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Abstract

We analyze nonlinear degenerate coupled PDE-PDE and PDE-ODE systems that arise,
for example, in the modelling of biofilm growth. One of the equations, describing the evo-
lution of a biomass density, exhibits degenerate and singular diffusion. The other equations
are either of advection-reaction-diffusion type or ordinary differential equations. Under very
general assumptions the existence of weak solutions is proven by considering regularized
systems, deriving uniform bounds and using fixed point arguments. Assuming additional
structural assumptions we also prove the uniqueness of solutions.

Global-in-time well-posedness is established for Dirichlet and mixed boundary conditions,
whereas, only local well-posedness can be shown for homogeneous Neumann boundary con-
ditions. Using a suitable barrier function and comparison theorems we formulate sufficient
conditions for finite-time blow-up or uniform boundedness of solutions. Finally, we show that
solutions of the degenerate parabolic equation inherit additional global spatial regularity if
the diffusion coefficient has a power-law growth.
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1 Introduction

This paper investigates the well-posedness and qualitative properties of weak solutions of a wide
class of quasilinear parabolic systems where one of the equations shows degenerate and singular
diffusion. We also consider couplings of such degenerate parabolic equations with ordinary
differential equations (ODEs). The motivation for our work is models describing the growth of
spatially heterogeneous biofilms in dependence of growth limiting substrates. The models are
either formulated as systems of partial differential equations (PDEs) or as coupled PDE-ODE
systems, e.g. see [6, 7]. Their characteristic and challenging features are the degenerate and
singular diffusion effects in the equation for the biomass density and the nonlinear coupling of
this equation to additional ODEs and/or PDEs for the substrates.

Let Ω ⊂ Rd, d ∈ N, be a bounded Lipschitz domain and T > 0. We denote the parabolic
cylinder by Q := Ω× (0, T ]. Throughout this study, for a fixed k ∈ N, j ∈ {1, . . . , k} will denote
an integer, and ~w = (w1, . . . , wk) a k-dimensional vector. We consider the following problem in
Q,

∂tM = ∇ · [D0(M)∇M ] + f0(M, ~S), (1.1a)

∂tSj = νj∇ · [Dj(M, ~S)∇Sj + vjSj ] + fj(M, ~S), (1.1b)

for j = 1, . . . , k, where M : Q→ R denotes the biomass density and the vector-valued function
~S : Q → Rk the substrate concentrations. The biomass density M is normalized with respect
to the maximum biomass density and hence, it takes values in [0, 1). The biomass diffusion
coefficient D0 : [0, 1) → [0,∞) is degenerate, it satisfies D0(0) = 0 and limm↗1D0(m) = ∞.
Although, we remark that large parts of our analysis are also valid for non-degenerate functions
D0. The diffusion coefficients of the substrates Dj : [0, 1]×Rk → [0,∞) are non-degenerate, i.e.
they are bounded from above and below by positive constants. The constants νj ≥ 0 will be
referred to as the mobility coefficients of the substrates. It is important to point out that the
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case of immobilized substrates (νj = 0) is included in our setting which leads to a coupling of
Equation (1.1a) with ODEs in (1.1b). Moreover, vj : Q→ Rd is a given flow-field. Finally, the
reaction terms f0, fj : Rk+1 → R describe the complex interplay between the substrates and
biomass.

In biofilm modelling applications, it is important to allow for mixed Dirichlet-Neumann or
homogeneous Neumann boundary conditions for M . To this end, we divide the boundary ∂Ω into
two disjoint parts Γ1 and Γ2 that are both Lipschitz boundaries. We complement (1.1a)–(1.1b)
with the following initial and boundary conditions for M and ~S,

M(0) = M0, ~S(0) = ~S0, (1.1c)

M |Γ1 = h0, [∇M · n̂]|Γ2 = 0, νjSj |∂Ω = νjhj , (1.1d)

where n̂ denotes the outward unit normal to ∂Ω and M0 : Ω → [0, 1), ~S0 : Ω → Rk, h0 :
Γ1 → [0, 1) and hj : ∂Ω → R are given. We remark that the case Γ1 = ∅ is allowed in our
setting which corresponds to homogeneous Neumann boundary conditions for M . The case
Γ2 = ∅ is also included which corresponds to Dirichlet boundary conditions for M . Note that in
(1.1c) we do not prescribe boundary conditions for immobilized substrates Sj , i.e. if νj = 0 for
some j ∈ {1, . . . , k}. To simplify the presentation of our results we assume Dirichlet boundary
conditions for the substrates, but the analysis remains valid if we impose mixed boundary
conditions for the substrates, see Remark 2.4.

In models for biofilm growth, the actual biofilm is described by the region where M is
positive,

Ω+(t) = {x ∈ Ω : M(t, x) > 0}.

Due to the degeneracy of the biomass diffusion coefficient, D0(0) = 0, there is a sharp interface
between the biofilm and the surrounding region, and the interface propagates at a finite speed.
The additional singularity in the diffusion coefficient, limm↗1D0(m) = ∞, ensures that the
biomass density does not exceed its maximum value, i.e. M remains bounded by a constant
strictly less than 1.

In Figure 1 typical situations modelled by (1.1) are sketched for biofilm colonies depending
on a single substrate. In the left figure the substrate is dissolved in the spatial domain Ω and
transported by diffusion and convection. The biofilm colony grows into the aqueous phase.
In the right figure the substrate is immobilized and contained in the spatial domain Ω. The
bacteria consume and degrade the substrate, a biofilm front develops and propagates through
the substratum.

A system of the form (1.1) with a single dissolved substrate S = S1, i.e. k = 1 and ν1 > 0,
was first proposed in [7] to model biofilm growth in an aqueous medium. In this case,

D0(M) = d2
Ma

(1−M)b
, D1(M,S) = d1, (1.2a)

f0(M,S) = k3
SM

k4 + S
− k2M, f1(M,S) = −k1

SM

k4 + S
, (1.2b)

for some constants k1, k2, k3, k4, d1, d2 > 0 and a, b ≥ 1, and v1 is a given flow field. An ODE-
PDE system of the form (1.1) with a single substrate was used in [6] to model cellulolytic biofilms
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(a) Coupled PDE-PDE systems (b) Coupled PDE-ODE systems

Figure 1: Schematic figures illustrating biofilm growth in dependence of a single nutrient S in
an aqueous medium (a) and in an immobilized medium (b). The biofilm is represented by the
region where M(x, t) > 0, which is separated by the surrounding region by a sharp interface.
Nutrients are consumed by bacteria resulting in the production of biomass. The parts of the
boundary where homogeneous Dirichlet and Neumann conditions are specified are also marked
in the diagrams, Γ1 (Dirichlet) in blue and Γ2 (Neumann) in red.
(a) PDE-PDE systems [7]: The biofilm colonies grow in a liquid containing substrates. The
substrates diffuse and are transported by a flow field v. The diffusion coefficient of the substrate
might depend on M , i.e. it differs inside and outside the biofilm.
(b) PDE-ODE systems [6]: The bacteria degrade and consume an immobilized medium which
is the case, e.g. for cellulolytic biofilms. The biofilm colony propagates consuming the immobile
cellulose, leaving at its wake a region of low substrate concentrations.
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degrading an immobilized cellulose material. In this case, the functions D0, f0 and f1 are as in
(1.2) and D1 ≡ 0, v1 ≡ 0.

