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Fracton order describes novel quantum phases of matter that host quasiparticles with restricted mobility,
and thus lies beyond the existing paradigm of topological order. In particular, excitations that cannot move
without creating multiple excitations are called fractons. Here we address a fundamental open question—can the
notion of self-exchange statistics be naturally defined for fractons, given their complete immobility as isolated
excitations? Surprisingly, we demonstrate how fractons can be exchanged, and show that their self-statistics
is a key part of the characterization of fracton orders. We derive general constraints satisfied by the fracton
self-statistics in a large class of Abelian fracton orders. Finally, we show the existence of nontrivial fracton self-
statistics in some twisted variants of the checkerboard model and Haah’s code, establishing that these models
are in distinct quantum phases as compared to their untwisted cousins.

Introduction. Particle statistics is a fundamental aspect of
quantum mechanics. While elementary particles that com-
pose our universe must be either bosons or fermions due to the
topological triviality of double exchanges in 3D space, emer-
gent quasiparticles in 2D quantum many-body systems can
exhibit anyonic statistics [1, 2], which are crucial for charac-
terizing conventional topological order. Recently, the theo-
retical discovery of fracton order in 3D [3–9] has revealed a
new situation where quasiparticles lack their usual freedom to
move in space, calling for a reexamination of the notion of
statistics [10–12].

Fracton systems have emerged as an active frontier of quan-
tum physics [13, 14], attracting great interest from condensed
matter, quantum information and quantum field theory view-
points. Fracton order is defined by the emergence of quasipar-
ticles with restricted mobility, including fractons, which can-
not move without splitting into more than one excitation. Sin-
gle isolated fractons are thus immobile. Fracton models can
also host excitations which are mobile only within planes or
lines. Statistical processes involving or interpretable in terms
of partially mobile excitations have been studied [10–12, 15–
23]. Moreover, fractons can be non-Abelian in the sense of
carrying protected topological degeneracy [11, 16, 24–35].
Nevertheless, a fundamental question remains open: does a
notion of self-exchange statistics make sense for fractons,
given their complete immobility as isolated excitations?

In this Letter, we provide a resolution to this puzzle. By
allowing the fracton quasiparticle to split into multiple coor-
dinated pieces, it is possible to prepare two well-separated re-
alizations of the same fracton superselection sector. Such a
pair of excitation patterns can be physically exchanged, giv-
ing rise to a fracton self-statistics. Our findings apply to both
fracton phases of foliated [36, 37] and fractal [5, 6] nature.
Furthermore, we point out instances where the self-statistics
of fractons is in fact the only known statistical invariant that

distinguishes between two fracton phases. We provide explicit
examples by distinguishing twisted checkerboard models [11]
and a twisted Haah’s code [38] from their untwisted counter-
parts. Thus, we show that fracton self-statistics is a fundamen-
tal invariant needed to characterize fracton phases of matter.

Foliated fractons. To illustrate the principle, we start with
the simplest relevant setting, in which all fractons a are
Abelian [39] and satisfy the fusion constraint

a × tµa × tµ+tνa × tνa = 1 (1)

for all µ, ν ∈ {x, y, z} such that µ , ν, where tµ (ν) is the el-
ementary lattice vector in the µ (ν) direction, ta denotes the
analogue of a at a t-shifted position, and ta is the antiparti-
cle of ta. This constraint guarantees the existence of rectan-
gular [40] membrane operators of arbitrary size that generate
quadrupolar configurations of a given species a at its corners.
Fractons satisfying the fusion constraint will be referred to as
(Abelian) foliated.

A large body of models hosting foliated fractons are known
in the literature, including the X-cube, checkerboard, and their
many variants [8, 11, 17, 41–43]. Let us refer to the checker-
board model as a concrete example, for its twisted variants
will clearly demonstrate the usage of fracton self-statistics.

The checkerboard model [8] is defined on a 3D checker-
board lattice (Fig. 1a) with one qubit per vertex v. Its Hamil-
tonian

Hcb = −
∑

c

(Ac + Bc) (2)

is a summation over gray cubes c in Fig. 1(a), where

Ac B
∏
v∈c

Xv, Bc B
∏
v∈c

Zv, (3)
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Figure 1. (a) 3D checkerboard lattice with vertices and gray cubes
labeled by monomials x jykzl, where x ≡ x−1 etc. (b) In the checker-
board model, excitation Ac = −1 (or Bc = −1) has fractional mobility
{c} → {c′i , c

′′
i , c

′′′
i }, realizable by operator Mi =

∏
v∈Σi

Zv (respec-
tively, Mi =

∏
v∈Σi

Xv) supported on rectangular membrane Σi, for
i = 1, 2, 3.

are products of Pauli X or Z operators at the eight vertices of
c. This is an exactly solvable gapped model with spectrum
labeled by simultaneous eigenvalues {Ac, Bc = ±1}.

An isolated excitation Ac = −1 exemplifies a foliated frac-
ton. It can be “moved” at the expense of fractionalizing into
more than one excitation, e.g., η = {c} → ηi = {c′i , c

′′
i , c
′′′
i } by a

rectangular membrane operator; see Fig. 1(b). Therefore, the
excitation patterns η1 (red), η2 (green), η3 (blue), and η (or-
ange) are all realizations of the same fracton superselection
sector.

Self-statistics of foliated fractons. Generically, a foliated
fracton a is characterized by a set of four self-statistical phases
θ

[xyz]
a , θ[xyz]

a , θ[xyz]
a , and θ[xyz]

a , each corresponding to a “wind-
mill” self-exchange process.

The process corresponding to θ[xyz]
a is depicted in Fig. 2. It

begins with an excited state with a at the center of the wind-
mill, in addition to a triplet of excitations denoted â that be-
longs to the same superselection sector as a. The process pro-
ceeds with a sequence of six membrane operators (Fig. 3a)
whose total action exchanges a with â, returning to the start-
ing state in such a way that all arbitrary phases cancel. It
can be regarded as a fractonic generalization of the T-shaped
anyon exchange process [44].

The processes for θ[xyz]
a , θ[xyz]

a , and θ[xyz]
a are defined analo-

gously, but along windmills related to [xyz] by a 180◦-rotation
about the x, y, and z axes, respectively. For instance, the
[xyz] process involves the membrane operators located as in
Fig. 3(b). The notation [µ1µ2µ3] of three directions µi refers
to a windmill made of three blades Ki = cone(−µi,µi+1) ≡
{−αµi + βµi+1|α, β ≥ 0} for i = 1, 2, 3, where µ4 ≡ µ1. Each
overlined direction indicates its opposite (e.g., x = −x).

Although more windmill processes can be considered, they
yield no new self-statistical phases beyond the four already
defined. Any two inversion-related windmills (e.g.,

[
xyz
]

and[
xyz
]

in Fig. 3(a) and (c)) specify the same self-statistics.
The reason is demonstrated in Fig. 3(d): membrane opera-
tors for

[
xyz
]

and
[
xyz
]

can be related by a deformation [45].
Consequently, despite eight possible windmill choices (see
SM [46]), only four self-statistics need to be specified for fo-

Figure 2. The [xyz] windmill process. The starting state has an ex-
citation a at the center of the “windmill”, along with three other ex-
citations collectively called â in the same superselection sector as
a following Eq. (1). The process involves three membrane opera-
tors M1, M2, M3, and their inverses, successively moving the four
excitations from the corners of the yz square, to the corners of the
xy square, to the corners of the zx square, and finally back to the
original configuration. The process is designed such that the phase
arbitrariness in the choice of Mi is precisely cancelled by the action
of M†i . Therefore, the universal statistical phase is well-defined by
θ

[xyz]
a = M†3 M2 M†1 M3 M†2 M1.

