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Missions like NASA’s Imaging X-ray Polarimetry Explorer (IXPE) are poised to provide an

unprecedented view of the Universe in polarized X-rays. Polarization probes physical anisotropies,

a fact exploited by particle physicists to look for the anisotropic aE ·B operator in the axion-like-

particle (ALP) Lagrangian. Such studies have typically focused on polarization in the radio and

microwaves, through local or cosmic birefringence effects. To such polarization studies we add

X-rays emanating from magnetars—a class of neutron stars with near-critical strength magnetic

fields—that are important targets for IXPE. ALPs produced in the neutron star core convert

to X-rays in the magnetosphere; such X-rays are polarized along the direction parallel to the

dipolar magnetic field at the point of conversion. We develop the full theoretical formalism for

ALP-induced polarization in the presence of dipolar magnetic fields. For uncorrelated photon

and ALP production mechanisms, we completely disentangle the ALP contributions to the Stokes

parameters in terms of the ALP intensity, the ALP-to-photon conversion probability, and the

ALP-induced birefringence. In the proper limit, our results demonstrate that the inclusion of

ALPs suppresses the observed degree of circular polarization compared to its pure astrophysical

value. Our results can also be used to impose limits on ALP couplings with IXPE polarization

data from magnetars 4U 0142+61 and 1RXS J170849.0-400910, the subject of upcoming work.
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1. Introduction

The investigation of polarized emission in astrophysical settings has become an increasingly

important arena for particle physicists. The reason is the following: polarization probes physical

anisotropies, and a particularly important anisotropy occurs in the Lagrangian for axion-like-

particles (ALPs) [1]:

L ⊃ −g
4
aFµνF̃

µν + gaN (∂µa)N̄γµγ5N. (1.1)

Here, a denotes the ALP and the couplings g ≡ gaγ and gaN denote the ALP-photon and ALP-

nucleon couplings, respectively. The ALP coupling to the photon through the operator aE ·B
leads to two well-studied polarization effects: (i) in the presence of a background magnetic field,

there is the possibility of ALP-photon conversion [2–5]. Since the ALP only couples to the parallel

component of the electric field, such conversion necessarily gives polarized photons; and (ii) in

the presence of an ALP background, photons propagate through what is essentially a birefringent

medium. This, again, results in various effects: for a time-dependent ALP background, one would

have a rotation of the plane of polarized light. Such effects are being searched for in the cosmic

microwave background (the “cosmic birefringence effect”) [6] as well as in localized settings around

black holes [7] (this relies on ALP clouds existing due to super-radiance).

Our interest in this paper is in the first category of effects: polarization resulting from ALP-

photon conversions. The conversions relevant for us are localized around neutron stars. This
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should be contrasted with the widely studied effect of conversions of ALPs in long-distance galactic

and inter-galactic magnetic fields; while such long distance conversions are interesting, there are

significant challenges in modeling the magnetic field and the diverse environments the ALP must

traverse [8]. Conversion in the vicinity of compact objects like neutron stars or white dwarfs

occurs in a much more controlled environment, holding out the promise of precision studies.

Within the class of such local ALP-photon conversions, too, there is a further division into two

categories of models and signatures: (a) cold ALPs and radio signals [9]: in this class of studies,

cold ambient ALPs convert to radio photons near neutron stars. A complication of such scenarios

is that one generally has to be careful about the modeling of the plasma near the neutron star;

and (b) hot ALPs and X-ray signals [10]: in this class of models, relativistic ALPs are produced

from the core of the neutron star, and convert to X-ray photons as they travel outwards, typically

around a distance of O(1000 r0) (r0 is the neutron star radius). Since the ALPs in this class of

studies are relativistic, the conversion process is independent of the details of the plasma.

The purpose of this paper is to study the effects of ALPs on the polarization of X-rays

emanating from neutron stars. The general mechanism is as follows: ALPs are produced in

the core by nucleon bremsstrahlung [11–16]; they travel outside and convert to X-ray photons

in the strong dipolar magnetic field in the magnetosphere. These ALP-induced photons are

polarized along the direction parallel to the magnetic field at the point of conversion. The overall

polarization pattern of the emission from neutron stars then combines the polarization of photons

produced by (non-ALP) astrophysical processes, superposed with the polarization of exclusively

ALP-induced photons. The formal study of the ALP-induced polarization involves solving for

the spatial evolution of the Stokes parameters of the ALP-photon system in a dipolar magnetic

field. This study was initiated by the present authors in [17], where expressions for the Stokes

parameters I and Q were derived. In the current study, we complete the formalism by deriving

the full set of Stokes parameters, including a treatment of circular polarization.

The scope of our current work is to develop the formal infrastructure based on which the

physics of ALPs can be connected to data from polarization observations of neutron stars. Before

proceeding, however, we make a few comments about the observational status of the field, as well as

the challenges associated with claiming a signal in the case of an anomaly in the future (in contrast

to setting upper limits on ALP couplings). X-ray polarimetry as an observational discipline has a

long history [18] and is poised to enter an era of explosive growth and data [19]. The recent launch

of NASA’s Imaging X-ray Polarimetry Explorer (IXPE) mission and the subsequent polarization

data from magnetars 4U 0142+61 [20] and 1RXS J170849.0-400910 [21] give us an unprecedented

opportunity of bringing questions of fundamental physics to this field. Magnetars, with their

extreme magnetic fields around the quantum critical value Bc = m2
e/
√

4πα ≈ 4.414×1013 G [22–24],

are particularly important players, since ALP-induced effects grow with the strength of the magnetic

field. The signatures of the ALP-induced polarization also grow parametrically with the coupling
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gaN of ALPs to nucleons (which controls the production) and the coupling g to photons (which

controls the conversion).