The existence of weak solutions of scalar nonlinear degenerate parabolic equations such as
(1.1a) was shown in the seminal papers [1, 2], however, for bounded diffusion coefficients D0.
Uniqueness of solutions was proven in [21] using L1-contraction. The existence of weak solutions
for the biofilm model [7] with the diffusion coefficients and reaction functions in (1.2) and v1 ≡ 0
was proven in [9] under the assumptions of homogeneous Dirichlet boundary conditions for M ,
i.e. Γ2 = ∅ and h0 ≡ 0. The existence of the global attractor for the generated semigroup in
L1(Ω) was also shown. The well-posedness theory was generalized in [15] where more general
functions D0, f0 and f1 and mixed Dirichlet-Neumann boundary conditions were considered.
The Hölder continuity of solutions was studied in [14].

Several extensions and variations of the single species biofilm growth model [7] have been
proposed and analyzed. Most works are simulation studies and only few analytical results have
been obtained. The well-posedness of multi-substrate biofilm models with k > 1, νj > 0 in (1.2),
appearing in antibiotic disinfection and quorum sensing applications, was established in [10,25].
A PDE–ODE system with an immobile substrate, i.e. k = 1 and ν1 = 0, was proposed and
numerically studied in [6]. The simulations reproduced many experimentally observed features of
cellulolytic biofilms. The existence and stability of travelling wave solutions for this model were
shown in [19], but the well-posedness of the model remained an open problem. Many examples
of semilinear coupled PDE-ODE models appearing in biology are discussed in [20, Chapter 13].
For a PDE–ODE model for hysteretic flow through porous media with a diffusion coefficient D0

depending on both M and ~S, the existence of solutions was shown in [18].
We aim to develop a unifying solution theory for a large class of systems with degenerate

diffusion that is motivated by models for biofilm growth, but the analysis is not limited to these
applications. In fact, we expect that such models can also be used, e.g. to describe cancer cell
invasion or the spread of wildfires. In our paper we extend previous well-posedness results in
the following directions:

(a) Well-posedness results for PDE-PDE systems: our results extend the theory developed
for systems with one substrate in [15] to systems with an arbitrary number of substrates k ∈ N.
Moreover, the existence of weak solutions is proven for a broad class of diffusion coefficients D0

and Dj , reaction terms fj , and allows for flow-fields vj which has not been considered in earlier
works.

(b) Well-posedness of PDE–ODE systems (νj = 0): The well-posedness of PDE-ODE sys-
tems of the form (1.1) with a degenerate and/or singular diffusion coefficient D0 has been an
open problem. The theory we develop applies to the cellulolytic biofilm model [6] and implies
its local well-posedness.

(c) Mixed as well as homogeneous Neumann conditions for M : Global well-posedness is
shown for mixed Dirichlet-Neumann boundary conditions and a local well-posedness result is
established assuming homogeneous Neumann boundary conditions for M . Moreover, apart from
well-posedness results we also analyze qualitative properties such as boundedness or blow-up of
solutions.

(d) Global spatial regularity of M: We further show that under certain porous medium type
growth conditions on D0 close to zero, the biomass concentration M inherits some global spatial
regularity.
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The outline of our paper is as follows: In Section 2 we introduce notation, state our assump-
tions on the data and introduce the concept of weak solutions. In Section 3 we prove global
well-posedness for systems with Dirichlet or mixed Dirichlet-Neumann boundary conditions for
M . In Section 4 we establish local well-posedness for systems with homogeneous Neumann
conditions for M . We also derive criteria ensuring finite-time blow-up of the model and discuss
some important examples. In Section 5 we show that even in the degenerate case, the biomass
density M possesses some global spatial regularity.

2 Problem formulation

In this section, we introduce notation and a suitable functional framework. We state the prop-
erties of the coefficient functions and the boundary and initial data for system (1.1) that will be
assumed throughout the paper. Moreover, we introduce weak solutions of the problem.

2.1 Preliminaries

Functional setting: Let Ω ⊂ Rd be a bounded Lipschitz domain. The boundary ∂Ω is
divided into two regular open subsets Γ1 and Γ2 that are both Lipschitz boundaries and such
that ∂Ω = Γ1 ∪ Γ2 and Γ1 ∩ Γ1 = ∅, e.g. see [22]. We denote by (·, ·) and ‖ · ‖ the L2(Ω)
inner product and norm. The norm of any other Banach space V will be denoted by ‖ · ‖V . For
1 ≤ p ≤ ∞, let W 1,p(Ω) denote the Sobolev space of functions u ∈ Lp(Ω) such that the weak
derivative ∇u exists and ∇u ∈ (Lp(Ω))d. For r ∈ (0, 1) and p ∈ [0,∞), the Sobolev-Slobodeckij
space W r,p(Ω) is the set of functions u ∈ Lp(Ω) such that

‖u‖W r,p(Ω) := ‖u‖Lp(Ω) +

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|d+rp
dxdy <∞. (2.1)

We define Hr(Ω) := W r,2(Ω) for r ∈ (0, 1]. Let H1
0 (Ω) denote the closure of C∞c (Ω) in H1(Ω),

which is equipped with the norm ‖u‖H1
0 (Ω) := ‖∇u‖. Similarly, we define

H1 := {u ∈ H1(Ω) : tr(u) = 0 in Γ1} with the norm ‖u‖H1 := ‖u‖H1(Ω). (2.2a)

The dual spaces of H1
0 (Ω) and H1 are defined as:

H−1 := (H1
0 (Ω))∗ and H−1 = (H1)∗. (2.2b)

Observe that,

if Γ1 = ∅ then H1 = H1(Ω), if Γ2 = ∅ then H1 = H1
0 (Ω). (2.2c)

Let 〈·, ·〉 denote the duality pairing of H1 and H−1. The duality pairing of any other Sobolev
space V will be denoted by 〈·, ·〉V,V ∗ .