Figure 3. Membrane operators comprising the (a) [xyz], (b) [xyz],
and (c) [xyz] windmill processes. (d) The membrane operators for the
[xyz] process are smoothly deformed such that, near the origin, they
coincide with those of the [xyz] process. This proves θ[xyz]

a ≡ θ
[xyz]
a .

liated fractons.
One might expect that θ[xyz]

a , θ[xyz]
a , θ[xyz]

a , and θ[xyz]
a are inde-

pendent. To the contrary, they are subject to a constraint

θ
[xyz]
a θ

[xyz]
a θ

[xyz]
a θ

[xyz]
a = 1, (4)

leaving only three of them independent in general.
This constraint is most naturally derived by utilizing a

quantity S µ
ab for µ = x, y, z, defined as the mutual braiding

statistics between dipoles a × ltµa and b × −ltµb in the large l
limit. The dipoles are planons (i.e., quasiparticles mobile in
two directions). The braiding direction is fixed by µ via the
right hand rule. See Fig. 4(a).

A proof of Eq. (4) is as follows. If a is exchanged twice
with â, both sets of excitations return to their original posi-
tion. The total process is smoothly deformable into one where
a is stationary while â braids around a. For instance, we can
deform the [xyz] windmill process into one along the cyclic
“path” in Fig. 4(b). Similarly, the [xyz] process (which pro-
duces statistics θ[xyz]

a ≡ θ
[xyz]
a ) is deformable into the one de-

picted in Fig. 4(c). If the two deformed exchanges are started
and ended with the intermediate state containing excitations a
and â′, their composite gives the process in Fig. 4(d), implying

θ
[xyz]
a θ

[xyz]
a = S x

aa. (5)
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Figure 4. Graphic proof of θ[xyz]
a θ

[xyz]
a = S x

aa. The white arrows denote
the direction of braiding and exchange processes. (a) Definition of
S x

ab. (b) The [xyz] process (dotted windmill) is deformable into one
realized in three steps a → â′, â → a, and â′ → â using operators
supported on the olive, green, and gray areas. The intermediate state
â′ consists of excitations at the three circles. (c) A process which is
equivalent to the [xyz] process and hence produces statistics θ[xyz]

a ≡

θ
[xyz]
a . (d) A process that braids part of â′, along on the gray ribbon,

around a. The statistical phase due to the presence of a is S x
aa.

Armed with this relation, we can now prove Eq. (4) by a 180-
rotation of Eq. (5) about the y axis to obtain θ

[xyz]
a θ

[xyz]
a =

(S x
aa)∗, and multiplying it with Eq. (5).
The mutual statistics also appear in the following formula

for the self-statistics of a fusion product of two fractons, and
analogous formulas due to cubic symmetry:

θ
[xyz]
a×b = θ

[xyz]
a θ

[xyz]
b S x

abS y
abS z

ab. (6)

See SM [46] for a proof. This relation implies

S x
abS y

abS z
ab = S x

baS y
baS z

ba. (7)

It is interesting to note that Eqs. (5) and (6) generalize the con-
straints θ2

a = S aa and θa×b = θaθbS ab of 2D Abelian topologi-
cal orders, where θa is the topological spin and S the topolog-
ical S -matrix. For an Abelian planon a satisfying the foliation
condition Eq. (1), analogous windmill processes are reducible
into 2D braidings and the above discussions reduce to these
familiar 2D equations.

Now assume a foliated fracton satisfies aN = 1. We show
its self-statistics being constrained to discrete values for use in
distinguishing fracton orders. Note S x

aaS y
aaS z

aa = (θ[xyz]
a )2 by

virtue of Eqs. (4) and (5). Thus, since (S µ
aa)N = S µ

aN a = 1, we
have (θ[xyz]

a )2N = 1. Moreover, applying Eq. (6) recursively
gives (θ[xyz]

a )N2
= θ

[xyz]
aN = 1. Together, these imply the self-

statistics of a being multiples of e2πi/(Ngcd(N,2)) in analogy to
anyons in 2D.

Semionic fractons in twisted checkerboard models. A ma-
jor application of fracton self-statistics is to distinguish the
quantum phase of the checkerboard model Hcb from its
twisted variants introduced in Ref. [11]. To illustrate, we con-
sider seven twisted models, denoted Hx

cb, Hy
cb, Hz

cb, Hxy
cb , Hyz

cb,
Hzx

cb, and Hxyz
cb below. Together with Hcb, we will show that the

eight models fall into two quantum phases, distinguishable by
the presence or absence of semionic fracton self-statistics. Ex-
plicit construction of paths connecting models with identical
fracton self-statistics is given in SM [46].

First, in Hcb (Eq. (2)), all excitations (including fractons)
exhibit either bosonic (+1) or fermionic (−1) statistics. This is

because all statistical processes are realizable by tensor prod-
ucts of Pauli operators which only commute or anticommute
with each other.

In contrast, Hx
cb represents a new phase allowing semionic

(±i) fracton self-statistics. Instead of using the formalism in
Ref. [11], we specify this model using a non-Pauli stabilizer
Hamiltonian

Hx
cb = −

∑
c

(
Ax

c + Bc
)

(8)

obtained by replacing Ac in the untwisted model Eq. (2) with
a modified term Ax

c , to have a convenient description of exci-
tations with

(
Ax

c
)2
= 1 and the full spectrum labeled by simul-

taneous eigenvalues
{
Ax

c , Bc = ±1
}
, where x refers to twisting

being associated with x-edges. Explicitly, we label vertices
and cubes by monomials as in Fig. 1(a) and denote finite sets
of vertices by polynomials with Z2 = {0, 1} coefficients [47].
In this notation,

Ax
c B Acϕ(1+x)xcϕ(1+x)xc (9)

according to the construction described in SM [46], where ℓ =
(1 + x) xc and ℓ = (1 + x) xc denote vertex pairs that are ends
of x-edges, and

ϕℓ B (−1)n−
ℓyn−ℓ +n−

ℓyzn
−
ℓz+n−ℓ n+ℓy+n−ℓzn

+
ℓyz+n+ℓyn−

ℓy2+n+ℓyzn
−

ℓy2z

· (−1)n−ℓyz(1+y)n
−
ℓy(1+y)(1+z) · i−n−

ℓ(1+y)(1+z) (10)

is a Dijkgraaf-Witten twisting factor, with the shorthand

Zκ B
∏
v∈κ

Zv, n±κ B
1
2

(1 ± Zκ) , (11)

for κ any finite set of vertices.
In Hx

cb, one example of semionic fracton is a Bc = −1 exci-
tation (denoted mx below), which has

θ
[xyz]
mx = θ

[xyz]
mx = i and θ

[xyz]
mx = θ

[xyz]
mx = −i. (12)

Two derivations of the statistics are given in SM [46]. In one,
we construct a modified X operator that explicitly generates
the statistical processes for B excitations. The modification of
X is required to ensure no Ax

c terms flipped, and results in the
above semionic self-statistics.

