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A spin-1 Ising model incorporating positional order to a standard lattice gas with no attractive
interactions is introduced and found to be consistent with all known attributes of the freezing
transition of the hard-sphere system. Implementation of attractive interactions in a fairly natural
way then allows every aspect of the phase diagram of a simple substance to be reproduced. The
whole phase behavior of such sort of substances is thus found to sharply manifest the van der Waals
picture highlighting the relevance of harsh repulsive forces.

An outstanding question to the theory of condensed
matter is the statistical-mechanical characterization of
the freezing transition of a system of hard spheres in
three dimensions [1]. Up to date, there is neither a rig-
orous proof of its existence nor even “good heuristics” to
approach the problem theoretically [2]. The topic is rele-
vant to diverse problems in Physics and Mathematics [3]
and has received a great deal of attention as a most basic
example of entropy-driven phase transition [4, 5], while
it is thought since long ago [6] to underlie the solid-liquid
transition of real substances.

Here we show that a spin-1, three-state Ising model
pertaining to the “Blume-Capel” or “Blume-Emery-
Griffiths” class [7–9] exhibits a transition akin to the
freezing of hard spheres revealed by molecular simula-
tion. We find it crucial to our approach the notion of
compressible cells and locally fluctuating free volumes in-
troduced by Fisher and coworkers a few years ago [10].
After describing the model for the primitive hard-sphere
system, we show that incorporation of attractive inter-
actions leads to all known basic features of the phase
diagram of a simple monatomic substance like, e.g., ar-
gon. We work at the mean-field level throughout. The
manuscript ends with a few concluding remarks.

Hard-sphere system.—Consider the three-dimensional
space divided into elementary rhombic dodecahedra, as
Wigner-Seitz primitive cells of an underlying fcc regular
lattice [11]. As Fig. 1a illustrates, in two of the three
states for an individual cell it can be empty or singly oc-
cupied in a “disordered” configuration by a hard-sphere
particle with diameter σ whose center explores a free vol-
ume v̇0 in it. We may safely express the cell volume as
λσ3 with λ sufficiently large, while the v̇0 ≤ λσ3 con-
straint adds to the condition of forbidden multiple oc-
cupancy to account for harsh repulsive forces. A model
with these two states for cells is in essence a standard
lattice gas [12, 13] with no attractive interactions.

Now, in addition to the disordered and vacant states,
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FIG. 1: Two-dimensional illustration of our hard-sphere
model for a square lattice. (a) Individual cell states, with
the shaded grey areas representing the free volume explored
by particles in “disordered” and “positional” states (v̇0 and
v̇1, respectively). (b) Assembly of two nearest-neighbor cells
with particles with positional order in the hypothetical case
that all their six nearest neighbors likewise contain particles
with positional order. Accordingly, both cells receive inputs
delimitated by the isosceles trapezoids in the left graph to
become the squares of reduced area in the right one.

we suppose that there is a third, special state in which a
particle just explores a preferential, restricted free volume
v̇1 < v̇0 around the center of its cell (see Fig. 1a). The
mechanism of molecular packing is then implemented on
simply postulating that the total volume of an assembly
of two nearest-neighbor cells is decreased when particles
in them have the prescribed positional order. This is il-
lustrated by Fig. 1b, where we further assume that the
volume decrease is equally shared between neighboring
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cells. Under these circumstances, we are led to imag-
ine the picture that a cell with positional order and with
all of its nearest neighbors likewise in that same state
is a smaller rhombic dodecahedron whose decreased vol-
ume equals the fcc volume per particle at close packing,
namely,

√

2

2
σ3 [14]. Fulfillment of this limiting condi-

tion is imposed by fixing the two-cell volume decrease
to 1

6
(λ− √

2
2
)σ3 [15]. There is certain degree of artificial-

ity inasmuch as most accessible microstates lmay contain
cells with distict size and shape that are inconsistent with
a continuum-space model, but this shall be of no major
consequence.
A statistical-mechanical treatment entails summing

Boltzmann factors e−β(El+pVl−µNl) over {l}, where E de-
notes the energy, V the volume, N the number of parti-
cles, p the pressure, and µ the chemical potential, while
β ≡ 1/kBT with kB the Boltzmann constant and T the
temperature. This embodies an ensemble in which E,
V , and N are allowed to fluctuate simultaneously, as in-
troduced long ago [16, 17] and being increasingly used
over the years [10, 18–21]. While one may further pro-
ceed by introducing spin-1 variables and ask for an ex-
act solution, the task becomes rather straightforward in
mean-field approximation.
Explicitly, on considering the number of cells with par-

ticles with positional order N+, one finds that for a total
number of cells N the following order parameters

n ≡ N

N , n+ ≡ N+

N (1)

allow to write

E = 3
2
nNkBT (2)

and

V = N [λ− (λ− √

2
2
)n2

+]σ
3. (3)

On the other hand, the entropy S splits into a configura-
tional contribution Sconf and a free volume one Sfv given
by

Sconf

NkB
= −[n+ lnn++(n−n+) ln(n−n+)+(1−n) ln(1−n)]