Finally, we introduce the following Bochner spaces that are important for our analysis:

W := L∞(0, T ;L∞(Ω)) ∩H1(0, T ;H−1) ∩ C([0, T ];L2(Ω)), (2.3a)

X := L2(0, T ;H1) ∩H1(0, T ;H−1), (2.3b)

Y := L∞(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)), (2.3c)

Z := C([0, T ]; (L2(Ω))k). (2.3d)
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Note that we have the continuous embedding X ↪→ C([0, T ];L2(Ω)).

Inequalities: Note that the Poincaré inequality, i.e. ‖u‖ ≤ CΩ‖∇u‖ for u ∈ H1
0 (Ω), where

CΩ > 0 denotes the Poincaré constant, also holds for functions u ∈ H1 if Γ1 6= ∅.
We recall Young’s inequality stating that for any σ > 0 one has

ab ≤ 1

2σ
a2 +

σ

2
b2 ∀a, b ∈ R. (2.4)

We will also frequently use Gronwall’s Lemma stating that if u, a, b ∈ C(R) are non-negative,
then u(t) ≤ a(t) +

∫ t
0 u(%) b(%) d% implies that

u(t) ≤ a(t) +

∫ t

0
a(%) b(%)e

∫ t
% b(τ)dτ d% (2.5a)

for all t > 0; and the discrete counterpart of the Gronwall Lemma: Let {un}n∈N, {an}n∈N,
{bn}n∈N be non-negative sequences such that un ≤ an +

∑n−1
k=1 bkuk. Then

un ≤ an +
n−1∑
k=1

akbk exp

 ∑
k<j<n

bj

 . (2.5b)

Finally, for a convex η ∈ C(R+) with η(0) = 0 we will use Jensen’s inequality and the super-
additivity property:

Jensen’s inequality: η

(
1
|Ω|

∫
Ω
|f |
)
≤ 1
|Ω|

∫
Ω
η(|f |) for f ∈ L1(Ω); (2.6a)

Super-additivity: η(a) + η(b) ≤ η(a+ b) for all a, b ≥ 0. (2.6b)

Further notation: We denote by [·]+ and [·]− the positive and negative part of functions,
i.e. [·]+ := max{·, 0} and [·]− := min{·, 0}, respectively. By C > 0 we refer to an undisclosed
constant in the estimates that may vary in each occurrence and from line to line. Finally, the
notation

a . b implies that a ≤ Cb for some constant C > 0 (2.7)

which does not depend on a parameter ε > 0 (to be specified later).

2.2 Assumptions on the data

We specify the hypotheses on the data associated with (1.1).

(P1) The diffusion coefficient D0 : [0, 1) 7→ [0,∞) is a continuous function that is strictly
increasing in [0, ε0) for some ε0 ∈ (0, 1], and satisfies

D0(0) = 0, lim
m↗1

D0(m) =∞ and D0(m) > 0 for all m ∈ (0, 1).
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The primitive of D0, expressed by the Kirchhoff transform function Φ : [0, 1) → [0,∞),
Φ(m) =

∫m
0 D0(%) d%, satisfies

lim
m↗1

Φ(m) =∞. (2.8)

(P2) The diffusion coefficients Dj : [0, 1] × Rk → [Dmin, Dmax], j = 1, . . . , k, with constants
0 < Dmin < Dmax <∞, are Lipschitz continuous with respect to both variables.

Remark 2.1 (Biofilm models). In models for biofilm growth, see e.g. [6, 9], the diffusion co-
efficient D0 is given by the function in (1.2), and the diffusion coefficient D1 for the (single)
substrate is assumed to be constant. These functions satisfy all assumptions in (P1)–(P2).

Remark 2.2 (Generalizations of the assumptions (P1)–(P2)). Our analysis can be extended to
systems where the diffusion coefficient D0 is piecewise constant, non-degenerate, and/or has a
porous media type degeneracy, e.g., D0(m) = ma, for some constant a > 1. To keep the analysis
uniform and self-contained, we only analyze the case (P1) which is more involved and arises in
models for biofilm growth.

We could also allow for degenerate diffusion coefficients Dj if they only depend on the sub-
strate Sj. Some additional assumptions are required to cover this case which are discussed in
Corollary 3.2.1.

For the flow-field and reaction terms we make the following assumptions:

(P3) The flow-field satisfies vj ∈ (L∞(Q))d, j = 1, . . . , k.

(P4) The functions f0, fj ∈ C([0, 1] × Rk) are uniformly Lipschitz continuous. They can be
extended to uniformly Lipschitz continuous functions on Rk+1 which (to simplify notation)
we will also denote by f0, fj . The constant CL ≥ 0 is the maximum of the Lipschitz
constants of f0, f1, . . . , fk. Moreover, f0(0, ~s) ≥ 0 for all ~s ∈ Rk.

(P4*) There exists a non-negative and locally Lipschitz continuous function fmax ∈ C(R) such
that f0(·, ~s) ≤ fmax(·) for all ~s ∈ Rk.

Remark 2.3 (Assumptions (P4)–(P4*)). Assumption (P4) admits reaction functions f0(·, ~s),
fj(·, ~s) (for ~s ∈ Rk) that have superlinear growth with respect to their first argument as long as
they are Lipschitz continuous within the interval [0, 1]. This is because the physically relevant
solutions satisfy M ∈ [0, 1]. However, before proving the upper bound for M (in Lemma 3.2),
we need the functions f0 and fj to be defined in Rk+1 (in Lemma 3.1) which is why we introduce
the extensions.

Assumption (P4*) is needed to derive the L∞ bound for the solution M . This is important
in our setting since physically relevant solutions take values in [0, 1), otherwise, the models are
not valid. Such L∞ bounds may not be required in other applications, for example for porous
medium-type equations. We therefore explicitly state in all theorems and lemmas where this
assumption is required and where it can be omitted.

Under additional assumptions, the analysis can be generalized also to systems with reaction
functions that depend on x and t, e.g. see [15]. To simplify the presentation of our results, we
omit this dependency here.
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Finally, we remark that the condition f0(·, ~s) ≤ fmax(·) can be relaxed to f0(·, ~s) ≤ g(|~s|) fmax(·)
for some g ∈ C(R+). Then, for the proofs to go through, we need uniform L∞ bounds on the
solution (M, ~S) which can be established for a certain class of functions fj. For an example, we
refer to Corollary 3.2.1.

For the boundary and initial data we assume the following properties:

(P5) The initial data M0 ∈ L∞(Ω) satisfies

M := ess inf
x∈Ω
{M0} ≥ 0 and M := ess sup

x∈Ω
{M0} < 1.

