S. In general, χ is a signed measure, but it has a
convolutional inverse which is a genuine probability distribution, so by Lemma 5.9,
since χ has exponentially decaying tails, −N(τ) + χ + 2S has uniformly bounded
tails, so it suffices to show that supk P(−N(τ) + χ+ 2S = k) → 0.

By Proposition 6.3 (which is uniform over k ≥ −1−q
4 τ + 2−4/3(1 − q)1/3τ1/3s for

fixed s), it suffices to instead consider

pf(J −K ′)l2(Z>k) − pf(J −K ′)l2(Z>k−1)
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for the modified kernel K ′. This converges to 0 uniformly for k ≥ −1−q
4 τ+2−4/3(1−

q)1/3τ1/3s, which follows from Assumption 6.1 which was established in Lemma 6.5.
In particular, the bounds established show via similar arguments to the convergence
of the Fredholm Pfaffian that this is O(τ−1/3), since the sums over n dimensional
sets xi > s are replaced by a sum over the boundary. □

6.2. GOE asymptotics. We now proceed to the GOE regime. Note that this
was already established for the ASEP in [8] in a special case. However, given the
machinery that we have developed, the proof is not too difficult, and so we include
it along with the proof for the six vertex model.

Unfortunately, the Fredholm Pfaffian formulas for the ASEP and six vertex model
do not directly apply when ν = 1, due to the poles at z = ν−1 and w = ν−1 crossing
the contour. However, this can be dealt with by subtracting this contribution using
an analytic continuation argument. We first formally derive a Fredholm Pfaffian
expansion. We will later show that this converges, and compute asymptotics.

Theorem 6.9. Let |γ2| < 1 (we are taking γ1
√
q = 1), let λ ∼ FBS(q,t,1)a with

pn(a) = O(cn) for some c < 1, and let S ∼ Theta(ζ2, q2). Then if 1 < r′ < r are
close to 1, we have

P(λ1 + 2S ≤ s) = pf(J − K̃)l2(Z>s),

where K̃ is defined in the same manner as K, but with

k̃(x, y) = k(x, y)−B(y) +B(x),

with

B(y) =
(1− γ2)

−2

(2πi)2

∮
|w|=r′

−w−y−3/2F (w)g(w)
(q; q)∞

(1/w2; q)∞

θ3(ζ
2w2; q2)

θ3(ζ2; q2)
dw,

assuming that the Fredholm Pfaffian on the right hand side has an absolutely con-
vergent expansion.

Proof. First, note that FBS(q,t,ν)a (λ1 = x) is an analytic function in ν. Maybe the
simplest argument is to note that the distribution function for HL(q,t,ν)

a is analytic
(in fact rational) in ν, and FBS(q,t,ν)a is a convolution with a function supported on
N by Theorems 2.5 and 1.7. Further convolving with 2S, we still have an analytic
distribution function.

Next, we note that as the integrand in k(x, y) is analytic in ν, so is the sum of
its residues at the poles within the contour. The issue is that Theorem 4.2 only
applies when the poles z = ν and w = ν lie outside the contour, but when ν = 1,
this is impossible. It’s easy to see that the residues at z = ν and w = ν are given by
A(x)B(y) and −A(y)B(x) respectively (the latter can be seen via skew symmetry
of k(x, y)), where

A(x) = νx+3/2F (ν)
(−t; q)∞

(−qtν2; q)∞
.



HALF SPACE CURRENT FLUCTUATIONS 45

and

B(y) =
(1− γ2)

−2

2πi

∮
|w|=r′

w−y−5/2F (w)g(w)(q; q)∞(ν−1w; q)∞(qν/w; q)∞
(1/w2; q)∞(ν−1/w; q)∞(qνw; q)∞

θ3(ζ
2ν2w2; q2)

θ3(ζ2; q2)
dw.

Thus, we subtract off the contributions from these poles, and obtain that

k̃(x, y) = k(x, y)−A(x)B(y) +A(y)B(x)

extends k(x, y) to an analytic function in ν near ν−1 = 1. At ν = 1, we can compute
A(x) = 1− γ2 and

B(x) =
(1− γ2)

−2

2πi

∮
|w|=r′

−w−x−3/2F (w)g(w)
(q; q)∞

(1/w2; q)∞

θ3(ζ
2w2; q2)

θ3(ζ2; q2)
dw.

□

Recall that Lemma 6.5 established k(x, y) → kGSE(u, v) even if ν = 1. Here, we
establish the analogous results for B.

