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ABSTRACT
Fast radio bursts (FRBs) are astronomical transients with millisecond timescales. Although most of the FRBs are not observed
to repeat, a few of them are detected to repeat more than hundreds of times. There exist a large variety of physical properties
among these bursts, suggesting heterogeneous mechanisms of FRBs. In this paper, we conduct a categorisation on the extremely
frequently repeating FRB 20201124A with the assistance of machine learning, as such techniques have the potential to use subtle
differences and correlations that humans are unaware of to better classify bursts. The research is carried out by applying the
unsupervised Uniform Manifold Approximation and Projection (UMAP) model on the FRB 20201124A data provided by Five-
hundred-meter Aperture Spherical radio Telescope (FAST). The algorithm eventually categorises the bursts into three clusters.
In addition to the two categories in previous work based on waiting time, a new way for categorisation has been found. The
three clusters are either high energy, high frequency, or low frequency, reflecting the distribution of FRB energy and frequency.
Importantly, a similar machine learning result is found in another frequently repeating FRB20121102A, implying a common
mechanism among this kind of FRB. This work is one of the first steps towards the systematical categorisation of the extremely
frequently repeating FRBs.
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1 INTRODUCTION

Fast radio bursts (FRBs) are astronomical transients that show sudden
brightening at radio wavelengths (e.g. Lorimer et al. 2007). Most of
the FRBs happen in milliseconds timescale (e.g. Petroff et al. 2016)
and occur at cosmological distances. FRBs are usually classified as
either non-repeating or repeating, where they are defined as one-off
bursts and repeated bursts detected from single FRB sources, re-
spectively. Numerous FRB theories have been proposed (e.g. Platts
et al. 2019) to account for the physical origin of either non-repeating
or repeating FRBs. The proposed hypotheses include neutron star
mergers (Yamasaki et al. 2017), pulsar–black hole interactions (Bhat-
tacharyya 2017), active galactic nuclei activities (Vieyro et al. 2017),
etc. In spite of the intensive observations and modelling, so far, the
origin of FRBs remains a mystery.
Most of the repeating FRB sources only have a handful of observed

burst events (Masui&CHIME/FRBCollaboration 2021). However, a
highly active repeater could havemore than 1000 bursts detected. The
well-known FRB20121102 (Li et al. 2021) and FRB 20201124A (Xu
et al. 2022) are both examples of a highly active repeater also known
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as frequently repeating FRBs. This kind of FRBs are rarely seen, but
the multitude of their bursts allows us to perform categorisation with
the aid of machine learning.
FRB 20201124A is the most active FRB known so far (Xu et al.

2022). A radio observational campaign of Five-hundred-meter Aper-
ture Spherical radio Telescope (FAST) is dedicated to monitoring
FRB 20201124Awhich provided the necessary data for this research.
The campaignmonitored FRB 20201124A fromApril 1, 2021 up un-
til June 11, 2021, which cumulatively has 96.9 hours of observation
time. The released catalogue contains 1863 bursts, and each burst is
characterised by at most 27 physical properties (Xu et al. 2022).
These 1863 bursts are detected with a signal-to-noise ratio (S/N)

> 7, with 913 bright bursts reaching S/N > 50. The burst rate of
FRB 20201124A evolves slowly between 5.6 hr−1 to 45.8 hr−1.
The burst flux density ranges from 0.005 Jy to 11.5 Jy, and the
inferred isotropic luminosity spans from 5 × 1037 erg s−1 to 3 ×
1040 erg s−1 (Xu et al. 2022). The data provided by the observation
is homogeneous, therefore analysing it with unsupervised machine
learning is a feasible direction.
There are already several works that applied machine learning

to study FRBs. Most recently, Hewitt et al. 2022 used a super-
vised deep-learning algorithm to classify FRB candidates from the
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FRB121102 data which is detected by the Arecibo Telescope. Before
that Agarwal (2020) also presented a classification for FRB candi-
dates from Australian Square Kilometre Array Pathfinder (ASKAP)
detection using deep neural networks. In an earlier work, Wagstaff
et al. (2016) trained and deployed a machine learning classifier that
marks each detection as either a known pulsar, artefact due to interfer-
ence, or potential new FRB discovery. Suggesting that unsupervised
machine learning is a promising way to identify misclassified FRB
repeaters. For example, Chen et al. (2021) successfully uncloaked
the hidden repeating FRB candidates from non-repeating FRBs in
the CHIME/FRB observation with UMAP, an unsupervised machine
learning model. Thus, motivating subsequent FRB studies such as
Kim et al. 2022 and Hashimoto et al. 2022.
In this paper, an unsupervised dimensionality reduction algorithm

