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Abstract

We study the classical non-linear dynamics of the SU(2) Yang-Mills matrix model introduced in [1]

as a low-energy approximation to two-color QCD. Restricting to the spin-0 sector of the model, we

unearth an unexpected tetrahedral symmetry, which endows the dynamics with an extraordinarily

rich structure. Amongst other things, we find that the spin-0 sector contains co-existing chaotic

sub-sectors as well as nested chaotic basins, and displays alternation between regular and chaotic

dynamics as energy is varied. The symmetries also grant us a considerable amount of analytic control

which allows us to make several quantitative observations. Next, by noting that several features of

the model have natural thermodynamic interpretations, we switch from our original chaos-theoretic

viewpoint to a more statistical perspective. By so doing, we see that the classical spin-0 sector has

a rich phase structure, arising from ergodicity breaking, which we investigate in depth. Surprisingly,

we find that many of these classical phases display numerous similarities to previously discovered

quantum phases of the spin-0 sector [2], and we explore these similarities in a heuristic fashion.

1 Introduction

Quantum chromodynamics is an SU(3) non-Abelian gauge theory that plays an indispensable role

in the physics of strong interactions. It is however, subtle and complicated: not only is it nonlinear

and possesses an infinite number of degrees of freedom, it also has an infinite-dimensional gauge group.

Progress in understanding the theory has been made mostly in the perturbative regime, or by approxi-

mating the theory by simpler models. One such model is the SU(3) gauge matrix model (such as those

studied in [3], [4], [5]) obtained as the extreme low-energy limit of the full gauge field theory on S3×R:

it has been successful in predicting the masses of light hadrons with surprising accuracy [2].

In this work we will study an even simpler model, the SU(2) gauge matrix model and in particular,

its classical dynamics. Although nonlinear, the model has a finite number of degrees of freedom: there

are three rotational, three gauge and three non-compact gauge-invariant degrees of freedom. Angular

momentum conservation naturally allows a decomposition of the full dynamics into non-rotating and

rotating sectors. Here we will restrict our attention to the former, which we shall henceforth refer to as

the ‘spin-0 sector’ of the matrix model.
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Despite this restriction, the spin-0 sector still has a six-dimensional phase space. Coupled with the

dearth of quantitative methods inherent to non-linear systems, even this reduced system seems, at first

glance, intractable. However, as we shall see, the discovery of a hidden tetrahedral symmetry simplifies

matters enormously. In this avatar, the model is a three-dimensional isotropic oscillator perturbed by

cubic and quartic non-linearities.

A theorem of Weinstein [6] assures that integrable Hamiltonian systems continue to have periodic

orbits even when perturbed by a small nonlinearity. The existence of periodic orbits and a use of group

theoretic methods for classifying them allows us to systematize our study. While Hamiltonian chaos

is typically studied using the apparatus of Kolmogorov-Arnold-Moser (KAM) theory [7–9], physical

insights are sometimes masked by the abstract nature of the necessary computations. A study of

periodic orbits from the point of view of their (in)stability will prove to be ideal for our setup and will

help us develop a much more intuitive feel for the dynamics.

Second, the periodic orbits come with symmetries of their own ( [10], [13]), which allows us to

further simplify our analysis. In particular, we shall see that a good fraction of the orbits live on a four

dimensional submanifold of the full phase space and can be separately studied using an appropriately

reduced effective four dimensional system. This is not unlike the Kepler problem, where the rotational

symmetry renders generic orbits planar. The effects of the extra dimensions are mostly cosmetic, so that

we lose no generality by treating these orbits using the effective four-dimensional system and eventually

reverting back to the full model.

Lastly, the symmetries also simplify the expressions governing time evolution along certain periodic

orbits, to the point where analytic solutions can be obtained, and uncover dynamics that is far more

intricate than one usually encounters. It turns out that the set of all trajectories over the phase space

can be partitioned into classes, with each class stemming from the destabilization of a specific type

of periodic orbit. Although the idea of regarding chaotic trajectories as destabilisations of periodic

orbits is not new, any ‘memory’ of the parent orbit is usually rapidly erased in the chaotic domain,

and perturbations about different periodic orbits quickly cease to be distinguishable from one another.

What is novel here is that such a ‘memory loss’ does not occur as long as energies belonging to particular

bands. As a result, for such energies, the phase space displays the peculiar feature of multiple co-existing

chaotic ‘basins’. Systems containing co-existing attractors are quite rare – the Rabinovich-Fabrikant

model [14] being the prototypical example – and are normally rather artificial. It is thus extremely

interesting to see this phenomenon arising naturally in the setting of a gauge matrix model.

The spin-0 sector thus possesses an extraordinarily rich dynamics, worthy of a study even as a

standalone non-linear system. Our eventual aim however, is to work out how such dynamics ties in

with the physics of gauge theory. Such a mapping can be carried out by identifying chaotic and regular

sectors of the non-linear system with classical phases of the underlying gauge-matrix model [3]. While

such themes will indeed feature in our analysis, albeit in a more nuanced manner, they will only form

one half of a two stage procedure. This is because we have, in addition to our non-linear analysis, a

thorough repository of the quantum dynamics of the matrix model [2]. In particular, the quantum matrix

model has been shown to admit quantum phases via superselection sectors; phases which, remarkably

enough, bear some resemblance to the classical phases associated with certain classes of periodic orbits.

The classical spin-0 sector of the full matrix model in some sense retains some ‘memory’ of its innate

quantum nature! These links between the classical and quantum regimes can be exploited both ways:

in one direction, we can use techniques from the phase study of the quantum theory to better elucidate

their classical counterparts. On the other hand, our classical-quantum correspondence is not perfect –
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as we shall see, there are classical phases of the spin-0 sector which have no apparent quantum analogs.

It is thus natural to use well-established methods, such as the Gutzweiller trace formula [17], to attempt

to search for quantum counterparts to these classical phases or, should they not exist, to understand the

limits of this correspondence. These questions are by no means trivial, and will constitute the subject of

a future work. In this article, we will just provide a heuristic outline of the various connections between

classical and quantum phases.

To explain the peculiar features of the spin-0 sector dynamics, we shall use three distinct but

interlocking diagnostic tools, designed for similar but not identical purposes.

Our first tool involves quantifying the growth of fluctuations about individual periodic orbits. The

resulting fluctuation equations are identical in form to those describing the eigenstates of a quantum

particle in a certain periodic potential. This correspondence allows us to connect well-known results of

band theory to novel analogs in the the study of fluctuations. As is well known from solid-state physics,

the spectrum of a quantum particle in a periodic potential comprises several energy bands, separated

from one another by band gaps [15]. As we will show, such features manifest on the nonlinear side

of the correspondence as alternations between regularity and chaos as we vary the energy. Although

alternations between regularity and chaos (intermittency, as it is termed [16]) have been documented

in literature, such alternations are usually irregular, with no clear-cut methods for identifying regions

of stability or instability. In contrast, the analytic control (which we owe to the tetrahedral symmetry)

we have over our fluctuation equations allows us to make far more precise statements on the locations

of transition points. Specifically, we will, for a particular class of periodic orbits, work out the exact

energy at which the first transition from instability to stability occurs. For this same class of orbits, we

will also be able to obtain asymptotically valid expressions for transition points in the high energy limit.

This analysis follows from a study of the monodromy matrix U [18]. More precisely, it is the spectrum

of U that proves to be a reliable indicator of orbit stability. In our case, it turns out the symmetries

of the spin-0 sector and the associated simplification in time evolution allow us to assess orbit stability

using just a single spectral invariant (Trace U) rather than its entire spectrum. As we will later see,

this reduction will additionally grant us an unusually strong analytic handle over the chaotic dynamics,

and will help us derive a good number of precise quantitative results.

Next, given that we are dealing with a highly non-linear system, it is natural to consider Lyapunov

exponents and Poincaré sections – the standard indicators of chaos. While these constructs do not

normally yield analytical information, the latter is an excellent qualitative diagnostic for chaos, while

the former reliably quantifies the ‘degree of chaos’ present. Adapted to our system, Poincaré sections

wonderfully bring out the numerous substructures underlying the full dynamics, particularly the phe-

nomena of ergodicity breaking and co-existing chaotic ‘basins’. Lyapunov exponents complement the

visual aids provided by the Poincaré sections and also serve as an excellent independent identifier for

ergodicity breaking.

A third set of diagnostic tools is drawn from the thermodynamics of small systems. Statistical

constructs such as temperature and entropy, while usually applied to many-body systems, can also be

discussed in the context of chaotic dynamics owing to the common theme of ergodicity which under-

lies these constructs. We find that Gibbs entropy and temperature [19], first discussed in a non-linear

dynamical context in [20], beautifully illustrate the ergodicity breaking inherent to our model. Addi-

tionally, it serves as a useful verification alongside the other diagnostic tools we have mentioned, and

naturally lends weight to our interpretation of ergodicity breaking as classical phases.

This article is organized as follows: In Section 2, we describe the Yang-Mills matrix model, its
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Lagrangian and Hamiltonian formalisms, and obtain the equations governing the spin-0 sector. In

Section 3, we outline the symmetries of the spin-0 sector, investigate their topological and dynamical

effects, and introduce the families of periodic orbits that they generate. Section 4 builds on this with a

thorough enumeration of the structure and properties of these aforementioned families, adding an extra

pair along the way. This is followed, in Section 5, with an extensive study of the stability properties

of each family of orbits using monodromy matrix theory. We then pursue a traditional chaos study

(Poincaré sections and Lyapunov exponents) in Section 6, where we also tie these results to those of the

monodromy analysis of the previous section. The thermodynamic viewpoint is pursued in Section 7,

where we examine the relation between ergodicity (and its breaking) and Gibbs temperature. We also

compare our observations with the results of our non-linear dynamical analysis of Section 6. Section 8

then explores the classical phase structure of the spin-0 sector, using the substantial collection of results

developed in preceding sections. Section 9 suggests evidence for the links between the classical phases

and a host of quantum phases uncovered in a previous work of one of the authors (SV). Section 10

provides a summary of this work and indicates directions for future work.

2 Setting up the SU(2) Matrix Model

The SU(2) matrix model contains nine degrees of freedom grouped into a single matrix variable

M ∈M3(R) [1, 2]. The dynamics of the system is governed by the Lagrangian

LYM =
1

2g2
(Eai E

a
i −Ba

i B
a
i ) , i, a = 1, 2, 3. (2.1)

Here g is the Yang-Mills coupling, and E and B are the chromoelectric and chromomagnetic fields

respectively, defined as

Eai = Ṁia + εabcM0bMic, Ba
i =

1

2
εijkF

a
jk, F aij = −εijkMka + εabcMibMjc. (2.2)

Since the action possesses an SU(2) gauge symmetry, we may use the associated gauge freedom to

fix M0a to zero.

Rewriting the Lagrangian (2.1) in terms of the matrix variable M , we obtain

LYM =
1

2g2
tr(ṀTṀ)− 1

2g2
tr(MTM) +

3

g2
detM − 1

4g2
[tr(MTM)]2 +

1

4g2
tr[(MTM)2]. (2.3)

This Lagrangian is invariant under a left O(3) action (physical rotations plus parity) and a right SO(3)

action (gauge transformations). The left and right actions give rise to two sets of conserved charges –

the physical angular momentum J = ṀMT −MṀT , arising from the left SO(3) action, and the gauge

angular momentum Γ = ṀTM −MT Ṁ , associated with the action of the gauge group.

A new set of coordinates (R,A, S), similar to the coordinates of singular value decomposition (SVD)

[21,22] will prove to be very convenient. The matrix M decomposes as M = RAST with R ∈ O(3), S ∈
SO(3) and A a real diagonal matrix diag(a1, a2, a3). Introducing the angular velocities Ω ≡ RT Ṙ and

Λ ≡ ST Ṡ, the Lagrangian naturally separates into a kinetic term T and a potential term U , and may
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thus be expressed as

LYM =
1

g2
(T − U), where (2.4)

T =
1

2
tr(Ȧ2 −A2(Ω2 + Λ2) + 2ΩAΛA) and (2.5)

U = U(a1, a2, a3) =
1

2
[(a1 − a2a3)2 + (a2 − a3a1)2 + (a3 − a1a2)2]. (2.6)

The Lagrangian is independent of the ‘angular’ coordinates R and S, and in particular, the potential

U depends solely on the variables (a1, a2, a3). With the (R,A, S) coordinates, the angular momentum

J and the gauge angular momentum Γ take the form

J = R(ΩA2 +A2Ω− 2AΛA)RT , Γ = S(ΛA2 +A2Λ− 2AΩA)ST . (2.7)

For the phase space formulation, we begin by defining the canonical momenta

pA =
∂L

∂Ȧ
=

1

g2
Ȧ, pΩ =

∂L

∂Ω
=

1

g2
RTJR, pΛ =

∂L

∂Λ
=

1

g2
STΓS. (2.8)

In terms of the (phase space) coordinates (R,A, S, pΩ, pA, pΛ), the Hamiltonian is

HYM = 〈pΩ,Ω〉so(3) + 〈pΛ,Λ〉so(3) + 〈pA, Ȧ〉so(3) − L, (2.9)

=
g2

2
〈pA, pA〉so(3) +

g2

2
〈pΩ,Ω〉so(3) +

g2

2
〈pΛ,Λ〉so(3) +

1

g2
U(A), (2.10)

where 〈ξ, η〉so(3) ≡
1

2
tr(ξTη).