Lemma 6.10. Let ν = 1. Then with the same scalings as in Lemma 6.5, we have
for all i, (

2−4/3τ1/3D(γ2)
x

)i
B(u) → ∂i

ub(u),

and the bounds

(6.6)
∣∣∣∣(2−4/3τ1/3D(γ2)

x

)i
B(u)

∣∣∣∣ ≤ Ce−cu,

and

(6.7)
∣∣∣∣(2−4/3τ1/3D(γ2)

x

)i (
2−4/3τ1/3D(γ2)

y

)j
(B(u+ du)−B(u))

∣∣∣∣ ≤ Cτ−1/12

if du ∈ [−τ−1/6, τ1/6], uniformly in u > s.

Proof. Again, we proceed by a steepest descent analysis, which is extremely similar
to that in the proof of Lemma 6.5. Note that we may use the same contour Cr,R,
since F (w) has the same form. Making the same change of variables, we can check

that the w−xF (w) → e
α3

3
−αu, g(w) → −(1−γ2), and 24/3τ−1/3

1−w−2 → 1
2α , with the other

factors going to 1.
The discrete derivatives amount to a change in the integrand by the same factors

as before, and so can be dealt with in the same way. The bounds (6.6) and (6.7) can
similarly be obtained from the steepest descent asymptotics. □

With this, we may proceed as in the previous cases.

Proposition 6.11. Under the scalings of Assumption 6.1, if ν = 1, we have that
the series expansion for pf(J − K̃)l2(Z>s) converges absolutely, and

pf(J − K̃)l2(Z>s) → pf(J −KGOE)L2(s,∞).
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Proof. By Proposition 6.3, it suffices to study the modified kernel

K̃ ′ =

(
k̃(x, y) −D

(γ)
y k̃(x, y)

−D
(γ)
x k̃(x, y) D

(γ)
x D

(γ)
y k̃(x, y)

)
.

Strictly speaking, Proposition 6.3 does not apply, but as we describe below it can be
modified to hold up to an additional O(n2) factor.

To see that the series expansion of the Fredholm Pfaffian converges absolutely,
note that by Lemma A.1, we can write∣∣∣pf(K̃ ′(xi, xj)

n
i,j=1

∣∣∣ ≤∑
I

| pf(K ′)I pf(B
′)Ic |,

where B′ is the Pfaffian kernel defined by the function B(y)− B(x), the subscripts
denote which rows and columns are included, and the sum is over even subsets of
{1, . . . , n}. Now pf(B′)Ic = 0 unless |Ic| = 0, 2, since B′ is a rank 2 matrix (see
e.g. Proposition A.1 of [24]). No matter which subset I we pick, either pf(K ′)I will
include all variables xi, or it will miss exactly one, say xi, in which case pf(B′)Ic =

D
(γ2)
xi B(xi). Thus, using Lemma A.2, we can then bound∑

I

| pf(K ′)I pf(B
′)Ic | ≤ (2n)n/2

(
1 +

(
2n

2

))
Cne−c

∑
ui ,

which implies that the series expansion for pf(K̃)l2(Z>s) converges absolutely. Note
this same argument establishes a version of Proposition 6.3. In particular, we may
expand each boundary term further using Lemma A.1, again noting that each vari-
able appears in two columns/rows, and only one will be used up in the pf(B′)Ic
factor, leaving the other one to ensure exponential decay in that variable giving in-
tegrability. There are O(n2) terms introduced this way, which does not affect the
rest of the proof of Proposition 6.3.

The proof of convergence for pf(J − K̃ ′)l2(Z>s) proceeds in a similar manner as
in the previous cases. In particular, the bound above is uniform in τ , so we can
use dominated convergence to turn the pointwise convergence of Lemma 6.10 into
convergence of the Fredholm Pfaffians. □

Since the analogous statements for the six vertex model have an essentially iden-
tical proof (in particular, the only part of the integrand that changes is F (z), but
F (1) = 1 still holds), we omit them. This then leads to the following asymptotics
by a similar argument as in Proposition 6.8.

Proposition 6.12. For the ASEP, if ρ = 1
2 , we have

(ρ = 1
2) P

−
N
(

τ
1−q

)
− τ

4

2−4/3τ1/3
≤ s

→ FGOE(s),
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and for the six vertex model, if ρ = 1
2 , we have

(ρ = 1
2) P

h(n, n)− 2a
1+an

(a(1−a))1/3

1+a n1/3
≤ s

→ FGOE(s).

7. Asymptotics: Gaussian asymptotics

In this section, we establish Gaussian fluctuations in the ρ < 1
2 regime. However,

as we have already seen in the GOE case, this causes certain poles to cross the
contour and these residues must be removed. In the GOE case, there was only one
pole and the asymptotic analysis was similar to the GSE case. In the Gaussian case,
many poles will cross, and more serious convergence issues will arise which must be
dealt with.