The discrimination of ALP-induced polarization from astrophysical “background” polarization

is a very difficult question, since it depends on the astrophysical modeling of the thermal and non-

thermal emission [25–27]. Non-linear QED effects [28] and the anisotropic opacities of the surface

plasma [29, 30] must be properly taken into account. The challenges of modeling polarization

in the hard X-ray regime (where the emission possibly comes from resonant inverse Compton

scattering of the thermal emission) are also significant [27,31]. A more pragmatic strategy is to

impose reliable upper limits on ALP couplings, by requiring that ALP-induced effects broadly

do not supersede the concordance between data and astrophysical modeling. In a companion

paper [32], this is the strategy that we will pursue to extract the first limits on ALP couplings

from IXPE data.

For the convenience of readers who want to directly use our results to compare with data, we

summarize the most important expressions here. In the presence of ALP-photon conversions, the

polarization invariants (total intensity I, total polarization degree p, degree of circular polarization

pc, and degree of linear polarization pl) take the following form:

Iobs ≈ (1 + pa)Iastro, p2
obs ≈

p2
astro − 2paq + p2

a

(1 + pa)2
,

p2
c,obs ≈

p2
c,astro

(1 + pa)2
, p2

l,obs ≈
p2
l,astro − 2paq + p2

a

(1 + pa)2
,

where

q =
Qastro

Iastro
, pa =

Ia(1)Pa→γ
Iastro

.

These equations give the observed polarization invariants (with subscript “obs”) in terms of the

astrophysical polarization invariants (with subscript “astro”) and Stokes parameter Qastro. The

former is obtained directly from data, while the latter is obtained from the preferred astrophysical

model, to which we are agnostic. The ALP contribution is entirely contained in the parameter

pa. To evaluate pa, two quantities are required: Ia(1), which is the intensity of ALPs produced

from the neutron star; and Pa→γ , which is the probability that an ALP converts to a photon in

the magnetosphere. A conservative estimate for Ia(1) is to take it to be bounded by the intensity

of neutrinos produced by the neutron star. The semi-analytic expression for Pa→γ , which is an

excellent approximation to the full solution for couplings g of interest, is given in (3.12).

Our paper is organized as follows. Section 2 reviews the evolution equations for the ALP-

photon coupled systems in the weak dispersion limit, based on our previous (partial) work on

polarization [17]. The full set of four Stokes parameters is discussed and two auxiliary quantities

are introduced to show that all the Stokes parameters are independent of the initial mixture

of ALPs and photons when they are produced without correlations. This observation allows us

to completely disentangle the effects of ALPs on the Stokes parameters in terms of the ALP
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intensity, the ALP-to-photon conversion probability, and the ALP-induced birefringence. The

results are then expressed in terms of the standard polarization invariants, i.e. the total intensity

Iobs, the degree of total polarization p2
obs, the degree of circular polarization p2

c,obs, and the degree

of linear polarization p2
l,obs. Section 3 then investigates the perturbative regime, where approximate

analytical solutions to the ALP-to-photon conversion probability and ALP-induced birefringence

are obtained with the help of standard perturbation theory. The approximations are compared

with the numerical solutions to the evolution equations, showing a good match in the proper limit.

We then use these approximations with small ALP-photon coupling to re-express the polarization

invariants more simply. Finally, Section 4 presents our conclusions.

2. Polarization: General Theory

In this section we summarize the general theory of ALP-photon oscillations and introduce the

relevant evolution equations. For concreteness, we focus on the case of magnetars for which

magnetic fields are extreme. Our analysis is performed in the limits of large space variations of

the magnetic field when compared to the particle wavelength and weak dispersion [2], where we

can proceed with the general oscillation formalism developed in [4].

2.1. Evolution Equations

The evolution equations for photons and ALPs with energies below the electron mass propagating

radially outwards from a stellar object can be expressed as [2, 25]

i
d

dx


a

E‖
E⊥

 =


ωr0 + ∆ar0 ∆Mr0 0

∆Mr0 ωr0 + ∆‖r0 0

0 0 ωr0 + ∆⊥r0




a

E‖
E⊥

 , (2.1)

in the correct limits,1 where

∆a = −m
2
a

2ω
, ∆‖ =

1

2
q‖ω sin2 θ, ∆⊥ =

1

2
q⊥ω sin2 θ, ∆M =

1

2
gB sin θ.

Here, the ∆M contribution originates from the Lagrangian (1.1) and (2.1) is valid as long as

the plasma contributions are negligible. Moreover, the fields a(x), E‖(x) and E⊥(x) are the

ALP, parallel and perpendicular photon electric fields, respectively. They are functions of the

dimensionless distance from the magnetar center

x = r/r0,

1The two limits are: (i) the limit where variations of the magnetic field occur on distances much larger than the

Compton wavelength of the particles; and (ii) the limit of weak dispersion where the refractive indices are close to

unity. For example, for the magnetar’s magnetosphere the weak dispersion limit implies that the magnetic field is much

smaller than approximatively
√

45π
α
Bc ≈ 6× 1015 G, where Bc is the critical QED magnetic field strength (see below).
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with r the distance from the center of the magnetar and r0 the magnetar’s radius.2 The particle’s

energy is denoted by ω, the ALP mass by ma, the ALP-photon coupling constant by g, and the

angle between the magnetic field and the direction of propagation of the particle by θ. Finally,

the effect of the magnetosphere is encoded in q‖ and q⊥ which are dimensionless functions of the

magnetic field B given by [2, 25]

q‖ =
7α

45π
b2q̂‖, q̂‖ =

1 + 1.2b

1 + 1.33b+ 0.56b2
,

q⊥ =
4α

45π
b2q̂⊥, q̂⊥ =

1

1 + 0.72b5/4 + (4/15)b2
,

with b = B/Bc. Here Bc = m2
e/
√

4πα ≈ 4.414× 1013 G is the critical QED magnetic field strength

expressed in terms of the electron mass me and the fine structure constant α.