We emphasize that in Hx
cb, exotic self-statistics (θ , ±1) are

exclusive to fractons. Ref. [11] reported that non-fractonic
excitations in Hx

cb exhibit only bosonic or fermionic statistics.
This implies that Hx

cb cannot be a tensor product of Hcb and
2D anyon models containing semions. Therefore, the fact
that only fracton self-statistics can distinguish the two mod-
els highlights the novelty of Hx

cb as a distinct phase of matter.
We refer to the phase of Hx

cb as a semionic fracton order, as
characterized by the presence of semionic statistics for only
the fracton excitations.

The remaining six models are constructed similarly to Hx
cb.

In Hx
cb, the twisting factor ϕ(1+x)xcϕ(1+x)xc in Eq. (9) is linked to
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x-edges. Its analogue associated with y-edges (z-edges) speci-
fies Hy

cb (Hz
cb). Moreover, twisting can be applied to more than

one direction simultaneously; for example, Hxy
cb has twisting

made along both x-edges and y-edges.
Remarkably, despite the six models having different ground

states, we discover that: (1) Hy
cb, Hz

cb, and Hxyz
cb represent the

same semionic fracton phase as Hx
cb, while (2) Hxy

cb , Hyz
cb, and

Hzx
cb fall within the phase of Hcb. Let us first demonstrate how

fracton self-statistics are matched between Hxy
cb and Hcb. In

Hxy
cb , excitation Bc = −1 (denoted mxy) is a fracton with

θ
[xyz]
mxy = i · i = −1, θ

[xyz]
mxy = (−i)2 = −1,

θ
[xyz]
mxy = i · (−i) = 1, θ

[xyz]
mxy = (−i) · i = 1,

(13)

where two twistings cause a cancellation in semionic charac-
ter. Further, combining mxy with an A excitation at relative
position xy, denoted xye, yields a fracton xye×mxy with purely
bosonic self-statistics, which can be seen via Eq. (6) and its
analogues.

Based on this observation, we indeed find an exact local
unitary transformation relating the ground states of Hxy

cb and
Hcb, rigorously confirming they represent the same phase (see
SM [46]). Other phase identifications in the classification can
be proven analogously.

Self-statistics of fractal fractons. The notion of self-
statistics extends to non-foliated fractons [48]. We demon-
strate this with Haah’s code [5]

HHaah = −
∑
λ∈Λ

(Aλ + Bλ) , (14)

an exactly solvable model defined on a cubic lattice with two
qubits per vertex. Here, Λ = {xiy jzk} represents lattice vec-
tors (i, j, k) ∈ Z3 in monomial form. The A (B) terms are
translations of the representative A1 (B1) at the origin given
in Fig. 5(a). Each Aλ (Bλ) is a product of eight Pauli X’s (Z’s).
With collections of translationally related objects represented
as sums of Λ’s elements, we can describe Aλ and Bλ using
Laurent polynomials with Z2 = {0, 1} coefficients [47]:

Aλ = λ · ( f 1, f 2, 0, 0), Bλ = λ · (0, 0, f2, f1), (15)
f1 = 1 + x + y + z, f2 = 1 + xy + yz + zx, (16)

f 1 = 1 + x + y + z, f 2 = 1 + xy + yz + zx. (17)

where the first (last) two components of Aλ and Bλ locate Pauli
X’s (Z’s) for the two qubit species. The bar denotes spatial
inversion: x→ x ≡ x−1 etc.

Excitations can also be described by polynomials. Apply-
ing a Pauli Z to the first (or second) qubit at the origin excites
A-terms in the pattern f1 (respectively, f2). Interestingly, one
may flip A-terms purely in the yz plane [6] by noting

(y + z) f1 + f2 = 1 + y + y2 + z + yz + z2 C g. (18)

Consider planar fractional moves for visual clarity. The yz-
planar ones are generated by g, allowing A excitations to travel
arbitrarily long distances toward each of the conic directions

Figure 5. Fracton’s mobility in the Haah’s code. (a) Top: definition
of A1 and B1. They are products of eight Pauli’s. Identity operators I
are omitted when possible. Bottom: mobility cones (on the yz-plane)
for A and B excitations. (b) Fractional moves 1 → ηi of an A exci-
tation are realized by operators of fractal support. Gray square dots
represent operator (0, 0, y + z, 1) and its translations. (c) A windmill
for a composite of type-A and type-B fractons.

K1,K2, and K3 in Fig. 5(a). Explicitly, for l = 2n, one has
1 + gl = yl + y2l + zl + zlyl + z2l due to the Z2 setting of the
model. Accordingly, 1→ 1+ gl provides an instance of push-
ing an A-term excitation by at least l distance toward K1. It
is realizable by fractal-shaped operator gl−1(0, 0, y + z, 1), re-
flecting the excitation being a fracton of fractal nature. See
Fig. 5(b). We call each Ki a mobility cone for A excitations,
as defined in SM [46]. The description of B excitations are
analogous but with spatial directions inverted.

Based on mobility cones, we categorize fractons of HHaah
into three types—A, B, and mixed—and define their windmill
self-statistical processes. Type-A (type-B) are fractons with
the mobility cones Ki (respectively, −Ki) for i = 1, 2, 3 shown
in Fig. 5(a). The mixed are bound states of type-A and type-
B; they cannot be moved along any individual cone among
Ki’s or −Ki’s. Self-statistics is definable using the “windmill”
made of mobility cones. See Figs. 5(a) and (c). In HHaah, non-
mixed (i.e., type-A or type-B) fractons exhibit purely bosonic
self-statistics, since only one type of Pauli is involved.

Fermionic type-A fractons in a twisted Haah’s code. To
further illustrate the usage of fracton self-statistics, consider
a gauge-theoretic variant of Haah’s code defined by applying
HHaah to a Hilbert space that binds a fermionic mode ψλ to Aλ

via Gauss’s law −iγλγ̃λAλ = 1, where γλ B ψλ +ψ
†

λ and γ̃λ B
1
i (ψλ − ψ

†

λ) are Majorana operators. As detailed in SM [46],
the gauge theory emerges from a spin model HF

Haah, namely,
the twisted Haah’s code proposed in Ref. [38].

Fracton self-statistics enables us to settle the unresolved
question of whether HF

Haah represents a distinct fracton order
from the original Haah’s code HHaah. The expectation that A
excitation becomes fermionic is now definable and provable
via windmill processes. The operator creating A-excitations
is modified to Zσcσ due to gauge invariance, where Zσ de-
notes Pauli Z on qubit σ while cσ denotes a product of γλ’s
that are associated with the Zσ-flipped A terms. Still, one
may wonder whether it is possible to compensate the statis-
tics change by attaching B excitations to A. Indeed, this is the
case for the 2D toric code, and the checkerboard model, which
we have shown above. However, it is not allowed here be-
cause attaching type-B fractons alters the mobility of A. Thus,
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the presence of fermionic type-A fractons distinguishes HF
Haah

from HHaah. See also SM [46] for the discreteness of this self-
statistics, which confirms the phase distinction.