7.1. Analytic continuation. We now wish to extend the Pfaffian formulas in The-
orem 4.2, valid for ν−1 < 1 to all ν > 0. This requires analytic continuation in the pa-
rameter ν, which amounts to removing the extra poles coming from the (γ1

√
qz; q)∞

and (γ1
√
qw; q)∞ factors in k(x, y). We have actually already encountered this in

the GOE regime.
In the Gaussian case, this is complicated by the fact that naively doing so, the

resulting expressions are exponentially large in x and y, requiring additional work
to show that we actually obtain a convergent formula.

We let ν− < ν denote a number close to but smaller than ν, and let kν−1 denote
the same contour integral defining k except with ν−1 < r′ < r, and r′, r close to ν−1.
The reason for this is both that the critical point now lies at ν−1 rather than 1, and
to give sufficient decay to allow the Fredholm Pfaffian to converge. This in addition
to the fact that ν < 1 introduces many poles which must be dealt with. We first
determine the relevant residues.

Lemma 7.1. We have

(−z)kq(
k
2)(zqk; q)∞(q1−k/z; q)∞ = (z; q)∞(q/z; q)∞.

Proof. We proceed by induction. The base case k = 0 is trivial. We have the identity

−z(zq; q)∞(1/z; q)∞ = (z; q)∞(q/z; q)∞,

and plugging in z = zqk−1 gives

(−z)kq(
k
2)(zqk; q)∞(q1−k/z; q)∞ = (−z)k−1q(

k−1
2 )(zqk−1; q)∞(q1−(k−1)/z; q)∞

= (z; q)∞(q/z; q)∞

by the inductive hypothesis. □

Lemma 7.2. Assume that ν−1 > 1. The residue of kν−1(x, y) at z = q−kν is
Ak(x)B(y) and the residue of kν−1(x, y) at w = q−kν is −Ak(y)B(x), where

Ak(x) = −
(
q−kν

)−x−3/2 F (q−kν)q−k2−kζ2kν2k+1(q; q)∞(qkν−2; q)∞(−tqk; q)∞
(q−k; q)k−1(−tq1−kν2; q)∞(q2kν−2; q)∞θ3(ζ2; q2)

,
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and

B(y) =
(1− γ2)

2

2πi

∮
|w|=r′

w−y−5/2F (w)
(ν−1w; q)∞(q1ν/w; q)∞θ3(ζ

2ν2w2; q2)

(1/w2; q)∞(ν−1/w; q)∞(q1νw; q)∞
g(w)dw,

where r′ > ν−1 is close to ν−1.
The residue of kν−1(x, y) at z = q−kw−1 is given by

Sk(x, y) =− (1− γ2)
−2

2πi

∮
|w|=r′

(qkw)x+1/2w−y−5/2F (w)F (q−kw−1)

× w−2k (w2; q)∞(q/w2; q)∞
(q2kw2; q)∞(1/w2; q)∞

θ3(ζ
2q−2k; q2)

θ(ζ2; q2)
g(w)g(q−kw−1)dw,

where 1 < r′ < q−1ν−1, and satisfies Sk(x, y) = −Sk(y, x).

Proof. Since kν−1(x, y) is skew-symmetric, the first two residue computations are
completely equivalent, so we give one. Note that pole occurs in the K(z, w) factor,
so we compute the residue there first, obtaining

− νq−kg(w)
(qkν−1w; q)∞(q1−kν/w; q)∞θ3(ζ

2q−2kν2w2; q2)

(1/w2; q)∞(qkν−1/w; q)∞(q1−kνw; q)∞

× (q; q)∞(qkν−2; q)∞(−tqk; q)∞
(q−k; q)k−1(−tq1−kν2; q)∞(q2kν−2; q)∞θ3(ζ2; q2)

.

(7.1)

We then use Lemma 7.1, which in particular implies that

(qζ−2ν−2w−2)kqk(k−1)θ3(ζ
2q−2kν2w2; q2) = θ3(ζ

2ν2w2; q2),

to simplify (7.1) to

− νq−kg(w)
(ν−1w; q)∞(q1ν/w; q)∞θ3(ζ

2ν2w2; q2)

(1/w2; q)∞(ν−1/w; q)∞(q1νw; q)∞
q−k2ζ2kν2k

× (q; q)∞(qkν−2; q)∞(−tqk; q)∞
(q−k; q)k−1(−tq1−kν2; q)∞(q2kν−2; q)∞θ3(ζ2; q2)

.

Combining this with the rest of the integrand in k(x, y) gives the desired result. Note
that the radius r′ can be expanded up until ν−1, since there are no poles obstructing
this.

