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Jarzynski equality for time-averaged work
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There is evidence that taking the time average of the work performed by a thermally isolated system

“transforms” the adiabatic process into an isothermal one. We add here one more fact to this case by show-

ing that the time-averaged difference of Helmholtz free energy is equal to the time-averaged quasistatic

work of the system. Therefore, a Jarzynski equality relating the time-averaged work and time-averaged

quasistatic work is established. As an immediate consequence, the expected relation 〈W 〉 ≥ Wqs is

demonstrated. Numerical evidence for the equality is also presented for the classical harmonic oscillator

with a driven linear equilibrium position parameter.

Introduction. Previous works have shown that taking

the time average of the work performed by thermally iso-

lated systems “transforms” the adiabatic process into an

isothermal one [1]. In this way, important characteristics of

isothermal processes, like the existence of a decorrelation

time, are now present in adiabatic processes. Possible solu-

tions for conundrums involving the existence of relaxation

times, like in the Kibble-Zurek mechanism, are therefore

proposed [2].

In this work, I show that, for thermally isolated systems

subjected to the time average work, the time-averaged dif-

ference of free energy is equal to the time-averaged qua-

sistatic work. Because of this, the following Jarzynski

equality is established

〈e−β0W 〉 = e−β0W qs , (1)

where W is the time-averaged work performed by the sys-

tem along an adiabatic driven process, W qs is the time-

averaged quasistatic work, and β0 := (kBT0)
−1, with kB

being Boltzmann constant, and T0 the temperature of the

initial thermal equilibrium of the thermally isolated sys-

tem. Numerical evidence is presented for the classical har-

monic oscillator with a driven linear equilibrium position

parameter.

Preliminaries. Consider a system with Hamiltonian

H(z(z0, t), λ(t)), dependent on some external parameter

λ(t) = λ0 + g(t)δλ, with g(0) = 0 and g(τ) = 1, where

τ is the switching time of the process. Here, z(z0, t) is a

point in the phase space Γ of the system evolved from the

initial condition z0 until the instant t. Initially, the system

is in thermal equilibrium with a heat bath at a tempera-

ture T0. When the process starts, the system is decoupled

from the heat bath and adiabatically evolves in time, that

is, without any source of heat. The work performed along

the process is

W (z0, τ) =

∫ τ

0

∂λH(z(z0, t), λ(t))λ̇(t)dt, (2)

or as well

W (z0, τ) = H(z(z0, τ), λ0 + δλ) −H(z0, λ0). (3)

Its average is

〈W 〉(τ) =

∫

Γ

∫ τ

0

∂λH(z(z0, t), λ(t))ρH(z(z0, t), t)λ̇(t)dtdz,

(4)

or as well

〈W 〉(τ) =

∫

Γ

H(z(z0, τ), λ0 + δλ)ρH(z(z0, τ), τ)dz

−

∫

Γ

H(z0, λ0)ρH(z0)dz0, (5)

where the probability distribution ρH is the solution of the

Liouville equation

∂ρ

∂t
= Lρ, (6)

where L := −{·,H} is the Liouville operator. Here, {·, ·}
is the Poisson bracket.

In particular, we call quasistatic work the average work

perform in a process made in the quasistatic regime

Wqs(λ0 + δλ) =

∫

Γ

[H(z(z0, λ0 + δλ), λ0 + δλ)×

ρH(z(z0, λ0+δλ), λ0+δλ)]dz−

∫

Γ

H(z0, λ0)ρH(z0)dz0,

(7)

where z(z0, λ) is the solution of the Hamilton equations

for Hamiltonian H taking as parameter λ instead of t.
Time-averaged work. The quantity that will interest us

here is the time average of the work, given by

W (z0, τ) =
1

τ

∫ τ

0

W (zef(z0, t), t)dt, (8)

which can be rewritten as

W (z0, τ) =

∫ τ

0

∂tH
ef(zef(z0, t), t)dt, (9)

with the effective Hamiltonian

Hef(z0, t) =
1

t

∫ t

0

H(z(z0, t
′), λ(t′))dt′. (10)
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The solutions of such an effective Hamiltonian will be rep-

resented by zef(z0, t). In particular, when a quasistatic

process is made, the effective Hamiltonian calculated at the

parameter λ is

Hef(z0, λ) =
1

λ− λ0

∫ λ

λ0

H(z(z0, λ), λ)dλ, (11)

where H evolves accordingly with the quasistatic process,

that is, solving the Hamilton equations taking the parame-

ter λ instead of the time. Observe that when λ = λ0, the

effective Hamiltonian reduces to the original Hamiltonian

calculated at λ0.