The Gauss law requires us to fix Γ = 0, i.e. pΛ = 0. We will thus omit any equations involving these

variables. The equations of motion (EOM) are then

dA

dt
=
∂H

∂pA
,

dpA
dt

= −∂H
∂A

, (2.11)

dpΩ

dt
= [pΩ,Ω], Ω =

∂H

∂pΩ
. (2.12)

Since Ω is an antisymmetric 3×3 matrix, it can be completely specified by a real triplet (ω1, ω2, ω3) via

Ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , (2.13)

with the triplet transforming as a three vector ω under SO(3) rotations. In terms of ωi and ai, we can

explicitly rewrite the Hamiltonian as

HYM =
g2

2

(
p2
a1

+ p2
a2

+ p2
a3

)
+
g2

2

(
a2

2 + a2
3

(a2
2 − a2

3)2
p2
ω1

+
a2

3 + a2
1

(a2
3 − a2

1)2
p2
ω2

+
a2

1 + a2
2

(a2
1 − a2

2)2
p2
ω3

)
+

1

2g2

(
(a1 − a2a3)2 + (a2 − a3a1)2 + (a3 − a1a2)2

)
. (2.14)
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On canonically rescaling the coordinates and momenta as ai → gai, pai →
pai
g , we obtain

HYM =
1

2

(
p2
a1

+ p2
a2

+ p2
a3

)
+

1

2

(
a2

2 + a2
3

(a2
2 − a2

3)2
p2
ω1

+
a2

3 + a2
1

(a2
3 − a2

1)2
p2
ω2

+
a2

1 + a2
2

(a2
1 − a2

2)2
p2
ω3

)
+

1

2

(
(a1 − ga2a3)2 + (a2 − ga3a1)2 + (a3 − ga1a2)2

)
. (2.15)

With these coordinates, the EOM 2.11,2.12 become

ȧ1 = pa1 , ȧ2 = pa2 , ȧ3 = pa3 , (2.16)

ṗa1 = −1

2

(
2a1p

2
ω2(

a2
1 − a2

3

)
2
−

4a1

(
a2

1 + a2
3

)
p2
ω2(

a2
1 − a2

3

)
3

+
2a1p

2
ω3(

a2
1 − a2

2

)
2
−

4a1

(
a2

1 + a2
2

)
p2
ω3(

a2
1 − a2

2

)
3

)
− 2g2a1a

2
2 − 6ga3a2 + 2g2a1a

2
3 + 2a1

2
, (2.17)

ṗa2 = −1

2

(
2a2p

2
ω1(

a2
2 − a2

3

)
2
−

4a2

(
a2

2 + a2
3

)
p2
ω1(

a2
2 − a2

3

)
3

+
4a2

(
a2

1 + a2
2

)
p2
ω3(

a2
1 − a2

2

)
3

+
2a2p

2
ω3(

a2
1 − a2

2

)
2

)
− 2g2a2a

2
1 − 6ga3a1 + 2g2a2a

2
3 + 2a2

2
, (2.18)

ṗa3 = −1

2

(
4a3

(
a2

2 + a2
3

)
p2
ω1(

a2
2 − a2

3

)
3

+
2a3p

2
ω1(

a2
2 − a2

3

)
2

+
4a3

(
a2

1 + a2
3

)
p2
ω2(

a2
1 − a2

3

)
3

+
2a3p

2
ω2(

a2
1 − a2

3

)
2

)
− 2g2a3a

2
1 − 6ga2a1 + 2g2a2

2a3 + 2a3

2
, (2.19)

ṗω1 = −
(
a2

2 − a2
3

) (
−3a4

1 +
(
a2

2 + a2
3

)
a2

1 + a2
2a

2
3

)
g4pω2pω3(

a2
1 − a2

2

)
2
(
a2

1 − a2
3

)
2

, (2.20)

ṗω2 =

(
a2

1 − a2
3

) (
−3a4

2 + a2
3a

2
2 + a2

1

(
a2

2 + a2
3

))
g4pω1pω3(

a2
1 − a2

2

)
2
(
a2

2 − a2
3

)
2

, (2.21)

ṗω3 = −
((
a2

2 + a2
3

)
a4

1 −
(
a4

2 + 3a4
3

)
a2

1 + 3a2
2a

4
3 − a4

2a
2
3

)
g4pω1pω2(

a2
1 − a2

3

)
2
(
a2

2 − a2
3

)
2

. (2.22)

From these equations, it is easy to see that we have a consistent set of solutions with pωi ’s set to zero.

Physically, this corresponds to the irrotational sector of the matrix model, and it is these equations that

we will study under the name of the spin-0 sector. Explicitly, the equations governing the dynamics of

the spin-0 sector are then

ȧ1(t) = pa1(t), ȧ2(t) = pa2(t), ȧ3(t) = pa3(t), (2.23)

ṗa1(t) = −2g2a1(t)a2(t)2 − 6ga3(t)a2(t) + 2g2a1(t)a3(t)2 + 2a1(t)

2
, (2.24)

ṗa2(t) = −2g2a2(t)a1(t)2 − 6ga3(t)a1(t) + 2g2a2(t)a3(t)2 + 2a2(t)

2
, (2.25)

ṗa3(t) = −2g2a3(t)a1(t)2 − 6ga2(t)a1(t) + 2g2a3(t)a2(t)2 + 2a3(t)

2
. (2.26)

These equations emerge from the variation of the Hamiltonian

H0 =
1

2

(
p2
a1

+ p2
a2

+ p2
a3

)
+

1

2

(
a2

1 + a2
2 + a2

3 − 6ga1a2a3 + g2(a2
1a

2
2 + a2

2a
2
3 + a2

3a
2
1)
)
, (2.27)

which is simply the full Hamiltonian (2.15), with the pωi fixed to zero. For the remainder of this article,

we will always assume zero angular momentum and work exclusively with equations (2.23)–(2.27) .
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3 Symmetries of the Spin-0 Sector

3.1 The Action of the Tetrahedral Group

Since the Hamiltonian is independent of the ‘angular’ coordinates R and S, the non-trivial dynamics

is in the evolution of the ai’s. Remarkably, Hamiltonian (2.27) is further invariant under the action of

a discrete group. Explicitly, the action of an arbitrary element of this discrete symmetry group on the

phase space variables is given by compositions of the following

1. ai → aP (i), pai → paP (i)
, where P is an element of the permutation group S3.

2. ai → siai, pai → sipai , where si is −1 for two values of i and 1 for the remaining i. For example,

(a1, a2, a3)→ (a1,−a2,−a3), (pa1 , pa2 , pa3)→ (pa1 ,−pa2 ,−pa3).

Transformations of the second kind form a Z2 × Z2 subgroup of the full symmetry group, while trans-

formations of the first kind constitute an S3 subgroup. Both sets of transformations clearly do not

commute. The full symmetry group can in fact be shown to be a semi-direct product of these two

subgroups and is isomorphic to the tetrahedral group Td.

The Hamiltonian further possesses an additional Z2 time-reversal symmetry T : pai → −pai . Along

with the time-reversal group T , the full discrete symmetry group of the spin-0 sector is thus Td × T .

We emphasize that the Td symmetry of Hamiltonian (2.27) is a non-trivial consequence of the SVD

and in particular, bears no relation to the continuous rotational symmetries of the original Lagrangian

(2.1). This unexpected symmetry will play a crucial role in understanding the dynamics of the spin-0

sector in several ways, and will in particular hand us far more analytic control than is usually available

in non-linear systems.

3.2 Equipotential Surfaces of the Spin-0 Sector

The tetrahedral symmetry is best seen by looking at the equipotential surfaces of the Hamiltonian

of the spin-0 sector. Equipotential surfaces for various energies have been displayed in Figure 1. There

are two points of interest to note:

1. The tetrahedral symmetry, while present at all energies, is less visible at intermediate energies

(Figure 1c) and apparently transits to an octahedral symmetry at high energies (Figure 1d). This

transition is only approximate, and can be attributed to the decreasing significance of the cubic

term in the potential at high energies.

2. The topology of the equipotential surface changes as we cross a certain critical energy Ec. Equipo-

tentials at ‘subcritical’ energies (Figure 1a) are disconnected and are composed of a central lobe

and a set of four side lobes. ‘Supercritical equipotentials’ (Figures 1b-1d), in contrast, are con-

nected surfaces in configuration space. From the geometry of the equipotentials, it is clear that

the critical energy Ec is simply the energy E at which the number of solutions of the equation

V (a, a, a) = E is exactly one. Solving this, we obtain Ec = 3
32g2 .
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(a) E = 0.05 (b) E = 0.5 (c) E = 5 (d) E = 50

Figure 1: Configuration space equipotentials of the spin-0 sector Hamiltonian

Given this topological feature of the potential, it is natural to partition the dynamics into ‘subcritical’

and ‘supercritical’ regimes, and study each one separately. Indeed, we will later find that the dynamics

of the two regimes are quite different, with each zone displaying peculiarities of different kinds.

3.3 Symmetries and Periodic Orbits

The EOMs (2.23)-(2.26) are highly nonlinear and, as we shall see, lead to chaotic dynamics. Chaotic

Hamiltonian systems are frequently studied using techniques closely associated with the Kolmogorov-

Arnold-Moser (KAM) theorem [7–9]. Such KAM investigations involve splitting the Hamiltonian into

an integrable portion and non-integrable perturbations, and then using perturbative methods to study

the dynamical effects of these corrections.

The Hamiltonian (2.27) governing the dynamics of the spin-0 sector has a natural interpretation as

a perturbed system of three decoupled simple harmonic oscillators (SHOs), with g playing the role of

a perturbation parameter. However, it turns out that g is not the ideal candidate for the perturbation

parameter. To see this, we note that if the 6D phase space vector (a1(t), a2(t), a3(t), pa1(t), pa2(t), pa3(t))

is a solution to the EOM with g = 1 and energy E, then (ai,
pai
g2 ) is also a solution to the EOM with

coupling g and energy E
g2 . As a result, the qualitative features of solutions – orbit shapes, time averages,

measures of chaos/stability, to name a few – depend not on the specific values of energy and coupling,

but a particular combination thereof. The above scaling arguments show that g2E is the correct choice.

Thus we may as well set g to 1 and observe the entire spread of dynamics by varying just the energy.

It is worth emphasising that with this convention, we have Ec = 3
32 .

Hamiltonian systems possess periodic orbits sufficiently close to an integrable limit [6]. Models

with tetrahedral symmetry have been thoroughly studied and their orbits classified in [10, 13]. Similar

approaches involving simplification of periodic orbit analysis by discrete group symmetries have been

applied to the Henon-Heiles system [11]. In fact, the spin-0 sector of the full matrix model can itself

be regarded as an instance of a specific class of higher dimensional analogs of the Henon-Heiles system,

first put forward in [13] .

The Td × T symmetry of the Hamiltonian of the spin-0 sector implies the existence of multiple

families of periodic orbits. Most of these orbits persist at low energies, but get destroyed on increasing

energy and moving away from the integrable limit. We will refer to these as non-linear normal modes

(NLNMs). The NLNMs of the spin-0 sector can be classified by symmetry properties. More precisely,

the NLNMs may be classified according to their stabilizers G. They fall into five classes, listed in table 1.
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(Here T2 = {1, C2T} and Ts = {1, CsT}.)

Conjugacy class of stabilizer Shorthand notation Number of modes

D2d × T A4 3

C3v × T A3 4

C2v × T A2 6

S4 ∧ T2 B4 6

C3 ∧ Ts B3 8

Table 1: Periodic Orbits of the Spin-0 Sector

The presence of NLNMs is formally established by considering a ‘reduced’ phase space, obtained

by quotienting the full six-dimensional phase space by the orbits of the decoupled SHO limit. Cor-

respondences can then be drawn between properties of objects living in the original phase space and

their counterparts residing on the reduced phase space. In particular, the above NLNMs of (2.27) can

be mapped to critical points of an appropriate Hamiltonian living in the reduced phase space. Morse

theoretic methods can then be used to demonstrate the existence of fixed points of the reduced Hamil-

tonian, or alternately NLNMs of the full Hamiltonian (2.27). An additional family of twelve orbits

corresponding to non-critical points of the Hamiltonian, with stabilizer Cs ∧ T2, can also be shown to

exist for the spin-0 sector. The full details of this procedure can be found in [13].