For the final residue computation, again the pole occurs in K(x, y), and there
using Lemma 7.1 we have a residue of

−q−kw−1w−2k (w2; q)∞(q/w2; q)∞
(q2kw2; q)∞(1/w2; q)∞

θ3(ζ
2q−2k; q2)

θ(ζ2; q2)
g(w)g(q−kw−1).

Combining this with the other factors in the integrand gives the desired result. In
particular, the radius r′ can be extended due to the lack of poles obstructing this. The
skew-symmetry of Sk(x, y) follows from that of the integrand defining k(x, y). □

We now give an analytic continuation of the Fredholm Pfaffian formulas in the
Gaussian case. Note that we will later establish convergence of the series expansion,
so this is purely formal.
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Theorem 7.3. Let γ1
√
q ∈ [q−m+ 2−ε

2 , q−m+ 1−ε
2 ) for some m ∈ N and ε = 0, 1, and

assume that |γ2| < 1 and t < 1. Let

S(x, y) =
∑

1≤k≤2m+ε−2

Sk(x, y), A(x) =

2m+ε−2∑
j=0

Aj(x).

Then we have
P(λ1 + 2S ≤ s) = pf(J − K̂)l2(Z>s),

where

K̂ =

(
k̂(x, y) −2D

(γ)
y k̂(x, y)

−2D
(γ)
x k̂(x, y) 4D

(γ)
x D

(γ)
y k̂(x, y) + (D

(γ)
x −D

(γ)
y )∆

)
k̂ = kν−1(x, y)− S(x, y)−A(x)B(y) +A(y)B(x),

whenever the series expansion on the right converges absolutely.

Proof. Since the left hand side is analytic in γ2, it suffices to show that the right
hand side agrees with an analytic extension of the formula in Theorem 4.2. Since
we assume the series converges absolutely, it suffices to show the same for K̂.

We note that the residues at all poles are analytic in γ2, and so it suffices to show
that K̂ is obtained from K by removing any additional poles that are introduced
when ν−1 > 1 and by moving the contour defining k(x, y). It’s easy to see that the
poles introduced are at w, z = q−kν, for 0 ≤ k ≤ 2m + ε − 2, and at z = q−kw−1,
for 1 ≤ k ≤ 2m+ ε− 2. The perturbations S and A(x)B(y)−A(y)B(x) are exactly
defined to cancel these poles, noting that the potential double count of poles of the
form z = q−kν and w = q−lν is not an issue, since the factor (w/z; q)∞(qz/w)∞ in
the numerator cancels these potential poles. The assumption that t < 1 prevents the
poles coming from the (−qtνw; q)∞ and (−qtνz; q)∞ factors from interfering. □

7.2. Asymptotics. We now study the asymptotics of the analytically continued
Pfaffian kernel.

Lemma 7.4. Let

µ =
ν

(1 + ν)2
, σ2 = ν−2 1− ν

(1 + ν−1)3
,

let G(w) = 1
2
1−w
1+w + µ logw, and let

x = µ(1− q)τ + σ(1− q)1/2τ1/2u, y = µ(1− q)τ + σ(1− q)1/2τ1/2v.

For the ASEP, we have∣∣∣(D(γ2)
x )i(D(γ2)

y )j (kν−1(u, v)− S(u, v))
∣∣∣

≤Ce−cτ min
(
νστ

1/2u
− (qν−1

− )στ
1/2v, νστ

1/2v
− (qν−1

− )στ
1/2u
)
,
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uniformly in u, v > s, where ν− < ν is close to ν, and

(D(γ2)
x )iA(u) = −(1 + o(1))

(
−(1− γ2)

2

2

ν − ν−1

(1− γ2ν)(1− γ2ν−1)

)i

× ν−στ1/2u exp(τG(ν))ν−1/2 (q; q)∞(−t; q)∞
(−qtν2; q)∞θ3(ζ2; q2)

,

(D(γ2)
x )iB(u) = −(1 + o(1))

(
(1− γ2)

2

2

ν − ν−1

(1− γ2ν)(1− γ2ν−1)

)i−1

× νστ
1/2ue−τG(ν)ν1/2

(−qtν2; q)∞θ3(ζ
2; q2)

(q; q)∞(−t; q)∞

1

2
√
2π

τ−1/2

σ
e−u2/2

+O(eτ(G(ν−1)−c)νστ
1/2u

− ).

