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Thermodynamics studies of a prototypical quasi-two-dimensional frustrated magnet
Ba2Sn2ZnCr7pGa10−7pO22 where the magnetic Cr3+ ions are arranged in a triangular net-
work of bipyramids show that the magnetic zero-point entropy for p = 0.98 is 55(1)% of the
entropy expected when the Cr3+ moments are fully disordered. Furthermore, when combined with
a previous neutron scattering study and the perimeter scaling entropy of a spin jam, the analysis
reveals that with decreasing p, i.e., doping of the nonmagnetic Ga3+ ions, the variation in the
magnetic zero-point entropy can be well explained by the combined effects of the zero-point entropy
of the spin jam state and that of weakly coupled orphan spins, shedding light on the coexistence of
the two types of spin states in quantum magnetism.

I. INTRODUCTION

Zero-point entropy, i.e., the entropy at absolute zero
temperature, of a macroscopic system has been a stren-
uously debated topic ever since the introduction of the
third law of thermodynamics. One example of magnetic
solids that could possess a finite zero-point entropy is
the so-called spin glasses. The spin-glass state can ex-
ist in dilute magnetic alloys in which nonmagnetic met-
als are doped with magnetic ions at low concentrations.
These magnetic impurities can interact with one another
through the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction. Below the spin-glass transition temperature,
the magnetic moments of impurities freeze in random
directions without long-range ordering due to the ran-
domness of the RKKY interactions, resulting in a finite
zero-point entropy. The zero-point entropy in spin glasses
has been estimated theoretically by Edwards and Tanaka,
who predicted the values for long-range-interacting Ising
and XY spin glasses to be 1.66 and 4.30 Jmol−1K−1, re-
spectively [1, 2]. Experimentally, the zero-point entropy
of a dilute dipolar-coupled Ising spin glass LiHopY1−pF4

with p = 0.167 was measured and found to be close to
1.66 Jmol−1K−1, consistent with the theoretical predic-
tion [3].

An interesting question that arises is what will hap-
pen to the zero-point entropy if, unlike in the dilute
magnetic alloys, the magnetic ions are densely populated
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and strongly interact with each other. The so-called geo-
metrically frustrated magnets are the case in point. For
example, pyrochlore rare-earth oxides A2B2O7 which ex-
hibit the so-called spin-ice state at low temperatures have
similar degenerate ground-state configurations to water
ice in which two spins must point inwards while the other
two point out of the tetrahedron [4]. Surprisingly, the
zero-point entropies of the Ho2Ti2O7 and Dy2Ti2O7 spin
ices have been reported to exhibit a value close to that
of water ice [5–8]. CuAl2O4 and CuGa2O4 spinels with
magnetic ions residing in the diamond sublattice have
also been found to manifest a finite zero-point entropy
[9, 10]. Other frustrated lattices can have local zero-
energy modes in the mean-field level, i.e., the weather-
vane modes in the two-dimensional kagome antiferromag-
nets [11–14] and the antiferromagnetic hexagon modes
in the three-dimensional spinel ZnCr2O4 [15], which can
induce macroscopic ground-state degeneracy and thus a
finite zero-point entropy.

These densely populated geometrically frustrated mag-
nets can exhibit a magnetic glassy state at low temper-
atures that is called a spin jam [16]. While the canoni-
cal spin-glass state arises due to the random RKKY in-
teractions, the spin-jam state can arise from quantum
fluctuations [16]. The essential distinction between the
two glassy states is in their energy landscape topology.
Quantum fluctuations render the energy landscape of
the spin jam to be non-hierarchical and have a flat but
rugged shape. On the contrary, for the spin glass, the
energy landscape is hierarchical and has a rugged fun-
nel shape [17]. To date, the crossover between these
glassy states has been observed in the dynamic suscep-
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tibility measurements and the memory effects when the
spin density is varied in the systems [18, 19]. In this
letter, we report experimental evidence of the zero-point
entropy in the glassy state of a QS ferrite-derived com-
pound Ba2Sn2ZnCr7pGa10−7pO22 (BSZCGO) [20–23], a
realization of the frustrated triangular network of bipyra-
mids. The material can be viewed as a stacking of two
types of blocks, the nonmagnetic ‘Q’ block and the mag-
netic ‘S’ block, alternating with each other. Furthermore,
through our analysis, we show how the spin-jam state
crosses over to the spin-glass state as the spin density p
varies in terms of the low-lying excitations and the zero-
point entropy using DC magnetic susceptibility and heat
capacity measurements down to 0.5 K.

Since its discovery, SrCr9pGa12−9pO19 (SCGO), a
cousin compound to BSZCGO, has been a good model
system for the triangular network of bipyramids or py-
rochlore slab [see Fig. 1(a)] [18, 24–30]. The system,
however, has triangular layers of spin dimers formed by
Cr3+ spins [orange spheres in Fig. 1(a)], residing between
the pyrochlore slabs [27]. The existence of the extra mag-
netic layers of dimers complicates the physics of the pure
pyrochlore slab. BSZCGO, on the other hand, does not
comprise the spin dimer layers. The crystal structure of
BSZCGO is characterized by the hexagonal system with
the space group P 3̄m1 and lattice parameters a = b =
5.8568(1) Å and c = 14.2537(3) Å for the sample with p
= 0.97 [31]. The magnetic s = 3

2 Cr3+ ions form the py-
rochlore slabs, and the successive slabs are separated by
about 10 Å, making the pyrochlore slabs well isolated and
quasi-two-dimensional [see Fig. 1(b)]. There are, how-
ever, two types of intrinsic disorder in BSZCGO. Firstly,
nonmagnetic Ga3+ ions inevitably share 6i and 1a sites
with Cr3+ ions leading to the highest possible value of
the spin density p to be about 0.97 [32]. Furthermore,
Ga3+ ions also share the 2d site with Zn2+ ions in a 1:1
ratio which causes structural strains and in turn renders
bond disorders between Cr3+ ions [21, 33]. Despite these
disorders, BSZCGO is the best model system to explore
the physics of frustration in the triangular network of
bipyramids due to its robustness against small disorders
[16, 34]. BSZCGO exhibits a freezing transition with Tf

around 1.5 K for p = 0.97 [20, 35]. In this clean limit,
p → 1, the magnetic heat capacity Cmag has been ob-
served to show a T 2 dependence below Tf [20], indicative
of the unconventional glassy state.