is used and followed by an unsupervised clustering algorithm. The
dimensionality reduction algorithm we utilised is known as Uniform
Manifold Approximation and Projection (UMAP), a technique for
dimension reduction based onmanifold learning techniques and ideas
from topological data analysis (McInnes et al. 2018). The UMAP
algorithm maps the observational parameters of each FRB to a 2D
embedding plane after training on the features of the training samples.
This projection aggregates the FRB samples having similar physical
properties and repels those that do not. As a result, the algorithm
provides us with a way to systematically classify the bursts of FRB
20201124A. Next, an unsupervised clustering algorithm known as
K-means is used to label the clusters resulting from the projection.
In conclusion, we find that the bursts in FRB 20201124A could be

roughly classified into 3 clusters, rather than the previously known
two (Xu et al. 2022). The classification is mainly dominated by
the energy and frequency parameter of the bursts, while both the
arrival time and the waiting time do not have significant effect on
the clustering result. These findings are different from the bimodal
distribution of waiting time proposed in Xu et al. (2022). This work
is a first step towards the systematic categorisation of the extremely
frequently repeating FRBs.
This work is organised as follows. We describe our data com-

position and model configuration in Section 2. Our UMAP Model
classification result is described in Section 3. We present the Discus-
sion in Section 4, followed by Conclusions in Section 5.

2 DATA COMPOSITION AND MODEL CONFIGURATION

2.1 Sample and Data Selection

The data for FRB 20201124A in this work is provided by the obser-
vational campaign of FAST (Xu et al. 2022). The catalogue records
1863 FRBs at a frequency range between 1.0 GHz to 1.5 GHz from
April 1, 2021 up until June 11, 2021. There are 27 observational
parameters available in the catalogue. We included 8 parameters
in the main unsupervised machine learning experiment, where all
bursts must have the measurements of these 8 features. 118 samples
are excluded due to the missing parameter values, thus finally 1745
FRB are utilised in this paper. We further discuss the details of each
observational parameter in Section 2.1.1.

2.1.1 The observational parameters

A total of 8 observational parameters are included in our unsuper-
vised training. All of these parameters come from the original FRB
20201124A data provided by FAST. Brief descriptions of the param-
eters are as follows (see Xu et al. 2022, for details).

• Barycentrical arrival time (BAT) : The Barycentrical arrival
time of the FRBs in units of Modified Julian Date (MJD), measured
from the centroid of the best-matched boxcar filter. The value of this
parameter is ranged from 59307.33458 to 59360.17901.

• S/N : The signal-to-noise ratio of the FRBs. The value of this
parameter is ranged from 7.14 to 2885.83.

• Peak flux density (Jy) : The peak flux of the FRBs. The value
of this parameter is ranged from 0.005 to 11.505.

• Fluence (Jy · ms) : The integration of the pulse flux density
with respect to the time of the FRBs. The value of this parameter is
ranged from 0.0173 to 67.3181.

• Equivalent width (ms) : A measure of the time width of FRBs,
defined by the fluence divided by the pulse peak flux density. The
value of this parameter is ranged from 1.556 to 28.36.

• Bandwidth (MHz) : The bandwidth of the FRBs. The value of
this parameter is ranged from 30.151 to 485.84.

• Peak frequency (MHz) : The peak frequency of the FRBs. The
value of this parameter is ranged from 1000 to 1500.

• Waiting time (s) : The time difference between each FRB and
its next one. We impose the log scale on the value for training since
it spans several orders of magnitude. We removed 118 FRB samples
at the end of each observation session because their waiting time
cannot be measured. The value of this parameter ranges from 0.004
to 1325.108 seconds.
It is worth noting that, as the FRBs in this paper originated from

a single source, the cosmological effect is not opposing discrepant
effect on them. As a result, we don’t consider the cosmological effect
correction in this paper.

2.1.2 The Statistical Information Regarding the Parameters

Our data is comprised of the 1745 FRBs originating from FRB
20201124A, and this sample is the foothold of our unsupervised
machine learning model. In order to further understand the basic
composition of our research, we plot the distribution of the parame-
ters mentioned in Section 2.1.1, shown in Fig. 1.