It is important to note that the absence of plasma contributions (which are completely negligible

everywhere except in the centimeter-thick plasma around the magnetar [25]) leads to a factorization

of the three-state system (2.1) into a two-state system for the ALP and parallel photon fields, and

a one-state system for the perpendicular photon field.

The probability conservation property discussed in [4] implies that d
dx [|a(x)|2 + |E‖(x)|2] = 0,

from which it is possible to express the different states as

a(x) = A cos[χ(x)]e−iφa(x), E‖(x) = iA sin[χ(x)]e−iφ‖(x), E⊥(x) = A⊥e
−iφ⊥(x).

(2.2)

Thus, the ALP and photon fields amplitudes at position xr0 are Aa = A cos[χ(x)], A‖ = A sin[χ(x)]

and A⊥, with the intensities at position xr0 given by the respective amplitudes squared, i.e.

Ia(x) = A2 cos2[χ(x)], I‖(x) = A2 sin2[χ(x)] and I⊥(x) = A2
⊥. Here A and A⊥ are constants that

can be chosen real and positive while χ(x), φa(x), φ‖(x) and φ⊥(x) are real functions. At the level

of intensities, the probability conservation property corresponds to Ia(x) + I‖(x) = A2 a constant,

with I⊥(x) = A2
⊥ also a constant.

Using (2.2) in (2.1), the evolution equations become

dχ(x)

dx
= −∆Mr0 cos[∆φ(x)],

d∆φ(x)

dx
= (∆a −∆‖)r0 + 2∆Mr0 cot[2χ(x)] sin[∆φ(x)],

dδφ(x)

dx
= (∆⊥ −∆‖)r0 + ∆Mr0{cot[2χ(x)] + csc[2χ(x)]} sin[∆φ(x)],

dφ⊥(x)

dx
= (ω + ∆⊥)r0,

(2.3)

where

∆φ(x) = φa(x)− φ‖(x), δφ(x) = φ⊥(x)− φ‖(x), (2.4)

2Throughout the paper, the presence of the subscript 0 indicates that the related quantity is evaluated at the

surface, e.g. ∆M0 = ∆M |x=1.
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are the phase difference between the ALP field and the parallel photon field and the phase

difference between the two photon field polarizations, respectively. We note that the differential

equation for φ⊥(x) decouples from the evolution equations (2.3) while the differential equation for

δφ(x) is completely determined once the solutions to the coupled differential equations for χ(x)

and ∆φ(x) are known.

2.2. Stokes Parameters

In magnetars, the production of X-ray photons (both soft and hard) and the production of ALPs

do not have the same origin and are uncorrelated. ALP production mainly comes from nucleon-

nucleon bremsstrahlung of ALPs in the core of the magnetars [11–16], and the ALP-induced X-ray

photons are polarized along the parallel direction. On the other hand, the photons coming from

astrophysical (non-ALP) processes have a different pattern of polarization, which depends on the

modeling.

We make a few comments about the polarization of astrophysical photons, briefly summarizing

the literature. In general, the extraordinary or perpendicular X-mode opacity is suppressed

(enhanced) compared to the ordinary or parallel O-mode opacity in the soft (hard) emission [29],

implying emission mostly in the X-mode (O-mode) in the soft (hard) regime. However, there

are further subtleties depending on the plasma. For example, the presence of a centimeter-thick

plasma can lead to a vacuum resonance occurring from its interplay with vacuum polarization [25].

This vacuum resonance can convert X-mode and O-mode into each other, leading to a change

in the dominant polarization mode. On the one hand, the soft emission, which is thought to

originate from thermal photons produced by the magnetar’s surface, is mostly in the extraordinary

polarization mode. On the other hand, for magnetars with B0 & 7 × 1014 G, the non-thermal

emission is also thought to be dominated by the extraordinary polarization mode due to the vacuum

resonance in the inhomogeneous plasma [25]. For such magnetars, then, the entire astrophysical

emission spectrum, both soft and hard, could be predominantly polarized in the extraordinary

mode. We note that hard X-ray production is still under active study and could come from

several mechanisms. One such mechanism might be resonant inverse Compton scattering of soft

X-ray photons by ultrarelativistic charged particles in the magnetosphere [27]. Another mechanism

considers relativistic particle injection in the magnetosphere [31]. In both cases, it was found that

the resulting hard X-ray spectrum is strongly polarized in the X-mode.

Since processes responsible for the creation of ALPs and astrophysical photons (in whichever

mode they are polarized) are unrelated, the phase difference between the ALP field and parallel

photon field is arbitrary, and it is natural to average over the phase difference at the surface ∆φ0.
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Therefore, the Stokes parameters are

I(χ0, x) =

∫ 2π

0

d∆φ0

2π
[|E⊥(x)|2 + |E‖(χ0, x)|2]

= A2
⊥ +A2

∫ 2π

0

d∆φ0

2π
sin2

[
χ(x)|χ(1)=χ0,∆φ(1)=∆φ0

]
,

Q(χ0, x) =

∫ 2π

0

d∆φ0

2π
[|E⊥(x)|2 − |E‖(χ0, x)|2],

= A2
⊥ −A2

∫ 2π

0

d∆φ0

2π
sin2

[
χ(x)|χ(1)=χ0,∆φ(1)=∆φ0

]
,

U(χ0, δφ0, x) =

∫ 2π

0

d∆φ0

2π
[E⊥(x)E‖(χ0, x)∗ + E⊥(x)∗E‖(χ0, x)],

= −2A⊥A
∫ 2π

0

d∆φ0

2π
sin
[
χ(x)|χ(1)=χ0,∆φ(1)=∆φ0

]
sin
[
δφ0 + δφ(x)|χ(1)=χ0,∆φ(1)=∆φ0

]
,

V (χ0, δφ0, x) =

∫ 2π

0

d∆φ0

2π
i[E⊥(x)E‖(χ0, x)∗ − E⊥(x)∗E‖(χ0, x)],

= 2A⊥A
∫ 2π

0

d∆φ0

2π
sin
[
χ(x)|χ(1)=χ0,∆φ(1)=∆φ0

]
cos
[
δφ0 + δφ(x)|χ(1)=χ0,∆φ(1)=∆φ0

]
,

(2.5)

where it is understood that δφ(1) = 0 since the dependence on the phase difference at the

surface δφ0 has been extracted explicitly. We stress again that a subscript 0 indicates that the

corresponding quantity is evaluated at the magnetar’s surface. The surface-subtracted quantities

thus become

I(χ0, x)− I(χ0, 1) = A2 cos(2χ0)