Representative plots for each family of orbits have been shown in Figure 2.

(a) A4 (b) A3 (c) A2

(d) B4 (e) B3 (f) Non-critical Orbit

Figure 2: Configuration Space Plots of NLNMs
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3.4 Nested Non-Linearity and Reduced Dynamical Systems

One would definitely expect the larger dimensionality of the phase space to present difficulties.

Once again, the symmetries of the spin-0 sector come to our aid. They do so by essentially constraining

trajectories to lower dimensional subsets of the full phase space. Trajectories constrained in such a

manner can then be described by the dynamics of a reduced system living on a lower dimensional subset

of the full phase space. Happily, it turns out that a thorough study of relevant reduced dynamics is,

with some modifications, enough to reproduce several salient features of the full six-dimensional model.

As an example of reduced dynamics, let us consider trajectories with all ai’s initially set to a common

value a0 and all pai ’s initially equal to a common value pa0 . The tetrahedral symmetry of the EOM

ensures that these relations will be undisturbed by time evolution. Such trajectories form a subclass

of all the possible orbits and are solutions of a reduced system nested in the full model. This reduced

system is governed by the dynamical equations

ȧ(t) = pa(t), ṗa(t) = −a(t) + 3a(t)2 − 2a(t)3, (3.1)

where, a/pa denotes the common value of the coordinates/momenta. This is simply the dynamics of

a particle in the one dimensional double well VDW (a) = 1
2(a(a − 1))2. Formally, subsets of the phase

space which are mapped to (subsets of) themselves by time evolution are referred to as invariant sets.

We have thus simply identified a two dimensional invariant subset of our model - the set of phase space

points with all coordinates equal and all momenta equal. Note that the dynamics in this invariant set

is governed by a Hamiltonian, in fact the Hamiltonian obtained by setting coordinates and momenta in

(2.27) to a common pair a, pa.

In this case, the resulting reduced dynamics is regular, as it should be - the reduced Hamiltonian

is two-dimensional and therefore integrable. A far more interesting invariant set is obtained by setting

just two of the coordinates and their corresponding momenta to common values. Once again, the Td
symmetry of the EOM (2.23)-(2.26) render these relations time invariant. Assuming, without loss of

generality, that a1 serves as the ‘lone’ coordinate, so that a2 = a3 = a and pa2 = pa3 = pa, the equations

governing the reduced dynamics are then

ȧ1(t) = pa1(t), ṗa1(t) = −a1(t)(1 + 2a(t)2)− 3a(t)2, (3.2)

ȧ(t) = pa(t), ṗa(t) = −a(t)(1 + a1(t)2 + a(t)2)− 3a1(t)a(t). (3.3)

The reduced dynamics in this case resides on a four dimensional subset of the phase space, specifically

the subset defined by the relations a2 = a3 and pa2 = pa3 .

We shall henceforth distinguish the full six dimensional dynamics from these reduced four dimen-

sional subsystems by referring to the latter as ‘Reduced Dynamical Systems’ (RDSs). In particular,

we can choose to fix any two coordinates (and their corresponding momenta) equal to one another and

the resulting reduced dynamics for any choice will qualify as an RDS. Since any two choices are related

by a symmetry transform, we will fix the convention a2 = a3 = a and pa2 = pa3 = pa for any explicit

computations hereafter.

As it turns out, several of the NLNMs are constrained to lie on RDS subspaces. For this reason,

a thorough study of the RDSs suffices to explain a good fraction of the full six-dimensional dynamics.

Surprisingly, the RDS dynamics also have ties to the quantum phases of the spin-0 sector of the SU(2)

matrix model, as we shall later see.
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4 Periodic Orbits and their Classification

Having built up the kinematical aspects of the model, we shall now proceed with our analysis in the

following three stage fashion:

1. Enumerate the periodic orbits and understand their geometry and dynamics. This requires some

qualification, which we do below.

2. Individually study their stability and destabilization.

3. Correlate the destabilization of these orbits with the generically observed chaotic dynamics.

The lack of analytic control inherent to non-linear systems makes it impossible to identify all of the

periodic orbits. For our purposes however, it will suffice to confine our attention to those orbits whose

destabilization has noticeable imprints on the chaotic dynamics. As it turns out, these sets of orbits

are composed of NLNMs and two sets of orbits that stem from geometric rather than group-theoretic

considerations. These two families of ‘geometric’ orbits, along with the NLNMs, can together provide

convincing explanations for all the observed peculiarities of the chaotic dynamics, and will thus be the

focus of our study. We thus begin with an analysis of the various classes of NLNMs, following which

we shall briefly explore the origins and properties of the geometric orbits.

4.1 NLNMs

We find numerically that all but two families of NLNMs exist only at low energies and are rapidly

destroyed as we move away from the integrable regime. Only the A3 and the A4 orbits are present at all

energies (they are protected by their high symmetry), and their stability properties display surprising

subtleties. We will elaborate on this in section 5. We will thus devote individual subsections to each of

these classes, and follow this up with an enumeration of the basic properties of the remaining NLNMs.

4.1.1 A4 Orbits

While the equations of motion (2.23-2.26) are highly non-linear, all non-linear corrections to a

given coordinate’s evolution involve only the remaining two coordinates - there are no non-linear ‘self

interactions’. As a result, setting two of the coordinates to zero at some point in time renders the

instantaneous evolution of the last coordinate purely harmonic. In fact, by setting their corresponding

momenta to zero as well, we can actually ‘freeze’ these coordinates at zero and render the dynamics of

the third ‘lone’ coordinate completely harmonic. Such trajectories are classified as A4 orbits, and despite

their characterization as NLNMs, evolve harmonically with time. Mathematically, the A4 orbits evolve

as (ai(t), pai(t)) = (A sin(t + φ), 0, 0, A cos(t + φ), 0, 0), or suitable permutations thereof. Individual

orbits of the A4 type are thus completely specified by an amplitude A (having energy E = A2

2 ) and a

phase φ. A4 orbits clearly exist at all energies and, for subcritical energies, are confined to the central

lobe of the allowed configuration space. A representative orbit is shown in Figure 2a.

Since the A4 orbits have two coordinates and their corresponding momenta set to zero, they lie on

RDS subspaces. More precisely, each RDS possesses harmonic orbits with the common coordinate and

the common momentum frozen to zero. The projection of an A4 orbit onto the corresponding RDS is

shown alongside the relevant constant energy RDS hypersurface in Figure 3

11



Figure 3: RDS Projected A4 Orbit

4.1.2 A3 Orbits

We have already encountered A3 orbits earlier in equation (3.1). Their dynamics is governed by a

double well potential VDW (a) = 1
2(a(a − 1))2. These trajectories and their images under the Td × T

action are collectively referred to as A3 orbits. Initial conditions depicting an A3 orbit must thus be of

the form (ai, pai) = (a0, a0, a0, pa0 , pa0 , pa0) (or its transform under Td × T ). As with A4, individual A3

orbits are uniquely specified by the two parameters a0 and p0 which together fix both the energy of the

orbit and a suitable zero reference.

As solutions to a quartic potential, the A3 orbits are periodic and their time evolution may be ex-

pressed in terms of elliptic integrals. Additionally, depending on whether or not the total energy exceeds

the ‘well depth’ 1
2 , trajectories either spread across both basins of the double well (the ‘supercritical’

regime) or lie confined to one of the two basins (‘the subcritical’ case). Correspondingly, the matrix

model possesses subcritical A3 orbits for all E < Ec that are confined to either the central lobe or one

of the side lobes 1 and supercritical orbits for all E > Ec, which live in both central and side lobes.

Symmetry considerations tell us that we have eight A3 orbits for any subcritical energy and 4 for any

supercritical energy. A representative subcritical orbit is shown in Figure 2b.

Once again, these orbits can be embedded in RDSs with the lone and common coordinates (and

momenta) set equal to one another. The projection of an A3 orbit onto the corresponding RDS is shown

alongside the relevant constant energy RDS hypersurface in Figure 4.

Figure 4: RDS Projected A3 Orbit
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4.1.3 Other NLNMs

Unlike the A4 or A3 orbits, the remaining classes of NLNMs exist only for low energies and are

rapidly destroyed as we leave the integrable regime. At energies where they do exist, initial conditions

leading to such orbits can be implicitly specified by relations between the coordinates and momenta

derived from [13]. In the list below, we enumerate the required relations for each class of orbits. We

also list the numerically obtained energies at which these orbits cease to exist.

1. A2: a1 = pa1 = 0, a2 = a3, pa2 = pa3 and Td × T transformations thereof. These orbits are

destroyed at E ' 0.001.

2. B4: a1 = pa1 = 0, a2 = −pa3 , a3 = +pa2 and Td × T transformations thereof. These orbits are

destroyed at E ' 0.01.

3. B3: a2 = 1
2

(
−a1 +

√
3pa1

)
, a3 = 1

2

(
−a1 −

√
3pa1

)
, pa2 = 1

2

(
−
√

3a1 − pa1

)
, pa3 = 1

2

(√
3a1 − pa1

)
and Td × T transformations thereof. These orbits are destroyed at E ' 0.01.

4. Non-critical NLNMs: a2 = a1, a3 =
√

5pa1 , pa2 = pa1 , pa3 = −
√

5a1 and Td × T transformations

thereof. These orbits are destroyed at E ' 0.006.

Again, individual orbits of each class are uniquely specified by two parameters, which together fix

the energy and provide a suitable zero-reference. Representative figures are shown in Figures 2c-2f.

Amongst these classes of orbits, only the A2 and non-critical orbits have two coordinates and their

corresponding momenta set to common values and thus possess RDS analogs. The B4 and B3 orbits,

by contrast, are genuinely non-planar NLNMs.

4.2 Geometric Orbits

The methods we will utilize for finding geometric orbits was first used in the context of the Henon-

Heiles system [12].

As stated earlier, the study of the NLNMs alone is not sufficient for a comprehensive understanding of

the dynamics. We also find two families of geometric orbits which do not arise from stabilizer subgroups

of the full Td × T action. We call them geometric because they emerge from constraints imposed by

the requirement of continuity of certain phase space observables over equipotentials of the RDSs. In

contrast to the NLNMs, the geometric orbits are initially defined over the RDSs and then translated

to the full spin-0 sector using a canonical inclusion map. Despite these differences, both the geometric

orbits and the NLNMs have their origins in the symmetries of their respective systems. Consequently,

we must begin our search for the former by investigating the symmetries of the RDSs.

The tetrahedral symmetry of the spin-0 sector reduces to a more modest Z2 symmetry for the RDSs.

The sole non-trivial symmetry transformation induced by the action of this reduced symmetry group

is, in phase space, simply a1 → a1, a → −a, pa1 → pa1 , pa → −pa. This abstract action translates to a

geometric symmetry of the RDS equipotentials about the a1 axis. These equipotentials are described

by contours of the form

p2
a1

2
+ p2

a +
1

2
(a2

1 + 2a2 − 6a1a
2 + 2a2

1a
2 + a4) = E, (4.1)

where the LHS is simply the Hamiltonian (2.27) with the replacements a2, a3 → a and pa2 , pa3 → pa.

The structure of the equipotentials of the spin-0 sector thus directly translate to the equipotentials of
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the RDSs, which therefore also undergo a topology change at Ec = 3
32 . Representative equipotentials

are shown in Figure 5. The key to constructing geometric orbits lies in utilizing the symmetries of the

equipotentials in conjunction with those of the trajectories. The latter can be neatly formulated in

terms of relevant constructs which we term return maps. The return maps and the precise algorithms

for constructing geometric orbits are outlined in the following subsections.

Following [12], we will often refer to them as Π1 and Π2 orbits.

Figure 5: Equipotential Surfaces of an RDS

4.2.1 Π1 Orbits

The return map required for constructing a Π1 orbit of energy E0 is defined over the surface of the

E0 equipotential of the RDS. Specifically, given a point (a0
1, a

0) on this equipotential, we consider the

unique trajectory starting from rest at this point , i.e. p0
a1

= p0
a = 0. This trajectory, or more accurately

its configuration space projection, traces out a curve confined to the interior of the E0 equipotential

which (in principle) crosses the a1 axis, at some time t0. The return map R is defined to output the

angle made by the tangent to the curve at t = t0 with the a1 axis.

The crucial observation behind constructing Π1 orbits can be concisely formulated in terms of the

return map. Specifically, points Q on the equipotential satisfying R(Q) = ±π
2 generate periodic orbits.