II. EXPERIMENTAL DETAILS

Ten powder samples of BSZCGO with 0.44 ≤
p ≤ 0.98 and a nonmagnetic sample with p = 0
(Ba2Sn2ZnGa10O22) were prepared with standard solid-
state reactions. A stoichiometric mixture of BaCO3,
SnO2, ZnO, Ga2O3, and Cr2O3 were intimately ground
and pelleted. The pellet was put in an alumina crucible
and sintered in air at 1400 °C for 48 hours with inter-
mediate grinding. X-ray diffraction was performed at

(a) (b)

a

c

b

FIG. 1. Magnetic lattices of SCGO and BSZCGO. A trian-
gular network of bipyramids consists of two kagome layers
(blue spheres) sandwiching an intermediate triangular layer
(red spheres). Bonds shown in different colors have different
lengths. (a) In SCGO, a triangular network of dimers (or-
ange spheres) separates the successive pyrochlore slabs. (b)
In BSZCGO, successive pyrochlore slabs are well separated,
and there are no Cr3+ ions in between. Axes represent the
crystallographic axes of the lattices.

room temperature for each sample to verify the crystal
structure and to determine Cr3+ concentration within
the sample (see Section III in [36] for details). The tem-
perature dependence of the DC magnetic susceptibility
was measured using a commercial SQUID magnetometer
from 0.5 K up to 20 K with an applied magnetic field
of 0.01 T. The measurements were done with both field-
cooled (FC) and zero-field-cooled (ZFC) methods. Sus-
ceptibility data of samples with p < 0.67 were not taken
as these samples have transition temperatures lower than
0.5 K. The temperature dependence of molar heat capac-
ity was measured with a commercial physical property
measuring system utilizing a thermal relaxation tech-
nique. Pelleted powder samples ranging in mass from 1
to 7 mg were affixed using Apiezon grease to a platform
equipped with a heater and thermometer. The molar
heat capacity from 0.5 K to 10 K was measured with the
3He option and from 3 K to 50 K (up to room temper-
ature for the p = 0.98 and p = 0 samples) with the 4He
option in a zero magnetic field (see Figs. S1 and S3 in
[36] for all raw heat capacity data). As shown in Fig. S1,
above ∼50 K, the molar heat capacity of the p = 0.98
and p = 0 samples coincides with one another indicative
of vanishing magnetic contribution to the magnetic sam-
ple above such temperature. The magnetic heat capacity
was obtained by subtracting the interpolated molar heat
capacity of the nonmagnetic (p = 0) sample from that of
the magnetic (p ̸= 0) samples without artificially rescal-
ing the high-temperature data.
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III. RESULTS AND DISCUSSION

A. Low-lying excitations

Figure 2(a) shows the DC magnetic susceptibility data
of five samples that exhibit the freezing transitions at
Tf indicated by the bifurcation of FC and ZFC data.
As shown in Fig. 2(a) (see also Fig. 4(a) for Tf ob-
tained from magnetic heat capacity data), Tf is found
to decrease with increasing vacancy density (decreasing
p), which is consistent with the spin-jam theory [16, 18].
Note that for canonical spin glasses, the impurity de-
pendence of Tf behaves differently; Tf increases with in-
creasing magnetic impurity density [37–39]. The nature
of the glassy states can be studied more carefully via
the behavior of the T -dependent magnetic heat capacity
Cmag. Figure 2(b) shows Cmag/T as a function of T in
the low-temperature region of six samples with p ≥ 0.67
(see Fig. S4 in [36] for the low-temperature data of all
samples). For p ≥ 0.93, Cmag exhibits a clear quadratic
T 2-dependence. On the other hand, for p ≤ 0.86, Cmag

begins to deviate from the quadratic behavior. To quan-
titatively analyze the data, we assume that the thermo-
dynamics of the spin fluctuations can be characterized
by two modes; one is the hydrodynamic Halperin-Saslow
(HS) mode [40] that is a characteristic of the spin-jam
state and yields CHS = AT 2 + B for a two-dimensional
system [16], where B is a temperature-independent term
[25, 41], and the other is the localized two-level (TL)
system due to spin-glass clusters generated by the non-
magnetic doping and yields CTL ∝ T [18, 42]. The coeffi-
cient A of the T 2 term in CHS is inversely proportional to
the spin wave velocity squared v2 for a two-dimensional
system,

A =
9ζ(3)k2BVcR

πℏv2d
, (1)

where ζ is the Riemann zeta function, kB is Boltzmann’s
constant, Vc is the unit cell volume, and d is the spacing
of successive bilayers [40, 41].

Since the population ratio of the spin jam to the
spin glass clusters can vary with the spin density p,
we have fitted the magnetic heat capacity of each sam-
ple to the following phenomenological formula, Cmag =
fCHS + (1 − f)CTL, where f and 1 − f are the fraction
of the spin-jam state and that of the spin-glass state,
respectively. The fitting range of T is from the base tem-
perature of 0.5 K to about Tf. As shown by the solid
lines in Fig. 2(b), the phenomenological formula fits the
data well for p ≥ 0.67 while the data for p < 0.67 could
not be fitted due to the lack of enough data points below
Tf . The fitted parameters are summarized in Table I. As
the spin density p decreases below 0.93, f gradually de-
creases roughly linearly as shown in the inset of Fig. 2(a).
In other words, the glassy state of BSZCGO continually
crosses over from a dominantly spin-jam state to a mixed
state with a considerable spin-glass state as p decreases.