The non-equilibrium average of the time-averaged work

is

〈W 〉(τ) =

∫

Γ

∫ τ

0

∂tH
ef(zef(z0, t), t)ρHef (zef(z0, t), t)dtdz,

(12)

where ρHef is the solution of Liouville equation regard-

ing Hef . However, since both effective Hamiltonian and

original Hamiltonian have the same initial canonical en-

semble, we can use the Liouville theorem and involve the

non-equilibrium distribution regarding Hef . In this way,

we have

〈W 〉(τ) =

∫

Γ

∫ τ

0

∂tH
ef(z0, t)ρH(z0, λ0)dtdz0 (13)

which leads to

〈W 〉(τ) =
1

τ

∫ τ

0

〈W 〉(t)dt, (14)

where we used the Liouville theorem to evolve the initial

canonical ensemble regarding H. Finally, considering a

quasistatic process, the time-average quasistatic work will

be

W qs(λ0 + δλ) =

∫

Γ

[Hef(zef(z0, λ0 + δλ), λ0 + δλ)×

ρHef (zef(z0, λ0+δλ), λ0+δλ)]dzef−

∫

Γ

H(z0, λ0)ρH(z0)dz0,

(15)

or, as well,

W qs =
1

δλ

∫ λ0+δλ

λ0

Wqs(λ)dλ. (16)

Time-averaged difference of Helmholtz free energy.

Imagine now that the system is weakly coupled to a heat

bath of Hamiltonian Hbath(z
′(z′

0
, t)). Its effective Hamil-

tonian is

Hef
bath(z

′

0
, t) =

1

t

∫ t

0

Hbath(z
′(z′

0
, t′))dt′, (17)

with the solutions represented by z
′

ef(z
′

0
, t). The Hamilto-

nian of the total system is

Htotal(z0, z
′

0
, t) = H(z0, t) +Hbath(z

′

0
, t), (18)

and its effective Hamiltonian is

Hef
total(z0, z

′

0
, t) = Hef(z0, t) +Hef

bath(z
′

0
, t). (19)

Performing a quasistatic process, the time-average differ-

ence of Helmholtz free energy will be

∆F =

∫ λ0+δλ

λ0

〈∂λH
ef
total〉λ(λ)dλ, (20)

where the operation 〈·〉λ is the average in the canonical

ensemble of the total system calculated at the parameter λ

ρHef
total

(z0, z
′

0
, λ) =

e−β0H
ef
total(z0,z

′

0
,λ)

Zef
total(λ)

, (21)

where Zef
total(λ) is the partition function and

Hef
total(z0, z

′

0
, λ) = Hef(z0, λ) +Hef

bath(z
′

0
, λ), (22)

Hef
bath(z

′

0
, λ) =

1

λ− λ0

∫ λ

λ0

Hbath(z
′(z′

0
, λ′))dλ′. (23)

Observe that the Hamiltonian inside the integrals evolves

accordingly with the quasistatic driving.

Isothermal process. Using the Liouville theorem, we can

rewrite Eq. (20) with an average on the initial canonical

ensemble

∆F =

∫

Γ

∫ λ0+δλ

λ0

[∂λH
ef
total(zef(z0, λ), z

′

ef(z
′

0
, λ), λ)×

ρHef
total

(z0, z
′

0
, λ0)]dλdz0dz

′

0
, (24)

Two terms come from solving this integral. The first one

is the time-averaged quasistatic work, given by Eq. (15).