This follows from the action of the full symmetry group Z2×T . Consequently, the question of generating

Π1 orbits reduces to one of finding solutions to the equation R(Q) = ±π
2 . Since we have, for each energy,

a pair of A3 orbits yielding return map outputs of π
4 and 3π

4 , the intermediate value theorem guarantees

at least one solution to the above equation. As it is a trivial task to locate the intersections of the A3

orbits with the E0 equipotential, we may then use these as reference points to initiate a binary search

algorithm to obtain solutions to the above equation. Numerically, we can then establish the existence

of a single Π1 orbit for any energy. These orbits, initially constructed over the RDS phase space, can

be trivially extended to the full spin-0 sector. Representative pictures are shown in Figure 6.
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(a) RDS Projection of Π1 Orbit (b) Π1 Orbit

Figure 6: Π1 Orbits

4.2.2 Π2 Orbits

A second set of geometric orbits can be constructed by formulating a different type of return map,

essentially the same as our earlier one, but defined over the a1 axis rather than over equipotential

surfaces. More precisely, given an arbitrary energy E0, we consider generic points on the a1 axis with

pa1 set to zero initially and pa fixed by the energy constraint. As before, this trajectory generates

a curve whose angle with the a1 axis is then captured by this second return map R2. Once again,

solutions to the equation R2 = ±π
2 yield periodic orbits, this time closed orbits in configuration space,

which we categorize as Π2. Again, we can set up binary search methods for numerically solving the

generating equation, with reference points being the intersections of the E0 equipotential with the a1

axis. Unlike the Π1 orbits however, there are no continuity arguments for justifying the presence of the

Π2 orbits. Indeed, numerical evaluations tell us that the Π2 orbits cease to exist beyond a threshold

energy EΠ2 ' 26, a second unexpected energy scale of the spin-0 sector. That said, EΠ2 lies in the far

supercritical regime, so that Π2 orbits do persist over a good range of energies. Representative orbits

are shown in Figure 7.
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(a) RDS Projection of Π2 Orbit (b) Π2 Orbit

Figure 7: Π2 Orbits

5 Monodromy Analysis of Periodic Orbits

Having enumerated the features of relevant periodic orbits, we will next outline the methods we

shall use for assessing their stability. Our strategy rests on the properties of a construct known as the

monodromy matrix [18], which we define below.

Consider an n-dimensional non linear system ẋ(t) = F (x, t). Let xp(t) be a periodic solution of this

system with time period Tp. An infinitesimal fluctuation δx(t) about xp(t) can be shown to linearly

evolve as

δẋ(t) = ∇F
(
xp(t)

)
· δx(t). (5.1)

∇F is simply the Jacobian J of the transformation x→ F (x).

We may also express this evolution in terms of a linear time evolution operator U(t) that maps an

arbitrary initial fluctuation δx(0) to δx(t). U is thus a time dependent square matrix of dimension n.

The monodromy matrix U is then simply defined as U ≡ U(Tp). In other words, the monodromy matrix

tells us what happens to an infinitesimal fluctuation as it cycles the periodic orbit once.

The eigenvalues of U yield information on the stability of the periodic orbits [23]. Since U is a

real-valued matrix, its eigenvalues must come in complex conjugate pairs. A periodic orbit is unstable

iff at least one of its eigenvalues lies strictly outside the unit circle |z| = 1. For Hamiltonian systems, the

symplectic structure of the function F can be used to show that the eigenvalues of the corresponding

U come in reciprocal pairs: 1
λ is an eigenvalue if λ is. In addition, Hamiltonian systems always have at

least two unit eigenvalues [23]. The corresponding eigenvectors are either directed along the periodic

trajectory or connect the periodic trajectory to one of infinitesimally higher/lower energy. To summarize,

the following properties are inherent to U ’s arising from Hamiltonian systems:

1. At least two eigenvalues are unity.

2. If λ is an eigenvalue, then so are 1
λ and λ.
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Eigenvalues of U are usually computed numerically, since most periodic orbits can only be found

numerically to begin with. Analytic results may become available only when we have explicit expressions

for the time evolution of the orbit in question. In our case, it turns out that the symmetry and

the analytically tractable time evolution of the A3 and A4 orbits simplify monodromy computations

enormously and some analytic statements can be made.

It is not possible to obtain exact expressions for the time evolution of any of the remaining NLNMs

or the geometric orbits. Nevertheless, the symmetries of the latter and their persistence over a large

range of energy endows them with unexpected stability properties which we explore numerically. In the

subsequent subsections, we will thus extensively analyze the stability of the A3, A4 and Π orbits.

5.1 A4 Orbits

The A4 orbits are the simplest to analyze, since their harmonic nature leads to a straightfor-

ward time dependence. With our chosen conventions, we will work exclusively with A4 orbits that

have a2 and a3 frozen to 0, and a1 varying sinusoidally with unit angular frequency. To find U , we

must first set up the equations governing infinitesimal fluctuations about such A4 orbits. An arbi-

trary fluctuation about a generic trajectory may be quantified by a six-dimensional phase space vector

δx(t) ≡
(
δa1(t), δpa1(t), δa2(t), δpa2(t), δa3(t), δpa3(t)

)
. The fluctuation equations (5.1) and the func-

tional form of the A4 orbits derived in section 4.1.1 then yield

δȧ1(t) = δpa1(t), δȧ2(t) = δpa2(t), δȧ3(t) = δpa3(t), (5.2)

δṗa1(t) = −δa1(t), (5.3)

δṗa2(t) = −δa2(t)(1 +A2 cos2 t) + 3A cos t δa3(t), (5.4)

δṗa3(t) = −δa3(t)(1 +A2 cos2 t) + 3A cos t δa2(t). (5.5)

A complete decoupling can be achieved by the canonical rotation a± ≡ a2±a3√
2

. The fluctuation equations

then read

δȧ1(t) = δpa1(t), δȧ+(t) = δpa+(t), δȧ−(t) = δpa−(t), (5.6)

δṗa1(t) = −δa1(t), (5.7)

δṗa+(t) = −
(

1 +A2 cos2 t− 3A cos t
)
δa+(t), (5.8)

δṗa−(t) = −
(

1 +A2 cos2 t+ 3A cos t
)
δa−(t). (5.9)

The geometry of the A4 orbits thus naturally induces a separation of perturbations into ‘longitudinal’

modes (δa±, δpa± = 0) and ‘transverse’ modes (δa1, δpa1 = 0). The fluctuation equations (5.6)-(5.9)

pick out the unique basis in which the two transverse modes decouple from one another. The (almost)

identical forms of the equations governing the evolution of δa+ and δa− simply confirm that there is no

discernible structural difference between the two transverse modes.

We must now attempt to make sense of the fluctuation equations (5.6)-(5.9). In principle, we could

do this by using these equations to obtain formal expressions for U and then numerically solve for its

eigenvalues. As it turns out, the symmetries of the A4 orbits heavily simplify the calculations, so that

a full computation of U is not necessary.

It is useful to view the generic fluctuation equations (5.1) as a single matrix equation δẋ(t) =

J(t)δx(t). This has the formal solution

δx(t) = T{e
∫ t
0 J(s)ds}δx(0), (5.10)
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where T , the time ordering operator, accounts for the non-commutativity of J ’s evaluated at different

times. Since the A4 orbits are 2π periodic, the monodromy matrix U is simply T{e
∫ 2π
0 J(s)ds}.

We can obtain explicit expressions for J by reading off its matrix elements from the fluctua-

tion equations (5.6)-(5.9). The J matrix splits as a direct sum J(t) = J1(t) ⊕ J+(t) ⊕ J−(t) in the

{a1, pa1 , a+, pa+ , a−, pa−} basis, where

J1(t) =

(
0 1

−1 0

)
, (5.11)

J+(t) =

(
0 1

−(1 +A2 cos2 t− 3A cos t) 0

)
, (5.12)

J−(t) =

(
0 1

−(1 +A2 cos2 t+ 3A cos t) 0

)
(5.13)

Since the matrices J1, J+, J− lie on different blocks of J , U also splits as U = U1 ⊕ U+ ⊕ U−, where

U1/+/− = T{e
∫ 2π
0 J1/+/−(t)dt} . Since J1 is just i times the Pauli matrix σ2, we obtain U1 = I2.

In fact, we could have arrived at this result without any calculation whatsoever. Since the spin-0

sector is a Hamiltonian system, the A4 monodromy matrix must have two eigenvectors of unit eigenvalue,

one describing time-translations along a singleA4 orbit, and the other connecting theA4 orbit in question

to one with infinitesimally higher/lower energy. It is not hard to see that the required eigenvectors are

precisely the longitudinal modes: longitudinal fluctuations with δpa1 = 0 clearly just shift one’s position

along a given orbit, while longitudinal fluctuations with δa1 = 0 simply changes the momentum slightly.

This alters the energy of the trajectory while retaining its identity as an A4 orbit.

Thus the non-trivial features of the stability of the A4 orbits reside in the U± matrices. We can

further simplify using the symmetry between δa+ and δa−. Since J−(t+ π) = J+(t) and the integral of

a periodic function over a single period is independent of the lower limit of integration, we have

U+ = T{e
∫ 2π
0 J+(t)dt} = T{e

∫ 3π
π J+(t)dt} = T{e

∫ 3π
π J−(t+π)dt} = T{e

∫ 2π
0 J−(t)dt} = U−. (5.14)

The last equality makes use of the substitution t→ t+π. Thus, while the blocks J+(t) and J−(t) differ

in form, their time ordered integrals are exactly the same. As a result, we may confine our attention to

either one of the transverse modes.

There exists a final simplification. Since U+ = U− and eigenvalues of U must come in conjugate

pairs and reciprocal pairs, we can constrain its spectrum to be of the form {1, 1, µ, λ, µ, λ} , where µ

and λ, the eigenvalues of U+ (or U−), must satisfy either of the two following conditions:

1. µ and λ are real: In this case, we have µ = 1
λ . Barring the trivial cases µ = λ = ±1, either µ

or λ will lie outside the unit circle, leading to an unstable orbit. So |λ+ µ| = |λ+ 1
λ | > 2.

2. µ and λ are complex conjugates: Now we have λ = 1
µ = µ, so that |µ| = |λ| = 1. Barring the

trivial cases µ = λ = ±1, µ and λ are thus complex conjugates lying on the unit circle, resulting

in a stable orbit. In this case, we may represent the pair {µ, λ} as {eiθ, e−iθ} for some θ in (0, 2π)

so that |µ+ λ| = 2| cos θ| < 2.

Thus, we see that the (in)stability of any A4 orbit is beautifully captured by a single number : γ ≡ µ+λ.

Explicitly, the orbit is stable (unstable) depending on whether |γ| < 2 (> 2) with transitions occurring

when |γ| = 2. Note that in terms of U , we have γ = TrU−2
2
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The stability of a periodic orbit is thus captured by trace of U , rather than its full spectrum. This

is a standard feature of four-dimensional Hamiltonian systems [24]. No such simplifications exist for

higher dimensional systems. We again emphasise that it is the special symmetries of the A4 orbits

(and more generically the Hamiltonian of the spin-0 sector) (2.27) that have produced this extreme

simplification.

Having substantially simplified our computations, we now turn to numerics. We compute γ as a

function of energy in the range E ∈ (0, 500). Figure 8 depicts γ as a function of energy E in the

region 0 < E < Ec. The key takeaway is that γ never dips below 2, so that subcritical A4 orbits are

unstable without exception. Additionally, the increase of γ with E suggests an increase in the ‘amount

of instability’. This notion is indeed true, and can be precisely quantified by chaos theory measures,

such as Lyapunov exponents, which we will analyze in section 6.2.

Our results for subcritical A4 orbits are not surprising, as one would expect heightened instabilities

with increasing energies. The supercritical regime displays a much more surprising behaviour, as is

clear from Figure 9. From these plots, we see that the stability of supercritical A4 orbits is character-

ized by oscillations between stability and instability with a monotonically decreasing frequency. These

transitions seem to repeat ad infinitum. Curiously, stability plots of a very similar nature have been

observed in literature, albeit in the seemingly unrelated context of solitonic solutions of the non-linear

Schrödinger equation [25]. The connections between such themes and our gauge matrix model need to

be better understood.