(a)

(b)

FIG. 2. The T dependence of DC magnetic susceptibility and
magnetic heat capacity. (a) The DC magnetic susceptibility
in the temperature range covering the freezing transition of
samples with p ≥ 0.67. Open symbols represent ZFC data.
Arrows mark T f for each sample. The inset shows f as a
function of p, where f is the fractional population of the spin-
jam state. The dashed line in the inset is a guiding line. (b)
Cmag/T data at low temperatures. Solid lines are best fits
to the two-state model with fitting parameters summarized
in Table I.

As another quantitative verification of the HS modes
being dominant for large values of p, an energy scale as-
sociated with this mode can be estimated from the coeffi-
cient A of the quadratic term of CHS. The spin stiffness ρs
and the spin wave velocity v are related by v = γ

√
ρs/χ,

where χ is the magnetic susceptibility and γ is the gyro-
magnetic ratio, and A is related to v via Eq. 1. From
the spin stiffness ρs, the HS energy EHS is expressed as

EHS

kB
=

9ζ(3)

π

k2B
g2µ2

B

χ

A
, (2)

where g is the Landé factor and µB the Bohr magne-
ton [41]. The magnetic susceptibility χ is obtained from
the measured susceptibility below Tf . As shown in Ta-
ble I, this formula yields EHS that is comparable to the
freezing temperatures for the two samples with the high-
est spin densities p, which supports our interpretation of
the dominant glassy state for p ≥ 0.93 being the spin
jam. For p < 0.93, the spin-glass population starts to
grow, and its susceptibility contributes significantly to
the measured value, resulting in the overestimation of χ
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used in Eq. 2 and hence the overestimation of EHS for
p < 0.93.

B. Zero-point entropies

The evolution of the glassy states as a function of spin
density p may also be investigated in terms of entropy.
In general, upon cooling, a magnetic system gradually
releases its magnetic entropy, and an ordinary magnet
releases all of its magnetic entropy when the system ex-
hibits long-range order below the ordering temperature.
On the other hand, disordered magnets would not release
all their magnetic entropy due to strong frustrations, giv-
ing rise to finite zero-point entropy. Also, it should be
emphasized that the spin-jam and spin-glass states may
have different characteristic entropies.

Entropy can be estimated from the heat capacity data
as

S(Tbase, T ) = S0 +∆S(Tbase, T ) = S0 +

∫ T

Tbase

Cmag

T
dT,

(3)

where S0 is the zero-point entropy and Tbase is the base
temperature of 0.5 K. Thus, by investigating how ∆S
evolves with increasing p we can study how the zero-
point entropy S0, i.e., the entropy of the glassy state,
evolves. From the Cmag/T data shown in Fig. 3(a), we
numerically calculated and plotted ∆S(T ) in Fig. 3(b).
To confirm that the magnetic heat capacity tends to zero
above 50 K, the heat capacity of the p ∼ 0.98 and p = 0
samples were measured up to room temperature (see Fig.
S1 in [36] for the raw data). At high temperatures above
50 K, the heat capacity data of the magnetic (p ∼ 0.98)
and nonmagnetic (p = 0) samples coincide with each
other, indicating that the magnetic contribution to the
heat capacity is negligible as shown in the inset of Fig.
3(a). The result leads to the conclusion that there is no
further increase in the magnetic entropy at high temper-
atures. The magnetic entropy change present below 0.5
K, ∆S(T < 0.5 K), can be approximated by linear ex-
trapolation down to absolute zero temperature. Consid-
ering the p = 0.60 sample, we obtained ∆S(T < 0.5 K)
equal to about 0.07 Jmol−1

CrK
−1 which is only ∼1% of

∆S(50 K). This value decreases for higher p, and is
smaller than the error bar of ∆S(50 K), which is ∼0.4
Jmol−1

CrK
−1. Hence, we conclude that the presence of ∆S

below 0.5 K is insignificant and can be safely ignored.
The shortfall of entropy is thus attributed to the zero-
point entropy. We note that the magnetic Cr3+ ion has
spin s = 3

2 with the expected maximum magnetic entropy

of R ln(2s+1) = 11.53 Jmol−1
CrK

−1, which is represented
by the horizontal red dashed line in Fig. 3(b). Here,
molCr represents the unit of moles of Cr3+ ions.

As shown in Fig. 3(b), for p > pc = 0.5, where pc
is the percolation threshold for the magnetic lattice [43],

(a)

(b)

FIG. 3. The T dependence of Cmag/T and ∆S(T ). (a)
Cmag/T for all samples up to 50 K. The inset shows Cmag/T
for the p = 0.98 sample up to room temperature. Open sym-
bols denote the data from the low-temperature measurements
(up to 50 K) as shown in the main panel, while closed sym-
bols represent the data from the high-temperature measure-
ments (up to room temperature). (b) ∆S(T ) for all samples
obtained by integrating Cmag/T data. The red dashed line
indicates Smax = Rln 4.

the entropy released, ∆S(0.5 K, 50 K), between 0.5 K
(< Tf) and 50 K (≫ Tf) is only about half of the max-
imum magnetic entropy Smax. For instance, ∆S(0.5 K,
50 K) = 0.45(1)Smax for BSZCGO(0.98). This result in-
dicates that the entropy that is not released down to 0.5
K is extensive; S0(p = 0.98) = 0.55(1)Smax = 6.34(14)
Jmol−1

CrK
−1. On the other hand, for p = 0.44 < pc,

S(Tbase, T ) at 50 K is close to Smax, ∆S(0.5 K, 50 K)
≈ 0.8Smax. This result implies that the extensive zero-
point entropy for p > pc is due to the collective frustrated
interactions in the quasi-two-dimensional triangular net-
work of bipyramids. A similar observation was reported
for SCGO(0.89) in which at 100 K the magnetic entropy
is recovered by only 52% [44].