The initial data ~S0 ∈ (L∞(Ω))k satisfies

S := min
1≤j≤k

ess inf
x∈Ω
{S0,j} > −∞ and S := max

1≤j≤k
ess sup

x∈Ω
{S0,j} <∞.

(P6) The Dirichlet boundary data h0 : Γ1 → [M,M ] is such that there exists he0 ∈ H1(Ω)
satisfying he0|Γ1 = h0 in a trace sense. If Γ1 = ∅ then set he0 ≡ 0. For the Dirichlet data
hj : ∂Ω → [S, S] there also exist functions hej ∈ H1(Ω) such that hej |∂Ω = hj in a trace
sense.

Remark 2.4 (Assumption (P6)). Observe that, under the assumptions in (P6), it is always
possible to choose the extensions to Ω such that he0 ∈ [M,M ] and hej ∈ [S, S] a.e. in Ω. For

example, consider h̄e = min{he0,M} ∈ H1(Ω). Then h̄e ≤ M a.e. and h̄e = h0 on ∂Ω. This
choice will implicitly be used in the proofs that follow. Similar arguments apply to the boundary
conditions hj .

To keep notations simple we only consider Dirichlet boundary conditions for the substrates
~S. Mixed Dirichlet-/Neumann boundary conditions with different divisions of the boundary
depending on j can also be assumed without major modifications in the subsequent arguments,
see e.g. [15].

2.3 Weak solutions

We introduce the following notion of weak solutions.

Definition 1 (Weak solution). The pair (M, ~S) with M ∈ W (see (2.3)), Φ(M) ∈ L2(0, T ;H1(Ω)),
Sj ∈ H1(0, T ;H−1(Ω))∩C([0, T ];L2(Ω)), and νjSj ∈ L2(0, T ;H1(Ω)), j = 1, . . . , k, is a weak so-

lution of (1.1) provided that M is bounded in [0, 1) a.e. in Q, M(0) = M0 and ~S(0) = ~S0 a.e. in
Ω, Φ(M) = Φ(h0) on Γ1 and νjSj = νjhj on ∂Ω in the trace sense, and for all ϕ ∈ L2(0, T ;H1),
~ζ ∈ L2(0, T ; (H1

0 (Ω))k), we have∫ T

0
〈ϕ, ∂tM〉+

∫ T

0
(∇Φ(M),∇ϕ) =

∫ T

0
(f0(M, ~S), ϕ), (2.9a)∫ T

0
〈ζj , ∂tSj〉H1

0 ,H
−1 + νj

∫ T

0
(Dj(M, ~S)∇Sj + vj Sj ,∇ζj) =

∫ T

0
(fj(M, ~S), ζj). (2.9b)
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Remark 2.5. In Definition 1 we take νj Sj ∈ L2(0, T ;H1(Ω)) instead of taking Sj ∈ L2(0, T ;H1(Ω)).
This is required since νj = 0 is allowed in our setting, and in this case, Sj might not possess
any spatial regularity. Similarly, we see that Φ(M), and not M , possesses spatial regularity.
Therefore, the traces are also only defined for functions with sufficient spatial regularity.

3 Well-posedness for Dirichlet and mixed boundary conditions

In this section, we prove the well-posedness of weak solutions for the case when Γ1 has non-
zero measure, i.e. M either satisfies Dirichlet boundary condition or mixed Dirichlet-Neumann
boundary condition. The main results of this section are stated in the following theorems.

Theorem 3.1 (Existence and boundedness). Let (P1)–(P6) and (P4*) be satisfied, and Γ1 have
non-zero measure. Then, there exists a weak solution (M, ~S) of (1.1) in the sense of Definition 1.
Furthermore, a constant δ ∈ (0, 1) exists such that 0 ≤M ≤ 1− δ a.e. in Q.

Theorem 3.2 (Uniqueness). Let the assumptions of Theorem 3.1 hold. In addition, for each
j ∈ {1, . . . , k}, assume that either νj = 0 or the diffusion coefficient Dj depends only on Sj.

Then, a unique weak solution (M, ~S) of (1.1) exists in the sense of Definition 1.

The proof of Theorem 3.2 is based on a contraction argument which, along with the existence
of solutions, guarantees uniqueness. However, a different argument based on Schauder’s fixed
point theorem is required for proving the existence of solutions in the more general setting of
Theorem 3.1.

For the proof of these theorems, we initially focus on the first equation in (2.9) for a given
~S. In Section 3.1 we consider a non-degenerate approximation of (1.1a) and then discuss ex-
istence (Lemma 3.1) and boundedness (Lemma 3.2) of solutions. In Section 3.2, we pass the
regularization parameter to zero to show the existence of weak solutions of the original problem
(Lemma 3.3). We then consider the coupled system. In Section 3.3, the L1 contraction prin-
ciple (Lemma 3.4) is applied to prove Theorem 3.2, and in Section 3.4, a Schauder argument
(Lemma 3.5) is used to prove Theorem 3.1.

We remark that Lemmas 3.1–3.5 hold for all boundary conditions including homogeneous
Neumann boundary condition. The proof of Lemma 3.1 is postponed to Section 4, due to
complications arising from homogeneous Neumann condition. Lemmas 3.2–3.5 are proven in the
general case.

3.1 A regularized problem

We introduce the following regularization of the Kirchhoff transform Φ: for ε > 0, let Φε ∈ C1(R)
be a non-degenerate approximation of Φ satisfying

ε ≤ Φε
′ ≤ ε−1 and lim

ε→0
Φε(m) = Φ(m) for all m ∈ [0, 1). (3.1)

A specific choice of Φε that will be used in the sequel and in Section 5 is

Φε(m) :=

∫ m

0
min

{
max{ε,D(%)}, ε−1

}
d%. (3.2)

Then, recalling the functional spaces defined in (2.3), the following lemma holds.
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Lemma 3.1 (Existence for a regularized problem). Let (P1)–(P6) hold. Let ~s ∈ Z be given
and ε ∈ (0, 1) be sufficiently small. Then there exists a unique Ms,ε ∈ X + he0 which satisfies
Ms,ε(0) = M0, and for all ϕ ∈ L2(0, T ;H1),∫ T

0
〈ϕ, ∂tMs,ε〉+

∫ T

0
(∇Φε(Ms,ε),∇ϕ) =

∫ T

0
(f0(Ms,ε, ~s), ϕ). (3.3)

Moreover, Ms,ε ∈ C([0, T ];L2(Ω)), and for all t ∈ [0, T ] we have

‖Ms,ε(t)‖2 +

∫ T

0

[
‖∇Φε(Ms,ε)‖2 + ‖∂tMs,ε‖2H−1

]
. 1 +

∫ T

0

(
‖~s‖2 + ‖Φε(Ms,ε)‖2

)
+
(
1 + ‖Φ′ε(Ms,ε)‖L∞(Q)

