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We consider a model of Parisi where a single particle hops on an infinite-dimensional hypercube,
under the influence of a uniform but disordered magnetic flux. We reinterpret the hypercube as the
Fock-space graph of a many-body Hamiltonian and the flux as a frustration of the return amplitudes
in Fock space. We will identify the set of observables that have the same correlation functions as the
double-scaled Sachdev-Ye-Kitaev (DS-SYK) model, and hence the hypercube model is an equally
good quantum model for near-AdS2/near-CFT1 (NAdS2/NCFT1) holography. Unlike the SYK
model, the hypercube Hamiltonian is not p local. Instead, the SYK model can be understood as a
Fock-space model with similar frustrations. Hence we propose this type of Fock-space frustration
as the broader characterization for NAdS2/NCFT1 microscopics, which encompasses the hypercube
and the DS-SYK models as two specific examples. We then speculate on the possible origin of such
frustrations.

Two-dimensional nearly anti-de Sitter (NAdS2) space-
time arises ubiquitously as the near-horizon geometry
of near-extremal black holes in higher dimensions. In
holographic theories, this means that in the appropriate
near-extremal states an AdSD+1/CFTD (D > 1) duality
flows to a near-AdS2/near-CFT1 (NAdS2/NCFT1) du-
ality at low energy. In fact, considerable progress has
been made by directly constructing microscopic models
for NCFT1 (nearly conformal field theory in one dimen-
sion), the most notable of which is the Sachdev-Ye-Kitaev
(SYK) model [1–5]. In the SYK model, a system of N
Majorana fermions interact through a p-body interaction
in which a fermion can couple to any of the rest. At low
energy, the model’s thermodynamics and correlators re-
produce those of the Jackiw-Teitelboim gravity—a dila-
ton gravity theory that can arise by dimensionally re-
ducing higher-dimensional gravity to NAdS2 spacetime
[6]. In addition, the SYK model is also important as a
solvable model of quantum chaos in p-local systems per

se (and can probably also be realized experimentally).
Its low-energy solution is obtained by using Schwinger-
Dyson equations in the limit N → ∞ with p fixed. But
the double-scaled SYK (DS-SYK) limit p,N → ∞ with
λ = 2p2/N fixed can be solved exactly in λ for all energy
scales using combinatorics. The latter technique also al-
lows for the reconstruction of the AdS2 dynamics (and
generalizes it to a q-deformed AdS2) [7–10].

There are, however, additional models that are not
even p local but have the same combinatorial solution.
The simplest such example is the hypercube model of
Parisi [11], made out of d qubits, along with a Hamil-
tonian with interactions that couple together all degrees
of freedom in each term. It is therefore interesting to
identify which microscopic aspects of the SYK model are
essential and which are spurious for the NAdS2/NCFT1

holography, as well as clarify whether quantum chaos is
similar in these models. We will try to pinpoint exactly
what the two models have in common, in terms of dynam-

ics and in terms of the appropriate set of observables, and
use it as a stepping stone toward a broader characteriza-
tion of NAdS2/NCFT1 microscopics. We can then hope
it is this broader characterization that survives the ex-
amination from the AdSD+1/CFTD (D > 1) viewpoint.
More details are covered in a companion article [12].

Parisi introduced a d-dimensional hypercubic model
where there are superconducting dots living on the hy-
percube vertices, whose energy is frustrated by a uni-
form (position-independent) but disordered magnetic
flux. Here we remove the superconducting dots of the
original theory, and the physics becomes that of a sin-
gle particle hopping on the hypercube vertices under the
influence of the same flux. By doing so we drastically
change the role of the flux: the flux frustrates energies
in the original theory but now frustrates the return am-
plitudes of a hopping particle. The former tends to in-
crease the glassiness of a system, and the latter tends
to delocalize wave functions and hence to thermalize
a system. Nevertheless, Parisi’s key insight that such
high-dimensional fluxed operators coarse grain to a q-
deformed oscillator, remains. Its similarity with the DS-
SYK model was first noticed by [13, 14], and given the
simplicity of model, one cannot help but wonder if this
similarity extends to correlation functions. We will an-
swer this question in the affirmative.