∫ 2π

0

d∆φ0

2π
P (χ0,∆φ0, x),

Q(χ0, x)−Q(χ0, 1) = −[I(χ0, x)− I(χ0, 1)],

U(χ0, δφ0, x)− U(χ0, δφ0, 1) = 2A⊥A sin(χ0)=
{
e−iδφ0

∫ 2π

0

d∆φ0

2π
S(χ0,∆φ0, x)

}
,

V (χ0, δφ0, x)− V (χ0, δφ0, 1) = 2A⊥A sin(χ0)<
{
e−iδφ0

∫ 2π

0

d∆φ0

2π
S(χ0,∆φ0, x)

}
,

(2.6)

where we introduced

P (χ0,∆φ0, x) =
1

2

1−
cos
[

2χ(x)|χ(1)=χ0,∆φ(1)=∆φ0

]
cos(2χ0)

 ,

S(χ0,∆φ0, x) =
sin
[
χ(x)|χ(1)=χ0,∆φ(1)=∆φ0

]
sin(χ0)

e
−iδφ(x)|χ(1)=χ0,∆φ(1)=∆φ0 − 1.

(2.7)

The quantity P (χ0,∆φ0, x), which will relate to the ALP-to-photon conversion probability, was al-

ready introduced in [17]. The quantity S(χ0,∆φ0, x), which will lead to ALP-induced birefringence,

is new.
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2.3. Evolution of the Auxiliary Quantities

In this subsection, we study the evolution of P (χ0,∆0, x) and S(χ0,∆0, x) to show that their

∆φ0-average is independent of χ0. We achieve this from the evolution equations (2.3) rewritten as

dχ(x)

dx
= −D(x) cos[∆φ(x)],

d∆φ(x)

dx
= C(x) + 2D(x) cot[2χ(x)] sin[∆φ(x)],

dδφ(x)

dx
= E(x) +D(x){cot[2χ(x)] + csc[2χ(x)]} sin[∆φ(x)].

It is easy to verify that the quantities defined in (2.7) satisfy the following differential equations

0 =
d3

dx3
P (χ0,∆φ0, x)− ln[C(x)D(x)2]′

d2

dx2
P (χ0,∆φ0, x)

+ {C(x)2 + 4D(x)2 + ln[C(x)D(x)]′ ln[D(x)]′ − ln[D(x)]′′} d
dx
P (χ0,∆φ0, x)

+ 2D(x)2 ln[D(x)/C(x)]′[2P (χ0,∆φ0, x)− 1],

0 =
d2

dx2
S(χ0,∆φ0, x)− {iC(x)− 2iE(x) + ln[D(x)]′} d

dx
S(χ0,∆φ0, x)

+ {D(x)2 + C(x)E(x)− E(x)2 − iE(x) ln[D(x)/E(x)]′}[S(χ0,∆φ0, x) + 1],

(2.8)

with boundary conditions

P (χ0,∆φ0, x = 1) = 0,

d

dx
P (χ0,∆φ0, x)

∣∣∣∣
x=1

= −D(1) tan(2χ0) cos(∆φ0),

d2

dx2
P (χ0,∆φ0, x)

∣∣∣∣
x=1

= 2D(1)2 + C(1)D(1) tan(2χ0) sin(∆φ0)−D′(1) tan(2χ0) cos(∆φ0),

S(χ0,∆φ0, x = 1) = 0,

d

dx
S(χ0,∆φ0, x)

∣∣∣∣
x=1

= −iE(1)−D(1) cot(χ0)ei∆φ0 .

(2.9)

Here a prime denotes a derivative with respect to x. Clearly, P (χ0,∆φ0, x) and S(χ0,∆φ0, x)

depend on χ0 and ∆φ0 through their boundary conditions (2.9), but not through their differential

equations (2.8). Moreover, since the differential equations (2.8) are linear in P (χ0,∆φ0, x) and

S(χ0,∆φ0, x) respectively, the averaged quantities

P̄ (χ0, x) =

∫ 2π

0

d∆φ0

2π
P (χ0,∆φ0, x), S̄(χ0, x) =

∫ 2π

0

d∆φ0

2π
S(χ0,∆φ0, x), (2.10)

appearing in the definition of the surface-subtracted Stokes parameters (2.6) satisfy the same

differential equations (2.8) but with averaged boundary conditions, which are then independent of
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χ0. Hence (2.10) are independent of χ0 and can thus be evaluated at the most convenient value.

With the definitions (2.7), choosing χ0 = 0 for P̄ (χ0 = 0, x) and χ0 = π/2 for S̄(χ0 = π/2, x) leads

to

P̄ (x) = sin2
[
χ(x)|χ(1)=0,∆φ(1)=0

]
= Pa→γ(x),

S̄(x) = sin
[
χ(x)|χ(1)=π/2,∆φ(1)=0

]
e−iδφ(x)|χ(1)=π/2,∆φ(1)=0 − 1

=
√

1− Pa→γ(x)e−iδφγ→a(x) − 1,

(2.11)

which are written explicitly in terms of the ALP-to-photon conversion probability at a distance

xr0 for pure ALP initial state

Pa→γ(x) = sin2
[
χ(x)|χ(1)=0,∆φ(1)=0

]
, (2.12)

and the photon phase difference at a distance xr0 for a pure photon initial state

δφγ→a(x) = δφ(x)|χ(1)=π/2,∆φ(1)=0 . (2.13)

In (2.11), the boundary condition ∆φ(1) = 0 is chosen to avoid singularities. The photon phase

difference (2.13) can itself be divided into two independent contributions,

δφγ→a(x) = δφγ(x) + δφa(x), (2.14)

with δφγ(x) the standard birefringence contribution and δφa(x) the ALP contribution to the phase

difference. From (2.3) and (2.4), their evolution equations are

dδφγ(x)

dx
= (∆⊥ −∆‖)r0,

dδφa(x)

dx
= ∆Mr0{cot[2χ(x)] + csc[2χ(x)]} sin[∆φ(x)],

(2.15)

with the proper boundary conditions.