2.2 Unsupervised Machine Learning Model and Configuration

We utilised 1745 FRBs provided by the FAST observation campaign,
and there are 8 physical parameters for each FRB. Serving as our input
data, we managed to conduct two unsupervised machine learning
analyses on this data. The applied machine learning techniques are
UMAP, an algorithm based on topological data analysis andmanifold
learning, and K-means, an algorithm for unsupervised clustering.
The training of UMAP involves two stages. In the first stage,

the algorithm constructs the local connectivity of the data manifold
by computing the distances of each data point’s 𝑘 nearest neigh-
bours under a relative scale of the distance to nearest neighbours.
As a result, 𝑘 is one of the UMAP hyperparameters, referred to as
n_neighbors. n_neighbors manipulates the model’s balance be-
tween the local and the global manifold structure of the data. A large
n_neighbors demands UMAP to consider a large cluster of data
points when computing the local connectivity. On the other hand,
a small n_neighbors allows the algorithm to concentrate on the
local structure of the data. We discuss our choice of n_neighbors
in Sec. 3.
The second stage of UMAP is to map the FRBs (represented by

8 parameters) to low-dimensional representations. Thus, we need
another hyperparameter n_components to decide the resulting di-
mensionality of the reduced dimension. In our work, we adopt
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FRB 20201124A classification with unsupervised ML 3

Figure 1. This figure shows the observational parameter distributions, which are the input data we apply for our unsupervised learning. See Section 2.1.1 for the
details.

n_components = 2, which means we project the physical proper-
ties of FRBs onto a 2D plane.
To find a 2-dimensional representation that matches the topologi-

cal structure of the 8-dimensional data, UMAP performs a stochastic
gradient descent by a specific cross-entropy function. The gradient
descent provides an attractive force between the points where the
scaled distance mentioned above is short in high dimensional space
and provides a repulsive force between the points whenever the dis-
tance is large. In order to prevent the resulting low dimensional pro-
jection from clumping together, another hyperparameter min_dist
is induced to constrain the minimum Euclidean distance between the
projected points. However, this hyperparameter is not affecting our
result significantly. In this paper, min_dist is set to have the default
value of 0.1.
The result provided by UMAP is followed by the unsupervised

clustering method K-means. It is used to group data into clusters
based on similarity. It is one of the most widely used clustering
algorithms and is relatively simple to implement. The algorithm
works by first initializing a set of cluster centres, then iteratively
assigning data points to the closest cluster centre, and updating the
cluster centres to be the mean of the points assigned to that cluster.
This process is repeated until the cluster centres stop changing or a
maximum number of iterations is reached. Themain advantage of the
K-means algorithm is its speed and simplicity, but it requires a preset
cluster number n_cluster to determine the total cluster numbers.
We discuss our choice of n_cluster in Sec. 3 and Appendix A.

This section concludes with a simple introduction to the UMAP
algorithm and the hyperparameter setting we use. Readers can refer
to McInnes et al. (2018) for the mathematical background of UMAP.

3 RESULT

3.1 UMAP Model Classification Result

Our unsupervised UMAP model makes the projection and then K-
means identify the clusters. We expect the projection of the FRBs to
have distinct clusters on the embedding plane. In order to do that, we
need to properly set up the UMAP hyperparameter n_neighbors.
Thus, we evaluate the silhouette score (Rousseeuw 1987) result from
each n_neighbors, presented in Fig. 2. The silhouette score is a
metric for evaluating the performance of a clustering algorithm. The
silhouette score ranges from -1 to 1, with a score of 1 indicating
that all the samples are perfectly matched to their own clusters, and a
score of -1 indicating that the samples are poorlymatched to their own
clusters. The highest silhouette score is obtainedwhen n_neighbors
= 7. Therefore, we use n_neighbors = 7 in the paper.
K-means clustering algorithm requires a predetermined value for

the hyperparameter n_cluster to decide the number of the resulting
clusters. In order to select the best value, we evaluate the silhouette
score of each n_cluster setting, presented in Fig. 3. In the figure,
we see the clustering has the best silhouette score in n_cluster = 2.

MNRAS 000, 1–8 (2022)
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Figure 2. The silhouette score result from each n_neighbor setting for the
UMAP algorithm.