Proof. Let us rescale τ by 1−q. We can compute G′(ν−1) = 0, G′′(ν−1) = ν2σ2 > 0,
and moreover G(ν−1) < 0 since as a function of ν−1, it is 0 at 1 and decreasing for
ν−1 > 1. Also, note that if z = reiθ, we have that ℜ(G(z)) is maximized at θ = 0
(the computation is essentially the same as the GSE case, since the only change is
to the log z term whose real part is independent of θ).

We notice that after rescaling x and y to u, v, the integral for kν−1(u, v) is of the
form ∮

|z|=r

∮
|w|=r′

exp(τ(G(z) +G(w))z−στ1/2uw−στ1/2vF (z, w)dzdw,

where F (z, w) is bounded on the contour, and ν−1
− ≤ r < r′ are larger than but

close to ν−1. Then the claimed bound for kν−1 follows immediately, since ℜ(G(z) +
G(w)) < 2G(ν−1) < 0, |z|, |w| ≥ (ν−)

−1 > ν−1, and the rest of the integrand is
bounded.

The integral for Sk(u, v) is of the form∮
|w|=r′

(qkw)στ
1/2uw−στ1/2v exp(τ(G(w) +G(q−kw−1)))H(w)dw

for some r′ > ν−1 but close to ν−1, and H(w) bounded on the contour. If w = reiθ,
we have that ℜ(G(w)) + ℜ(G(q−kw−1)) is negative if q−kr−1 > 1, and otherwise
attains its maximum at θ = 0. There, we have that ℜ(G(1/r)) = −ℜ(G(r)), and
d
drℜ(G(r)) < 0 on (ν, ν−1). Together, this implies that ℜ(G(w) + G(q−kw−1)) < 0

for |w| = r′ with r′ = ν−1, and so by continuity also for r′ slightly larger. This gives
the desired bound. The other bound for S(u, v) follows from skew-symmetry.

Next, note that

Ak(u) =
(
q−kν

)−στ1/2u
exp(τG(q−kν))Ck

where Ck is not a function of u. For k > 0, since we have already seen that G(ν) =
−G(ν−1) > G(q−kν) for k ≤ 2m+ ε− 2, this is bounded by

Ck

(
q−kν

)−στ1/2u
e−cτ
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ν−1
−

ν−1
1

Figure 7.1. The contour for the Gaussian regime.

for some c > 0. On the other hand,

A0(u) = −ν−στ1/2u exp(τG(ν))ν−1/2 (q; q)∞(−t; q)∞
(−qtν2; q)∞θ3(ζ2; q2)

,

which immediately gives the claimed asymptotics for A(u).
Finally, we obtain asymptotics for B(u) through a steepest descent argument.

We have that the contour |w| = ν−1 is steepest descent for the function ℜ(G(w)),
and this will remain true if we take a circle of radius ν−1

− slightly larger than ν−1

and flatten it at ℜ(z) = ν−1 to a vertical line (see Figure 7.1). The error from the
circular part of the contour is O(eτ(G(ν−1)−c)νστ

1/2u
− ) for some c > 0 and ν− < ν,

and so we now focus on the contour near ν−1. Thus, we can localize the integral to
a neighbourhood of ν−1 with the change of variables w = ν−1 + iν−1τ−1/2α/σ and
expand G(w) using a Taylor series, with the exponential factor becoming

νστ
1/2u exp

(
τG(ν−1)− iαu− α2/2 +O(τ−1/2)

)
.

The remaining factors in the integrand give

ν3/2
(1− γ2ν

−1)(1− γ2ν)

(ν−1 − ν)

(−qtν2; q)∞θ3(ζ
2; q2)

(q; q)∞(−t; q)∞
(1 +O(τ−1/2)),
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uniformly since the contour is far from any singularities due to the cancellation of
the (ν−1/w; q)∞ factor. This gives

B(u) = ν3/2
(1− γ2ν

−1)(1− γ2ν)

(ν−1 − ν)

(−qtν2; q)∞θ3(ζ
2; q2)

(q; q)∞(−t; q)∞
(1 +O(τ−1/2))

× (1− γ2)
−2

2π

ν−1τ−1/2

σ

∫ ∞

−∞
νστ

1/2u exp
(
τG(ν−1)− iαu− α2/2

)
dα

= ν1/2
(1− γ2ν

−1)(1− γ2ν)

(ν−1 − ν)

(−qtν2; q)∞θ3(ζ
2; q2)

(q; q)∞(−t; q)∞
(1 +O(τ−1/2))

× νστ
1/2ue−τG(ν) (1− γ2)

−2

√
2π

τ−1/2

σ
exp(−u2/2),

where we use G(ν−1) = −G(ν), plus an error coming from the rest of the contour,
which is O(eτ(G(ν−1)−c)νστ

1/2u
− ).