The hypercube has 2d vertices which we denote by
{−1/2,+1/2}d with σ3

µ/2 (µ = 1, . . . , d) being the po-
sition operators of the particle. We will use a gauge that
is different from Parisi’s original choice. The point is to
use a rotationally covariant gauge so that the insertions
of probe operators become much simpler. Our Hamilto-
nian is

H = − 1√
d

d
∑

µ=1

Dµ := − 1√
d

d
∑

µ=1

(T+
µ + T−

µ ), (1)
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where T−
µ = (T+

µ )† and

T+
µ =

d
∏

ν=1,ν 6=µ

e
i
4
Fµνσ

3
νσ+

µ , σ+
µ =

σ1
µ + iσ2

µ

2
. (2)

The σiµ(i = 1, 2, 3) is the ith Pauli matrix acting on the
µth qubit, and Fµν is the antisymmetric tensor of the
background flux. We have chosen a normalization for H
such that it has a compact spectral support at d = ∞
(as we will also do for the DS-SYK model). The fluxes
Fµν are quench disordered, identically and independently
distributed with the additional requirement that the dis-
tribution is even so that (〈··〉 stands for an ensemble av-
erage)

〈sinFµν〉 = 0. (3)

The distribution is otherwise completely general and

q := 〈cosFµν〉 (4)

is a tunable parameter.
T+
µ is a hopping operator that transports the parti-

cle in the forward µ direction, while assigning to it a
random phase due to the disordered flux. The holonomy
T−
ν T

−
µ T

+
ν T

+
µ in the µν plane then gives the return ampli-

tude of hopping counterclockwise around this plaquette.
However, it is more convenient to study the holonomy in
terms of Dµ operators, which combines the forward and
backward hoppings,

Wµν = DνDµDνDµ = cosFµν − i sinFµνσ
3
µσ

3
ν ,

〈Wµν〉 = q.
(5)

We can also think of Wµν as the mutual frustration of
different terms in the Hamiltonian.
We can view the Hamiltonian (1) as a many-body sys-

tem of d interacting qubits with the hypercube being its
Fock-space graph [15]: if we view each basis vector as a
point, and connect two points whenever the correspond-
ing basis vectors have a nonzero transition amplitude,
then we get back to the picture of a single particle hop-
ping on a hypercube. The many-bodiedness is encoded
in the requirement that a Fock-space graph should have
a diverging vertex degree (d → ∞). In this manner, we
have reinterpreted the hypercube as living in a Hilbert
space rather than real space.
The spectrum of the model is solved by moment

method via q-deformed oscillators [11, 16, 17]. The 2kth
moment of the hypercube model can be written as

2−d
〈

TrH2k
〉

=2−dd−k
∑

{µi}

〈Tr Dµ1
Dµ2

. . . Dµ2k
〉. (6)

Since the trace is a sum of return amplitudes, a forward
hopping must be paired with a backward hopping, which
means the subscripts µ1, . . . , µ2k must form k pairs. At

µ

µ

ν ν

ρ ρ

FIG. 1. Left: a chord diagram contributing to 2−d
〈

TrH6
〉

,
which represents the hopping sequence DνDρDµDρDνDµ.
This diagram has a value of q2. Right: a chord diagram
contributing to a two-point insertion 2−d

〈

TrH2OH2O
〉

. The
dashed line represents the O chord and the solid lines repre-
sent the H chords. This diagram has a value of qq̃2.

leading order in 1/d, we can focus on the case where these
k indices are all distinct (any further coincidence among
the k pairs will be suppressed by 1/d). We can use chord
diagrams to represent such pairings: draw 2k points on a
circle representing the subscripts, and connect two points
by a chord if the corresponding subscripts are paired.
We illustrate one example in the left panel of Fig. 1.
To evaluate a chord diagram, we can move the operators
until the paired operators become adjacent to each other,
and in the process we generate phase terms by applying
Eq. (5) repeatedly (and that D2

µ = 1). The result is
that we pick up an independent cosF for each interlacing
ordering of two pairs of hoppings and the moments are

2−d
〈

TrH2k
〉

=
∑

diagrams

qnumber of chord intersections. (7)

The corresponding spectral density is given by [18] (an
efficient way of evaluating the sum using a transfer matrix
is given in [7]):

ρ(E) =
Γq2

(

1
2

)

π
√
1 + q

[

1− E2

4
(1 − q)

]

1
2

∞
∏

l=1

[

1− (1− q)qlE2

(1 + ql)2

]

,

Γq2

(

1

2

)

=
√

1− q2
∞
∏

j=0

(1− q2j+2)(1 − q2j+1)−1. (8)

The double-scaled SYK model can be solved in a simi-
lar way [19, 20] and the coincidence with the hypercube
model’s spectral density was noted in [13, 14]. In this
Letter we will extend the similarity to correlation func-
tions and explain why the coincidence is not accidental
at all.
The SYK model is as follows. Consider N Majorana

fermions {ψi, ψj} = 2δij , i, j = 1, . . . , N and the Hamil-
tonian

HSYK = ΣIJIΨI (9)

where I is a multi-index of length p (p is an even integer),

I = {i1, i2, . . . , ip}, 1 ≤ i1 < i2 < · · · < ip ≤ N,

ΨI = ip/2ψi1ψi2 · · ·ψip , (Ψ2
I = 1) .