It remains to show what happens to the contribution of the

heat bath in the time-averaged difference of Helmholtz free

energy. I argue that it goes to zero. Indeed, consider that

such a contribution is given by Q. Splitting it into Q =
Q1 +Q2, where

Q1 =

∫

Γ

[

1

δλ

∫ λ0+δλ

λ0

eLbath(λ−λ0)dλ

]

Hbath(z
′

0
)ρHbath

(z′
0
)dz′

0

(25)

Q2 = −

∫

Γ

Hbath(z
′

0
)ρHbath

(z′
0
)dz′

0
, (26)

where I use the fact that the initial canonical ensemble of

the effective heat bath Hamiltonian coincides with the orig-
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inal heat bath Hamiltonian. The quantity Q1 is

Q1 =

∫

Γ

(

eδλLbath − 1

δλ

)

Hbath(z
′

0
)ρHbath

(z′
0
)dz′

0

=

∫

Γ

∞
∑

n=0

Ln
bathδλ

n

(n+ 1)!
Hbath(z

′

0
)ρHbath

(z′
0
)dz′

0

=

∞
∑

n=0

δλn

(n+ 1)!

∫

Γ

Ln
bathHbath(z

′

0
)ρHbath

(z′
0
)dz′

0

=
∞
∑

n=0

(−1)nδλn

(n + 1)!

∫

Γ

Hbath(z
′

0
)Ln

bathρHbath
(z′

0
)dz′

0

=

∫

Γ

Hbath(z
′

0
)ρHbath

(z′
0
)dz′

0

= −Q2

(27)

Therefore

∆F = W qs. (28)

This result tells us that the under the time average, the sys-

tem behaves as performing an isothermal process.
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FIG. 1. Jarzynski equality for the classical harmonic oscillator,

with a driven linear equilibrium position parameter. It was used

datasets with 105 values of exp [−β(W −W qs)] sampled accord-

ingly with the canonical ensemble, β0 = 1, λ0 = 1, δλ = 0.5.

Jarzynski equality. From Ref. [3] and Eq. (28), it follows

the equality

〈e−β0W 〉 = e−β0W qs . (29)

Using Jensen’s inequality, we have

〈W 〉(τ) ≥ W qs(λ0 + δλ). (30)

To prove that 〈W 〉(τ) ≥ Wqs(λ0 + δλ), suppose that,

along the process, for each instant t and corresponding pa-

rameter λ(t) = λ0 + tδλ/τ , it holds

〈W 〉(t) < Wqs(λ0 + tδλ/τ). (31)

Therefore

〈W 〉(τ) <
1

τ

∫ τ

0

Wqs(λ0 + tδλ/τ)dt

=
1

δλ

∫ λ0+δλ

λ0

Wqs(λ)dλ

= W qs(λ0 + δλ),

(32)

so, by absurd, 〈W 〉(t) ≥ Wqs(λ0 + tδλ/τ), for each t. In

particular the result holds for t = τ .

Testing. In order to corroborate Jarzynski equality (1),

we test the classical harmonic oscillator with a driven linear

equilibrium position parameter

H =
p2

2
+

(q − λ(t))2

2
, λ(t) = λ0 +

t

τ
δλ. (33)

Figure 1 presents the result of the simulation. It was used

for each switching time τ a dataset with N = 105 values

of exp [−β0(W −W qs)], sampled accordingly with the

canonical ensemble, and parameters β0 = 1, λ0 = 1 and

δλ = 0.5. The results for rapid protocols deviate about

1% from the expected result. I attribute that to the inherent

difficulty of sampling exponentially weighted random vari-

ables, mainly in this type of process whose distributions are

wider and require the occurrence of rare events [4].

Conclusion. I proved that thermally isolated systems,

when measured using the time-averaged work, present

their time-averaged difference of free energy equal to the

time-averaged quasistatic work. Because of this, a Jarzyn-

ski equality relating the fluctuations of the time-averaged

work with the time-averaged quasistatic work is estab-

lished. From such a result, I derived the expected inequal-

ity 〈W 〉 ≥ Wqs. Numerical evidence for the equality is

also presented for the classical harmonic oscillator with a

driven linear equilibrium position parameter. Finally, I re-

mark that such Jarzynski equality (1) seems to be a bet-

ter alternative to relate the notions of work and quasistatic

work of a thermally isolated system performing an adia-

batic driven process than the Jarzynski equality found in

[5].
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