Note that in all cases, the effect of the difference operator D
(γ2)
x is multiplication

by a factor of the form
w − w−1

(1− γ2w)(1− γ2w−1)
,

which has no relevant poles since t < 1, and so a similar analysis establishes the
analogous results with D

(γ2)
x applied.

□

Lemma 7.5. Let

µ =
2a2 + a(ν + ν−1)

(1 + aν)(1 + aν−1)
, σ2 =

a(1− a2)(ν−1 − ν)

(1 + aν)2(1 + aν−1)2
,

let G(z) = log(1 + az)− log(1 + a/z) + µ log z, and let

x = µn+ σn1/2u, y = µn+ σn1/2v.

For the six vertex model, the conclusions of Lemma 7.4 continue to hold (with the
above definitions replacing those in Lemma 7.4 and n replacing τ).

Proof. The proof is extremely similar, and so we emphasize the key differences.
Except in the steepest descent analysis, the analysis is essentially the same, since
the only change is to the definition of F and the slightly different scaling. We thus
focus on the properties of G(z) required for the analysis.

We note that G′(ν−1) = 0, G′′(ν−1) = ν2σ2, G(z−1) = −G(z), and using the com-
putation for the derivative in the GSE case, if z = reiθ, then for r > 1, ℜ(G(z)) is
decreasing on circles away from the real axis. Furthermore, d

drG(r) < 0 on (ν, ν−1),
which along with G(1/r) = −G(r) implies G(ν−1) < 0. These were the only proper-
ties used to establish the upper bounds for kν−1 , S, and the asymptotics for A. The
steepest descent analysis used to study B(x) is also similar. In particular, the only
part of the integrand that changes is G (and a corresponding change in σ). The new
pole −a is located inside the unit circle, and so do not prevent the needed contour
changes. □
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Proposition 7.6. For both the ASEP and the six vertex model, if t < 1 and ν < 1,
we have that the series expansion for pf(J −K)l2(Z>s) converges absolutely, and that

pf(J − K̂)l2(Z>s) → Φ(s),

where Φ is the distribution function for a standard Gaussian.

Proof. Since both convergence statements have essentially the same proof, we focus
on the ASEP case. Let us first explain the heuristics behind the limit. Note that by
Lemma 7.4 and Lemma 7.5, in the limit we have that kν−1(u, v) → 0 and S(u, v) → 0
(along with all derivatives). On the other hand, if these are taken to 0, what remains
is a rank 2 kernel, and so every term in the Fredholm Pfaffian expansion except the
first two are 0. One can then check that these two terms give the distribution function
for a Gaussian. We now justify this limiting procedure.

We first wish to use summation by parts to remove the part of the kernel con-
verging to a distribution, as in Proposition 6.3. The proof proceeds similarly, except
that care must be taken to show integrability due to the different bounds. We will
assume this for now, and return to this point at the end of the proof. Thus, we will
first show convergence of the modified kernel

K̂ ′ =

(
k̂(x, y) −D

(γ)
y k̂(x, y)

−D
(γ)
x k̂(x, y) D

(γ)
x D

(γ)
y k̂(x, y)

)
.

We have the nth term in the expansion is given by

pf(K̂ ′(ui, uj))
n
i,j=1 = pf(K1) +

∑
i,j

pf(K1)̂i,̂j pf(K2)i,j ,

where K1 is the part of the kernel corresponding to kν−1(u, v) − S(u, v) and K2 to
−A(u)B(v)+A(v)B(u). We only need to consider even subsets up to size 2 because
K2 is rank at most 2.

Using the expansion of the Pfaffian into matchings, we have

|pf(K1)| ≤
(2n)!

2nn!
(Ce−cτ )ne−c(

∑
ui),

which we obtain by taking a geometric average of the two bounds given by Lem-
mas 7.4 and 7.5. For the other term, we note that each variable is associated to
two rows/columns, and so expanding pf(K1)̂i,̂j into a sum over matchings M of
{1, . . . , 2n} \ {i, j} and taking the induced matching on variables, we see that there
will be factors corresponding to a path ui1 → . . . → uik where ui1 is associated to i
and uik is associated to j (possibly the same variable). Taking the same geometric
average as above for the factors not in this path, and one of the bounds for the
factors in the path, we obtain∣∣∣∣∣∣

∏
(i′,j′)∈M

(K1)i′j′

∣∣∣∣∣∣ ≤ (Ce−cτ )ne−c
∑

l ̸=i ulνστ
1/2(ui−uj)
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and ∣∣∣∣∣∣
∏

(i′,j′)∈M

(K1)i′j′

∣∣∣∣∣∣ ≤ (Ce−cτ )ne−c
∑

l ̸=j ulνστ
1/2(uj−ui).