Conclusions. We have shown that it is possible to ex-
change two realizations of a fracton superselection sector via
its fractional mobility. The notion of self-statistics for fractons
can thus be introduced, which is essential in characterizing
fracton orders. As applications, we studied a family of twisted
checkerboard models and a twisted Haah’s code, from which
we revealed a novel phase of foliated nature—what we call
a semionic fracton order—and a new fractal-type order char-
acterized by emergent fermionic fractons. Our work marks a
crucial step towards a full “algebraic theory of fractons” yet
to be developed.
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Supplementary Material for “Fracton Self-Statistics”

Hao Song, Nathanan Tantivasadakarn, Wilbur Shirley, and Michael Hermele

This supplementary material contains: (S.I) the counting of windmills for foliated fractons, (S.II) a proof of Eq. (6), (S.III) a
non-Pauli stabilizer formulation of 2D double semion model (as a preliminary for twisted checkerboard models), (S.IV) details
of twisted checkerboard models and their classification, (S.V) a mathematical treatment of mobility cones, (S.VI) details of the
twisted Haah’s code, and (S.VII) the discreteness of fracton self-statistics in the Haah’s code and its twisted variant.

S.I. COUNTING OF WINDMILLS FOR FOLIATED FRACTONS

In this section, we enumerate the windmills for foliated fractons. There are eight of them: the yz plane has four quadrants
for placing M2, and one has two choices of M1 and M3 (along the xy and zx planes respectively) after fixing M2 as depicted in
Fig. 3(b) and (c) of the main text. Explicitly, they can be denoted as

[
xyz
]
,
[
xyz
]
,
[
xyz
]
,
[
xyz
]
,
[
xyz
]
,
[
xyz
]
,
[
xyz
]
, and

[
xyz
]
. The

last four are the spacial inversions of the first four.
It is important to note that, while windmill processes generally exist (as also observed in our study of Haah’s code), the

numbers of windmills and independent statistics vary with the underline fracton mobility structure. Our enumeration targets
foliated fractons as defined by the main text’s Eq. (1), deferring analogous exhaustive counts of fracton statistical processes in
other scenarios (including the fractal cases and many other variants like those in Refs. [23, 51]) to future studies.

S.II. PROOF OF EQ. (6)

This section presents a proof for the main text’s Eq. (6).
To start, we observe that θ[xyz]

q×q′ = θ
[xyz]
q θ

[xyz]
q′ if q and q′ are excitations separated in the [111] direction. This is because θ[xyz]

q×q′

can be realized as a composition of the
[
xyz
]

processes for q and q′, which are realized on two parallel windmills that do not
intersect with each other. See Fig. S1.

Figure S1. Illustration of θ[xyz]
q×q′ = θ

[xyz]
q θ

[xyz]
q′ for q and q′ spatially separated in the [111] direction.

Next, consider the
[
xyz
]

self-statistics of a × b × lma × −lmb for any large enough l, where m = tx + ty + tz denotes the [111]
direction. The above observation implies

θ
[xyz]

a×b×lma×−lmb
= θ

[xyz]
a×b θ

[xyz]
lma

θ
[xyz]
−lmb

. (S1)

Similarly, for later use, we also have

θ
[xyz]

a×lma
= θ

[xyz]
a θ

[xyz]
lma

and θ
[xyz]

b×−lmb
= θ

[xyz]
b θ

[xyz]
−lmb

. (S2)

An alternate expression of the self-statistics of a × b × lma × −lmb can be given in terms of statistics of a × lma and b × −lmb.
To write it down explicitly, recall that, for each µ ∈ {x, y, z},

pa
µ B a × ltµa and pb

µ B b × −ltµb (S3)
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are planons mobile in the directions perpendicular to µ. In particular, we have pa
y = a × lty a = ltx a × ltx+lty a and pa

z = a × ltz a =
ltx+lty a × lma. Accordingly,

a × lma = a × ltx a × ltx a × ltx+lty a × ltx+lty a × lma = pa
x × pa

y × pa
z . (S4)

Similarly, b × −lmb = pb
x × pb

y × pb
z . The associated windmill processes are thus reducible into braidings of planons. Therefore,

θ
[xyz]

a×lma
= θpa

xθpa
yθpa

z , θ[xyz]

b×−lmb
= θpb

x
θpb

y
θpb

z
, and more importantly, for our current purpose, θ[xyz]

a×b×lma×−lmb
can be expressed as

θ
[xyz]

a×b×lma×−lmb
= θ

[xyz]

a×lma
· θ

[xyz]

b×−lmb
· S x

abS y
abS z

ab, (S5)

where θpa
µ(pb

µ
) is the braiding self-statistics of pa

µ (pb
µ
) and S µ

ab has been defined in the main text to be the mutual statistics between

pa
µ and pb

µ
.

Finally, the desired identity

θ
[xyz]
a×b = θ

[xyz]
a θ

[xyz]
b S x

abS y
abS z

ab (S6)

is proven by comparing Eqs. (S1), (S2), and (S5).

S.III. NON-PAULI STABILIZER FORMULATION OF 2D DOUBLE SEMION MODEL

There are various ways to represent the 2D double semion phase [11, 49, 50, 52–54]. In this section, we turn a twisted gauge
model for double semions into a non-Pauli stabilizer formalism [55], which will be used in Sec. S.IV to motivate the formulation
of the twist checkerboard models used in the main text.

It is known that the double semion phase can be represented by a twisted Z2 gauge model [11, 53]. For the later convenience
in making a comparison with layers of a 3D checkerboard, consider a 2D checkerboard with a physical qubit per vertex and
triangulated as in Fig. S2(a), where the cyan regions (which we call sites) are left as holes for holding non-trivial fluxes. The
formalism of 2D twisted gauge models [11] defines, for example, the flux term Bs and the gauge transformation Ãs at site s = 4
as

B4 B Z13Z14Z36Z46, (S7)
Ã4 B X14X24X46X47C (Z13,Z14) C (Z14,−Z24) C (−Z24,Z25)

C (Z36,Z46) C (Z46,−Z47) C (−Z47,Z57) C (Z24Z25, B5) , (S8)

where each edge (and the qubit on it) is labeled by its end sites, B5 B Z24Z25Z47Z57 analogous to B4, and

C (P,Q) B (−1)
1
4 (1−P)(1−Q) (S9)

is a shorthand for expressing controlled-Z gates and their generalizations.
The formalism of twisted gauge models ensures [Ãs, Ãs′ ] = [Ãs, Bs′ ] = [Bs, Bs′ ] = 0. In addition, Ãs corresponds to a

projective representation of Z2 when Bs = −1. Explicitly, it is straightforward to check

Ã2
s = Bs (S10)

from the definition of Ãs above. Consequently, (Ãs, Bs) = (1, 1), (−1, 1), (i,−1), and (−i,−1) label the four possible states (with
(1, 1) being the trivial one) at each site s.

For convenience, replacing Ãs with

As B Ãs(
√

Bs)† (S11)

can turn this double semion model into a non-Pauli stabilizer code, where A2
s = B2

s = 1, [As,As′ ] = [As, Bs′ ] = [Bs, Bs′ ] = 0,
and As acts identically as Ãs on the double semion ground states. The four states at s can thus be labeled by (As, Bs) = (1, 1),
(−1, 1), (1,−1), and (−1,−1). As shown below, their self-statistics are 1, 1, i, and −i respectively.