(4)
and

Sfv

NkB
= [n ln(v̇0Λ

−3
T ) + n+ lnω], (5)

where ω = v̇1/v̇0 < 1 while ΛT ≡ h/
√
2πmkBT stands

for the de Broglie thermal wavelength for a particle of
mass m, with h the Planck constant.
The number density ρ ≡ N/V is readily obtained from

(1) and (3), so that we may write

ρ̄ =
n

λ− (λ− √

2

2
)n2

+

, (6)

with ρ̄ ≡ ρσ3. On the other hand, the standard mini-
mization procedure leads to [22]

λ+ (λ− √

2

2
)n2

+

2(λ− √

2
2
)n+

=
ln(1− n)

ln[ω(n− n+)n
−1
+ ]

, (7)

p̄ = − ln(1− n)

λ+ (λ− √

2
2
)n2

+

, (8)

with p̄ ≡ pσ3/kBT . Equations (6) to (8) provide an
implicit pρT relation mediated by n and n+. Note that
(6) and (7) jointly indicate that only one among ρ, n, and
n+ is independent, implying that (8) is in practice of the
form p = kBTf(ρ) as Statistical Mechanics demands for
a hard-sphere system [23].
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FIG. 2: (Color online) Hard-sphere model values for p̄ ≡
pσ3/kBT as a function of ρ̄ ≡ ρσ3. The insets show the
order parameters n and n+, as a function of ρ̄ too. Orange
solid curves correspond to ω = 0.1 and purple dashed ones to
ω = 0.2, with λ = 1.08 in both cases. While not shown ex-
plicitly, n(ρ̄) is for ω = 0.2 a monotonically increasing curve
over the whole ρ̄ range.

To explore the model’s p̄(ρ̄) behavior, we fix the value
of ρ̄ and solve (6) and (7) numerically for n and n+ to
then use (8) to compute p̄. Figure 2 shows that a van
der Waals loop appears at high ρ̄ when ω is sufficiently
small. This is known to be the signature of a phase tran-
sition which we identify with freezing, with a customary
Maxwell equal-area construction leading to a corrected
curve describing coexistence. The transition also appears
when other lattices such as sc and bcc are alternatively
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considered. Our choice, recall, a fcc lattice, is however
a reasonable one since it corresponds to the hard-sphere
solid that comes up with freezing.
Also evident from Fig. 2 is that n is quite close to

1 throughout the loop. It is then clear from (8) that
tiny variations of n may be of major consequence to p̄
and, certainly, inspection of Fig. 2 makes it evident
that the p̄(ρ̄) loop is mostly reflecting the behavior of
n. Note that the concentration of vacancies, 1 − n, can
be obtained from (8) to get an analytical expression,

1−n = e−p̄[λ+(λ−
√

2
2

)n2
+], of the standard form [11]. This

yields 1 − n ≈ 0.0003 for the crystal at melting, which,
as far as orders of magnitude are concerned, is in accord
with estimations from simulations [24, 25].
We have verified that the spin- 1

2
variant our spin-1

model reduces to for n = 1 leads to no p̄(ρ̄) loop. The net
result is that two coupled order parameters are needed to
reproduce the freezing transition of the hard-sphere sys-
tem: the transition arises as soon as one considers jointly
monovacancies and a packing mechanism with the aid of
n and the positional order parameter n+, respectively.
Furthermore, on calling the coexisting phases “solid”

and “fluid”, n ≈ 1 allows to write ∆n+ ≡ nsolid
+ −nfluid

+ ≈
1
2
owing to the trivial symmetry of the effectively under-

lying spin- 1
2
Ising model. Then, (1), (4), and (5) yield

∆Sconf/NkB ≈ 0 and ∆Sfv/NkB ≈ 1
2
lnω. Accord-

ingly, ω = 0.1 was chosen so as to meet the hard-sphere
∆S/NkB ≃ −1.16 value determined from molecular sim-
ulation [26], while an optimal λ = 1.08 value yielded the
simulated ρ̄fluid ≃ 0.938 result [26, 27]. These values of
ω and λ lead to ρ̄solid ≃ 1.186, which departs from the
1.037 simulated one [26, 27]. One may think about fur-
ther refining the model so as to get a closer numerical
estimate of ρ̄solid, but such an expediency is beyond the
scope of the present discussion [28].
We finally note that the standard graphical analysis of