Before seeking analytic explanations for these transitions, it must be noted that the γ-E plots are

just one of many signatures of these stability flips. Indeed, we shall encounter more signatures as we

proceed with our analysis. One particular signature, however, is worthy of immediate attention. Since

the ai’s are after all the fundamental observables of our theory, it is natural to look for the imprints

of these stability flips on their time evolution. Parametric plots of trajectories in configuration space

provide a beautiful way to illustrate these effects. We construct configuration space parametric plots

at energies marginally above and marginally below a transition energy, with initial conditions deviating

very slightly from the initial conditions required for relevant A4 orbits. The results are displayed for

the first transition point E = 3
2 (we will derive this value later) in Figure 10. We see that energies

marginally above E = 3
2 yield perfectly regular trajectories barely distinguishable from their A4 parent

orbits, while energies marginally below the transition point yield chaotic trajectories which rapidly fill

a sizeable fraction of the available configuration space. Figure 11 shows an analogous flip in stability in

the opposite direction (stable below the transition energy, unstable above it). Note, in this case, that

the transition point is approximate.
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Figure 8: γ vs E for subcritical A4 orbits

Figure 9: γ vs E for supercritical A4 orbits
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(a) E = 1.499 (b) E = 1.501

Figure 10: Unstable to stable flip for A4

(a) E = 1.628 (b) E = 1.629

Figure 11: Stable to unstable flip for A4

We shall now use the fluctuation equations (5.2) to better understand the stability and establish

some quantitative results. It is useful to eliminate the δp’s from the fluctuations equations and regard

them as second order in δa’s. The equivalence of a+ and a− fluctuations means that we may restrict our

studies to just one of these modes. Without loss of generality, we choose to work with the a+ modes,

whose fluctuation equation reads

δä+(t) +
(
1− 3A cos t+A2 cos2 t

)
δa+(t) = 0 (5.15)
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Rescaling t = 2s, we obtain

δä+(s) +
(
η + 2α cos 2s+ 2β cos 4s

)
δa+(s) = 0, (5.16)

with α = −6A, β = A2 and η = 4 + 2A2, which is the standard form of the Whittaker-Hill (WH)

equation (see [26] for example).

This WH equation has exactly the form of a Schrodinger equation with a periodic potential, typically

encountered in Bloch theory of solids. Hence we expect to see a band structure with bands and band

gaps corresponding to stability snd instability.

Floquet theory tells us that any solution to the WH equation can be expressed in the form epxg(x)

for some complex number p and a periodic function g(x). This is usually about as far as we can go, as

closed form expressions are generally not available. However, we can make progress towards finding the

locations of transition points, as this requires a study of only the periodic solutions to the WH equation.

This is because |γ| = 2 corresponds to U± being ±I2 which in turn leads to periodic behaviour of the

fluctuations.

The WH equation is usually solved by an expansion into a sine or cosine series followed by solving

recursion relations that emerge between the Fourier coefficients. As such an approach no doubt reminds

the reader of the more common Frobenius methods, it is natural to question whether we can carry

over techniques from power series expansions to our case. In particular, since Frobenius type problems

often have parameter choices that lead to finite termination of the recursion series, we may naturally

wonder whether such truncations are possible for the WH equation too. This is unfortunately not the

case as the pertinent recurrence relations involve five coefficients at a time. However, a remarkable

transformation, δz(s) ≡ δa+(s)e
√
β cos 2s, of our WH equation yields the differential equation [26,27]

δz̈(s) + 4
√
β sin 2s δż(s) + [η + 2β +

(
2α+ 4

√
β
)

cos 2s] δz(s) = 0, (5.17)

the Ince equation, which can be solved by three term recursions. If β = α2

4(p+1)2 for some p ∈ Z+, η

can be chosen in order to make the recursion relation eventually terminate. In such situations, the Ince

equation possesses finite series solutions, known as Ince polynomials, which can then be recast, via the

δz → δa+ transform, to closed periodic solutions (though not polynomial solutions) of the WH equation.

In our case, the coefficients α, β and η are additionally constrained to be related to one another via

the amplitude A. It turns out that α and β indeed satisfy the necessary relations for finite solutions,

with p = 2. However, the restrictions on η only grant us finite solutions for one value: A =
√

3. This

corresponds to a stability flip at E = A2

2 = 3
2 . The corresponding Ince polynomial can be worked out

to be 1 + 2√
3

cos 2s. Reverting to the WH equation, we obtain

δa+(s) =

(
1 +

2√
3

cos 2s

)
e−
√

3 cos 2s. (5.18)

A second, linearly independent periodic solution for this equation for the WH equation can be obtained

using the well-known variation of parameters method. Suitably applied to our case, this method tells

us that if w1(s) is a solution to the WH equation at E = 3
2 , then so is w1(s)

∫ s
0 (1/w1(t)2)dt. We may

thus write a second independent solution to the WH equation at E = 3
2 in quadrature form as

δa+(s) =

(
1 +

2√
3

cos 2s

)
e−
√

3 cos 2s

∫ s

0

e2
√

3 cos 2s(
1 + 2√

3
cos 2s

)2ds (5.19)

22



This integral unfortunately cannot be evaluated in terms of elementary functions, but we nevertheless

have a passable inventory of the solutions of the WH equation at this energy. The numerically obtained

γ − E plots confirm that E = 3
2 is indeed a transition point.

While we cannot evaluate the precise locations of any other transition points, it is possible to

ascertain their asymptotic behaviour. We see that at large enough energies, the coefficient of cos 2s

in (5.16) dies out far more rapidly (as a function of A) than either of the other two coefficients. So

we can derive asymptotic expressions for transition points by neglecting this term in the large A limit.

Reverting back to t = 2s, we then see that the WH equation reduces to the far simpler Mathieu equation

δä+(t) +

(
1 +

A2

2
+
A2

2
cos 2t

)
a+(t) = 0. (5.20)

Our problem now simplifies to studying the periodic solutions of the Mathieu equation (see [26] for

example). While still non-trivial, this is at least a well documented problem with at least a few known

simple analytical results. In general, the Mathieu equation in its standard form

δÿ(x) +
(
a− 2q cos 2x

)
y(x) = 0 (5.21)

has periodic solutions only for special set of parameter values (a, q). These sets are described by two

Mathieu characteristic functions, a pair of functions defined from Z× R to R that take in a pair (n, q)

and yield a unique value for a that in turn gives the nth (odd/even) Mathieu function as a periodic

solution to the Mathieu equation with parameter set (a, q). Given that (a, q) = (1 + A2

2 ,−
A2

4 ) for us,

we see that the locations of the nth family of transition points are asymptotically given by solutions to

the equations

ξ1(n,−A
2

4
) = 1 +

A2

2
(5.22)

and

ξ2(n,−A
2

4
) = 1 +

A2

2
(5.23)

where ξ1,2 are the Mathieu characteristic functions of the first/second kind. Recasting the above equa-

tions in terms of the energy E, we obtain

ξ1(n,−E
2

) = 1 + E (5.24)

and

ξ2(n,−E
2

) = 1 + E (5.25)

Transition points computed in this manner can be compared with numerically obtained results (see

Appendix A), and we observe excellent agreement between the two sets of values.

5.2 A3 Orbits

We consider the A3 orbits specified by initial conditions of the form (a0, a0, a0, pa0 , pa0 , pa0). The

fluctuation equations for A3 orbits are

δȧ1(t) = δpa1(t), δȧ2(t) = δpa2(t), δȧ3(t) = δpa3(t), (5.26)

δṗa1(t) = −δa1(t)(1 + 2a(t)2) + (3a(t)− 2a(t)2)(δa2(t) + δa3(t)), (5.27)

δṗa2(t) = −δa2(t)(1 + 2a(t)2) + (3a(t)− 2a(t)2)(δa3(t) + δa1(t)), (5.28)

δṗa3(t) = −δa3(t)(1 + 2a2) + (3a(t)− 2a(t)2)(δa1(t) + δa2(t)), (5.29)
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which decouple in the canonical basis {b1, b2, b3} = {a1+a2+a3√
3

, a1−a2√
2
, a2−a3√

2
} into three pairs of indepen-

dent equations:

δḃ1(t) = δpb1(t), δḃ2(t) = δpb2(t), δḃ3(t) = δpb3(t), (5.30)

δṗb1(t) = −(1 + 6a(t)2 − 6a(t))δb1(t), (5.31)

δṗb2(t) = −(1 + 3a(t))δb2(t), (5.32)

δṗb3(t) = −(1 + 3a(t))δb3(t). (5.33)

We thus obtain once more a block decomposition of the full monodromy matrix U into three blocks

U1/2/3. Denoting the matrices corresponding to the b variables by J1/2/3, we see that J1 (and conse-

quently U1) describes the evolution of fluctuations along the orbit. We therefore do not expect any

non trivial results from this sector. The J2 and J3 matrices are manifestly equal. As a result, the full

simplification of the previous subsection carries through for the A3 orbits as well. We need only study

γ, the trace of the U2 (= U3) matrix.

From a physical standpoint, we thus expect the same trends as were observed for the A4 orbits. Since

our perturbations once again take the form of time-independent Schrodinger equation characterized by

a periodic potential (in this case an elliptic integral), we anticipate alternating bands of stability and

instability. Indeed, we find that we have oscillations between stability and instability, with the separation

between adjacent transition points varying geometrically as we approach the critical energy Ec from

either side.

Specifically, we will show that

1. For subcritical energies, the quantities 1 − E1
n

Ec
and 1 − E2

n
Ec

where E1
n(E2

n) are the energies corre-

sponding to the nth transition of γ from 2+ to 2−(2− to 2+) form a geometric series, with common

ratio δ1 = e
π

2
√

5 as we approach Ec from below.

2. For supercritical energies, the quantities 1− E1
n

Ec
and 1− E2

n
Ec

where E1
n(E2

n) are the energies corre-

sponding to the nth transition of γ from 2+ to 2−(2− to 2+) form a geometric series, with common

ratio δ2 = e
π√
5 as we approach Ec from above.

The plots of γ vs E thus exhibit a self-similar structure as shown in Figures 12 and 13. Analogous

phenomena, studied in [24], were described as ‘Feigenbaum-like’. While such self-similar structures and

‘Feigenbaum like’ oscillations have been previously observed for Hamiltonian systems [24], the spin-0

sector is, to our knowledge unique, as it contains not one, but two independent self-similar cascades,

one for the supercritical and one for subcritical regimes. Furthermore, these ratios are distinct (albeit

simply related).
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Figure 12: γ vs E for subcritical A3 orbits

Figure 13: γ vs E for supercritical A3 orbits

We now present a rigorous derivation of the preceding results, following extensively the methods

adopted in [24]. Eliminating the p’s from the fluctuation equations (5.30)-(5.33), we are left with a

single non-trivial second order fluctuation equation

δä(t) +
(
1 + 3a(t)

)
δa(t) = 0. (5.34)
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The a appearing in the above equation describes the periodic time evolution along the A3 orbits, and

can be explicitly expressed in terms of elliptic integrals, with time period

Tp(E) =


(

6
E

)1/4
F

(
sec−1

(
1+η√
η2−1

)
,
√

1+η
2

)
, if E < Ec

2
(

6
E

)1/4
K

(√
1+η

2

)
, if E > Ec

 . (5.35)

Here F and K are the incomplete and complete elliptic integrals of the first kind respectively, and

η ≡
√
Ec/E. These time periods diverge at Ec, i.e. η = 1. The near critical behaviour of γ depends on

the nature of the divergence of Tp(E). This is best brought out using the integral representation of F :

F (α, k) =

∫ sin(α)

0

dx√
(1− x2)(1− k2x2)

. (5.36)

We are interested in the singular behaviour of the integral as α → π/2 and k → 1. The latter portion

of the denominator splits as (1− kx)(1 + kx) so that when k ∼ 1, the divergence of the integral stems

solely from the 1−kx and the additional 1−x term from the first term under the square root. We thus

immediately see that A) The 1 + kx term can simply be replaced by 1 + x as it contributes nothing to

the divergence and B) since 1− kx ∼ 1− x when k ∼ 1 and since the product of these terms is nested

under a square root, we see that we should naively expect the integral to diverge as log(1− sin(α)).

Replacing the non singular 1 + kx term by 1 + x leads to the analytically tractable integral

F (α, k) ∼
∫ sin(α)

0

dx

(1 + x)
√

(1− x)(1− kx)
. (5.37)

The series of substitutions x → y ≡ 1
1+x , y → z ≡ 2y − 1 and use of standard integrals then also us to

evaluate this integral as

F (α, k) ∼

(
1√

2(1 + k)
ln[z +

1− k
2(1 + k)

+

√(
z +

1− k
2(1 + k)

)2

−1

4

(
1− k
1 + k

)2

]

)∣∣∣∣1
1−sin(α)
1+sin(α)

. (5.38)

It is easy to see that only the lower limit contributes to the divergence, so that we may further write

F (α, k) ∼ −

(
1√

2(1 + k)
ln(z +

1− k
2(1 + k)

+

√(
z +

1− k
2(1 + k)

)2

−1

4

(
1− k
1 + k

)2
)∣∣∣∣

1−sin(α)
1+sin(α)

. (5.39)

We now apply the above to (5.35):

1. Supercritical: Setting α to π
2 and k to

√
1+η

2 , we obtain

Tp(E) ∼ 2
√

2 ln
1

1− η
∼ 2
√

2 ln
1

1− η2
= 2
√

2 ln
1

1− Ec
E

. (5.40)

as η → 1−.