)
‖he0‖2H1(Ω). (3.4)

Furthermore, if M0 ∈ H1(Ω) in (P5), and M0|Γ1 = h0 in the trace sense then, in addition, it
holds that

‖∇Φε(Ms,ε(t))‖2 +

∫ T

0

∫
Ω

|∂tΦ(Ms,ε)|2

Φ′ε(Ms,ε)

. ‖∇Φε(M0)‖2 + ‖Φ′ε(Ms,ε)‖L∞(Q)

[
1 +

∫ T

0
‖~s‖2

]
. (3.5)

The proof of Lemma 3.1 is postponed to Section 4.1. For Γ1 having non-zero measure, the
existence of Ms,ε ∈ X + he0 follows immediately from [1] since Φε

′ satisfies the uniform ellip-
ticity condition. However, the result in [1] does not cover the case of homogeneous Neumann
conditions, i.e. the case Γ1 = ∅.

The assumption (P4*) is not required in Lemma 3.1, but it is needed for the next result.

Lemma 3.2 (Boundedness for the regularized problem). In addition to the hypothesis of Lemma
3.1 we assume that (P4*) holds. Let Ms,ε ∈ X+he0 denote the solution in Lemma 3.1. Moreover,
let M̂ ∈ C1(R+) denote the solution of the integral equation

M̂(t) = M +

∫ t

0
fmax(M̂(%)) d%, t ∈ [0, T ].

(a) Then, 0 ≤Ms,ε(t) ≤ M̂(t) a.e. in Ω for all t ∈ [0, T ].

(b) If, in addition, Γ1 has non-zero measure, then a constant δ ∈ (0, 1) exists such that

0 ≤Ms,ε(t) ≤ 1− δ a.e. in Ω for all t ∈ [0, T ].

Observe that the above lemma implies that Ms,ε ∈ L∞(0, T ;L∞(Ω)) and the family Ms,ε is
uniformly bounded with respect to ε > 0 in L∞(0, T ;L∞(Ω)).

Proof. The existence of M̂ follows from the Picard-Lindelöf Theorem since fmax ∈ Lip(R).
Moreover, it satisfies ∂tM̂ = fmax(M̂) and therefore, M̂ ≥ M since fmax was assumed to be
non-negative in (P4*).
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(Step 1) Ms,ε ≥ 0: Inserting the test function ϕ = [Ms,ε]− in (3.3) implies that∫ T

0

[
∂t
(

1
2‖[Ms,ε]−‖2

)
+ ε‖∇[Ms,ε]−‖2

] (P4)

≤ CL

∫ T

0
‖[Ms,ε]−‖2.

Since [Ms,ε(0)]− = [M0]− = 0, we have ‖[Ms,ε]−(T )‖ = 0 using Gronwall’s Lemma (2.5a).

(Step 2) Ms,ε ≤ M̂: Inserting the test function ϕ = [Ms,ε− M̂ ]+ ∈ L2(0, T ;H1) in (3.3) we
obtain∫ T

0
〈[Ms,ε − M̂ ]+, ∂tMs,ε〉 =

∫ T

0
〈[Ms,ε − M̂ ]+, ∂t[Ms,ε − M̂ ]〉+

∫ T

0
〈[Ms,ε − M̂ ]+, ∂tM̂〉

=

∫ T

0
∂t

(
1

2
‖[Ms,ε − M̂ ]+‖2

)
+

∫ T

0
(∂tM̂, [Ms,ε − M̂ ]+)

(P5)
=

1

2
‖[Ms,ε − M̂ ]+(T )‖2 +

∫ T

0
(∂tM̂, [Ms,ε − M̂ ]+), (3.6a)∫ T

0
(∇Φε(Ms,ε),∇[Ms,ε − M̂ ]+) =

∫ T

0
(Φε
′(Ms,ε)∇Ms,ε,∇[Ms,ε − M̂ ]+) ≥ 0, (3.6b)

and for the reaction term we obtain∫ T

0
(f0(Ms,ε, ~s), [Ms,ε − M̂ ]+) =

∫ T

0
(f0(Ms,ε, ~s)− f0(M̂,~s) + f0(M̂,~s), [Ms,ε − M̂ ]+)

(P4),(P4∗)
≤ CL

∫ T

0
‖[Ms,ε − M̂ ]+‖2 +

∫ T

0
fmax(M̂)[Ms,ε − M̂ ]+. (3.6c)

Combining the estimates in (3.6) it follows that

1

2
‖[Ms,ε − M̂ ]+(T )‖2 +

∫ T

0
(∂tM̂ − fmax(M̂), [Ms,ε − M̂ ]+) ≤ CL

∫ T

0
‖[Ms,ε − M̂ ]+‖2. (3.7)

The second term is zero by the definition of M̂ . Hence, using Gronwall’s Lemma (2.5a) we have
the result.

(Step 3) Ms,ε ≤ 1− δ: This is a generalization of Proposition 6 in [9] to the case of mixed
or homogeneous Neumann boundary conditions, see also the proof of Theorem 2.7 in [15]. For
fmax(·) introduced in (P4*), let û ∈ H1 solve the elliptic problem

(∇û,∇ϕ) = (Ĉ, ϕ) for all ϕ ∈ H1, where Ĉ := max
0≤t≤T

fmax(M̂(t)). (3.8)

The existence of a unique weak solution û directly follows from the Lax-Milgram Lemma. If
d = 1 (one space-dimension), then we immediately have û ∈ L∞(Ω) from Morrey’s inequality [11,
Chapter 5]. Hence, let d ≥ 2. Set q = 2d/(d−2) for d > 2, and q > 2 for d = 2. Then for m ≥ 0,
inserting the test function ϕ = [û −m]+ ∈ H1 and denoting A(m) := {x ∈ Ω : û(x) > m} we
have the estimates,

‖∇[û−m]+‖2 ≤ Ĉ ‖[û−m]+‖L1(Ω),

‖[û−m]+‖L1(Ω) ≤ |A(m)|1−
1
q ‖[û−m]+‖Lq(Ω) ≤ C ′|A(m)|1−

1
q ‖∇[û−m]+‖,
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where the last inequality follows from the Sobolev inequality [11, Chapter 5]. Hence, we have
‖[û − m]+‖L1(Ω) ≤ C ′2Ĉ|A(m)|γ , where γ = 2 − 2

q > 1. Thus, following the steps of [13,
Lemma 7.3] we conclude that û ∈ L∞(Ω). Hence, using the comparison principle [21], one has
Φε(Ms,ε(t)) ≤ û+ M̄ <∞ a.e. in Ω for all ε > 0 and t > 0, which concludes the proof.