2.4. Stokes Parameters Again

As a consequence of the above, the surface-subtracted Stokes parameters (2.6) can be re-expressed

as

I(χ0, x)− I(χ0, 1) = A2 cos(2χ0)Pa→γ(x),

Q(χ0, x)−Q(χ0, 1) = −A2 cos(2χ0)Pa→γ(x),

U(χ0, δφ0, x)− U(χ0, δφ0, 1) = 2A⊥A sin(χ0)=
{√

1− Pa→γ(x)e−iδφ0−iδφγ→a(x) − e−iδφ0

}
,

V (χ0, δφ0, x)− V (χ0, δφ0, 1) = 2A⊥A sin(χ0)<
{√

1− Pa→γ(x)e−iδφ0−iδφγ→a(x) − e−iδφ0

}
,

(2.16)

9



and the Stokes parameters at x > 1 become

I(x) = I(1) +

[
Ia(1)− I(1)−Q(1)

2

]
Pa→γ(x),

Q(x) = Q(1)−
[
Ia(1)− I(1)−Q(1)

2

]
Pa→γ(x),

U(x) = {U(1) cos[δφγ→a(x)]− V (1) sin[δφγ→a(x)]}
√

1− Pa→γ(x),

V (x) = {V (1) cos[δφγ→a(x)] + U(1) sin[δφγ→a(x)]}
√

1− Pa→γ(x),

(2.17)

when written in terms of the Stokes parameters and the ALP intensity at the surface.

The fact that the photon phase difference (2.14) can be expressed as the expected birefringence

contribution—which is independent of the ALP-photon coupling constant—and the ALP contribu-

tion, implies that the Stokes parameters at x > 1 have a simple dependence on their values at

x > 1 without ALPs (the expected astrophysics values, i.e. the values in the limit of vanishing

ALP-photon coupling constant) and the ALP parameters. Indeed, the photon phase difference is

the same than the one due to astrophysics (from birefringence in the magnetosphere) δφγ(x) plus

an ALP contribution δφa(x) such that the Stokes parameters (2.17) at x > 1 become

Iobs = Iastro +

[
Ia(1)− Iastro −Qastro

2

]
Pa→γ ,

Qobs = Qastro −
[
Ia(1)− Iastro −Qastro

2

]
Pa→γ ,

Uobs = [Uastro cos(δφa)− Vastro sin(δφa)]
√

1− Pa→γ ,

Vobs = [Vastro cos(δφa) + Uastro sin(δφa)]
√

1− Pa→γ .

(2.18)

Equations (2.17) and (2.18) offer solutions to the Stokes parameters that depend on the surface

values or the astrophysical values (again, the values that would be observed in the limit of vanishing

ALP-photon coupling constant), respectively, and the ALP parameters through three quantities: the

ALP intensity, the ALP-to-photon conversion probability (2.12) and the ALP-induced birefringence

(2.14). As expected, the observed quantities in (2.17) and (2.18) match the surface quantities

(modulo the photon birefringence) and the astrophysical quantities, respectively, when ALPs do not

mix, i.e. when both the ALP-to-photon conversion probability and the ALP-induced birefringence

vanish.

It is important to point out that the randomness of the phase difference at the surface ∆φ0 due

to the different origins of the ALP and photon production mechanisms, which allows for averages

over ∆φ0, ultimately leads to analytic solutions of the polarization quantities at x > 1 that depend

only on the polarization quantities at the surface, Ia(1), Pa→γ(x) and δφγ→a(x). A common origin

for ALP and photon production would not allow for averages over ∆φ0, greatly complicating the

problem. Moreover, the separation of the astrophysical and ALP contributions to birefringence
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allows to disentangle the astrophysical and ALP contributions to the Stokes parameters at x > 1.

Therefore, a good theoretical understanding of the astrophysics at play could help elucidate the

allowed ALP parameter space.

2.5. Total Intensity and Degrees of Polarization

Three invariant quantities, i.e. quantities that are independent of the direction of the coordinate

system used to measure them, can be defined from the Stokes parameters. They are the total

intensity I, the degree of (total) polarization p2 and the degree of circular polarization p2
c .

3 In

terms of the Stokes parameters, they correspond to

I(x), p(x)2 =
Q(x)2 + U(x)2 + V (x)2

I(x)2
, pc(x)2 =

V (x)2

I(x)2
, (2.19)

or

I(x) =

[
1− 1

2
(1− q − 2ia)Pa→γ(x)

]
I(1),

p(x)2 =
p(1)2 − [p(1)2 − q(1− 2ia)]Pa→γ(x) + 1

4(1− q − 2ia)
2Pa→γ(x)2[

1− 1
2(1− q − 2ia)Pa→γ(x)

]2 ,

pc(x)2 =

{
cos[δφγ→a(x)] +

√
p(1)2−q2

pc(1)2 − 1 sin[δφγ→a(x)]
}2

[
1− 1

2(1− q − 2ia)Pa→γ(x)
]2 [1− Pa→γ(x)]pc(1)2,

(2.20)

when expressed in terms of the parameters at the surface (2.17), or

Iobs =

[
1− 1

2
(1− q − 2ia)Pa→γ

]
Iastro,

p2
obs =

p2
astro − [p2

astro − q(1− 2ia)]Pa→γ + 1
4(1− q − 2ia)

2P 2
a→γ[

1− 1
2(1− q − 2ia)Pa→γ

]2 ,

p2
c,obs =

[
cos(δφa) +

√
p2

astro−q2

p2
c,astro

− 1 sin(δφa)

]2

[
1− 1

2(1− q − 2ia)Pa→γ
]2 (1− Pa→γ)p2

c,astro,

(2.21)

when expressed in terms of the astrophysical parameters (2.18). Here

q =
Q(1)

I(1)
=
Qastro

Iastro
, ia =

Ia(1)

I(1)
=
Ia(1)

Iastro
, (2.22)

when written as functions of the surface and astrophysical quantities, respectively.