2. Subcritical: Setting α to sec−1

(
1+η√
η2−1

)
and k to

√
1+η

2 , we obtain

Tp(E) ∼
√

2 ln
1

η − 1
∼
√

2 ln
1

η2 − 1
=
√

2 ln
1

Ec
E − 1

(5.41)

as η → 1+.
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We next study the variation of γ with the time period. Following [24], we see that γ can be expressed

as a trigonometric Fourier series in Tp, with the leading Fourier coefficient yielding the only non-trivial

contribution in the limit of η → 1. We thus have

γ(Tp) ∼ 2 cosωTp (5.42)

where ω can be worked out as follows: since in the limit of η → 1, a spends an increasingly large amount

of time near the saddle point 1
2 , we may estimate the asymptotic period by simply replacing a by 1

2 in

(5.26)-(5.29). Then the dynamical equations (5.34) simply reduce to those of an oscillator with period

∆T = 2
√

2
5π. Thus, we have ω =

√
5
2 .

We can now compute the geometric ratios for the A3 oscillations. From (5.42), we see that the

transition points are evenly spaced in intervals of ∆T when viewed as functions of the time period Tp.

The logarithmic dependence of Tp with |1− η|, captured by (5.40) and (5.41) tells us that the locations

of the transition points, as measured by the quantity 1−η, must asymptotically form a geometric series.

It is also easily seen from (5.40) and (5.41) that the relevant common ratios are e
∆T
2
√

2 = e
π√
5 for the

supercritical oscillations and e
∆T√

2 = e
π

2
√

5 for the subcritical oscillations.

Figures 14 and 15 demonstrate the flip from stability to instability and vice versa as the energy is

varied across a transition point.

(a) E = 0.323 (b) E = 0.324

Figure 14: Stable to unstable flip for A3
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(a) E = 0.445 (b) E = 0.446

Figure 15: Unstable to stable flip for A3

5.3 Π1 Orbits

The wealth of results obtained for A3 and A4 ultimately traces back to the high symmetry of these

orbits. These symmetries are enough to completely decouple the fluctuation equations, which eventu-

ally lead to a significant simplification. Since the geometric orbits do not originate from Weinstein’s

theorem, they are less symmetric and the fluctuation equations remain partially coupled. As a result,

a single spectral invariant (like γ) is not enough to capture the stability properties of the geometric

orbits. Nevertheless, as the geometric orbits reside on RDS phase spaces, a partial decoupling of the

fluctuations can indeed be accomplished, with two modes spanning fluctuations confined to the relevant

RDS subspace, and the third mode generating fluctuations orthogonal to this subspace. Consequently,

some simplifications can be made before reverting to numerics.

The equations describing fluctuations about Π1 orbits are given by

δȧ1(t) = δpa1(t), δȧ2(t) = δpa2(t), δȧ3(t) = δpa3(t), (5.43)

δṗa1(t) =− δa1(t)[1 + 2a(t)2] + 3a(t)[δa3(t) + δa2(t)]− 2a1(t)a(t)[δa2(t) + δa3(t)], (5.44)

δṗa2(t) =− δa2(t)[1 + a(t)2 + a1(t)2] + 3a(t)δa1(t) + 3a1(t)δa3(t)

− 2a(t)[a(t)δa3(t) + a1(t)δa1(t)], (5.45)

δṗa3(t) =− δa3(t)[1 + a1(t)2 + a2(t)] + 3a1(t)δa2(t) + 3a(t)δa1(t)

− 2a(t)[a1(t)δa1(t) + a(t)δa2(t)], (5.46)

where a(t), a1(t) and their momenta describe time evolution along the unperturbed Π1 orbit. Using the
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canonical rotation, a± = a2±a3√
2

, as before, we may restate these equations as

δȧ1(t) = δpa1(t), δȧ+(t) = δpa+(t), δȧ−(t) = δpa−(t), (5.47)

δṗa1(t) = −δa1(t)(1 + 2a(t)2) + 3a(t)(δa3(t) + δa2(t))− 2a1(t)a(t)(δa2(t) + δa3(t)), (5.48)

δṗa+(t) = −δa+(t)(1 + a(t)2 + a1(t)2) + 3
√

2a(t)δa1(t) + 3a1(t)δa+(t)

− 2
√

2a(t)(a1(t)δa1(t))− 2a(t)2δa+(t), (5.49)

δṗa−(t) = −δa−(t)(1 + a(t)2 + a1(t)2)− 3a1(t)δa−(t) + 2a(t)2δa−(t), (5.50)

Since we had earlier restricted ourselves to a concrete instance of an RDS (see section 3.4) by fixing a2

to a3, and pa2 = pa3 , it is evident that fluctuations with δa− = δpa− = 0 yield trajectories that deviate

from the Π1 orbit, but are confined to the phase space of the RDS. On the other hand, fluctuations

with δa− 6= 0 destroy the equality of a2 and a3. Such fluctuations lead to trajectories that are not

confined to the RDS, but span the full six-dimensional phase space of the spin-0 sector. In short, an

arbitrary fluctuation can be split into an ‘orthogonal’ mode perpendicular to the RDS phase space, and

a pair of coupled ‘tangential’ modes living in the RDS phase space. The independence of the orthogonal

modes from the tangential modes results in the factorization of the monodromy matrix into a 2+4

block diagonal form. Unlike with the NLNMs, no further simplifications can be made at this point and

numerical evaluations are the only way forward.

As before, the fluctuation equations (5.47)-(5.50) retain the form of a Schrödinger equation, albeit

with a two-component ‘wavefunction’ unlike the previous two instances.

Numerics once again reveal the presence of bands: there exist energy bands displaying regular

behaviour, with chaos ensuing outside these bands. However it turns out that the bands are finite

in number, as opposed to the cases of A4 and A3. Specifically, we find that Π1 orbits are always

unstable for subcritical energies and undergo just four stability flips, with two ‘bands’ of stability from

2 . E . 3 and 5 . E . 10. Note that since TrU does not directly correlate with stability as it did for

A3/4, stability can only be ascertained by looking at the full spectrum of the monodromy matrix. The

requisite numerics is not very illuminating, so we do not present the full calculations here. Graphical

evidence for these flips (demonstrated in Figures 16 and 17) comes from the Lyapunov exponent plots,

which we will display in section 6.2.
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(a) E = 2.475 (b) E = 2.476

Figure 16: Unstable to stable flip for Π1 orbits

(a) E = 9.786 (b) E = 9.787

Figure 17: Stable to unstable flip for Π1 orbits

5.4 Π2 Orbits

Π2 orbits are investigated using the same methodology as Π1 orbits. We shall not go over our

procedures again, and will simply state the results of our numerics. We find that subcritical Π2 orbits

are always stable under generic fluctuations. Supercritically, we find two stable but small bands, the

first near E ∼ 3 and the second near E ∼ 4. These results will be corroborated by plots of Lyapunov

exponents in section 6.2.
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6 Progression to Chaos

In the previous section, we analyzed the stability of several sets of orbits by drawing information

from their monodromy matrices. Here, we will pursue another traditional tool to study chaos, utilising

the standard techniques of Poincaré sections and Lyapunov exponents. In so doing, we will come

across numerous novel and peculiar features which, using our prior monodromy analysis, will correlate

beautifully to the periodic orbits and ultimately the symmetries of the spin-0 sector.

6.1 Poincaré Sections

As defined in [28], a Poincaré section for an N -dimensional Hamiltonian system is a 2N − 2 dimen-

sional slice through a 2N−1 dimensional constant energy hypersurface. Poincaré sections are thus most

effective for four dimensional Hamiltonian systems, and are in general not useful for higher-dimensional

systems.

However, we find that a simple variation of the usual construction can serve as an excellent visual

aid. Specifically, we locate points on a given trajectory where a particular coordinate/momentum is

zero. We then project the collection of such points onto a hyperplane spanned by three of the five

remaining coordinates/momenta. With this construct (which we continue to refer to as a Poincaré

section), the usual rules for distinguishing regular trajectories from chaotic ones no longer hold. In

particular, regular orbits could yield (our version of) Poincaré sections that are a collection of randomly

scattered points. This is not a matter of concern for us since our current aim is to study only chaotic

trajectories, having carried out an extensive study of regular solutions earlier. We will work exclusively

with trajectories that monodromy computations certify as unstable. We consider small fluctuations

about periodic orbits and construct Poincaré sections at various energies by projecting points on these

trajectories having pa1 = 0 onto the hyperplane spanned by the ai’s.

Since the A4 and Π1 orbits are always unstable at subcritical energies, we expect the Poincaré

sections to be sets of randomly scattered points. While we do find that the sections are indeed scattered

and locally random, there are large scale patterns. These patterns depend solely on the ‘parent orbit’.

Poincaré sections for subcritical A4 and Π1 orbits are shown in Figure 18.
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(a) A4 section at E = 0.05 (b) Π1 section at E = 0.05

(c) A4 section at E = 0.09 (d) Π1 section at E = 0.09

(e) A4 and Π1 sections at E = 0.05 (f) A4 and Π1 sections at E = 0.09

Figure 18: Poincaré sections at subcritical energies

We thus conclude that we have a set of co-existing chaotic basins, one for each family of unstable

orbits!

To illustrate a second peculiar feature of the dynamics, we recall that in addition to the chaotic

dynamics of the full spin-0 sector, unstable trajectories confined to RDS phase spaces may well display

chaotic dynamics of their own. This leads to chaotic basins embedded in a four-dimensional subset
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nested within the full six-dimensional chaotic dynamics! This extraordinary feature of the dynamics is

the combined result of the large dimensionality and the tetrahedral symmetry. This ‘nested’ chaos, as

part of a genuine four-dimensional system, can be analyzed using Poincaré sections in the usual sense.

We thus generate Poincaré sections for chaotic trajectories of the RDS, both to study the nested

chaos and to look for similarities to the full six-dimensional dynamics. In particular, since most of

the interesting orbits of the full spin-0 sector have RDS analogs, we would naturally expect a similar

substructure of multiple chaotic basins, one for each class of orbit. This substructure is indeed replicated

in the RDSs, as evidenced by Figure 20.

Next, we see that the supercritical regime appears to comprise of just a single chaotic basin (Figure

19). The mechanism responsible for separating chaotic subsectors in the subcritical regions is no longer

operative, so that fluctuations about unstable periodic orbits rapidly grow and eventually cover the

entire available phase space, losing memory of their initial conditions. Analogous results hold for the

supercritical regimes of the RDSs, as is seen from the Poincaré sections of Figure 21.

We now turn to Lyapunov exponents which will provide additional confirmation for our already

established results while also motivating the ‘thermodynamic’ perspective we will encounter in section

7.

(a) A4 section at E = 0.5 (b) Π1 section at E = 0.5

Figure 19: Poincaré sections at supercritical energies
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(a) E=0.065 (b) E=0.070

(c) E=0.075 (d) E=0.08

(e) E=0.085 (f) E=0.09

Figure 20: Poincare Sections at Subcritical Energies

(a) Π1 sector (b) A3 sector (c) A4 sector

Figure 21: Poincare Sections at Supercritical Energies (E=1)
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6.2 Lyapunov Exponents

Recall that the maximal Lyapunov exponent (LE) at a phase point P is defined as

λP ≡ lim
T→∞

lim
||δx(0)||→0

1

T
log

(
||δx(T )||
||δx(0)||

)
, (6.1)

where δx is a small fluctuation about a given trajectory x(t) starting at P .

We compute the LEs for the A4 and Π1 basins separately by considering arbitrary fluctuations

about these orbits. The results for the subcritical zone are shown in Figure 22. Consistent with our

interpretation as co-existing chaotic basins, we see that the exponents of the Π1 and A4 orbits differ

from one another. The stability of all other periodic orbits at nearly all subcritical energies means that

we may confine our analysis to these two families of orbits.

Since the Π2 and A3 orbits can destabilize for E > Ec, the supercritical analysis must include

these orbits as well. The LEs for the basins corresponding to each of these orbits have been shown in

Figures 23-26. There are three features of interest here.

1. The exponents for each basin frequently alternate between regions of steady concave growth and

regions where the exponent is identically zero. A comparision with the monodromy matrix com-

putations shows that the regions of zero exponents precisely correspond to the stable bands of the

relevant periodic orbits.

2. The non-zero portions of each of the four curves fit nicely onto one another. Chaotic trajectories

are thus characterized by a single Lyapunov exponent at large enough supercritical energies.

Barring stability-instability transitions of the periodic orbits, this agrees with our earlier assertion

of a single chaotic basin at sufficiently high supercritical energies.

3. The non-zero sectors of the exponent plots are neatly captured by a E
1
4 fit. The exponents thus

steadily develop an algebraic dependence on E, at least to the leading order. The same scaling

has been observed in [29].

Figure 22: LEs for subcritical A4 and Π1 Orbits
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Figure 23: LEs and Fits for A4 orbits

Figure 24: LEs and Fits for A3 orbits

Figure 25: LEs and Fits for Π1 orbits
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Figure 26: LEs for Π2 orbits

7 On Thermalization in the Matrix Model

For chaotic systems that are also ergodic, the Birchoff-Khinchin theorem holds: for almost any

dynamical observable, the time-average is equal to the ensemble average. Berdichevsky has suggested

that for such ergodic systems, the laws of equilibrium statistical mechanics may be adapted, making

the systems amenable to thermodynamic discussion.