Remark 3.1 (Generalization to ~s ∈ (L2(Q))k). Although Lemmas 3.1 and 3.2, and the fol-
lowing Lemma 3.3, assume ~s ∈ Z to simplify the presentation, the results remain valid for all
~s ∈ (L2(Q))k as evident from the a-priori estimates (3.4)–(3.5). This observation will become
important in Lemma 3.5 which provides the setting for the proof of Theorem 3.1.

3.2 Existence of solutions of the degenerate parabolic problem

Lemma 3.3 (Existence for the degenerate problem). Let (P1)–(P6) and (P4*) hold. Let ~s ∈ Z
be given and let 0 < T ∗ ≤ ∞ denote the time, independent of ~s and ε > 0, such that the solutions
Ms,ε ∈ X + he0 of (3.3) remain bounded in [0, 1) for all t < T ∗. Let T < T ∗. Then there exists
a unique Ms ∈ W with Φ(Ms) ∈ L2(0, T ;H1(Ω)) satisfying Ms(0) = M0, Φ(Ms) = Φ(h0) on Γ1

in the trace sense, and∫ T

0
〈ϕ, ∂tMs〉+

∫ T

0
(∇Φ(Ms),∇ϕ) =

∫ T

0
(f0(Ms, ~s), ϕ), (3.9)

for all ϕ ∈ L2(0, T ;H1). Moreover, 0 ≤Ms < 1− δ a.e. in Q for some constant δ ∈ (0, 1).

Proof. In this proof, we will first assume that

M0 ∈ H1(Ω). (3.10)

This constraint will later be dropped. Lemma 3.2 and the assumption T < T ∗, imply the
existence of δ̄ ∈ (0, 1) such that

Ms,ε ∈ [0, 1− δ̄], and consequently, φε := Φε(Ms,ε) ∈ [0,Φ(1− δ̄)] a.e. in Q, (3.11)

for small ε > 0. The shorthand φε will be used to denote Φε(Ms,ε) for the rest of the proof.
(Step 1) Convergence of Ms,ε and φε, assuming (3.10): Taking (3.11) into account

which implies that Φε
′(Ms,ε) is bounded above independent of ε, we conclude from (3.5) in

Lemma 3.1 that φε is uniformly bounded in Y (see (2.3)). Observe that Y ⊂ H1(Q). Using
the compact embedding H1(Q) ↪→↪→ L2(Q), we conclude that there exists φ ∈ H1(Q) and a
subsequence φε such that for ε→ 0,

φε ⇀ φ weakly in H1(Q), (3.12a)

φε → φ strongly in L2(Q). (3.12b)

Setting

Ms := Φ−1(φ) ∈ L∞(0, T ;L∞(Ω)) (3.13)

13



we claim that for ε→ 0,

∂tMs,ε ⇀ ∂tMs weakly in L2(0, T ;H−1(Ω)), (3.14a)

Ms,ε →Ms strongly in L2(Q). (3.14b)

To see this, we consider a convex strictly increasing function η ∈ C1([0, 1)) such that

η = Φ in [0, ε0), and η ◦ Φ−1 ∈ Lip(R+), (3.15)

where ε0 ∈ (0, 1) was fixed in (P1). Recall that D0 is strictly increasing in [0, ε0), and therefore,
Φ is convex in [0, ε0). For % > ε0, Φ′(%) = D0(%) is bounded away from 0, implying that (Φ−1)′(%)
is bounded for % > Φ(ε0). Hence, it is always possible to find such a function η.

Using (3.11) and that η is strictly increasing and convex, we obtain

η

(
1

|Q|

∫
Q
|Ms,ε −Ms|

)
(2.6a)

≤ 1

|Q|

∫
Q
η(|Ms,ε −Ms|)

(2.6b)

≤ 1

|Q|

∫
Q
|η(Ms,ε)− η(Ms)|

(3.15)

. ‖Φ(Ms,ε)− Φ(Ms)‖L1(Q) ≤ ‖Φ(Ms,ε)− φε‖L1(Q) + ‖φε − Φ(Ms)‖L1(Q)

≤ ‖Φ(Ms,ε)− Φε(Ms,ε)‖L1(Q) + ‖φε − φ‖L1(Q)
(3.1),(3.12b)−→ 0, for ε↘ 0.

More specifically, the term ‖Φ(Ms,ε)−Φε(Ms,ε)‖L1(Q) vanishes due to (3.2) and (3.11) since for
small ε we observe that

|Φ(Ms,ε)− Φε(Ms,ε)|
(3.2),(3.11)

=

∣∣∣∣∫ Ms,ε

0
(D(%)−max{ε,D(%)}) d%

∣∣∣∣ ≤ Cε.
Then, the continuity of η implies that Ms,ε → Ms in L1(Q). Using (3.11) and (3.13), the
convergence also holds in L2(Q).

Since Ms,ε − he0 ∈ X (see (2.3)), (3.11) and (Ms,ε − he0) ∈ C([0, T ];L2(Ω)) from Lemma 3.3
also imply that Ms,ε ∈ W. It follows from estimate (3.4) in Lemma 3.1 and (3.11) that
Ms,ε is bounded in W, and the bound is independent of ε. Hence, Ms,ε has a weak limit in
H1(0, T ;H−1) ∩ L2(Q) ⊃ W. The strong convergence Ms,ε →Ms in L2(Q) then implies by the
uniqueness of weak limits that (3.14) holds.

Next we show that Ms ∈ W, i.e. it remains to show that Ms ∈ C([0, T ];L2(Ω)). From the
uniform boundedness of Ms,ε in W we conclude that Ms,ε(t) ⇀Ms(t) weakly in H−1 for almost

all t ∈ [0, T ] since (Ms,ε(t) −Ms(t), ϕ̃) =
∫ t

0 〈∂t(Ms,ε −Ms), ϕ̃〉 → 0 for all ϕ̃ ∈ H1, see (3.14a).
Hence, for all ϕ ∈ L2(Ω) one has

|(Ms,ε(t)−Ms(t), ϕ)| = |(Ms,ε(t)−Ms(t), ϕ− ϕ̃) + (Ms,ε(t)−Ms(t), ϕ̃)|
≤ (‖Ms,ε(t)‖+ ‖Ms(t)‖)‖ϕ− ϕ̃‖+ |(Ms,ε(t)−Ms(t), ϕ̃)|. (3.16)

Let µ > 0 be arbitrary. Since Ms,ε(t) and Ms(t) are uniformly bounded in L∞(Ω) by Lemma
3.2 and (3.13), one can choose ϕ̃ ∈ H1 such that the first term on the right hand side in (3.16)
is less than µ/2. Then, we choose ε small enough such that the second term is less than µ/2
implying that

Ms,ε(t) ⇀Ms(t) weakly in L2(Ω) for almost all t ∈ [0, T ]. (3.17)
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Finally to show the continuity of Ms in time, we observe that for τ > 0 one has

‖Ms(t+ τ)−Ms(t)‖2 = (Ms(t+ τ)−Ms,ε(t+ τ),Ms(t+ τ)−Ms(t))

+ (Ms,ε(t+ τ)−Ms,ε(t),Ms(t+ τ)−Ms(t)) + (Ms,ε(t)−Ms(t),Ms(t+ τ)−Ms(t)).