A close examination of ∆S(0.5 K, 50 K) as a function
of p reveals an interesting dependence on p. As shown
in Fig. 4(b), as p decreases from 0.98 to 0.83, ∆S(0.5
K, 50 K) decreases by ∼25%. As a result, the zero-
point entropy S0 increases as p decreases from 0.98 to
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TABLE I. Fitting parameters of the Halperin-Saslow modes in BSZCGO where p is the spin density obtained from the X-ray
diffraction measurements (see Section III in [36]), f is the spin-jam population fraction, T f, χ and T f, Cmag are the freezing
temperatures extracted from the magnetic susceptibility and heat capacity, respectively, A is the coefficient of the quadratic
term of CHS, and EHS/kB is the energy scale of the HS modes. Numbers in parentheses represent errors. The values of A for
the last two samples have errors larger than itself.

p f T f, χ (K) T f, Cmag (K) A (JmolCr
-1K-3) EHS/kB (K)

0.98(1) 0.92(1) 1.22(5) 1.18(9) 0.130(2) 0.9(1)

0.93(2) 0.92(1) 1.24(5) 1.18(9) 0.120(5) 1.0(1)

0.86(2) 0.90(1) 0.93(5) 1.09(8) 0.10(1) 1.3(1)

0.83(2) 0.79(2) 0.83(5) 1.01(8) 0.08(1) 1.8(2)

0.71(1) 0.75(2) - 0.94(7) - -

0.67(1) 0.65(4) - 0.87(7) - -

0.83. Upon further decreasing p below 0.71, ∆S(0.5 K,
50 K) increases again, i.e., S0 decreases. To understand
the dip in ∆S(0.5 K, 50 K) as a function of p, we first
note that our analysis of the T -dependent Cmag data in-
dicates that both spin-glass and spin-jam clusters coexist
and their fraction changes with the spin density p. This
implies that, since the spin-jam and the spin-glass states
are expected to have different zero-point entropies, the
measured total zero-point entropy Stot

0 have to include
both contributions, the zero-point entropy of spin jam
SSJ
0 and that of spin glass SSG

0 ,

Stot
0 (p) = f(p)SSJ

0 (p) + [1− f(p)]SSG
0 (p). (4)

This equation together with Eq. 3, however, cannot give
us a set of unique solutions, because SSJ

0 (p) and SSG
0 (p)

can, in general, vary with p, and the analysis of ∆S(0.5
K, 50 K) as a function of p [shown in Fig. 4(b)] to es-
timate SSJ

0 (p) and SSG
0 (p) becomes an underconstrained

problem.
To overcome this problem, we performed the entropy

analysis by imposing two assumptions. The first as-
sumption is based on the p-dependence of the correlation
length, ξ(p), reported by a previous neutron scattering
study of SCGO [18] in which ξ(p) remains constant for
1.0 > p > 0.8, i.e., it is robust against small nonmagnetic
doping. At the same time, it linearly and gradually de-
creases with further decreasing p below p = 0.8. Since
ξ(p) is directly proportional to the spin-jam domain size,
we assume that the spin-jam domain size is constant for
1.0 > p > 0.8, and gradually changes in the same way as
ξ(p) does with decreasing p for p < 0.8. The second as-
sumption is that the zero-point entropy of spin jam scales
with the perimeter of the spin jam domains as predicted
by the spin-jam theory [16].

Now let us recall that our Cmag data yields the to-
tal zero-point entropy for p = 0.98 to be Stot

0 = 6.34
Jmol−1

CrK
−1. The zero-point entropy of the spin-glass

state for p = 0.98 is likely to be very close to Smax =
R ln(2s + 1) = 11.53 Jmol−1

CrK
−1 because, when the va-

cancy density is low, the spin glass is made of almost
uncorrelated orphan spins that fluctuate nearly freely,

resulting in SSG
0 (0.98) ≈ Smax. Using Eq. 4, we ob-

tained SSJ
0 (0.98) = 5.92 Jmol−1

CrK
−1, which is close to

Stot
0 (0.98) as expected, as the magnetic glassy state for

p = 0.98 is predominantly a spin jam. For other p val-
ues, we first estimated the perimeter of the spin jam do-
mains with the experimental correlation length ξ(p) of
SCGO(p) and scaled SSJ

0 (p) to SSJ
0 (p = 0.98) according

to the change in the perimeter of the magnetic domain
(see Section IIA in [36] for details). Once SSJ

0 (p) is ob-
tained, SSG

0 (p) for each p was calculated using Eq. 4.
Figure 4(c) shows the resulting SSJ

0 (p) and SSG
0 (p) for

all p > pc. It is interesting to note that SSJ
0 (p) and

SSG
0 (p) exhibit strikingly different behaviors with p. For

1.0 > p > 0.8, the spin-jam zero-point entropy SSJ
0 (p) is

much lower than Smax = 11.53 Jmol−1
CrK

−1. For p < 0.8,
as p decreases, on the other hand, SSJ

0 (p) gradually in-
creases up to 0.81Smax for p = 0.51, which is expected
since the interaction-driven magnetic constraints become
weaker as the domain size decreases. In contrast, as p de-
creases after p ∼ 0.8, SSG

0 (p) rapidly decreases down to
0.25Smax for p = 0.51. The rapid decrease of SSG

0 (p) sug-
gests that as the vacancy density in the magnetic lattice
increases, the orphan spins begin to correlate with one
another resulting in a smaller degeneracy as expected for
canonical spin glasses [3]. The value of p ∼ 0.8, below
which the orphan spins become strongly correlated, is
also consistent with the neutron experimental results of
SCGO [18].