The Hamiltonian (2.27) describes a small system: the phase space is only six-dimensional. Neverthe-

less, as we have demonstrated in the previous sections, the system becomes chaotic as the energy E (or

more accurately, g2E) increases. Thermodynamics of small systems is a subject of active research [19],

the starting point of this discussion being the formula for entropy first given by Gibbs [30] (see also [31])

for a microcanonical ensemble. If Γ(E) is the volume of the region H ≤ E, then the Gibbs entropy SΓ

is

SΓ = ln Γ + const. (7.1)

The two other definitions of entropy

S = ln
∂Γ

∂E
δE + const. (7.2)

S = ln
∂Γ

∂E
+ const. (7.3)

agree with (7.1) in the limit when the number of degrees of freedom N becomes large [32]. However,

only (7.1) satisfies the equipartition theorem for small systems [19].

Given the expression for entropy, one can define a temperature T as

1

T
=
∂S

∂E
. (7.4)

For ergodic systems, there exists another definition of temperature coming from the equipartition

theorem:

T =

〈
pi
∂H

∂pi

〉
=
〈
p2
i

〉
, i = 1, 2, · · ·N. (7.5)

Here 〈·〉 denotes temporal average over a time interval τ as τ →∞.
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In this section, we will explore in some detail issues related to thermalization in our model, and its

relation to earlier discussions of stability and ergodicity. As in the earlier discussion, we will use group

theory to guide us in this exploration.

7.1 Equipartition Theorem and Ergodicity

We can use the equipartition theorem and ergodicity to decide if our system has thermalized. Our

procedure is as follows:

1. Choose an energy E and compute the phase space volume Γ(E), the volume of the region H ≤ E.

2. Use (7.1) to compute the Gibbs entropy SΓ, and the Gibbs temperature TΓ =
(
∂SΓ
∂E

)−1
.

3. Generate 10 random sets of initial conditions corresponding to the energy E.

4. Calculate the temporal averages 〈p2
1〉, 〈p2

2〉, 〈p2
3〉 and 〈pipi〉/3 for each of these initial conditions,

and their means and standard deviations.

5. Compare TΓ with the above temporal averages (see Figure 27). The figures do not include the

error bars because they are negligible compared to the mean values. Also, excluding the error

bars provides clarity.

(a) (b)

Figure 27: Temperatures vs energy for random initial conditions

The extent of agreement between 〈p2
1〉, 〈p2

2〉, 〈p2
3〉 and TΓ tells us the extent of ‘thermalization’ in

the system. As Figure 27 shows, this agreement is excellent. It is surprising to see that thermodynamic

ideas like temperature and equipartition come together as an equality even in a system as small as ours.

7.2 Ergodicity breaking

The analysis of chaos presented in the previous sections was quite nuanced because we were able to

study that using group theoretic and geometric arguments. Now we analyze the same from a thermo-

dynamical and statistical point of view and find their imprints here as well.
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The procedure we use to study ergodicity of various orbits is similar to that described in the previous

subsection, the only difference being that in step 3, we generate random initial conditions belonging to

a specific orbit.

Before looking at the results, it is worth mentioning that if an orbit is stable, it is not ergodic. If

it is unstable, it may or may not be ergodic. For A4 and A3 orbits, we have knowledge about stability

from our previous monodromy matrix considerations, and this information had better agree with the

thermodynamic considerations that follow. Remarkably, we find that they do.

There is a similar connection between sensitivity to initial conditions and ergodicity. If the Lyapunov

exponent corresponding to some orbit is zero (within limits of numerical accuracy), we ‘almost’ always

expect it to be non-ergodic. We say ‘almost’ because an orbit may have a negligible Lyapunov exponent

and still be ergodic.

7.2.1 Ergodicity of A4 orbits

A4 orbits, by our monodromy matrix results, are unstable upto energy E = 3
2 , after which there is

an alternation of stable bands and band gaps, with their lengths increasing with energy.

The two plots in Fig. 28 clearly agree with these results: there is ergodicity till E = 3
2 , after

which ergodicity is broken because the orbit is stable. The next stable (non-ergodic) region appears

for energies 4.6 . E . 5. This is also in agreement with curves of Lyapunov exponents vs energy:

ergodicity is broken whenever the Lyapunov exponent vanishes (Figure 23).

(a) (b)

Figure 28: Temperatures vs energy for A4 orbits

7.2.2 Ergodicity of A3 orbits

A3 orbits exhibit a self-similar structure where the bands keep getting narrower as one approaches

the critical energy Ec. This structure is apparent in the ergodicity plots below as well: ergodicity is

absent (i.e. the orbit is stable) till E ' 0.07. But note that despite the presence of an unstable band

near E ' 0.075, ergodicity is still broken. Stability implies ergodicity breaking, but instability does not

necessarily imply ergodicity restoration.

Further bands are also visible and in agreement with monodromy matrix results. Again, we mention

that ergodicity is broken whenever the Lyapunov exponent vanishes, so these plots agree with Lyapunov

exponent considerations as well.
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(a) (b)

(c) (d)

(e)

Figure 29: Temperatures vs energy for A3 orbits

7.2.3 Ergodicity of A2 orbits

For A2 and the rest of the orbits remaining, we do not have the monodromy matrix tool at our

disposal, so it is not possible to study the correlation between stability and ergodicity. We can, however,

study ergodicity and its breaking.

Our plots in Fig. 30 extend to regions of energy high enough so that the periodic orbits do not exist

at all. This is possible to do because despite the orbits losing periodicity, we still have initial conditions
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from Section 4.1.3. We do this in order to investigate eventual fate of periodic orbits.

The plots in Fig. 30 do not seem to possess a neat band structure as in the case with A4 and A3.

However, we have the following conclusions for A2:

1. Ergodicity is clearly broken for small energies 0.001 . E . 0.01.

2. Ergodicity is restored afterwards except for an energy region in the range 0.05 . E . 0.08.

Ergodicity breakage is clearly visible.

3. Ergodicity is restored for energies E & 0.1.

(a) (b)

(c) (d)

Figure 30: Temperatures vs energy for A2 orbits

41



7.2.4 Ergodicity of B4 orbits

Fig. 31 shows that B4 orbits are non-ergodic till around energy E ' 0.16, above which they are

ergodic.

(a) (b)

(c)

Figure 31: Temperatures vs energy for B4 orbits
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7.2.5 Ergodicity of B3 orbits

B3 orbits are ergodic in the energy range considered (0 . E ' 5).

(a) (b)

(c)

Figure 32: Temperatures vs energy for B3 orbits
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7.2.6 Ergodicity of non-critical NLNMs

Non-critical NLNMs (Non Linear Normal Modes) remain non-ergodic till energy E ' 0.11 and

become ergodic above this energy (Fig. 33).

(a)
(b)

(c)

Figure 33: Temperatures vs energy for non-critical orbits

7.2.7 Ergodicity of Π1 orbits

Π1 orbits are important because they complement the chaotic basin formed by A4 orbits at energies

E . Ec. Figure 34 shows that at these energies, they do indeed have the same temperature as the

corresponding A4 orbits. However, ergodicity is broken below energy E ' 0.06, despite Π1 orbits being

unstable for all subcritical energies, as shown by the monodromy matrix plot (not presented here) as

well as Lyapunov exponent considerations. Again, we see that stability implies ergodicity breaking but

instability does not necessarily imply ergodicity restoration.
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Figure 34: Temperatures vs energy for Π1 orbits

7.2.8 Ergodicity of Π2 orbits

Π2 orbits are found to be non-ergodic for all subcritical energies and ergodic for all supercritical

energies considered.

(a) (b)

(c)

Figure 35: Temperatures vs energy for Π2 orbits
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7.3 Other Ergodic Averages

The equipartition theorem is, more generally,〈
xi
∂H

∂xj

〉
= Tδij , i, j = 1, 2, ..., 2N (7.6)

where xi are any phase space coordinates. We can compute these averages in addition to the p2
i , to

confirm ergodicity. Computations show that the quantities 〈ai ∂H∂aj 〉 and 〈pai ∂H∂paj 〉, agree exactly in the

ergodic regime.

For example, the following plot depicts 〈pa1pa2〉 and 〈a1
∂H
∂a1
〉 for A3 orbits, for 0.25 ≤ E ≤ 0.5. In

the region 0.325 . E . 0.45 the system can clearly be seen to be ergodic and, remarkably, agrees with

Fig. 29c. Outside this region, ergodicity is broken.

Figure 36: Time averages
〈
a1

∂H
∂a1

〉
and 〈p1p2〉 for A3 orbits. TΓ is also plotted for comparison.

Similar plots of time averages for other orbits and energies also confirm the expected connection

between ergodicity and the equipartition theorem.

It is striking that the system obeys the general version of the equipartition theorem (Eq. 7.6).

8 Classical Phases of the Matrix Model

We have investigated the dynamical behaviour of a large number of subsectors of our model in

different regimes using a variety of techniques. We note that the unusual diversity in dynamics -

subsectors, nested dynamics and ergodicity breaking - is highly reminiscent of an underlying phase

structure and associated phase transitions. In fact, ordered and chaotic regimes have indeed been

identified as distinct classical phases, particularly in the context of matrix models [3], [29]. Additionally,

the exotic dynamics uncovered here hints at an uncommonly rich phase structure. There is an even

more suggestive reason to believe that a phase study is the way to go, which we shall outline later on.

In this section, we will just press forward with this viewpoint and outline the phase structure of the

matrix model.

Phases are usually identified by regions in an appropriate phase diagram, labelled by a set of in-

dependent variables. Taking the quintessential example of ice-water-steam phase diagram, pressure,

volume and temperature serve as the distinguishing parameters. The most obvious parameter that we
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could utilise for the matrix model is, of course, the energy. Although slightly unusual in a more ‘phys-

ical’ sense (where temperature is the natural choice), energy is a natural variable to use in the more

abstract context of non-linear systems. Alternatively, our stand simply reflects the ‘microcanonical’

nature of our setup, as outlined in section 7.

Generally, energy is sufficient to capture the phase structure, with low energies yielding regular

behaviour and chaos taking over later on. As we have seen however, the matrix model may display

several distinct types of dynamics even at a given energy. An exact characterization using just the

energy is therefore incomplete. Furthermore, there is no precise list of variables which, together with

the energy, do completely characterize the phase structure. Our previous analysis tells us that the

symmetries of the Hamiltonian are the key players, but that is about as far as we can go. Nevertheless,

the absence of such a list does not prevent us from enumerating the numerous existing phases, following

the generic methodology of identifying ordered and chaotic regimes as distinct classical phases.

With this viewpoint, we see that the multiple chaotic subsectors in the subcritical range (and their

regular counterparts) have a natural interpretation as co-existing classical phases. The disjoint Poincaré

sections of Figure 18 neatly illustrate the ‘chaotic A4 phase’ and the ‘chaotic Π1’ coexisting with the

‘Π2 phase’ and the ‘A3 phase’ (not shown in the figure). The phenomenon of co-existing phases is

a fairly well-known one, with water-steam-ice [34] serving as a well documented example. As phases

are typically distinguished by differing expectations of certain interesting observables, it is natural to

list out such observables for our model as well. Since the Poincaré sections of the A4 sector are more

concentrated near the edges of the allowed configuration space, while those of the Π1 sector group

near the centre, it is reasonable to expect that the squares of the ai ’s (the second moments, so to

speak) serve as distinguishing observables. Indeed computing the time average of these observables for

Π1 based trajectories and A4 based trajectories of equal energy yield noticeably different results. A

more sophisticated distinguishing observable is, of course, the Lyapunov exponent. The computations

of section 6.2 indeed corroborate this view, with the exponents of the A4 sector being marginally lower

than their Π1 counterparts. Additionally, as seen from the monodromy plots (see Figure 12), the A3

orbits describe chaotic bands of their own at suitable subcritical energies, implying that we can have

three chaotic phases intermixing with one another at certain E < Ec.

Next, translating the phenomenon of nested chaos to our phase centred viewpoint implies the exis-

tence of yet another collection of phases, this time dimensionally distinct from our earlier sets. Since the

RDSs inherit nearly all of the peculiarities of the full dynamics, the structure of this lower dimensional

collection of phases is just as intricate as the full 6D phase structure. Indeed, one can draw correspon-

dences between the RDS phases and those of the full model. The notion of ‘lower-dimensional’ phases

in a physical system is rather unusual, though not unheard of, with edge states in topological physics

serving as a good example. It is therefore interesting to see such themes emerge naturally in the context

of a gauge matrix model.

Much like the subcritical regime, nested phases are also a feature of the supercritical regime, with

supercritical nested phases appropriately inheriting the phase structure of their parent 6D phases. It is

interesting to note that the notion of symmetry breaking persists in this model despite the symmetries

of the RDS only encompassing a small subgroup of the full tetrahedral group.