The first and last term on the right side are arbitrarily small for all sufficiently small ε due to
the weak convergence of Ms,ε(t) in L2(Ω). The term in the middle vanishes as τ tends to zero
since Ms,ε ∈ C([0, T ];L2(Ω)). This proves that Ms ∈ C([0, T ];L2(Ω)).

Using (3.12),(3.14) we can now pass to the limit in (3.3) and conclude that Ms is a solution
of (3.9). This completes the proof for the case M0 ∈ H1(Ω).

(Step 2) Existence for M0 ∈ L1(Ω) satisfying (P5): We postulate that for a given
M0 ∈ L1(Ω) and µ > 0, there exists Mµ

0 ∈ H1(Ω) such that

0 ≤Mµ
0 ≤ M̄ < 1 a.e. in Q, and ‖Mµ

0 −M0‖L1(Ω) ≤ µ. (3.18)

The existence of M̃µ
0 ∈ C∞c (Rd) such that ‖M̃µ

0 −M0‖L1(Ω) ≤ 1
2µ follows from the fact that

C∞c (Rd) is dense in L1(Rd), see Theorem 4.3 in [4]. Define Mµ
0 = min{M, M̃µ

0 } ∈ H1(Ω), where
M was defined in (P5). Then Mµ

0 satisfies (3.18) since

‖Mµ
0 −M0‖L1(Ω) ≤ ‖M

µ
0 − M̃

µ
0 ‖L1(Ω) + ‖M̃µ

0 −M0‖L1(Ω)

= ‖[M̃µ
0 − M̄ ]+‖L1(Ω) + ‖M̃µ

0 −M0‖L1(Ω)

(P5)

≤ ‖M̃µ
0 −M0‖L1(Ω) + ‖M̃µ

0 −M0‖L1(Ω) ≤ µ.

Now, let Mµ
s ∈ W be the weak solution corresponding to the initial data Mµ

s (0) = Mµ
0 ∈ H1(Ω),

µ > 0, which exists by Step 1. Consider a sequence {µn}n∈N ⊂ R+ converging to zero. Then,
the L1-contraction result in [21] implies that there exists a constant C > 0 independent of µ
such that

‖(Mµm
s −Mµn

s )(t)‖L1(Ω) ≤ C‖M
µm
0 −Mµn

0 ‖L1(Ω) (3.19)

for all m,n ∈ N, t ∈ [0, T ]. Note that an L1-contraction result also holds for homogeneous
Neumann boundary conditions, see [3]. Hence, {Mµn

s }n∈N is a Cauchy sequence in L1(Ω),
and since Mµn

s ∈ L∞(Ω) is uniformly bounded with respect to µn (see Lemma 3.2), it is also
a Cauchy sequence in L2(Ω). Since Mµn

s ∈ C([0, T ];L2(Ω)), we conclude that there exists
Ms ∈ C([0, T ];L2(Ω)) such that

‖Mµn
s −Ms‖C([0,T ];L2(Ω)) → 0 as n→∞.

The uniform boundedness of Mµn
s in W and Φ(Mµn

s ) in L2(0, T ;H1(Ω)) follow directly from
(3.4), Lemma 3.1. The strong convergence of Mµn

s → Ms and its uniform L∞-boundedness
away from 1 (the singular point of Φ), implies that Φ(Mµn

s ) also converges strongly to Φ(Ms)
in L2(Ω) for all t ∈ [0, T ]. Hence, similar to before, passing the limit n→∞ it follows that Ms

solves (3.9).
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3.3 A contraction argument for proving Theorem 3.2

We first show the existence of a unique weak solution under the additional assumptions stated
in Theorem 3.2 compared to Theorem 3.1. The assumptions in Theorem 3.2 demand that Dj

depends only on Sj , i.e. Dj : R→ [Dmin, Dmax]. This is unless νj = 0 in which case we can also
define Dj as such. Hence, similar to (2.8), we introduce the function

Φj(S) :=

∫ S

0
Dj(%) d%, for j ∈ {1, . . . , k}. (3.20)

Observe that due to (P2), Φj is Lipschitz continuous and strictly increasing.
For a given ~s ∈ Z let Ms ∈ W be the corresponding solution in Lemma 3.3. Define the

operator A : Z → Z such that for all j ∈ {1, . . . , k}, A(~s)j satisfies νj A(~s)j ∈ L2(0, T ;H1(Ω)),
A(~s)j ∈ H1(0, T ;H−1(Ω)), and for all ζj ∈ L2(0, T ;H1

0 (Ω)),∫ T

0

[
〈ζj , ∂tA(~s)j〉H1

0 ,H
−1 + νj (∇Φj(A(~s)j) + vj A(~s)j ,∇ζj)

]
=

∫ T

0
(fj(Ms, ~s), ζj), (3.21a)

with A(~s)j(0) = S0,j and νjA(s)j = νjhj on ∂Ω in the trace sense. (3.21b)

To prove Theorem 3.2 we need the following lemma.

Lemma 3.4 (L1-contraction property of A). Under the assumptions of Theorem 3.2, define
Φj : R → R by (3.20). Assume that T < T ∗ for T ∗ > 0 introduced in Lemma 3.3. Then the
operator A : Z → Z, introduced in (3.21), is well-defined. Moreover, there exists a strictly
increasing function C ∈ C1(R+) with C(0) = 0 such that for all t ∈ [0, T ] and ~s1, ~s2 ∈ Z,∫ t

0
‖A(~s1)− A(~s2)‖(L1(Ω))k ≤ C(t)

∫ t

0
‖~s1 − ~s2‖(L1(Ω))k .