Fig. 3 [29] indicates that the model’s transition is cer-
tainly first-order without critical point. This is in con-
trast with an early approach to freezing with a spin-1
model displaying unseen features such as tricriticality or
critical melting [30] but it certainly agrees with Landau’s
conjectures on the nature of the transition [31].
Simple substance.—As a natural extension, we suppose

that particles in nearest-neighbor cells experiment attrac-
tive interactions. We consider a background interaction
energy −ε0 for every pair of adjacent occupied cells sup-
plemented by and extra energy −δε when particles have
positional order. This clearly mimics a normal pair po-
tential like the one due to Lennard-Jones and Devonshire,
with positional order associated with the potential min-
imum.
Equations (3) to (6) hold for this model of a “simple

substance,” whereas (2) may be substituted by

E = 3
2
nNkBT − 6N ε0n

2 − 6N δεn2
+, (9)

implying that instead of (7) and (8) the following equa-
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FIG. 3: (Color online) Scaled Gibbs free energy per particle
ḡ ≡ G/NkBT for a system of hard spheres of diameter σ = 3
Å and mass m = 3 × 10−26 kg as obtained from (1) to (5)
as a function of the order parameter n+ at p = 3160 bar and
temperatures indicated explicitly. The stable phase is at 98
K the one with higher n+ (solid) and at 102 K the one with
lower n+ (fluid). Solid-fluid coexistence occurs at 100 K at the
selected p. This picture, characterized by a finite difference
between the n+ values of the coexisting phases, remains for
any path crossing the coexistence curve in the p-T plane. Note
that all three curves have been shifted so as to get a common
ḡ value at the minimum corresponding to lower n+.

tions apply [22]:

ln
n+

(n− n+)ω
= n+[2(λ− √

2

2
)p̄+ 12βδε], (10)

p̄[λ+ (λ− √

2

2
)n2

+] = − ln(1− n)− 6ε0n
2 − 6δεn2

+. (11)

To gauge the ability of our augmented model, we make
connection with the Lennard-Jones parameters of argon,
namely, σargon

LJ ≃ 3.4 Å and εargonLJ ≃ 0.0103 eV [32].
Thus, with the same ω and λ values adopted for the hard-
sphere system, we set σ = σargon

LJ and choose optimal
ε0 ≃ 0.00674 eV and δε ≃ 0.00363 eV values fulfilling
ε0 + δε = εLJ. Then, given any two among T , p, and
ρ, (6), (10), and (11) were solved numerically for the
remaining one as well as for n and n+. This allows every
model’s thermodynamic property to be obtained.
Figure 4 shows that the resulting phase diagram in the

p-T , T -ρ, and p-ρ planes meets all basic features revealed
by experiment, while differences arise at a quantitative
level owing to the coarse-grained nature of the model and
the approximate mean-field solutions explored. More-
over, the model’s gas-liquid and solid-liquid coexistence
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FIG. 4: (Color online) Phase diagram for the simple-substance model in the p-T , T -ρ, and p-ρ planes calculated as indicated
in the text. Lines in the p-T plane determine the conditions of two-phase coexistence bounded by the triple point t and the
gas-liquid critical point c. Lines in the T -ρ and p-ρ planes enclose regions of two-phase coexistence for solid (green), liquid
(orange), and gas (purple), with horizontal dashed lines joining the states of three-phase coexistence associated with t.

curves in the T -ρ and p-ρ planes reflect the symmetries of
the underlying Ising model. Experimental evidence indi-
cates that such symmetries are absent and there are in-
deed models describing them for the gas-liquid case (see,
e.g., Ref. 10). Clearly, the task of extending our present
model so as to describe asymmetry-related attributes of
the solid-liquid coexistence curve (sloped diameter and
low-temperature widening, mainly) is to be undertaken.

It is to be emphasized that this fairly accurate quali-
tative picture has been achieved by simply incorporating
the main features of the attractive piece of a normal pair
potential to a model accounting for the effect of primi-
tive hard-core repulsion. This is consistent in the main
with the classic work by Longuet-Higgins and Widom
[6] on the solid-liquid transition of simple substances, al-
beit their approach is different from ours inasmuch as
its starting point is the corrected hard-sphere equation
of state provided by molecular simulation. In any event,
common to both the pioneering approach and the present
one is certainly the idea that harsh repulsive forces under-
lie the whole behavior, with attractive interactions enter-
ing as a perturbation. This picture goes back to van der
Waals original work, whose renaissance during the 1960s
was spurred by the original simulations for the freezing of
hard spheres [1] and stimulated the development of the
Modern Liquid State Science [33, 34]. In this connection,
our present approach is reflecting that the validity of the
van der Waals picture holds for the crystalline solid, for
its transitions to liquid and gas, and, as a result, for the
whole phase behavior of a simple substance.

Outlook.—It is natural to further extend the present
investigation to substances beyond the van der Waals
paradigm. One prominent candidate is water. Incorpo-
ration of the orientational degrees of freedom associated
with hydrogen-bonding to our simple-substance model

looks promising and can be done along the lines depicted
previously [20]. While it is hard to imagine a sufficiently
general Ising model accounting for the many existing ice
phases, we do believe it possible to approach the interplay
between the solid and supercooled liquid phases [35–37].

This entails metastability, which is another line of in-
quiry itself. The topic can be readily approached from
mean-field theory [29] and of particular interest is the
possible existence of a limit of supercooling suggested by
the van der Waals loop in Fig. 2. A theoretical estima-
tion of such a limit for the supercooled hard-sphere fluid
phase was indeed early provided by Kirkwood [38] and
while this fundamental question has been analyzed from
time to time for real substances [39, 40] it is seemingly far
from being settled [26]. We do find it worthy to revisit
the problem in the near future with the aid of the simple
models introduced here.
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