Fascinating as this game of coexistence and mergers is, it involves only the chaotic phases of the

model. The transitions between ordered and chaotic phases are no less interesting. We have already

encountered numerous signatures of these transitions, via monodromy plots, Lyapunov exponents and

thermodynamics. These analyses neatly corroborate one another and clearly indicate alternations be-
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tween ordered and chaotic regimes, and thus, between ordered and chaotic phases. Specifically, the phase

structure involves an alternation between individual regular phases and the ‘global’ chaotic phase. These

alternations happen at energies that are specific to the parent orbit in question.

As regards the (breaking of) the symmetries of the system, we thus see that each the symmetry of

the parent orbits is after all not completely lost at high energies, but is retained solely by the ordered

phases, insofar as they exist at high energies. As we have seen, symmetries bifurcate the dynamics into

a host of basins, one each for the A3, A4,Π1 and the Π2 orbits. The transitions for the first two of

this set continue ad infinitum, implying that these symmetry classes persist at arbitrarily high energies.

In contrast, the Π1 and Π2 orbits cease to alternate in stability at high enough energies, so that any

memory of these symmetry classes is erased at suitably high energies. As before, the nested dynamics

presents the same systematics, despite its reduced symmetries. Curiously enough, we will see later that

this notion of finite versus infinite alternations has some ties to the quantum dynamics of the model.

9 Quantum Connections

While the previous sections have firmly established the SU(2) QCD matrix model as a classical

non-linear system of great interest, its primary usage as a tool, is in a quantum setting. From a pure

gauge theory point of view, what then do we learn about the quantum theory from perusing its classical

aspects? Given that we know of certain features of the quantum theory [1], it is thus worth investigating

how the ‘memory’ of these quantum features is retained in the classical limit. On the flip side, one might

also be interested in using the above classical analysis to search for more elusive quantum features.

Some quantum aspects of the SU(2) matrix model coupled to massless quarks have already been

studied in the ‘Born-Oppenheimer’ limit of the theory: in this limit, the quarks are the fast degrees of

freedom, and the gauge field the slow mode. The quarks are quantized in the background of the classical

gauge field, and the gauge field is then quantized. The quarks produce an emergent Berry connection

(a vector potential) as well as a scalar potential on the gauge configuration space. The gauge field is

then quantized taking these additional emergent potentials into account.

Inclusion of the quark leads to an unexpected benefit even for investigations of the pure gauge

theory: it provides for a much more refined understanding of the gauge configuration space. One can

show that in terms of

x = Tr(MTM), y = detM, z =
1

16

(
2Tr(MTMMTM)− [Tr(MTM)]2

)
(9.1)

the function F (M) = F (x, y, z) obeys the inequality

F (M) =
1

2

(
2x4z + x3y2 − 64x2z2 − 144xy2z − 54y4 + 512z3

)
≥ 0. (9.2)

With

g3 ≡
detM(

1
3Tr(MTM)

)3/2 , g4 ≡
1

16

[
2Tr(MTM)2(
1
3Tr(MTM)

)2 − 9

]
, (9.3)

the condition F ≥ 0 becomes

∆ =
1

2

(
27g2

3 − 54g4
3 + 162g4 − 432g2

3g4 − 576g2
4 + 512g3

4

)
≥ 0. (9.4)
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In other words, F ≥ 0 (or equivalently ∆ ≥ 0) gives us the set of all gauge-invariant spin-zero gauge

field configurations. This parametrization of the gauge configuration space explicitly brings out the fact

that it has corners (A,B and C) and edges (AB,BC and AC).

We can plot the region bounded by the above inequality:

Figure 37: (Scaled) Configuration space of SU(2) gauge matrix model

The g3 − g4 plot is an ‘arrowhead’ curve consisting of configuration space points satisfying ∆ ≥ 0.

In terms of the coordinates (R,A, S), the functions g3 and g4 take a rather simple form

g3(a1, a2, a3) ≡ a1a2a3(
a2

1+a2
2+a2

3
3

) 3
2

(9.5)

and

g4(a1, a2, a3) ≡ 9(a1 − a2 + a3)(a2 − a3 + a1)(a3 − a1 + a2)(a1 + a2 + a3)

16(a2
1 + a2

2 + a2
3)2

. (9.6)

It was argued in [2] that quarks ‘condense’ at these corners and edges, leading to quantum phases.

These phases, obtained via superselection sectors can be distinguished using two scale invariant config-

uration space functions g3 and g4 defined as above.

The figures below provides a graphical depiction of the quantum phases. The quantum phases are

distinguished by their relative positions on the g3−g4 plot, with the interior of the arrowhead depicting

a ‘bulk phase’ while the sides of the arrowhead model ‘edge’ phases. The three tips of the arrowhead

also represent distinct phases, with the phases corresponding to the two lower tips of the arrowhead

related to one another by a parity transform.

While the g3 − g4 plot and relevant machinery concerned were developed in a purely quantum

setting, it turns out to be very useful for discussing aspects of classical dynamics as well. Specifically,
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we may associate each classical trajectory with a given trajectory traversing the boundary and interior

of the arrowhead. Identifications between classical and quantum phases can then be made by comparing

classically generated g3−g4 plots with the pictorial hierarchy of quantum phases mentioned in the above

paragraph. For instance, a general chaotic trajectory unsurprisingly covers the bulk of the g3 − g4 plot

and thus is evidently in loose correspondence with the ‘bulk’ quantum phase. On the other hand, the “2

equal a’s” trajectories that make up the 4-dimensional RDS are, from the definition of the ∆ function,

confined to lie on the edges of the arrowhead and thus are in loose correspondence with the edge phases

of the model. That the correspondence is not exact is obvious as, for instance, generic trajectories may

have, at some points of times, two equal as thereby landing themselves on the edges of the g3−g4 rather

than the bulk. Additionally, as we have mentioned, the arrowhead comprises numerous disconnected

edge phases in addition to three ‘point phases’, while generic trajectories in the 4-dimensional RDS

span the entire arrowhead, so that they mix the edge phases and cross over the point phases at least

partly. The 4D restrained Π1 orbits for instance cover only the right half (or only the left half, in case

of parity reversal) of the g3 − g4 plots although even they encompass four quantum phases. While far

from perfect, such correspondences are about as much as we may expect from a preliminary analysis

and nevertheless have some semblance to a deeper correspondence, telling us that we are after all on

the right track.

There is also a reasonably clear correspondence between the A3 and A4 orbits (or more precisely the

phases they map to) and the “point phases” of the quantum model. Indeed, g3 − g4 plots of the exact

A3 and A4 trajectories are perfectly confined to the top tip (A4) and lower right/left tips (A3) of the

arrowhead. Chaotic dynamics about these orbits is associated with space filling g3g4 plots while band

gaps are only associated with minor spillovers from the tips of the arrowhead. The A4 and the A3 orbits

are, at least at first glance, the apparent classical remnants of the quantum point phases. Interestingly

enough, these are the only two periodic orbits whose phases underwent an infinite cascade of flips. On

conjecture at least, this cascade has something to do with quantum properties of the matrix model.

(a) E = 0.324 (b) E = 0.323

Figure 38: g3 − g4 plots for the A3 orbits
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(a) E = 1.499 (b) E = 1.501

Figure 39: g3 − g4 plots for the A4 orbits

10 Conclusions

In this article, we pursued a detailed study of the classical dynamics of the spin-0 sector of an

SU(2) gauge-matrix model. The presence of an unexpected tetrahedral symmetry greatly enriched the

resulting dynamics, endowing the system with several distinctive features such as co-existing chaotic

basins, ergodicity breaking and nested chaos. The tetrahedral symmetry also allowed us to better adapt

standard techniques to bring out the salient features of the model. We utilized a three-pronged ap-

proach comprising monodromy analysis, chaos-theoretic studies, and statistical mechanical methods.

The last of these motivated a transition from a non-linear dynamical perspective to a thermodynamic

one, wherein we identified the regular and chaotic sectors of the model as classical phases. The intricacies

of the classical dynamics translated into a rich phase structure consisting of co-existing chaotic phases

protected by their respective symmetries at subcritical energies. The underlying protective mechanism

seemed to degrade at suitably high supercritical energies, culminating with a merger into a single super-

critical chaotic phase. Also observed were quasi-periodic transitions between ordered and chaotic phases

and a collection of lower dimensional nested phases. Surprisingly, a selection of classical phases bore

tantalizing resemblances to quantum phases stemming from superselection sectors. This correspondence

had benefits for both sides. In one direction, the quantum sector naturally yielded refined tools (i.e.

the g3 − g4 plots) for identifying classical phases. In the other direction, the classical phase structure

could potentially give signatures for further investigations of the quantum phase structure of the matrix

model.

Broadly speaking, the questions we aim to answer going forward fall into three categories, the first

of which involves investigating the classical dynamics of the spin-0 sector in even more depth. From

a non-linear dynamical standpoint, several features of the dynamics beg for deeper explorations. For

one, we are yet to understand the mechanism behind the localization of the co-existing chaotic sub-

sectors for subcritical energies. It is also unclear why this mechanism ceases to work at sufficiently

high energies. Relevant thermodynamic problems include a better enumeration of the properties of the

classical phases, via appropriately chosen observables, and a detailed study of the transitions between

these phases. In particular, given that ergodicity breaking is a key ingredient for the emergence of the

intricate phase structure of the model, it would be interesting to search for connections to color glasses

in non-abelian gauge theories [33].

The second class of questions we wish to explore center around the relations between the classical and

quantum phases. Our current understanding of the correlations between the classical phases generated

by the A3/4 orbits and their quantum counterparts is rather heuristic. A more rigorous study of
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their connections, possibly via the Gutzweiller trace formula, is thus called for. Another interesting

pathway involves searching for quantum analogs of the phases generated by the remaining NLNMs or

the geometric orbits.

Lastly, as illuminating as the spin-0 sector is, its study is only the first half of a broader endeavour.

After all, a complete study of the classical dynamics of the full matrix model requires including the

effects of angular momentum. We plan to add back the rotational degrees of freedom and analyze the

resulting dynamics in a future work. A natural follow up would be to probe the connections between

the full classical dynamics and the corresponding quantum analog.

Although our present discussion has centred on the SU(2) matrix model, it seems unlikely that the

peculiarities of the dynamics will disappear as we go over to the SU(3) model. We expect at least some

of these features to persist for SU(3) models, with interesting consequences for real-world QCD.
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Appendix A Asymptotic Locations of A4 Stability Transition Points

Table 2: A4 Transition Points: Stable to Unstable

N Mathieu Index Type (A/B) Analytically Computed Numerically Computed

Transition Energy Transition Energy

9 10 B 117.163 118.55

10 11 A 142.451 143.85

11 12 B 170.206 171.65

12 13 A 200.429 201.85

13 14 B 233.12 234.65

14 15 A 268.278 269.75

15 16 B 305.904 307.45

16 17 A 345.998 347.55

17 18 B 388.558 390.15

18 19 A 433.587 435.15

19 20 B 481.083 482.65

20 21 A 531.046 532.65

21 22 B 583.477 585.15

22 23 A 638.375 640.05

23 24 B 695.741 697.45

24 25 A 755.574 757.25

25 26 B 817.875 819.55

26 27 A 882.643 884.35

27 28 B 949.878 951.55

28 29 A 1019.58 1021.35

29 30 B 1091.75 1093.45

30 31 A 1166.39 1168.15

31 32 B 1243.49 1245.25

32 33 A 1323.07 1324.85

33 34 B 1405.11 1406.85

34 35 A 1489.62 1491.35

35 36 B 1576.59 1578.35

36 37 A 1666.03 1667.85
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Table 3: A4 Transition Points: Unstable to Stable

N Mathieu Index Type (A/B) Analytically Computed Numerically Computed

Transition Energy Transition Energy

10 10 A 129.4 130.05

11 11 B 155.922 156.55

12 12 A 184.911 185.55

13 13 B 216.368 217.05

14 14 A 250.293 251.05

15 15 B 286.685 287.45

16 16 A 325.544 326.35

17 17 B 366.871 367.65

18 18 A 410.666 411.45

19 19 B 456.928 457.75

20 20 A 505.658 506.45

21 21 B 556.855 557.65

22 22 A 610.519 611.35

23 23 B 666.651 667.55

24 24 A 725.251 726.15

25 25 B 786.318 787.25

26 26 A 849.852 850.75

27 27 B 915.854 916.75

28 28 A 984.323 985.25

29 29 B 1055.26 1056.25

30 30 A 1128.66 1129.65

31 31 B 1204.54 1205.45

32 32 A 1282.87 1283.85

33 33 B 1363.68 1364.65

34 34 A 1446.95 1447.95

35 35 B 1532.7 1533.65

36 36 A 1620.9 1621.95
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