Then as

| pf(K2)i,j | ≤ Cν−στ1/2ui+στ1/2uje−cui + Cν−στ1/2uj+στ1/2uie−cuj ,

we have that
|
∏

(i′,j′)∈M

(K1)i′j′ pf(K2)i,j | ≤ (Ce−cτ )n−1e−c
∑

ui ,

and so after summing over the matchings M and summing over the variables ui, we
obtain a bound of

C
(2n)!

n!
c(τ)n−1,

for some c(τ) arbitrarily small as τ → ∞. This implies that the n ≥ 2 terms in the
series expansion for the Fredholm determinant are bounded by

C
∑
n≥2

n2

(
2n

n

)
c(τ)n−1 → 0

as c(τ) → 0, after summing over i, j and n.
Turning now to the n = 1 term, the summands have exponential tails in u, and

so after replacing the sum with an integral and using a dominated convergence
argument, it suffices to take the pointwise limit. The kν−1 − S term goes to 0, and
A(u)(D

(γ2)
x B)(u) − (D

(γ2)
x A)(u)B(u) converges to 1√

2π
e−u2/2 (taking into account

the scaling of the variables which turns the sum into an integral), giving

pf(J − K̂)l2(Z>s) → 1−
∫ ∞

s

1√
2π

e−u2/2du = Φ(s).

Let us now explain why Proposition 6.3 continues to hold in this setting. Again,
we apply Lemma 5.6, and note that by an argument similar to above, the first term
can be made small enough even after integrating, noting that integrability for the
remaining variables is given by a similar argument to above. In particular, although
some variables are removed, variables are also set equal, resulting in a Pfaffian where
each variable occurs exactly twice.

We thus study the second term, which involves bounds near when some of the
variables are set close to s. Since the higher order main terms don’t contribute,
we expect that these error terms should also go to 0. We use the same ideas as in
the bounds derived above to do so. Recall that we expand the Pfaffian as a sum
over an even subset J of {1, . . . , n} indicating the variables for which we select the
distributional part of the kernel, M a matching of J given by further expanding
the Pfaffian of the distributional part, and M ′ ⊆ M a non-empty sub-matching
indicating which variables we are selecting to be boundary variables. Note that
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since we are interested in bounding the boundary error from summation by parts,
we can assume M ′ is non-empty. To bound the boundary term∑

ui>s
i ̸∈J or (i,j)∈M

∣∣∣∣∣∣B(γ2)
(M ′)cD

(γ2)
M ′ pf(K̂ ′′(ui, uj))(2J)c

∣∣∣∣ui=uj=s,(i,j)∈(M ′)c

ui=uj ,(i,j)∈M ′

∣∣∣∣∣∣ ,
where K̂ ′′ is K̂ with the distributional part removed, we proceed as before, expanding
further as a sum over a product of Pfaffians. Again, although we have removed
certain rows/columns, we also set certain variables equal to each other and so each
variable remaining still appears exactly twice, allowing the same argument as before
to work. For the variables set close to s, we note that they are essentially equal, up
to a lower order perturbation in the exponent which is killed by any e−cτ factor. We
thus obtain a bound of the form

(2(n− |J |))!
2n−|J |(n− |J |)!

τ−|(M ′)c|/12Cnc(τ)n−|J |/2−1.

Let k = |J |/2, and sum over even subsets J , matchings M of J , and M ′ ⊆ M
non-empty, giving that the boundary terms for n ≥ 3 altogether contribute an error
of at most

∞∑
n=3

1

n!
Cτ−1/12

n/2∑
k=0

(
n

2k

)
(2k)!

2kk!
2k

(2n− 4k)!

2n−k(n− 2k)!
Cnc(τ)n−k−1

=Cτ−1/12
∞∑
l=2

l∑
k=0

(2l)!

k!l!2
C l+2kc(τ)l+k−1

≤Cτ−1/12
∞∑
l=2

(
2l

l

)
(Cc(τ))l−1 → 0,

where we made the substitutions l = n− 2k.
Finally, the error from the n = 2 term can be estimated directly. Note that since

n = 2, we must have 2k = 2 and so there is exactly one boundary term coming from
k̂(x, y). In particular, it suffices to show that k̂(u, v) is small near (s, s). Again, the
kν−1 and S terms go to 0 already and so it’s easy to see that their boundary terms
will also go to 0, and so we focus on the remaining A(x)B(y)−A(y)B(x) term. The
higher order Ak are also small, and so it suffices to look at A0 instead of A. We do
so by explicitly computing the boundary term, which is (B(γ2)

x −B
(γ2)
y )(A0(x)B(y)−

A0(y)B(x)). Now (B
(γ2)
x −B

(γ2)
y ) acts linearly, and

(B(γ2)
x −B(γ2)

y )(wxzy)(s, s)