(10)
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Moreover, JI are Gaussian random variables that are in-
dependently and identically distributed with variance

〈

J2
I

〉

=

(

N

p

)−1

. (11)

The main feature that the SYK model shares with the
Parisi model is a similar structure of holonomies encoding
frustrations, given by

WIJ = ΨIΨJΨIΨJ = (−1)|I∩J|, (12)

where |I ∩ J | is the cardinality of the intersection of I
and J . The subscript I plays a similar role as µ does in
the hypercube model (which specifies there the direction
of hopping). Comparing with Eq. (5), we see that the
SYK model frustrations are generated by uniform fluxes
of 0 and π. By uniformity we mean that the holonomy
WIJ only depends on I and J , but does not depend on
which state it acts on. Namely, in the Fock space a gen-
eral loop produces a phase that depends on its shape and
orientation, but is independent of its position. To accom-
plish a complete analogy with the hypercube model, we
would still need the holonomies on different plaquettes
to be statistically independent and have a tunable aver-
age value. This is achieved by going to the double-scaled
SYK limit:

N, p→ ∞, with fixed
p2

N
. (13)

In this limit multi-index intersections become an inde-
pendently random process for each pair of I and J , and
|I ∩ J | is Poisson distributed with a mean value p2/N ,
giving an average holonomy

q = 〈(−1)|I∩J|〉I,J = e−2p2/N , (14)

where the average is over all possible values of I and J
[19]. This q plays the identical role in the DS-SYK model
as the 〈cosF 〉 plays in the hypercube model.
p-local vs. frustrated Hamiltonians: The SYK

Hamiltonian (9) is manifestly p local (p being the length
of the interaction). The Parisi Hamiltonian is not of that
form, as each term in (2) depends on all the available
qubits. Nevertheless, the solution is the same. The real
criterion that allows for the same solution using chord
diagrams is the fact that the frustrations satisfy

[Wµν , Dρ] = 0 or [WIJ ,ΨK ] = 0 (15)

with probability 1 in the thermodynamic limit. The
holonomies, or frustrations, are effectively short ranged
and do not interfere with most of the many-body inter-
action terms. This is another way of phrasing the unifor-
mity requirement for the frustrations.
Observables: To exhibit a full solution of the Parisi

model at the same level as the DS-SYK model, we need a

rich enough set of observables and show that their corre-
lation functions are the same. As we shall see below, the
chord combinatorics for probes in the hypercube model
is again identical to that of the DS-SYK model. As a
consequence they develop the same infrared behavior,
which implies the hypercube model also has a NCFT1

limit and its out-of-time-order correlator has an expo-
nential growth in time with a maximal Lyapunov expo-
nent (which matches the fast-scrambling nature of black
holes [21–23]). We shall see that the operator conformal
dimensions in both models can be understood as a ratio
of frustrations.

What are the appropriate probe operators in this
model? Consider how we probe a near-extremal black
hole in higher-dimensional AdSD+1. We expect that
single-trace operators of the dual higher-dimensional
CFTD become complicated by the time they flow to
NCFT1. Therefore, our best chance is to give a sta-
tistical description for them. The Hamiltonian is one of
the single-trace operators, so we may expect other single-
trace operators to have a similar form. Since the Hamil-
tonian (1) is built from hopping operatorsDµ, we suggest
the following class of operators as suitable observables:

O = − 1√
d

d
∑

µ=1

D̃µ := − 1√
d

d
∑

µ=1

(T̃+
µ + T̃−

µ ), (16)

where T̃+
µ is defined in the same manner as T+

µ in Eq.

(2), but with a different uniform and disordered flux F̃µν
which may or may not correlate with Fµν . Similar logic
applies to SYK probes and suggests that they can be
chosen to be a product of p̃ fermions OSYK =

∑

Ĩ J̃ĨΨĨ ,

where Ĩ is an index set of length p̃ [7, 8]. We can gener-
alize Eq. (16) further and take O to be a sum of prod-
ucts of a finite number of hoppings, twisted by random
phases, but this does not add any new physics as far as
observables are concerned. It does open new options for
Fock-space dynamics, as we will discuss later.