To reaffirm the validity of our analysis, we estimated
the typical perimeter of the spin-jam domain from the
obtained value of SSJ

0 (0.98) based on the spin-jam theory
[16]. For SSJ

0 (0.98) ≈ 5.9 Jmol−1
CrK

−1, the estimated
number of bipyramids, denoted as Np, on the domain
perimeter is approximately 1.5(1) (see Section IIB in
[36] for detailed calculations). To put this value into
context, we compared it with the magnetic domain
size derived from the correlation length ξ of a related
system. In a single-crystal sample of SCGO(0.67), the
measured ξ using neutron scattering is 4.6(2)Å [30]. By
considering the p dependence of ξ [18], we estimated ξ
to be 5.5(4) Å for p ∼ 1. This value closely matches
the distance between the two centers of the nearest
neighboring bipyramids of 5.85 Å. ξ = 5.5(4) Å aligns



6

(a)

(b)

Cooperative paramagnet

Decoupled

(c)

Rln(2s+1)

FIG. 4. The p dependence of (a) Tf,Cmag (p) and (b) ∆S(p)
between 0.5 and 50 K. The horizontal dashed line is Smax =
R ln 4 = 11.53 JmolCr

-1K-1. The vertical dashed line indicates
the percolation threshold pc = 0.5. The solid lines are guides
to the eyes. The gradient color represents the crossover of
the system from spin-jam to spin-glass state. (c) The p de-
pendence of the zero-point entropy of the spin jam SSJ

0 (p) and
that of the spin glass SSG

0 (p) are calculated using Eq. 4, where
Stot
0 (p) is obtained from Stot

0 (p) = Smax −∆S(p).

with Np ≈ 1.5 estimated from the spin jam theory,
considering that ξ is defined by the distance at which
the spin correlation reduces to e−1, while the spin jam
theory using the transfer matrix formalism [16] assumes
the spin correlation being 1 within the magnetic domain.

IV. CONCLUSION

In summary, our thermodynamic studies reveal that
the low-temperature glassy state of BSZCGO is a mix-
ture of the spin-jam and spin-glass states, characterized
by the Halperin-Saslow modes and the localized two-level
systems, respectively. The population ratio of the spin-
glass state to the spin-jam state increases as p decreases
down to the percolation threshold, pc = 0.5. Further-
more, by quantitatively analyzing the magnetic zero-
point entropy, we found that, as p decreases, the zero-
point entropy of the spin jam SSJ

0 (p) gradually increases,
whereas that of the spin glass SSG

0 (p) rapidly decreases
below p ∼ 0.8. This work elucidates the coexistence of
the two glassy states in the frustrated quantum mag-
netism.
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Supplemental Material

Zero-point entropies of spin-jam and spin-glass states in a frustrated magnet

I. TEMPERATURE-DEPENDENT MOLAR HEAT CAPACITY

Figure S1 shows the temperature dependence of the total heat capacity C(T ) measured up to room temperature
for p = 0 and p = 0.98 samples. From the figure, above ∼50 K, the heat capacity of both samples coincides with
one another indicative of vanishing magnetic contribution to the magnetic sample (p = 0.98) above such tempera-
ture. Figure S2 depicts the temperature dependence of Cmag/T , obtained from subtracting the phonon contribution
measured on the non-magnetic sample (p = 0) from the magnetic p = 0.98 sample in Fig. S1, showing that Cmag/T
of the p = 0.98 sample tends to zero above ∼50 K. Hence, we conclude that there is no further significant increase in
the magnetic entropy up to the room temperature.

Figure S3 shows C(T ) of all samples measured from 0.5 K to 50 K. To obtain magnetic heat capacity, the magnetic
p ̸= 0 sample’s heat capacity is subtracted by the heat capacity of the non-magnetic p = 0 sample, where the non-
magnetic data are interpolated before the subtraction. After the subtraction, the data in the overlapping region taken
with He-3 and He-4 options are averaged, weighted by errors as shown in Fig. 3(a).

II. CALCULATION OF SPIN-JAM ZERO-POINT ENTROPY, SSJ
0

A. The p dependence of SSJ
0

The calculation of the p-dependent zero-point entropy of spin jam SSJ
0 (p) is performed based on the spin jam theory

of triangular network of bipyramids and the previously measured spin correlation lengths of the related compound
SrCr9pGa12−9pO19 (SCGO(p)) with a similar structure as a function of p. Then, using Eq. (4) in the main text, the
p dependence of spin glass’s zero-point entropy SSG

0 (p) is obtained from SSJ
0 (p) and Stot

0 (p).

The p-dependent normalized perimeter length is obtained from the p-dependent normalized correlation length
measured from SCGO(p). The correlation length is found to remain constant for 0.8 < p < 1.0 and it linearly
decreases with p below p ∼ 0.8. To calculate the normalized perimeter length for each domain size, we suppose that
the correlation length corresponds to the radius of the domain. We start with a circle of radius 1 unit. Then, we fill
this circle with smaller circles representing smaller domains in a close-packed pattern. The total perimeter length of
all circles with the same radius within the largest circle is, then, calculated. As a result, we can determine the total
perimeter length of domains with different sizes covering the same total area. Hence, the total perimeter length of a
larger domain, normalized with the total area, is smaller. According to the theory, the ground-state configurational
entropy of spin jam scales with the normalized perimeter of the domain. Thus, the p dependence of the spin jam’s
zero-point entropy SSJ

0 (p) can be determined from that of the normalized domain perimeter.