Interestingly, the observed invariant quantities (2.20) far from the surface (x > 1) are not solely

expressed in terms of the invariant quantities at the surface. Indeed, for x > 1 they depend on

3Another invariant quantity, the degree of linear polarization p2
l , is not independent since p2

l = p2 − p2
c . Obviously,

the non-invariant polarization angles 2ψ = arctan(U/Q) and 2χ = arctan(V/
√
Q2 + U2) can also be determined easily

from the Stokes parameters.
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Q(1) through (2.22). The same is true for the observed invariants (2.21) with respect to their

astrophysical values. This can be understood by the fact that the magnetar dictates a preferred

coordinate system with fixed axes for the parallel and perpendicular directions.

3. Polarization: Perturbative Regime

At this point, the effect of ALPs on the polarization parameters (2.17) or (2.20) are completely

encoded in the ALP-to-photon conversion probability (2.12) and the photon phase difference

(2.14). It is therefore of interest to look for approximate solutions of the ALP-to-photon conversion

probability and the photon phase difference when the ALP-photon coupling is small [2].

3.1. Perturbation Theory

Without loss of generality, the differential equations (2.1) can be restated as

i
d

dx
A(x) = H(x)A(x) + δH(x)A(x), (3.1)

where A = (a E‖ E⊥)T and

H =


ωr0 + ∆ar0 0 0

0 ωr0 + ∆‖r0 0

0 0 ωr0 + ∆⊥r0

 , δH =


0 ∆Mr0 0

∆Mr0 0 0

0 0 0

 . (3.2)

If δH(x) is small, it can be considered a perturbation and a standard expansion applied on (3.1)

leads to the approximate solution A(x) = U(x)A(1) where the evolution operator is

U(x) = U0(x)

[
1 + (−i)

∫ x

1
dx′ U0(x′)†δH(x′)U0(x′)

+(−i)2

∫ x

1
dx′ U0(x′)†δH(x′)U0(x′)

∫ x′

1
dx′′ U0(x′′)†δH(x′′)U0(x′′) + · · ·

]
,

(3.3)

to second order in the perturbation.4 Here, the unperturbed evolution operator is

U0(x) = exp

[
−i
∫ x

1
dx′H(x′)

]
, (3.4)

as expected.

Since the ALP-to-photon conversion probability is defined by

Pa→γ(x) = |[U(x)]21|2,

4We note that it is necessary to go to second order to verify the probability conservation property to lowest

non-trivial order in the ALP-to-photon conversion probability.
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the approximate solution to (2.12) is

Pa→γ(x) =

∣∣∣∣∣
∫ x

1
dx′∆M (x′)r0 exp

{
−i
∫ x′

1
dx′′ [∆a −∆‖(x

′′)]r0

}∣∣∣∣∣
2

. (3.5)

Analogously, the complex exponential of the photon phase difference can be obtained from

e−iδφγ→a(x) =
√

1− Pa→γ(x)
[U(x)]33

[U(x)]22
,

such that the approximate solutions to (2.13) and (2.14) become

δφγ(x) =

∫ x

1
dx′ [∆⊥(x′)−∆‖(x

′)]r0,

δφa(x) = −=
{∫ x

1
dx′

∫ x′

1
dx′′∆M (x′)r0 ∆M (x′′)r0 exp

{
−i
∫ x′

x′′
dx′′′ [∆a −∆‖(x

′′′)]r0

}}
,

(3.6)

which match the standard birefringence result without ALP perturbation δφγ(x) [see (2.15)] plus

an ALP contribution δφa(x).

3.2. Analytical Approximations

In the large conversion radius limit, where the (dimensionless) conversion radius is given by

xa→γ =
ra→γ
r0

=

(
7α

45π

)1/6( ω

ma

B0

Bc
| sin θ|

)1/3

, (3.7)

the ALP-to-photon conversion probability (3.5) at infinity can be approximated further by

Pa→γ = (∆M0r0)2

∣∣∣∣∣
∫ ∞

1
dx

1

x3
exp

[
−i∆ar0

(
x−

x6
a→γ
5x5

)]∣∣∣∣∣
2

, (3.8)

since the integral in the exponential is dominated by the region around the (large) conversion

radius where q̂‖ → 1, i.e. where the magnetic field is dipolar B(x) = B0/x
3.