An odd number of insertions of D̃µ are exponentially

suppressed because 〈DD̃〉 = 〈cos[(F − F̃ )/4]〉d−1 → 0,
and hence we only consider an even number of insertions.
Moments with two-point insertions have the form

〈

TrHk2OHk1O
〉

=
1

d
k1+k2+2

2

∑

ν1,ν2,{µi}

〈Tr Dµ1
. . . Dµk2

D̃ν1Dµk2+1
. . .Dµk1+k2

D̃ν2〉. (17)

Because of the same exponential suppression, two D̃’s
must pair up and the D’s must pair up among them-
selves. Therefore, we can obtain the two-point functions
by chord diagrams where one type of chord (marked by
dashed lines) connects the O insertions (O chords), and
another type connects the Hamiltonians (H chords). We
draw an example in the right panel of Fig. 1. Note also
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that

D̃νDµD̃νDµ = cos
Fµν + F̃µν

2
− i sin

Fµν + F̃µν
2

σ3
µσ

3
ν ,

〈

D̃νDµD̃νDµ

〉

:= q̃ =

〈

cos
Fµν + F̃µν

2

〉

, (18)

which is a generalization of Eq. (5). The remaining steps
are entirely analogous to the discussion without inser-
tions. The two-point moment at leading order is given
by the sum of chord diagrams

2−d
〈

TrHk2OHk1O
〉

=
∑

diagrams

qNo. H-H intersections q̃No. O-H intersections, (19)

and the four-point insertion rule works out similarly,

2−d
〈

TrHk4OHk3OHk2OHk1O
〉

=
∑

diagrams

q#H-H intersections q̃No. O-H intersections

× q̃No. O-O intersections
12 , (20)

where “No. H-H intersections” means the total number
of intersections among H chords in a diagram and like-
wise for O-H and O-O, where the weight for the latter
is q̃12 := 〈cos F̃µν〉. These are exactly the same chord
diagram rules for the DS-SYK model, and there the q
parameters are

q = e−2p2/N , q̃ = e−2pp̃/N , q̃12 = e−2p̃2/N . (21)

The NCFT1 limit of both models is given by [8]

q, q̃ → 1−, log q̃/ log q fixed (22)

in the temperature range

(− log q)
3
2 ≪ T ≪ (− log q)

1
2 . (23)

In this regime, the correlation functions have a conformal
form and the operator dimensions are given by

∆O = log q̃/ log q, (24)

which in the DS-SYK model implies ∆O = p̃/p and in
the hypercube model implies

∆O =

〈

(Fµν + F̃µν)
2
〉

4
〈

F 2
µν

〉 . (25)

Operator growth and the Parisi model as a typ-

ified SYK model: Next we will argue that the Parisi
model is a useful model for operator growth in the SYK
model. Consider first the “growth” of ρ = e−βH as β
increases. This change can be encoded as evolution on

span{ΨI1 . . .ΨIk , k ≥ 0}. (26)

Given that that Ψ2
I = 1, the evolution happens on the

hypercube of operators

d =

(

N

p

)

, (Z2)
d →

{

∏

I

ΨnI

I

∣

∣

∣
nI ∈ {0, 1}d

}

(27)

when we start the evolution at the origin. The right-
hand side is an overcomplete set of operators but this is
a valid description for motions that start at the origin
and make fewer than O(N) hops (or we can go to the
sparse SYK model [24, 25] where d ∼ N and alleviate
the overcompleteness).
In slightly more detail, consider the plaquette whose

corners are ΨSΨ
0,1
I Ψ0,1

J , where ΨS includes all the other
monomials’ contribution. We can move from a corner by
multiplying by ΨK (K = I or J) on the right. This is
induced by “evolution” in β. The flux on a plaquette is
uniform in the sense before, and depends only on I∩J . To
go to the Parisi model we now replace the overdetailed
information of the phases by an average phase. So a
typified version of operator growth dynamics in the DS-
SYK model is just given by a Parisi model.
For the growth of a more general operator it is impor-

tant to choose the right class of operators. The most uni-
versal choice is to choose another random operator whose
size scales as

√
N (but with different coefficients than the

Hamiltonian) and denote it by Obase. Its Heisenberg time
evolution now takes place in the hypercube,