=
(1− γ2)

2

2

(wz)s+1

1− wz

(
w−1

1− γ2w−1
− z

1− γ2z
− z−1

1− γ2z−1
+

w

1− γ2w

)
,

so the boundary term is of the exact same form as A0(x)B(y) − A0(y)B(x) except
that we add this extra factor to the integral defining B with w = ν. A very similar
steepest descent analysis then gives the same types of asymptotics as Lemmas 7.4 or
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7.5, but since we are not summing over anything anymore, the τ−1/2 factor means
this term also goes to 0. □

Proposition 7.7. For the ASEP, if ρ < 1
2 and t < 1, we have

P

−
N
(

τ
1−q

)
− µτ

στ1/2
≤ s

→ Φ(s),

where
µ =

ν

(1 + ν)2
, σ2 = ν−2 1− ν

(1 + ν−1)3
.

For the six vertex model, if ρ < 1
2 (we always assume t < 1), we have

P
(
h(n, n)− µn

σn1/2
≤ s

)
→ Φ(s),

where

µ =
2a2 + a(ν + ν−1)

(1 + aν)(1 + aν−1)
, σ2 =

a(1− a2)(ν−1 − ν)

(1 + aν)2(1 + aν−1)2
.

Proof. Given Proposition 7.6, what remains is to show that convergence of −N(τ)+
χ+ 2S or h(n, n) + χ+ 2S after rescaling implies convergence of −N(τ) or h(n, n)
after rescaling. This proceeds in a similar manner to the ρ > 1

2 case in Proposition
6.8. □
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Appendix A. Fredholm Pfaffians

Recall that the Pfaffian pf(K) of a skew-symmetric matrix K is defined as

pf(K) =
∑
M

sgn(M)
∏

(i,j)∈M

Kij ,

where the sum is over all perfect matchings of {1, . . . , 2n}, sgn(M) is the sign of the
permutation given in one line notation by recursively selecting the smallest number
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out of M along with its paired number, and i < j. The Pfaffian satisfies pf(K)2 =
det(K), and so in particular is 0 if K is not of full rank.

We also require the following expansion for Pfaffians.

Lemma A.1 ([40, Lemma 4.2]). Let A and B denote 2n × 2n skew symmetric
matrices. Then

pf(A+B) =
∑

J⊆{1,...,2n}
|J | even

(−1)
∑

i∈J i−|J |/2 pf(AI) pf(BIc),

where AI denotes the submatrix given by rows and columns indexed by I.

Let (Ω, µ) be a measure space. For us, Ω will either be a countable set with the
counting measure or R with Lebesgue measure, so we will drop the dependence on
µ. Let K : Ω× Ω → R be a measurable 2× 2 skew-symmetric matrix-valued kernel

K(x, y) =

(
K11(x, y) K12(x, y)
K21(x, y) K22(x, y)

)
,

and let J denote the kernel defined by

J(x, y) = δx=y

(
0 1
−1 0

)
.

We define the Fredholm Pfaffian pf(J −K)L2(Ω) by the series expansion

pf(J −K)L2(Ω) = 1 +
∞∑
n=1

(−1)n

n!

∫
Ωn

pf(K(xi, xj))
n
i,j=1dµ

⊗n,

provided that the series converges absolutely, i.e.

pf(J −K)L2(Ω) = 1 +
∞∑
n=1

(−1)n

n!

∫
Ωn

|pf(K(xi, xj))
n
i,j=1|dµ⊗n < ∞.

In particular, we do not require that Kij(x, y) have any decay properties beyond
convergence of this series, and indeed we will wish to work with kernels which can
exponentially grow in x or y. Note here that the convention is that the matrices
appearing in the expansion consist of n2 2×2 blocks rather than 4 n×n blocks. This
is related to the Fredholm determinant via pf(J −K)2L2(Ω) = det(1− JTK)L2(Ω).

A standard tool to prove absolute convergence of this series is given by Hadamard’s
bound for determinants, which immediately implies a bound on Pfaffians, since
|pf(X)| =

√
| det(X)| for any skew-symmetric matrix X. For convenience, we state

the needed result.

Lemma A.2. Let K be an n× n matrix with |Kij | ≤ aibj. Then

|det(K)| ≤ n
n
2

∏
i

aibi.

Thus, if K is skew-symmetric of size 2n, and |Kij | ≤ aibj, then

|pf(K)| ≤ (2n)
n
2

∏
i

√
aibi.
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