However, the embedding plane obviously has more than two clusters.
Therefore, we exclude n_cluster = 2 from further analysis. Except
forn_cluster=2,n_cluster=3provides the best silhouette score.
Therefore, we apply n_cluster = 3, separating the embedding plane
into 3 areas.
We present the result of our unsupervised machine learning in

Fig. 4. Aggregation of the FRBs on the embedding plane implies
a similar physical property. The data points on the plane have been
classified by the K-means clustering algorithm. We denote the three
clusters as Cluster 1, Cluster 2 and Cluster 3. Cluster 2 is large
and sparse, including more than half of the samples. In contrast,
the structure of cluster 1 and cluster 3 are denser. This fact implies
the clusters on the right-hand side have similar physical parameters.
The visual inspection suggests that Cluster 1 could be composed of
two sub-clusters. However, due to the restrictions of the clustering
algorithm, we are not able to separate these two sub-clusters.
The clusters presented on the embedding plane suggest that there

is indeed heterogeneity in the behaviour of FRB 20201124A. As a
result, we look into the physical property distribution on the em-
bedding plane in the following section and figure out which factors
contribute to the formation of these clusters.

3.2 Physical Property Distribution of Each cluster

We colour the embedding plane according to the values of the obser-
vational parameters as shown in Fig. 5. In the figure, we see S/N, peak
flux, fluence, bandwidth and peak frequency present clear correla-
tion with each other, implying these are the factors that significantly
influenced the machine learning results. The distributions of BAT,
waiting time and equivalent width are almost random, indicating
these parameters have very little to no effect on the result.
According to Fig. 5, the parameters can be classified into 3 groups:

• Parameter group A: S/N, peak flux and fluence
• Parameter group B: bandwidth and peak frequency
• Parameter group C: BAT, waiting time and equivalent width

Parameter group A are the factors highlighting cluster 3. Due to
these parameters, bursts in cluster 3 generally have higher S/N, peak
flux and fluence. These factors are energy-related. Thus, cluster 3

Figure 3. The silhouette score result from each n_cluster setting for the
K-means clustering algorithm.

Figure 4. The unsupervised machine learning result of the FRB 20201124A.
The distances among the points represent the similarities of their physical
parameters, but the 𝑥 and 𝑦 axes do not have explicit physical implications.
1745 FRBs are projected to the embedding plane according to their physical
properties. Classification is carried outwith theK-means clustering algorithm,
and the resulting clusters are marked in different colours.

is the high-energy cluster. Parameter group B accentuates the wave-
length property of the FRBs. cluster 1 has high bandwidth and peak
frequency, while cluster 2 is exactly the opposite. Intriguingly, cluster
3 includes FRBs with both low and high values of bandwidth and
peak frequency. Lastly, parameter group C consists of the parame-
ters not influential for the training. BAT, waiting time and equivalent
width are the time factors, suggesting our dimensionality reduction
result almost is time-independent.

MNRAS 000, 1–8 (2022)



FRB 20201124A classification with unsupervised ML 5

Figure 5. The value distribution of each FRB on the embedding plane. The numerical scale is the same as Fig. 4. The range of the color bar in each panel is
limited to ±3 standard deviations from the average for clear visualization.

MNRAS 000, 1–8 (2022)
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Figure 6. The UMAP analysis based on the CHIME/FRB catalogue, in which
FRBs are originated from mostly different sources.

4 DISCUSSION

4.1 Comparing with the UMAP result on multi-FRB source
(CHIME/FRB) catalogue.

The analysis in this paper mainly focuses on the 1745 FRBs of FRB
20201124A which are bursts that originates from a single repeating
FRB source. In this section, we compare it to the analysis result based
on the FRB catalogue with mostly different sources. The catalogue
we referred to here was released by Canadian Hydrogen Intensity
Mapping Experiment Fast Radio Burst (CHIME/FRB) Project. It
includes 536 FRB sources at a frequency range between 400 and 800
MHz from July 25, 2018 to July 1, 2019 (Masui & CHIME/FRB
Collaboration 2021).
The analysis done for the CHIME catalogue is also based on

UMAP, which is originally presented in the work of Chen et al.
(2021). Their work identified the hidden repeating FRBs from the
currently one-off FRBs. We transplant the analysis and present it in
Fig. 6. In order to provide a straightforward comparison, the x and
y-axes of the two figures (Fig. 4 and Fig. 6) are presented on the same
scale. In comparison with our result in Fig. 4, the clusters in Fig. 6
are more distinct and dense.
The FRBs in Fig. 4 all originated from one single source, while

Fig. 6 are the FRBs aggregated from 535 sources. As a result, we
speculate the different clumping level comes from the different levels
of heterogeneity of the underlying data. When the data includes only
one single source, the data points are more similar thus the clusters
are less distinct. In contrast, when the FRB sources are diverse, the
UMAP model can efficiently divide the significantly different FRBs
and group FRBs that has some degree of similarity.
In summary, from this comparison, we can infer that the hetero-

geneity among the FRBs of different sources is higher than that of
a single source. The FRBs within FRB 20201124A have different
patterns, but the prominence of the pattern difference is definitely
lower than the one from the multi-source catalogue.