Although the limit above can be used for the ALP contribution to birefringence, such a

simplification cannot be made for the usual birefringence contribution to the photon phase

difference since (3.6) has non-negligible contributions close to the magnetar surface. However, in

the small surface magnetic field limit we still have that q̂⊥ → 1 and q̂‖ → 1 and the photon phase

difference at infinity can be simplified to

δφγ ≈ −
α

150π
ωr0

B2
0

B2
c

sin2 θ,

δφa = −(∆M0r0)2=
{∫ ∞

1
dx

∫ x

1
dx′

1

x3x′3
exp

[
−i∆ar0

(
x− x′ −

x6
a→γ
5x5

+
x6
a→γ

5x′5

)]}
,

(3.9)

where δφγ—which can be evaluated explicitly—is computed in the small magnetic field limit and

δφa is computed in the large conversion radius limit.
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Although both ALP contributions, i.e. the ALP-to-photon conversion probability Pa→γ (3.8)

and the ALP-induced birefringence δφa (3.9), are not analytic yet, they can be further simplified

in the large conversion radius limit. Indeed, they can be rewritten as

Pa→γ =

(
∆M0r

3
0

r2
a→γ

)2
∣∣∣∣∣
∫ ∞

r0
ra→γ

dt
1

t3
exp

[
−i∆ara→γ

(
t− 1

5t5

)]∣∣∣∣∣
2

,

δφa = −
(

∆M0r
3
0

r2
a→γ

)2

=
{∫ ∞

r0
ra→γ

dt

∫ t

r0
ra→γ

dt′
1

t3t′3
exp

[
−i∆ara→γ

(
t− t′ − 1

5t5
+

1

5t′5

)]}
,

(3.10)

where both integrals may be approximated by integrating from the origin to infinity since they

are negligible in the interval [0, r0/ra→γ ] due to the highly oscillatory 1/(5t5) and 1/(5t′5) terms.

Hence in this limit (3.10) can be thought of as functions of one variable, namely ∆ara→γ . By

taking t → |∆ara→γ/5|
1
5

t and analogously for t′, the integrals in the ∆ara→γ → 0 limit can be

performed analytically, leading to

Pa→γ ≈
(

∆M0r
3
0

r2
a→γ

)2 Γ
(

2
5

)2
25|∆ara→γ/5|

4
5

, δφa ≈ −
(

∆M0r
3
0

r2
a→γ

)2
√

5 + 2
√

5 Γ
(

2
5

)2
50|∆ara→γ/5|

4
5

. (3.11)

As a consequence of (3.9) and (3.11), the relevant quantities can be expressed as

Pa→γ =

(
∆M0r

3
0

r2
a→γ

)2 Γ
(

2
5

)2
25|∆ara→γ/5|

4
5

JP (b0, |∆ara→γ/5|
1
5 , xa→γ),

δφγ = − α

150π
ωr0

B2
0

B2
c

sin2 θ Jγ(b0),

δφa = −
(

∆M0r
3
0

r2
a→γ

)2
√

5 + 2
√

5 Γ
(

2
5

)2
50|∆ara→γ/5|

4
5

Ja(b0, |∆ara→γ/5|
1
5 , xa→γ),

(3.12)

where the different J-functions are dimensionless integrals given by

JP (b0, ξ, ζ) =

∣∣∣∣∣ 5

Γ
(

2
5

) ∫ ξζ

0
dxx exp

{
−i
∫ x

1
dx′ 5x′4

[
q̂‖

(
b0x
′3

ξ3ζ3

)
+
ξ6

x′6

]}∣∣∣∣∣
2

,

Jγ(b0) =

∫ 1

0
dx 5x4

[
7

3
q̂‖(b0x

3)− 4

3
q̂⊥(b0x

3)

]
,

Ja(b0, ξ, ζ) =
50√

5 + 2
√

5 Γ
(

2
5

)2={∫ ξζ

0
dx

∫ ξζ

x
dx′ xx′ exp

{
−i
∫ x

x′
dx′′ 5x′′4

[
q̂‖

(
b0x
′′3

ξ3ζ3

)
+

ξ6

x′′6

]}}
.

(3.13)

Here it is understood that q̂‖(b) and q̂⊥(b) are functions of the proper integration variable through

their dependence on the magnetic field b = B/Bc, which is assumed dipolar. A comparison

between the values obtained from evolving numerically (2.3) and the approximations (3.12) for the

ALP-to-photon conversion probability and the ALP-induced birefringence is presented in Figure 1.
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Fig. 1: ALP-to-photon conversion probability and ALP-induced birefringence as a function of

ω and g. The blue lines are derived from the evolution equations (2.3) while the red lines are

generated with the help of the approximations (3.12). The benchmark values of the magnetar

parameters are ma = 10−8 keV, r0 = 10 km, B0 = 1012 G and θ = π/2. We chose g = 10−17 keV−1

for the left panels and ω = 10 keV for the right panels.

From their definitions, (3.13) tend to one in the appropriate limits, mainly the large conversion

radius limit for JP and Ja, and the small surface magnetic field limit for Jγ . As such, they can

be set to one in (3.12) when these limits are verified, leading back to the approximations (3.9)

and (3.11), as expected.

Finally, it is important to point out that it is possible to remain agnostic with respect to

the astrophysical origins of polarization when using the Stokes parameters (2.18) and degrees

of polarization (2.21). Indeed, since they are expressed in terms of the associated astrophysical

(non-ALP) quantities, these equations do not depend in any way on δφγ as given in (3.12). In other

words, ALP contributions are completely disentangled, as mentioned before. Hence, theoretical

astrophysics—from which one can understand the magnetar, its plasma, and the magnetosphere—

determines the expected observed polarization quantities after the particles travel from the magnetar

surface, through the centimeter-thick plasma where they may undergo mode conversion from

resonance [25], and finally out of the magnetosphere to the observer. Such quantities are the

inputs of (2.18) and (2.21), but also the outputs of (2.18) and (2.21) when ALP-photon mixing is

turned off. The effects of ALPs are packaged into three important quantities: the ALP intensity,

the ALP-to-photon conversion probability, and the ALP-induced birefringence. The latter two

both depend on the ALP and magnetar parameters, mainly the particle’s energy ω, the ALP mass

ma, the ALP-photon coupling constant g, the magnetar’s radius r0, the dimensionless surface
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magnetar magnetic field b0 = B0/Bc, and the angle between the particle’s direction of propagation

and the magnetic field θ. Since the presence of ALPs is only significant around the conversion

radius (3.7) where ALP-to-photon conversion is non-negligeable and the conversion radius is so

large for magnetars (several hundred times the magnetar radius), the dipolar approximation to

the magnetic field is warranted and the approximations (3.11) are usually reliable.