B. Perimeter scaling of SSJ
0

SSJ
0 can be calculated using the formula SSJ

0 = k lnΩ/n = R lnΩ/N , where Ω is the number of all possible ground-
state spin configurations, n the number of moles of spins, and N the number of spins. As detailed in Ref. [37], to
obtain a ground-state spin configuration, a sign state must be imposed with a color configuration. As there are 6
different color configurations, the number of all spin configurations, Ω, is hence equal to 6 · Ωsign, where Ωsign is the
total number of sign states. Ωsign is numerically calculated in Ref. [37], where log10 Ωsign increases linearly with the
number of bipyramids positioned on the perimeter Np, i.e., log10 Ωsign = mNp + c, as shown in the inset of Fig. 2(b)
in Ref. [37].

A linear fit to log10 Ωsign vs. Np yields m ≈ 0.26 and c ≈ −0.78 as shown in Fig. S5. Therefore, we obtain
lnΩ = ln(6·Ωsign) = ln(6·10mNp+c) ≈ αNp where α = m ln 10 ≈ 0.60. With this result, we obtained SSJ

0 ≈ R(αNp)/N .
For a circular-shape domain, the number of bipyramids in the domain can be approximated by N2

p/4π. As a bipyramid

contains 7 spins, the number of spins N in the typical domain is, therefore, N ≈ 7N2
p/4π, and hence SSJ

0 = 4παR/7Np.

Using the experimental value of SSJ
0 = 5.9(5) Jmol−1

CrK
−1 for p = 0.98, we obtain Np = 1.5(1) for the magnetic domain.
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III. STRUCTURAL REFINEMENTS

The X-ray diffraction results are analyzed using Rietveld refinements. To demonstrate the capability of X-ray
diffraction in determining the occupancy of Cr3+ ions in a magnetic sample, we compare the diffraction peaks of three
different samples within the range of 63.0◦ < 2θ < 64.5◦, normalizing them to have the same highest peak count, as
shown in Figure S6. In the figure, besides varying peak positions, each sample also exhibits distinct intensities within
this range. These differences in peak positions are likely attributed to variations in the lattice parameters of each
sample. Conversely, simulations based on similar lattice and atomic parameters but differing Cr3+ occupancies, as
illustrated in Figure S7, indicate that the disparities in intensities observed in Figure S6 are a result of varying Cr3+

occupancies.
The initial crystal-structure parameters used in the refinements are taken from Ref. [51]. Figures S9-S19 show the

results of Rietveld refinements for each sample along with corresponding optimal atomic parameters in Tables S1-S11.
The refined lattice parameters, a = b and c, are plotted against p in Fig. S8. To minimize errors of the occupancies
of the Cr3+ ions in the magnetic samples, other atomic and lattice parameters were fixed in the final refinement. The
p value for each sample is obtained by averaging the occupancies of the two Cr3+ sites weighted by the corresponding
site multiplicity.
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FIG. S1. Temperature dependence of the total heat capacity C(T ) for p = 0.98 and p = 0 samples up to room temperature.
Error bars represent one standard deviation.
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FIG. S2. Temperature dependence of Cmag/T for the p = 0.98 sample obtained from the results in Fig. S1. Error bars represent
one standard deviation.

TABLE S1. Refined atomic parameters of the p = 0 sample. Refined lattice parameters are a = b = 5.857241(44) Å and
c = 14.253215(78) Å. Rwp = 8.81% and GoF = 2.83.

Atom x/a y/b z/c occupancy

Ba (2d) 1/3 2/3 0.4256(1) 1.00

Sn (2d) 1/3 2/3 0.6822(1) 1.00

Zn (2d) 1/3 2/3 0.955(43) 0.50

Ga (2d) 1/3 2/3 0.955(41) 0.50

Ga (2c) 0 0 0.3731(2) 1.00

Ga (1a) 0 0 0 1.00

Ga (6i) 0.1699(2) -0.1699(2) 0.17031(8) 1.00

O (2c) 0 0 0.2373(9) 1.00

O (2d) 1/3 2/3 0.0968(8) 1.00

O (6i) 0.1572(7) -0.1572(7) 0.9144(5) 1.00

O (6i) 0.4946(9) -0.4946(9) 0.2375(6) 1.00

O (6i) 0.1711(6) -0.1711(6) 0.5892(5) 1.00
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FIG. S3. Temperature dependence of the total heat capacity C(T ) for all samples up to 50 K.
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FIG. S4. Low-temperature region of Cmag/T for all samples.
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FIG. S5. Scaling of log10 Ωsign with the domain perimeter Np in a unit of bipyramids. Ωsign is the number of sign states as
described in Ref. [37]. This plot is reproduced from the inset of Fig. 2(b) in Ref. [37].

TABLE S2. Refined atomic parameters of the p = 0.44 sample. Refined lattice parameters are a = b = 5.85692 Å and
c = 14.25790 Å. Rwp = 5.16% and GoF = 1.52.

Atom x/a y/b z/c occupancy

Ba (2d) 1/3 2/3 0.42463 1.00

Sn (2d) 1/3 2/3 0.68137 1.00

Zn (2d) 1/3 2/3 0.9548 0.50

Ga (2d) 1/3 2/3 0.9548 0.50

Ga (2c) 0 0 0.3721 1.00

Cr (1a) 0 0 0 0.445(14)

Ga (1a) 0 0 0 0.555(14)

Cr (6i) 0.1690 -0.1690 0.17114 0.441(4)

Ga (6i) 0.1690 -0.1690 0.17114 0.559(4)

O (2c) 0 0 0.2380 1.00

O (2d) 1/3 2/3 0.0913 1.00

O (6i) 0.1527 -0.1527 0.9103 1.00

O (6i) 0.4920 -0.4920 0.2403 1.00

O (6i) 0.1745 -0.1745 0.5925 1.00
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FIG. S6. Comparison of diffraction peaks of 3 different samples in 63.0◦ < 2θ < 64.5◦ region. The p values are obtained from
the Rietveld refinements.