4.2 Comparing with the UMAP result on another frequently
repeating FRB

FRB 20201124A is not the only observed frequently repeating FRB.
FRB20121102 (Li et al. 2021) is a source detected to have more
than 1000 bursts as well. Raquel et al. (2022 submitted) carried out
the UMAP analysis for FRB20121102, which is quite similar to this
work. In their work, they included Barycentrical arrival time, disper-
sion measure, time width, bandwidth, peak flux density, fluence, and
energy of the FRBs as the input parameters. Comparing our work,
their analysis is presented in Fig. 7. Their result is produced by set-
ting the hyperparameter values for n_neighbors = 6 and min_dist
= 0 and clustered by the HDBSCAN algorithm. In this section, we
are comparing the best UMAP result of our source and theirs. Since
the source data are different, their hyperparameter setting is different
from ours. Instead of doing a comparison on identical hyperparam-
eter settings and clustering algorithms, it would be more common
in the machine learning community to compare two results in their
respective best scenarios (e.g. Badia et al. 2020).
We see that despite the source is different, the UMAP analysis

produced results which are similar in nature. Both of them have
three main clusters, appearing in 1 large, sparse cluster and 2 small,
dense clusters. Moreover, in the lower right corner of both panels,
there is a smaller cluster not specified by the clustering algorithm. In
summary, the two results are highly matched. The embedding planes
reflect the similarity of the FRB pattern. As a result, this fact could
be evidence that the frequently repeating FRBs are powered by a
similar mechanism.

5 CONCLUSIONS

In this work, we applied unsupervised machine learning analysis to
the 1745 bursts of FRB20201124A. For each burst event,we included
Barycentrical arrival time, signal-to-noise ratio, peak flux, fluence,
equivalent width, and bandwidth of signal as the input data for the
algorithm which then projects the data points onto a 2D plane based
on their similarity. Our work resulted in three main conclusions:
(i) Our UMAP model divides the FRBs into 3 clusters. The classi-

fication is based on either energy or frequency factors. The 3 clusters
are either high energy, high frequency, or low frequency. Interest-
ingly, time-related factors did not have a significant effect on our
results.
(ii) We compare our result with the work of (Chen et al. 2021)

which also has UMAP result based on multi-FRB source data. The
multi-FRB source data result has a clumpier, distinct embedding
plane.We infer that the heterogeneity among the FRBs from different
sources is higher than that of a single source.
(iii) We compare our result with the UMAP result based on an-

other frequently repeating FRB, FRB20121102 (Raquel et al. 2022
submitted). Impressively, their result is very similar to our result,
including the scale of the clusters and the relative position of the
clusters. This fact suggests that these two frequently repeating FRBs
are powered by similar mechanisms.
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Figure 7. The UMAP result comparison between FRB 20201124A and FRB20121102. The x and y-axes of the two figures are presented on a similar scale.

support of the National Science and Technology Council of Tai-
wan through grants 108-2628-M-007-004-MY3 and 111-2123-M-
001-008-. TH acknowledges the support of the National Science and
TechnologyCouncil of Taiwan through grants 110-2112-M-005-013-
MY3, 110-2112-M-007-034-, and 111-2123-M-001-008-. This work
used high-performance computing facilities operated by the Center
for Informatics and Computation in Astronomy (CICA) at National
Tsing Hua University. This equipment was funded by the Ministry of
Education of Taiwan, the National Science and Technology Council
of Taiwan, and National Tsing Hua University.

DATA AVAILABILITY

The utilised data and the UMAP analysis result are available in the
article’s online supplementary material.

REFERENCES

Agarwal D., 2020, PhD thesis, West Virginia University,
doi:https://doi.org/10.33915/etd.7827

Badia A., Piot B., Kapturowski S., Sprechmann P., Vitvitskyi A., Guo D.,
Blundell C., 2020, Agent57: Outperforming the Atari Human Benchmark

Bhattacharyya S., 2017, arXiv e-prints, p. arXiv:1711.09083
Chen B. H., Hashimoto T., Goto T., Kim S. J., Santos D. J. D., On A. Y. L., Lu
T.-Y., Hsiao T. Y.-Y., 2021, Monthly Notices of the Royal Astronomical
Society, 509, 1227