(Z2)
d × (Z2)

d → {ΠJΨmJ

J ObaseΠIΨ
nI

I |mJ , nI ∈ {0, 1}d}
(28)

and it propagates the state both on the left and on the
right lattice, i.e., the model is just the product of two
lattices as above (but with a nontrivial inner product that
mixes them, which is given by chord combinatorics). We
can see that some standard measures of operator growth
can be easily extracted from it. For example, evolution
in the Krylov basis [26] is just the coarse information of
the distance of the lattice point to the origin (for example
in the way of [27, 28]). In the approach above, one can
discuss the evolution of more complicated features of the
operator by keeping more partial data about the location
on the hypercube.
Fock space dynamics: Clearly the model can be

generalized by including more complicated patterns of
hoppings in Fock space. In fact, we can extrapolate be-
tween the pure Parisi model and SYK-type models as
actions in Fock space by taking H =

∑

α,AWα,AOα,A,
where Oα,A is of the form

α = {µ1, ..µp}, A = {n1, .., np}, ni = ±,
Oα,A = Πσnj

µj
∗ phase terms.

(29)

For example the complex SYK and complex DS-SYK
models [29, 30] are precisely these models, with phase
factors present in the Jordan-Wigner representation of
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fermions and with the constraint that
∑

i ni = 0 to en-
force the U(1) symmetry. This suggests some interesting
generalizations of the SYK model relevant for physical
situations. Consider a quantum dot of many fermions
with a conserved charge. If the dot is tuned such that
there are no ψ†

iψj terms in the Hamiltonian, then we ex-
pect that the model is given by a U(1)-invariant SYK
model. But now we can generalize the U(1)-invariant
model to

H =
∑

Jklij ψ
iψjψ†

kψ
†
l e
i
∑

m ϕijkl,mψ
†
mψ

m

. (30)

The additional phases can all be small but there are many
of them—as in the Parisi model, one cannot expand in
the phases, but rather they can modify the infrared be-
havior. Another interesting application would be doing
a similar construction using canonical bosons. The large
amount of frustrations will make sure there is no low-
temperature condensate [31], which has been difficult to
achieve in the p-local approach.
Discussions: What is to be learned from such a pic-

ture? Minimally, we can say p-locality is not a broad
enough characterization for NAdS2/NCFT1 microscop-
ics. Indeed, p locality describes a large class of mod-
els whose double-scaled limit gives NAdS2/NCFT1, an
example other than the SYK model is the p-quantum-
spin model where the double-scaled limit was first dis-
covered [19]. However, the hypercube model is not p lo-
cal, yet follows exactly the same combinatorics. Instead,
the Fock-space frustration picture encompasses both and
hence is the broader characterization, which should be
useful for model-building purposes. This is particularly
important if we want to realize the NAdS2/NCFT1 re-
lation as the infrared of a renormalization-group flow in
a holographic CFTD (D > 1) in an extremal black hole
state—we should really be looking for signatures of frus-
trations rather than p locality.
To summarize, we get chord combinatorics [as in

Eqs. (7), (19) and (20)] and therefore automatically a
NAdS2/NCFT1 duality if a model has a Fock-space frus-
tration which is

1. uniform and quench-disordered and

2. independently and identically distributed on dif-
ferent (nonparallel) plaquettes of the Fock-space
graph, with a real and tunable average holonomy.

The NAdS2/NCFT1 emerges as the variance of the flux
(
〈

F 2
µν

〉

in the Parisi model, p2/N in the DS-SYK model)
is tuned to zero after the thermodynamic limit is taken.
These criteria need to be understood as large-system-

size statements, and deviations suppressed by sufficiently
high powers in the system size should be allowed [32, 33].
Also, these criteria are sufficient but not necessary, as
there are regimes that give NAdS2/NCFT1 but are be-
yond the description of chord diagram combinatorics,

such as the fixed p and N → ∞ limit of SYK, which
violates the second criterion by having holonomies that
are untunable at large N . Nonetheless, these criteria
should not be violated too violently. For example, if we
strongly violate the uniformity requirement by assigning
to each hypercube edge an independently random phase,
we would end up with radically different chord combina-
torics that do not deliver NAdS2/NCFT1; a local spin
chain model would strongly violate the second criterion
by having frustrations only on a vanishingly small frac-
tion of the graph faces. Tentatively, the uniformity re-
quirement will be relaxed to some smooth-variation re-
quirement in a broader setting, but we do not have a
quantitative description at present. It is even less clear
to us how the second criterion should be relaxed.

Finally, since NAdS2 appears as the long-throat part
of a higher-dimensional geometry, we expect a large
timescale separation in the dual CFTD (D > 1), en-
tailing an adiabatic scenario. We speculate that such
random frustrations can arise as Berry curvatures when
the fast degrees of freedom are integrated out [34–36].
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