First, (As, Bs) = (1, 1) denotes the absence of excitation and is hence trivial in all aspects (including self-statistics). Secondly,
the self-statistics of (As, Bs) = (−1, 1) is also trivial; excitations of this type are created in pairs and moved by purely Pauli Z
operators.
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Figure S2. (a) A double semion model on a triangulated 2D checkerboardD with a qubit per vertex (i.e., black dot). Cyan regions (which we
call sites) are punched holes of the plane for holding fluxes. OperatorAs for site s = 4 is supported on the eight qubits {µ, 1, µ, µ2, µν, ν, µν, µ2ν},
where µ ≡ µ−1. A label µ jνk is in red if j + k is odd. (b) [respectively, (c)] A correspondence between an x-layer (y-layer) of 3D checkerboard
and the 2D checkerboardD, in which x-edges (y-edges), colored green (blue), correspond to the black dots ofD. Twisting this layer of the 3D
checkerboard model adds, to the A term at the dashed magenta cube, a phase factor depending on the variables Zv(1+x) = ZvZvx (respectively,
Zv(1+y) = ZvZvy) associated with the x-edges (y-edges) of the two neighbor cubes shown in a darker gray. Vertex (i, j, k) is labeled xiy jzk and the
label is shown in red (black) if i + j + k is odd (even), where x ≡ x−1 etc.

As for (As, Bs) = (1,−1), let Sss′ be an operator flipping only Bs and Bs′ at the ends of edge ⟨ss′⟩. Physically, one may view
Sss′ as an elementary string operator or as a modified bit-flip operator. It takes the form

S24 B X14
√

Z24C (Z13,Z14) C (Z01Z02,Z14Z24) C (−Z13Z14,Z36Z46) , (S12)

S47 B X46(
√

Z47)†C (Z36,Z46) C (Z13Z14,Z36Z46) C (−Z46Z47,Z68Z78) (S13)

for ⟨ss′⟩ = ⟨24⟩ and ⟨47⟩, and is specified by translation symmetry in general. By direct computation, one has

S2
ss′ = BsBs′ , S

†

ss′ = Sss′BsBs′ , [Sss′ ,Ss′′ s′′′ ] = 0 if s, s′, s′′, and s′′′ are four distinct sites, (S14)
[Sss′ ,As′′ ] = 0, ∀s′′, [Sss′ , Bs′′ ] = 0, ∀s′′ , s, s′, {Sss′ , Bs} = {Sss′ , Bs′ } = 0, (S15)
Ss′ sSs′′ s = iSs′′ sSs′ s, ∀s′′ is on the left of s′, e.g., S24S14 = iS14S24, (S16)
Sss′Sss′′ = −iSss′′Sss′ , ∀s′′ is on the left of s′, e.g., S47S46,= −iS46S47, (S17)
Sss′Ss′′ s = −Ss′′ sSss′Bs, e.g., S47S14 = −S14S47B4, (S18)

where all edges are assumed oriented as in Fig. S2(a). A generic string operator for (As, Bs) = (1,−1) can be written as a product
of Sss′ or S†ss′ along a sequence of edges.

To determine the self-statistics of (As, Bs) = (1,−1), we make an counterclockwise exchange of two such excitations, named
a and b for keeping track of their paths. Initialize a and b at sites 1 and 2 respectively in Fig. S2(a). In terms of the basic
moves M1 = S14 (4→ 1), M2 = S

†

47 (4→ 7), and M3 = S24 (4→ 2) for this type of excitation, the exchange can be realized
as follows: first move a from 1 to 7 by M2M†1 = S

†

47S
†

14, then b from 2 to 1 by M1M†3 = S14S
†

24, and finally a from 7 to 2 by
M1M†2 = S24S47. It results in

S24S47S14S
†

24S
†

47S
†

14 = i. (S19)

Namely, (As, Bs) = (1,−1) is a semion. In the derivation of Eq. (S19), we used the identities S24S47S14 = −S24S14S47B4 =

−iS14S24S47B4 = iS14S47S24B4B4 = iS14S47S24, where S24, S47, and S14 are permuted by identities (S16) and (S18).
The last excitation type (As, Bs) = (−1,−1) can be viewed as a bound state of (As, Bs) = (1,−1) and (−1, 1). It is created in

pairs and moved by Sss′ B Sss′Zss′ . Its self-statistics is −i, by a computation as in Eq. (S19) but with Sss′ used instead.
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S.IV. TWISTED CHECKERBOARD MODELS AND THEIR CLASSIFICATION

In this section, we provide some more details about the twisted checkerboard models used in the main text.

A. Construction details of twisted checkerboard models

In this subsection, we explain how the non-Pauli stabilizer formulation is obtained for the seven twisted checkerboard models.
The construction is done via the correspondence between the double semion model and each layer of 3D twisted checkerboards
as illustrated in Fig. S2, which also motivates the expression of twisted X operators explicitly given in Sec. S.IV B.

On the double semion side, for the model on the 2D checkerboardD in Fig. S2(a), let (Z|D) denote the configuration of all its
qubits in the Z basis. ThenAs in Eq. (S11) takes the formAs = Asϕs (Z|D), where As is a product of four Pauli X operators, and
ϕs (Z|D) is a U(1) phase associated with the change of (Z|D) made by As. In fact, ϕs (Z|D) only depends on the Z’s associated
with a finite number of qubits near s. Similarly, Sss′ in Eqs. (S12) and (S13) can be viewed as a modified X operator of the form
Xσ = Xσγσ (Z|D) with γσ (Z|D) ∈ U (1), where σ ∈ D labels qubits.

On the 3D checkerboard side, by a κ-layer we mean a single layer of cubes arranged on a plane perpendicular to the κ-direction,
where κ = x, y, z. The κ-edges within can be labeled by

Eκn B
{
x jx y jy z jz (1 + κ) | jκ = n

}
(S20)

for n ∈ Z. Each layer corresponds to a 2D checkerboard, with Eκn mapped to vertices and gray (blank) cubes to gray (white)
squares. The edge variable on ℓ = v (1 + κ) is Zℓ B ZvZvκ. Let

(
Z|Eκn
)

denote the configuration of edge variables Zℓ for ℓ ∈ Eκn. The
change of

(
Z|Eκn
)

under Ac is like that of (Z|D) under some As, if c is adjacent to Eκn. We can thus assign a phase ϕc
(
Z|Eκn
)
∈ U (1)

to this change as in the double semion model. We may require ϕc
(
Z|Eκn
)
= 1 if c is not adjacent to Eκn, for

(
Z|Eκn
)

is unchanged
by Ac in this situation. Similarly, for the change of

(
Z|Eκn
)

under Xv, there is a phase γv
(
Z|Eκn
)
∈ U (1) associated analogously as

for Sss′ in Eqs. (S12) and (S13).
The twisted checkerboard model Hx

cb is obtained by twisting all x-layers, namely,

Ac → Ax
c = Ac

∏
n

ϕc
(
Z|Ex

n
)
≡ AcΦ

x
c and Xv → Xx

v = Xv

∏
n

γv
(
Z|Ex

n
)
≡ XvΓ

x
v , (S21)

where Φx
c B
∏

n ϕc
(
Z|Ex

n
)

and Γx
v B
∏

n γv
(
Z|Ex

n
)

for short. For each Ax
c (and Xx

v ), only the two layers adjacent to c (respectively,
v) contribute a nontrivial factor. Moreover, Φx

c and Γx
v are local operators. The explicit expressions of Ax

c and Xx
v are given in the

main text and in Sec. S.IV B respectively, obtained based on the correspondence between Ex
n andD in Fig. S2(b). The algebraic

properties of Ax
c and Xx

c can be derived analogously as in Sec. S.III. In particular, one has (Ax
c)2 = 1 and

[
Ax

c , Bc′
]
=
[
Ax

c , X
x
v
]
= 0,

which enable us to analyze the model Hx
cb as a non-Pauli stabilizer code.