Hashimoto T., et al., 2022, MNRAS, 511, 1961
Hewitt D. M., et al., 2022, MNRAS, 515, 3577
Kim S. J., Hashimoto T., Chen B. H., Goto T., Ho S. C. C., Hsiao T. Y.-Y.,
Wong Y. H. V., Yamasaki S., 2022, MNRAS, 514, 5987

Li D., et al., 2021, Nature, 598, 267
Lorimer D. R., Bailes M., McLaughlin M. A., Narkevic D. J., Crawford F.,
2007, Science, 318, 777

Masui K., CHIME/FRB Collaboration 2021, in American Astronomical So-
ciety Meeting Abstracts. p. 325.01

McInnes L., Healy J., Melville J., 2018, arXiv preprint arXiv:1802.03426
Petroff E., et al., 2016, Publ. Astron. Soc. Australia, 33, e045
Platts E., Weltman A., Walters A., Tendulkar S., Gordin J., Kandhai S., 2019,
Physics Reports, 821, 1

Rousseeuw P. J., 1987, Journal of Computational and Applied Mathematics,
20, 53

Vieyro F. L., Romero G. E., Bosch-Ramon V., Marcote B., del Valle M. V.,
2017, Astronomy and Astrophysics, 602

Wagstaff K. L., et al., 2016, Publications of the Astronomical Society of the
Pacific, 128, 084503

Xu H., et al., 2022, Nature, 609, 685
Yamasaki S., Totani T., Kiuchi K., 2017, Publications of the Astronomical
Society of Japan, 70

APPENDIX A: ADDITIONAL CLUSTERING RESULT

In the main text, we apply the K-means algorithm with n_cluster =
3 to cluster the result provided by the unsupervised machine learning
result. Nevertheless, it is not the only way to present the cluster.
In this section, we present another result using K-means but set
n_cluster = 4, and the other result with HDBSCAN, a clustering
algorithm that does not require a predetermined total cluster count.
The hyperparameter setting for HDBSCAN is min_cluster_size
= 120 and min_samples = 25. The two results are presented in
Fig. A1 and Fig. A2, respectively.
In Fig. A1, we find that the n_cluster = 4 case does not iden-

tify the possible sub-cluster at the lower right. Instead, it divides the
biggest apparently single cluster (cluster 2 in Fig. 4) into two. Further-
more, n_cluster = 4 has a worse silhouette score than n_cluster=
3 in Fig. 3. As a result, we decided to use n_cluster =3 for further
analysis in this research.

MNRAS 000, 1–8 (2022)

http://dx.doi.org/https://doi.org/10.33915/etd.7827
https://ui.adsabs.harvard.edu/abs/2017arXiv171109083B
http://dx.doi.org/10.1093/mnras/stab2994
http://dx.doi.org/10.1093/mnras/stab2994
http://dx.doi.org/10.1093/mnras/stac065
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.1961H
http://dx.doi.org/10.1093/mnras/stac1960
https://ui.adsabs.harvard.edu/abs/2022MNRAS.515.3577H
http://dx.doi.org/10.1093/mnras/stac1689
https://ui.adsabs.harvard.edu/abs/2022MNRAS.514.5987K
http://dx.doi.org/10.1038/s41586-021-03878-5
http://dx.doi.org/10.1016/j.physrep.2019.06.003
http://dx.doi.org/10.1017/pasa.2016.35
https://ui.adsabs.harvard.edu/abs/2016PASA...33...45P
http://dx.doi.org/10.1016/j.physrep.2019.06.003
http://dx.doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1088/1538-3873/128/966/084503
http://dx.doi.org/10.1088/1538-3873/128/966/084503
http://dx.doi.org/10.1038/s41586-022-05071-8
https://ui.adsabs.harvard.edu/abs/2022Natur.609..685X
http://dx.doi.org/10.1093/pasj/psy029
http://dx.doi.org/10.1093/pasj/psy029


8 Bo-Han Chen et al.

Figure A1. K-means clustering result with n_cluster = 4.

Figure A2. HDBSCAN clustering result with min_cluster_size = 120
and min_samples = 25.

In Fig. A2, we seeHDBSCAN is offering a result with significantly
more clusters. The cluster count in HDBSCAN is automatically de-
termined, thus we have set min_cluster_size small to identify the
sub-clusters. As a result, the possible sub-clusters are mostly identi-
fied, at the cost of splitting the largest cluster into several pieces. This
cluster result could work as an alternative when an analysis with a
more detailed classification of FRB20121102A is needed.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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