TABLE S3. Refined atomic parameters of the p = 0.51 sample. Refined lattice parameters are a = b = 5.85382 Å and
c = 14.24923 Å. Rwp = 6.49% and GoF = 1.76.

Atom x/a y/b z/c occupancy

Ba (2d) 1/3 2/3 0.4251 1.00

Sn (2d) 1/3 2/3 0.6812 1.00

Zn (2d) 1/3 2/3 0.9553 0.50

Ga (2d) 1/3 2/3 0.9553 0.50

Ga (2c) 0 0 0.3712 1.00

Cr (1a) 0 0 0 0.409(18)

Ga (1a) 0 0 0 0.591(18)

Cr (6i) 0.1689 -0.1689 0.17114 0.523(5)

Ga (6i) 0.1689 -0.1689 0.17114 0.477(5)

O (2c) 0 0 0.2476 1.00

O (2d) 1/3 2/3 0.0888 1.00

O (6i) 0.1592 -0.1592 0.9120 1.00

O (6i) 0.4899 -0.4899 0.2407 1.00

O (6i) 0.1679 -0.1679 0.5878 1.00
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FIG. S7. Comparison of simulated diffraction peaks in the same region as in Fig. S6 based on two models with similar lattice
and atomic parameters but with distinct Cr3+ occupancies.

TABLE S4. Refined atomic parameters of the p = 0.60 sample. Refined lattice parameters are a = b = 5.85502 Å and
c = 14.25203 Å. Rwp = 6.05% and GoF = 1.68.

Atom x/a y/b z/c occupancy

Ba (2d) 1/3 2/3 0.42493 1.00

Sn (2d) 1/3 2/3 0.68166 1.00

Zn (2d) 1/3 2/3 0.9552 0.50

Ga (2d) 1/3 2/3 0.9552 0.50

Ga (2c) 0 0 0.3717 1.00

Cr (1a) 0 0 0 0.599(15)

Ga (1a) 0 0 0 0.401(15)

Cr (6i) 0.1691 -0.1691 0.17067 0.604(4)

Ga (6i) 0.1691 -0.1691 0.17067 0.396(4)

O (2c) 0 0 0.2448 1.00

O (2d) 1/3 2/3 0.0913 1.00

O (6i) 0.1566 -0.1566 0.9122 1.00

O (6i) 0.4927 -0.4927 0.2400 1.00

O (6i) 0.1693 -0.1693 0.5889 1.00
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FIG. S8. The lattice parameters a (a = b) and c obtained from the refinements. The results are shown as percentage change
with respect to that of the p = 0.98 sample, a0 and c0. Lines are guides to the eye.
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FIG. S9. Refinement result of the p = 0 sample.

TABLE S5. Refined atomic parameters of the p = 0.63 sample. Refined lattice parameters are a = b = 5.85676 Å and
c = 14.25397 Å. Rwp = 5.06% and GoF = 1.52.

Atom x/a y/b z/c occupancy

Ba (2d) 1/3 2/3 0.42444 1.00

Sn (2d) 1/3 2/3 0.6815 1.00

Zn (2d) 1/3 2/3 0.9548 0.50

Ga (2d) 1/3 2/3 0.9548 0.50

Ga (2c) 0 0 0.3732 1.00

Cr (1a) 0 0 0 0.625(16)

Ga (1a) 0 0 0 0.375(16)

Cr (6i) 0.1687 -0.1687 0.17032 0.631(4)

Ga (6i) 0.1687 -0.1687 0.17032 0.369(4)

O (2c) 0 0 0.2390 1.00

O (2d) 1/3 2/3 0.0945 1.00

O (6i) 0.1545 -0.1545 0.9123 1.00

O (6i) 0.4923 -0.4923 0.2367 1.00

O (6i) 0.1754 -0.1754 0.59183 1.00
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FIG. S10. Refinement result of the p = 0.44 sample.

TABLE S6. Refined atomic parameters of the p = 0.67 sample. Refined lattice parameters are a = b = 5.85758 Å and
c = 14.25553 Å. Rwp = 5.45% and GoF = 1.61.

Atom x/a y/b z/c occupancy

Ba (2d) 1/3 2/3 0.4240 1.00

Sn (2d) 1/3 2/3 0.6814 1.00

Zn (2d) 1/3 2/3 0.9546 0.50

Ga (2d) 1/3 2/3 0.9546 0.50

Ga (2c) 0 0 0.3732 1.00

Cr (1a) 0 0 0 0.621(17)

Ga (1a) 0 0 0 0.379(17)

Cr (6i) 0.1689 -0.1689 0.17019 0.672(4)

Ga (6i) 0.1689 -0.1689 0.17019 0.328(4)

O (2c) 0 0 0.2358 1.00

O (2d) 1/3 2/3 0.0966 1.00

O (6i) 0.1558 -0.1558 0.9119 1.00

O (6i) 0.4925 -0.4925 0.2363 1.00

O (6i) 0.1740 -0.1740 0.5935 1.00
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FIG. S11. Refinement result of the p = 0.51 sample.

TABLE S7. Refined atomic parameters of the p = 0.71 sample. Refined lattice parameters are a = b = 5.85367 Å and
c = 14.24537 Å. Rwp = 6.14% and GoF = 1.69.

Atom x/a y/b z/c occupancy

Ba (2d) 1/3 2/3 0.4245 1.00

Sn (2d) 1/3 2/3 0.6817 1.00

Zn (2d) 1/3 2/3 0.9551 0.50

Ga (2d) 1/3 2/3 0.9551 0.50

Ga (2c) 0 0 0.3722 1.00

Cr (1a) 0 0 0 0.703(16)

Ga (1a) 0 0 0 0.297(16)

Cr (6i) 0.1690 -0.1690 0.17036 0.715(4)

Ga (6i) 0.1690 -0.1690 0.17036 0.285(4)

O (2c) 0 0 0.2425 1.00

O (2d) 1/3 2/3 0.0938 1.00

O (6i) 0.1548 -0.1548 0.9126 1.00

O (6i) 0.4895 -0.4895 0.2392 1.00

O (6i) 0.1732 -0.1732 0.5906 1.00
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FIG. S12. Refinement result of the p = 0.60 sample.