For concreteness, we illustrate how the expression of Ax
c in the main text is obtained. On the double semion side, label the

qubits by µ jνk as in Fig. S2(a). Then, for example, Z13 and Z14 are denoted Zµν and Zν respectively below. The controlled-Z gate
on them can be expressed as

C (Z13,Z14) = C
(
Zµν,Zν

)
= (−1)n−

µν
n−ν , (S22)

where C (·, ·) is defined by Eq. (S9) and n−v B
1
2 (1 − Zv). Similarly, we have C (Z14,−Z24) = (−1)n−ν n+µν with n+µν B

1
2 (1 + Zµν) etc.

Thus, Ã4 in Eq. (S8) can be reformulated as

Ã4 = A4 (−1)n−
µν

n−ν +n−ν n+µν+n+µνn
−

µ2ν
+n−

µ
n−1+n−1 n+µ+n+µn−

µ2 (−1)n−µν(1+µ)n
−
µ(1+µ)(1+ν) (S23)

where n−µν(1+µ) B
1
2

(
1 − Zµν(1+µ)

)
with Zµν(1+µ) B ZµνZµ2ν and in general n±κ B

1
2 (1 ± Zκ) with Zκ B

∏
v∈κ Zv for any finite set κ of

qubits. Moreover,A4 in Eq. (S8) takes the form

A4 = A4 (−1)n−
µ

n−1+n−
µν

n−ν +n−1 n+µ+n−ν n+µν+n+µn−
µ2+n+µνn

−

µ2ν · (−1)n−µν(1+µ)n
−
µ(1+µ)(1+ν) · i−n−(1+µ)(1+ν) . (S24)

Based on the correspondence between Ex
n and D in Fig. S2(b), Ax

c in the twisted checkerboard model Hx
cb can be expressed as

Ax
c = AcΦ

x
c = Acϕ(1+x)xcϕ(1+x)xc, where ϕ(1+x)xc and ϕ(1+x)xc denote the twisting factors associated with the x-layers containing

x-edges whose vertices are ℓ = (1 + x) xc and ℓ = (1 + x) xc respectively. Explicitly,

ϕℓ B (−1)n−
ℓyn−ℓ +n−

ℓyzn
−
ℓz+n−ℓ n+ℓy+n−ℓzn

+
ℓyz+n+ℓyn−

ℓy2+n+ℓyzn
−

ℓy2z · (−1)n−ℓyz(1+y)n
−
ℓy(1+y)(1+z) · i−n−

ℓ(1+y)(1+z) . (S25)



5

which is obtained from the twisting factor of Eq. (S24) by replacing Zv (which appears in n±v B
1
2 (1 ± Zv) etc) with edge variable,

e.g., Zℓv = ZxcvZcv for ℓ = (1 + x) xc. As illustrated in Fig. S2(b), for c = 1 (the dashed magenta cube), ϕ(1+x)xc is associated with
the x-edges of the two darker gray cubes.

Twisting factorsΦy
c, Γy

v,Φz
c, and Γz

v along y-layers and z-layers are obtained fromΦx
c and Γx

v by the 3-fold rotation that permutes
x, y, and z directions. They are used in defining the remaining twisted checkerboard models mentioned in the main text. For
instance, Hxy

cb is obtained by the replacement Ac → Axy
c = AcΦ

x
cΦ

y
c.

Note that one may obtain different twisting factors if Eµn withD are matched in a different way, but this will not result in new
phases. As an illustration, let Φy

c and Γy
v denote the twisting factors obtained from the Ey

n-D correspondence in Fig. S2(c), where
y refers to µ̂× ν̂ = −ŷ. Although Φy

c , Φ
y
c, the change of Eµn-D correspondence is equivalent to a retriangulation ofD and hence,

as in 2D [53], we may use a Pachner-move-motivated local unitary transformation to identify the corresponding quantum phases.

B. Two derivations of semionic fracton self-statistics

In this subsection, two derivations are given to show that the B excitation of Hx
cb, denoted mx, is a semionic fracton.

One approach is to work out the details of the twisted X operator for generating fractional moves of B excitations explicitly.
First, using Eq. (S21) and the Ex

n-D correspondence in Fig. S2(b), we obtain

Xx
v = Xvφ(1+x)vφ(1+x)xv, (S26)

where (1 + x) v and (1 + x) xv correspond to the two x-edges connecting to v. For ℓ (ℓ̃) of the from (1 + x) x jykzl with j + k + l
even (odd),

φℓ B i−n−ℓy (−1)n−ℓ n−
ℓy+n+ℓ+ℓyn−

ℓ(1+y)z+n−
ℓ+ℓyn−

ℓ(1+y)z , (S27)

φℓ̃ B in
−

ℓ̃y (−1)n−
ℓ̃

n−
ℓ̃y
+n+

ℓ̃+ℓ̃y
n−
ℓ̃(1+y)z

+n−
ℓ̃+ℓ̃y

n−
ℓ̃(1+y)z , (S28)

where n±κ B
1
2 (1 ± Zκ) with Zκ B

∏
v∈κ Zv for any finite set of vertices κ (written as a formal sum). The commutation relation

Xx
v Xx

v′ =


Xx

v′X
x
v
∏

c∋v,v′ Bc, v′v−1 < xy-plane,
(−1)v iXx

v′X
x
v , v′v−1 = xy, xy,

− (−1)v iXx
v′X

x
v , v′v−1 = xy, xy,

Xx
v′X

x
v , otherwise

(S29)

can be established by direct computation, where c ∋ v, v′ labels colored cubes which contain both v and v′, and (−1)v B (−1) j+k+l

for v = x jykzl. In addition, we have
(
Xx

v
)2
=
∏

c∋v Bc and hence Xx†
v = Xx

v
∏

c∋v Bc. One can use Xx
v to flip the four Bc terms on

the cubes connecting to v. This generates fractional moves for windmill processes explicitly. For mx (i.e., a Bc = −1 excitation
of Hx

cb), utilizing Eq. (S29), we obtain

θ
[xyz]
mx = θ

[xyz]
mx = i and θ

[xyz]
mx = θ

[xyz]
mx = −i (S30)

by a straightforward computation.
The second approach provides a fast and intuitive way to write down fracton self-statistics in twisted models. In this approach,

to get the self-statistics of mx in Hcb, we consider another model hx
cb obtained by twisting the checkerboard model along x-layers

only in the x > 0 region. Let b± denote one Bc = −1 excitation of hx
cb at ± (l, l, l) for l > 0. Since hx

cb is twisted as Hx
cb for

x > 0 and untwisted for the x < 0 region, b+ has the same self-statistics as mx in Hx
cb and meanwhile b− has purely bonsonic

self-statistics. Moreover, note that both S µ
b+b−

and S µ
b−b+

are trivial for µ = x, y, z. Hence we get θ[τ]
b+×b−

= θ[τ]
b+
θ[τ]

b−
by Eq. (S6) (i.e.,

Eq. (6) of the main text) for τ = xyz, and analogously also the correspondents for τ = xyz, xyz, and xyz. Altogether, we have