3.3. Stokes Parameters in Perturbative Regime

The results above are valid in the perturbative regime where the ALP-photon coupling constant is

small, which implies Pa→γ � 1 and δφa � 1. Therefore the Stokes parameters U and V in (2.18)

are barely modified by the presence of ALPs, contrary to the Stokes parameters I and Q that can

change wildly due to their dependence on the surface ALP intensity Ia(1), which can be several

orders of magnitude larger than the total photon intensity [17]. As a consequence, modifications

to the degrees of polarization (2.21) can also be quite substantial when ALPs are considered.

Indeed, since |q| ≤ 1, 0 ≤ p2
astro ≤ 1 and 0 ≤ p2

c,astro ≤ 1 while ia ≥ 0 without an upper bound,

the observed total intensity and degrees of polarization (2.21) can be further approximated by

Iobs ≈ (1 + pa)Iastro,

p2
obs ≈

p2
astro − 2paq + p2

a

(1 + pa)2
,

p2
c,obs ≈

p2
c,astro

(1 + pa)2
,

(3.14)

where

pa = iaPa→γ =
Ia(1)Pa→γ
Iastro

, (3.15)

with pa ≥ 0 determining the size of the ALP contribution to the polarization quantities. For

completeness, from (3.14) the degree of linear polarization p2
l = p2 − p2

c is also given by

p2
l,obs ≈

p2
l,astro − 2paq + p2

a

(1 + pa)2
. (3.16)

For a fixed astrophysical scenario in the perturbative regime, we observe from (3.14) and (3.16)

that the introduction of ALPs increases the total photon intensity and decreases the degree of

circular polarization. The degree of polarization and the degree of linear polarization on the other

hand can increase or decrease depending on the astrophysical Stokes parameter Qastro and the ALP

contribution, but for very large surface ALP intensities pa � 1, they both tend to one irrespective

of their astrophysical values. Hence very large ALP surface intensities (when compared to the

total photon intensity) lead to vanishing degree of circular polarization while both the degree of

polarization and the degree of linear polarization become one, implying linearly polarized light in

the parallel direction (the O-mode). In most astrophysical settings, neutrino energy sink arguments

imply that the ALP surface intensity is bounded from above, being no larger than the neutrino

16



intensity and thus putting an upper bound on Ia(1) . Iν(1).5 Demanding such a constraint on

the photon intensity puts an upper bound on pa . 1 [4],6 with corresponding modifications to all

types of degrees of polarization as in (3.14).

4. Conclusion

Ongoing and future missions aimed at detecting photon polarization anisotropies in the X-ray

band from diverse astrophysical sources will gather invaluable observations that could possibly

upend fundamental particle physics. In particular, X-ray photon polarimetry is poised to make its

mark on axion-like-particle (ALP) extensions of the Standard Model, where ALPs mix to parallel

photons in background magnetic fields. As such, magnetars, with their extreme magnetic fields,

are promising astrophysical sources to study.

In this paper, we completed the polarization analysis of ALP-photon oscillations that occur in

the magnetosphere of magnetars by providing analytical expressions for the four Stokes parameters.

We expressed them in terms of their astrophysical values and three ALP-dependent quantities:

the ALP intensity, the ALP-to-photon conversion probability, and the ALP-induced birefringence.

We thus completely disentangled the ALP contributions to the four Stokes parameters from the

standard astrophysical contributions. To achieve such a feat, we relied on the independence of the

production mechanisms for photons and ALPs, leveraging the aforementioned independence by

averaging over the initial ALP-photon phase difference. We then expressed the resulting Stokes

parameters in terms of two auxiliary functions that we showed were independent of the ALP-photon

initial mixture, once averaged. Consequently, this feature implies that we fully unraveled the

contributions of ALPs to the analysis of photon polarization, with the resulting Stokes parameters

matching the astrophysical Stokes parameters when the ALP-photon coupling is turned off, as

expected. Hence, we may remain agnostic with respect to the astrophysical origin of photon

polarization, considering it as an input to ALP-induced photon polarization.

We also used standard perturbation theory to derive approximate analytical expressions for

the ALP-to-photon conversion probability and the ALP-induced birefringence. We compared

them with numerical solutions to the full evolution equations, showing a good match in the

appropriate limit. Effectively, these results lead to fully analytical approximations of the four

Stokes parameters that bypass the need to numerically solve the full set of evolution equations,

which can be time-consuming.

Finally, we studied the resulting polarization invariants: the total intensity, the degree of total

5Since Iν(1)/Iastro ∼ O(104 − 105) [23], Ia(1) can be up to four or even five orders of magnitude larger than Iastro.

6For a degenerate medium found in magnetars, both the ALP nucleon-nucleon bremsstrahlung emission spectrum

and the ALP-to-photon conversion probability peak in the X-ray range, leading to pa . 1 in the X-ray range for

ALP-photon coupling constant satisfying the CAST bound [33].
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polarization, the degree of circular polarization, and the degree of linear polarization. As expected,

we showed that they correspond to the astrophysical ones when the ALP-photon coupling is

turned off. Surprisingly, we also showed that in the general case with non-vanishing ALP-photon

coupling, the polarization invariants—which are functions of the ALP intensity, the ALP-to-photon

conversion probability, and the ALP-induced birefringence—are dependent on the astrophysical

polarization invariants plus the Stokes parameter Qastro, which is not a polarization invariant. We

argued that this peculiar behavior is related to the existence of a preferred reference frame dictated

by the magnetar. Besides, we used our results to determine the behavior of the polarization

invariants in the presence of ALPs, showing that in the limit of large ALP contributions (which

can occur when ALP production is large even though the ALP-photon coupling is small), any

initial circular polarization of astrophysical origin is wiped out.

Our present polarization results will be used to impose limits on the ALP parameter space

with IXPE polarization data from two magnetars in a upcoming article [32].
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