TABLE S8. Refined atomic parameters of the p = 0.83 sample. Refined lattice parameters are a = b = 5.85338 Å and
c = 14.2452 Å. Rwp = 6.24% and GoF = 1.81.

Atom x/a y/b z/c occupancy

Ba (2d) 1/3 2/3 0.4247 1.00

Sn (2d) 1/3 2/3 0.6817 1.00

Zn (2d) 1/3 2/3 0.9550 0.50

Ga (2d) 1/3 2/3 0.9550 0.50

Ga (2c) 0 0 0.3734 1.00

Cr (1a) 0 0 0 0.823(19)

Ga (1a) 0 0 0 0.177(19)

Cr (6i) 0.1685 -0.1685 0.1695 0.829(5)

Ga (6i) 0.1685 -0.1685 0.1695 0.171(5)

O (2c) 0 0 0.2383 1.00

O (2d) 1/3 2/3 0.0969 1.00

O (6i) 0.1560 -0.1560 0.9125 1.00

O (6i) 0.4944 -0.4944 0.2381 1.00

O (6i) 0.1771 -0.1771 0.5927 1.00
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FIG. S13. Refinement result of the p = 0.63 sample.

TABLE S9. Refined atomic parameters of the p = 0.86 sample. Refined lattice parameters are a = b = 5.85326 Å and
c = 14.2454 Å. Rwp = 5.80% and GoF = 1.69.

Atom x/a y/b z/c occupancy

Ba (2d) 1/3 2/3 0.4236 1.00

Sn (2d) 1/3 2/3 0.6814 1.00

Zn (2d) 1/3 2/3 0.9550 0.50

Ga (2d) 1/3 2/3 0.9550 0.50

Ga (2c) 0 0 0.3735 1.00

Cr (1a) 0 0 0 0.857(21)

Ga (1a) 0 0 0 0.143(21)

Cr (6i) 0.1686 -0.1686 0.1695 0.861(6)

Ga (6i) 0.1686 -0.1686 0.1695 0.139(6)

O (2c) 0 0 0.2388 1.00

O (2d) 1/3 2/3 0.0961 1.00

O (6i) 0.1546 -0.1546 0.9129 1.00

O (6i) 0.4931 -0.4931 0.2390 1.00

O (6i) 0.1771 -0.1771 0.5945 1.00
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FIG. S14. Refinement result of the p = 0.67 sample.

TABLE S10. Refined atomic parameters of the p = 0.93 sample. Refined lattice parameters are a = b = 5.85457 Å and
c = 14.2491 Å. Rwp = 6.38% and GoF = 1.82.

Atom x/a y/b z/c occupancy

Ba (2d) 1/3 2/3 0.4237 1.00

Sn (2d) 1/3 2/3 0.6824 1.00

Zn (2d) 1/3 2/3 0.9554 0.50

Ga (2d) 1/3 2/3 0.9554 0.50

Ga (2c) 0 0 0.3734 1.00

Cr (1a) 0 0 0 0.937(25)

Ga (1a) 0 0 0 0.063(25)

Cr (6i) 0.1677 -0.1677 0.1686 0.933(7)

Ga (6i) 0.1677 -0.1677 0.1686 0.067(7)

O (2c) 0 0 0.245 1.00

O (2d) 1/3 2/3 0.1021 1.00

O (6i) 0.156 -0.156 0.9126 1.00

O (6i) 0.4889 -0.4889 0.2355 1.00

O (6i) 0.1769 -0.1769 0.5878 1.00
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FIG. S15. Refinement result of the p = 0.71 sample.

TABLE S11. Refined atomic parameters of the p = 0.98 sample. Refined lattice parameters are a = b = 5.85204 Å and
c = 14.2434 Å. Rwp = 8.30% and GoF = 2.18.

Atom x/a y/b z/c occupancy

Ba (2d) 1/3 2/3 0.4237 1.00

Sn (2d) 1/3 2/3 0.6818 1.00

Zn (2d) 1/3 2/3 0.9560 0.50

Ga (2d) 1/3 2/3 0.9560 0.50

Ga (2c) 0 0 0.3724 1.00

Cr (1a) 0 0 0 1.00(2)

Ga (1a) 0 0 0 0.00(2)

Cr (6i) 0.1688 -0.1688 0.1707 0.976(4)

Ga (6i) 0.1688 -0.1688 0.1707 0.024(4)

O (2c) 0 0 0.244 1.00

O (2d) 1/3 2/3 0.0929 1.00

O (6i) 0.1555 -0.1555 0.9126 1.00

O (6i) 0.4853 -0.4853 0.2387 1.00

O (6i) 0.1709 -0.1709 0.5895 1.00
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FIG. S16. Refinement result of the p = 0.83 sample.
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FIG. S17. Refinement result of the p = 0.86 sample.
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FIG. S18. Refinement result of the p = 0.93 sample.
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FIG. S19. Refinement result of the p = 0.98 sample.


	Zero-point entropies of spin-jam and spin-glass states in a frustrated magnet
	Abstract
	Introduction
	Experimental details
	Results and discussion
	Low-lying excitations
	Zero-point entropies

	Conclusion
	Acknowledgments
	References
	Temperature-dependent molar heat capacity
	Calculation of spin-jam zero-point entropy, S0SJ
	The p dependence of S0SJ
	Perimeter scaling of S0SJ

	Structural refinements