θ[τ]
mx = θ

[τ]
b+
= θ[τ]

b+×b−
(S31)

for τ = xyz, xyz, xyz, and xyz. This greatly simplifies the computation of θ[τ]
mx because b+ × b− is reducible into three dipolar

planons (analogous to those in Eq. (S3)). In hx
cb, one of the planons is semionic, which implies Eq. (S30) immediately by using

Eq. (S31). The idea of the second approach, which simplifies the computation of a fracton’s statistics by combining of twisted
and untwisted phases, applies to other twisted models of foliated fractons.
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C. Classification of twisted checkerboard models

In this subsection, we show how local unitary transformations can be obtained for establishing the classification, claimed in
the main text, of twisted fraction models. Recall that two gapped models belong to the same phase if and only if their ground
states are related by a local unitary transformation [56].

Let us illustrate this by explaining how to find a local unitary transformation connecting Hxy
cb and Hcb. For convenience, we

use the Ex
n-D and Ey

n-D correspondences in Figs. S2(b) and (c) for twisting construction. Denote the corresponding model by
Hxy

cb . As discussed in the last paragraph of Sec. S.IV A, it only differs from Hxy
cb by a local unitary transformation. For Hxy

cb ,
the twisted X operator takes the form Xxy

v = XvΓ
x
vΓ

y
v, where Γx

v and Γy
v are related by the reflection that swaps x and y. By

analogy to the commutation relation of Xx
v in Eq. (S29), one has that Xxy

v and Xxy
v′ anticommute for v′ = (xy)±1 v and commute

otherwise. Therefore, the operator Xv B Xxy
v Zxyv has the same algebraic properties as Xv. Hence there should exist a local

unitary transformation U that maps Xv to Xv while keeping Zv fixed.
Working out the details explicitly, we have

Xv B Xxy
v Zxyv = Xvi−(−1)v

(
n−xyv+n−xyv

)
(−1)n−yvn−xyv+n−xvn−xyv+n−v n−xyv+n−yvn−xv+n−xyvn−v +n−xvn−yv+n−xyvn−xv+n−xyvn−yv . (S32)

It implies that the transformation Xv 7→Xv can be realized by the local unitary

U B
∏

v

i−(−1)vn−xyvn−v (−1)n−xyvn−xvn−v +n−xyvn−yvn−v . (S33)

Furthermore, by a straightforward but tedious calculation, we can show UHcbU† ≃ Hxy
cb , where ≃ means that two operators

acting identically on states satisfying Bc = 1,∀c. Thus, the ground states of Hcb, Hxy
cb , and hence also Hxy

cb are related by local
unitary transformations. They all belong to the same fracton phase.

Remarkably, by the above discussion, we proved that twistings in two different directions are related and can even cancel each
other through a local unitary transformation. For us, this fact was so counterintuitive initially that we did not even think that
it could be true until we calculated the fracton self-statistics. Combined with this fact, the presence and absence of semionic
fracton indeed yields the classification stated in the main text about twisted checkerboard models.

S.V. MOBILITY CONES

In this section, we provide a mathematical treatment of mobility cones, together with necessary preliminaries.

A. Mathematical preliminaries

Definition 1. A set K ⊆ Rd is called a cone if αv ∈ K,∀v ∈ K,∀α ∈ R≥0.

Definition 2. A cone K ⊆ Rd is called convex if α1v1 + α2v2 ∈ K,∀v1, v2 ∈ K,∀α1, α2 ∈ R≥0.

Definition 3. Given a set S ⊆ Rd, the conical hull of S is denoted cone (S ) and defined as

cone (S ) B


n∑

j=1

α jv j|v j ∈ S , 0 ≤ α j ∈ R, j, n ∈ N

 . (S34)

For S = ∅, cone (S ) B {0}. Each element of cone (S ) is called a conical combination of S .

Remark 1. It is clear that cone (S ) is a convex cone. Actually, cone (S ) is the smallest convex cone containing S .
The above basic definitions about convex cones may be found in the mathematical literature, e.g., Ref. [57].

B. Definition of mobility cones

We now define the notion of mobility cones for quasiparticles (especially for fractons) in a gapped phase. Let E3 be the
Euclidean space where physical degrees of freedom live. We view R3 as the group of translations. For K ⊆ R3 and C ⊆ E3, let

C + K B {x + v|x ∈ C , v ∈ K} ⊆ E3. (S35)

Let q denote a quasiparticle superselection sector (i.e., a particle type up to local operations).
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Definition 4. A closed convex cone K ⊆ R3 is called a mobility cone for q (and any quasiparticle in this superselection sector) if
there exists a finite region C ⊆ E3 such that q can be realized by excitations supported inside (C + K) \ (−n, n)3, ∀n ∈ N, where
(−n, n)3 denotes a cube centered at the origin and (C + K) \ (−n, n)3 is a region with (−n, n)3 excluded.

Physically, this means that quasiparticles in the sector q can move (probably in a fractional way) to infinity within the conical
region O + K.

Example 1. The empty set K = ∅ is a mobility cone for q if and only if q is the trivial superselection sector. Note C +K = ∅ and
(C + K) \ (−n, n)3 = ∅ if K = ∅. A state with excitations supported inside (C + K) \ (−n, n)3 = ∅ simply contains no excitation
at all.

Example 2. Both cone (x̂) and −cone (x̂) are mobility cones for a quasiparticle with conventional mobility along the x̂-direction.

Example 3. Fractons do not have conventional mobility along any direction. Hence they allow only two- or three-dimensional
mobility cones. Besides, a pair of cones related by inversion, ±K, do not have to be both mobility cones for a fracton superse-
lection sector, as we have noticed in the Haah’s code.

C. Invariance of mobility cone under local unitary

Suppose that H is a gapped Hamiltonian and U a local unitary. Each superselection sector q of H is then mapped by U to a
superselection sector q̃ of UHU†. If K is a mobility cone for q, it is clear that K is also a mobility cone for q̃.

D. Mobility cones in Haah’s code

Consider the Haah’s code HHaah. Denote the lattice translation group by Λ B {xiy jzk |i, j, k ∈ Z}. Let R B Z2Λ be the group
ring of Λ over Z2 = {0, 1}. The elements of R can be thought as Laurent polynomials in x, y, and z.

For HHaah, excitation patterns within finite regions are labeled by (a, b) ∈ R2 with a and b specifying the configurations of the
A-term and B-term excitations resepctively. Two excitation patterns (a, b) and (a′, b′) belong to the same superselection sector,
and we write (a, b) ∼ (a′, b′), if and only if a − a′ ∈ I and b − b′ ∈ I, where

I ≡ ( f1, f2)R B {a1 f1 + a2 f2|a1, a2 ∈ R} and I ≡ ( f 1, f 2)R B {a1 f 1 + a2 f 2|a1, a2 ∈ R} (S36)

are two ideals of R, and we remind the reader that f1 = 1 + x + y + z and f2 = 1 + xy + xz + yz. Thus, superselection sectors can
be labeled by (R/I) × (R/I), where R/I and R/I denote quotient rings.

In particular, (a, b) ∼ (0, 0) and represents the trivial superselection sector if and only if a ∈ I and b ∈ I. All the nontrivial
superselection sectors are fractonic and can be put into three groups: type-A, type-B, and mixed.

Definition 5. A nontrivial superselection sector (qA, qB) ∈ (R/I) × (R/I) is called type-A (respectively, type-B) if qB = 0
(respectively, qA = 0). It is called mixed if qA , 0 and qB , 0.

The ideal I ≡ ( f1, f2)R describes the fractional moves of A-term excitations. It can also be generated by f1 and g = (y + z) f1 +
f2 = z2 + (y + 1) y+ y2 + y+1. Namely, the ideal ( f1, g)R B {a1 f1 + a2g|a1, a2 ∈ R} is identical to ( f1, f2)R. From g, it is clear that

K1 B cone (ŷ, ẑ) , K2 B cone (ẑ − ŷ,−ŷ) , K3 B cone (−ẑ, ŷ − ẑ) (S37)

are 2D mobility cones for all type-A superselection sectors. Their spatial inversions −K1, −K2, and −K3 are mobility cones for
all type-B superselction sectors. See Fig. 5 of the main text for a visual. In general, one may also consider 3D mobility cones,
like cone (x̂ + ŷ, ŷ + ẑ, ẑ + x̂) for type-A superselection sector (as implied by f2 = 1 + xy + yz + zx). Nevertheless, for simplicity,
we focus on 2D mobility cones along the yz plane, which suffice for our current purpose.

To confirm that type-A and type-B can be distinguished by mobility cones, we show that none of −Ki’s (respectively, Ki’s) is a
mobility cone of any type-A (respectively, type-B) superselection sector. Note that it is possible to permute the three Ki’s while
keeping I = ( f1, g)R invariant using two transformations (1) a swap y ↔ z and (2) a mapping given by x 7→ xz, y 7→ yz, and
z 7→ z. Hence we only need to consider one of Ki’s (e.g., K3). See below.

Claim 1. The cone −K3 is not a mobility cone for any type-A superselection sector.
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Proof. Argue by contradiction. Assume that −K3 is a mobility cone for type-A superselection sector (qA, 0). Then there exists
ξn ∈ qA supported inside (C − K3) \ (−n, n)3, ∀n ∈ N. Note −K3 = cone (ẑ, ẑ − ŷ). By using translation symmetry and the
modulo operations of first f1 and then g, we can reduce ξn to be of the form ξn = (ξ′nz + ξ′′n )zn where ξ′n and ξ′′n are arbitrary
Laurent polynomials in y. Let deg (ξn) denote the highest total degree of ξn, and degy

− (ξn) denote the lowest degree of ξn in y.
For example, deg (yz + 1) = 0 and degy

− (yz + 1) = −1. Note deg (ξn) − degy
− (ξn) ≥ n. Moreover, ξn ≡ ξn−1 (mod I) implies

deg (ξn) = deg (ξn−1) and degy
− (ξn) = degy

− (ξn−1), which can be checked straightforwardly. Hence, we have deg (ξ0)−degy
− (ξ0) =

deg (ξn) − degy
− (ξn) ≥ n,∀n ∈ N. This contradicts the fact that ξ0 is an excitation configuration inside a finite region, proving the

claim. □

Therefore, −Ki’s (respectively, Ki’s) are not mobility cones for type-A (respectively, type-B) superselection sector. Moreover,
Ki’s and −Ki’s have to be combined to provide a mobility cone for each mixed superselection sector. This is how type-A, type-B,
and mixed superselection sectors are distinguished in the main text.

S.VI. TWISTED HAAH’S CODE

This section presents details of the spin model for twisted Haah’s code [38]. It is explicitly defined by the Hamiltonian

HF
Haah = −

∑
λ

(
Aλ + B̃λ

)
, (S38)

which is obtained by replacing the B-term of the original Haah’s code HHaah with

B̃λ =
(
t1 f2, t2 f1, f2, f1

)
, (S39)

where t1 = x + y + z + xy + yz + zx and t2 = xy + yz + zx + xy + yz + zx.
The twisted model is designed such that it gives rise to an emergent HHaah-governed fermionic gauge theory. This is mentioned

in the main text and can be understood using the exact correspondence of degrees of freedom [21]

Xσ 7→ Xσ and Zσcσ 7→ ZσTσ (S40)

between the gauge theory and the spin model, where cσ is a product of Majorana operators, as defined in the main text, and Tσ
is a product of Pauli X’s which correspond to the t factors in Eq. (S39). In the construction, the exact form Tσ and t factors are
specified by the requirement that (anti)commutation relations should be preserved during the correspondence.

S.VII. DISCRETENESS OF FRACTON SELF-STATISTICS IN THE HAAH’S CODE AND ITS TWISTED VARIANT

In this section, we examine in greater detail the A-excitation self-statistics described in the main text for the Haah’s code and
its twisted variant. We show that it allows only two discrete values ±1 for both phases.

Consider the exchange process θa = M†3 M2M†1 M3M†2 M1 of A-excitations a (initialized at the origin x0y0z0 ≡ 1) and â (initial-
ized at η2) in the Haah’s code or its twisted variant, where Mi : 1 → ηi for i = 1, 2, 3 are fractional moves along the yz-plane
with ηi located as in Fig. S3. Making the exchange twice gives

θ2
a = M†3(M2M†1)M3M†2(M1M†3)M2M†1(M3M†2)M1, (S41)

where parentheses are inserted to notionally separate the moves of â from those of a. Note that f1 = 1 + x + y + z gives a
fractional move 1 → 1 + x f1 = (1 + y + z) x. It can be iterated to generate fractional moves of each A-excitation, along a
cyan tetrahedron illustrated in Fig. S3, from the yz-plane (i.e., x = 0) to any x = −n plane for n = 1, 2, 3 · · · . Thus, we have
ηi → ηi (x + xy + xz)→ ηi (x + xy + xz)2

→ · · · → ηi (x + xy + xz)n. Together with the inverse of η j → η j (x + xy + xz)n, we can
deform the moves M jM

†

i : ηi → 1→ η j for â into

N ji : ηi → ηi (x + xy + xz)n
→ (x + xy + xz)n

→ η j (x + xy + xz)n
→ η j (S42)

to bypass the origin, where ηi (x + xy + xz)n
→ (x + xy + xz)n

→ η j (x + xy + xz)n is the analogue of ηi → 1 → η j but realized
on the x = −n plane. Using the original paths Mi for a and the detoured paths N ji for â, we can deform θ2

a (Eq. (S41)) into a
trivial process. Thus, θ2

a = 1 and hence θa = ±1.
Actually, the above argument for θa = ±1 holds as long as a allows a mobility cone out of the plane where θa is realized. The

discreteness of θa justifies its use in distinguishing fracton orders.
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Figure S3. A state with A-excitations a (at the origin) and â (at η2) in the Haah’s code or its twisted variant. Each A-excitation can be moved
along a tetrahedron (like the cyan one) towards where x = −n plane, where n can be 1, 2, 3, · · · .