Proof. Since fj(Ms, ~s) ∈ C([0, T ];L2(Ω)), and Dj is bounded from above and below by a positive
constant by (P2), the existence and regularity results in [1] imply that A(~s)j is well-defined for
νj > 0 (similar to Lemma 3.1). If νj = 0, then A(~s)j is simply the solution of an ODE with
known right hand side. From (3.9), using the L1-contraction result in [3, 21] and the Lipschitz
continuity of f0, it follows that for all t ∈ [0, T ],

‖(Ms1 −Ms2)(t)‖L1(Ω) ≤
∫ t

0
‖f0(Ms1 , ~s1)− f0(Ms2 , ~s2)‖L1(Ω)

(P4)

≤ CL

∫ t

0
‖~s1 − ~s2‖(L1(Ω))k + CL

∫ t

0
‖Ms1 −Ms2‖L1(Ω). (3.22)

Applying Gronwall’s Lemma (2.5a) we conclude that

‖(Ms1 −Ms2)(t)‖L1(Ω) ≤ CL exp(CL t)

∫ t

0
‖~s1 − ~s2‖(L1(Ω))k . (3.23)
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We now apply the L1-contraction principle to (3.21) and use the Lischitz continuity of fj and
the previous estimate to get

‖(A(~s1)j − A(~s2)j)(t)‖L1(Ω) ≤
∫ t

0
‖fj(Ms1 , ~s1)− fj(Ms2 , ~s2)‖L1(Ω)

≤ CL
∫ t

0
‖~s1 − ~s2‖(L1(Ω))k + CL

∫ t

0
‖Ms1 −Ms2‖L1(Ω)

≤ CL(1 + CL t exp(CL t))

∫ t

0
‖~s1 − ~s2‖(L1(Q))k . (3.24)

Note that this estimate also holds for the case νj = 0. Hence, setting C(t) = k CL t (1 +
CL t exp(CL t)) the result follows.

Proof of Theorem 3.2. Choosing T > 0 small enough such that C(T ) < 1 the existence of a
unique weak solution (M, ~S) of (1.1) follows from Lemma 3.4 and Banach’s fixed point theorem.
Since Lemma 3.2 implies that T ∗ =∞ provided that Γ1 has a non-zero measure, the argument
can be repeated and solutions can be patched together to cover the interval [0, T ] for an arbitrary
T > 0, thus concluding the proof.

3.4 A fixed point argument for proving Theorem 3.1

In this section, we use Schauder’s fixed point theorem to prove the existence of solutions for
general diffusion coefficients Dj satisfying (P2). Since the case of ODE-PDE couplings, where
νj = 0, is already covered by the previous section, here we assume that νj > 0. Similarly as in the
previous section, we define the map B : (L2(Q))k → (L2(Q))k such that for all j ∈ {1, . . . , k},
B(~s)j ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;H−1(Ω)), and for all ζj ∈ L2(0, T ;H1

0 (Ω)),∫ T

0
[〈ζj , ∂tB(~s)j〉H1

0 ,H
−1 + νj(Dj(Ms, ~s)∇B(~s)j + vj B(~s)j ,∇ζj)] =

∫ T

0
(fj(Ms,B(~s)), ζj),

(3.25a)

with B(~s)j(0) = S0,j , and B(s)j = hj on ∂Ω in the trace sense. (3.25b)

Lemma 3.5 (Schauder criteria for B). Let νj > 0 for all j ∈ {1, . . . , k}. Then under the
assumptions of Lemma 3.3, the operator B : (L2(Q))k → (L2(Q))k introduced in (3.25) is
well-defined, continuous, compact, and ‖B(~s)‖Z is bounded for all ~s ∈ (L2(Q))k.

Proof. (Step 1): Well-posedness, boundedness and compactness. Recalling Remark 3.1,
we have existence and boundedness of weak solutions Ms ∈ W for any ~s ∈ (L2(Q))k. We observe
that Dj satisfies the ellipticity condition by (P2), vj ∈ (L∞(Ω))d, fj(·, s) is Lipschitz continuous,
and for hej in (P6), we have

|fj(Ms, h
e
j)|

(P4)

≤ C(1 + |hej |+ |Ms|) ∈ L2(Ω) for a constant C > 0.

Consequently, B(~s)j ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;H−1(Ω)) is well-defined. This is also evident
from a Schaefer’s fixed point argument [11, Chapter 9] using the a-priori estimate obtained by

17



inserting ζj = B(~s)j − hej in (3.25). For the first term this yields,∫ T

0
〈B(~s)j − hej , ∂tB(~s)j〉H1

0 ,H
−1 =

1

2

[
‖B(~s(T ))j − hej‖2 − ‖S0,j − hej‖2

]
,

and for the diffusion and convection terms we obtain,

νj

∫ T

0
(Dj(Ms, ~s)∇B(~s)j ,∇(B(~s)j − hej))

=
νj
2

∫
Q
Dj(Ms, ~s)

[
|∇B(~s)j |2 − |∇hej |2 + |∇(B(~s)j − hej)|2

]
,∣∣∣∣νj ∫ T

0
(vj B(~s)j ,∇(B(~s)j − hej))

∣∣∣∣
(2.4)

≤
νj‖vj‖2L∞(Ω)

2Dmin

∫ T

0
‖B(~s)j‖2 +

νjDmin

2

∫ T

0
‖∇(B(~s)j − hej)‖2.

Finally, we can estimate the reaction term by∫ T

0
(fj(Ms,B(~s)),B(~s)j − hej) =

∫ T

0
(fj(Ms,B(~s))− fj(Ms,~h

e) + fj(Ms,~h
e),B(~s)j − hej)

(2.4),(P4)

≤ C
k∑
i=1

∫ T

0
‖B(~s)i − hei‖2(L2(Ω))k +

∫ T

0
‖fj(Ms,~h

e)‖2.

Combining the above estimates, using Young’s inequality and summing from j = 1 to k, one
has

k∑
j=1

[
‖B(~s(T ))j − hej‖2 + νjDmin

∫ T

0
‖∇B(~s)j‖2

]
. 1 +

∫ T

0

k∑
j=1

‖B(~s)j − hej‖2.

Thus, using Gronwall’s Lemma (2.5a), we conclude that B(~s) is uniformly bounded in L2(0, T ; (H1(Ω))k)
and L∞(0, T ; (L2(Ω))k). Moreover, from (3.25), we obtain

‖∂tB(~s)j‖L2(0,T ;H−1(Ω))

= sup
‖ζj‖L2(0,T ;H1

0(Ω))
=1

∫ T

0
[νj(Dj(Ms, ~s)∇B(~s)j + vj B(~s)j ,∇ζj)− (fj(Ms,B~s), ζj)]

≤ νj(Dmax‖∇B(~s)j‖L2(Q) + ‖vj‖L∞(Ω)‖B(~s)j‖L2(Q)) + CΩ ‖fj(Ms,B(~s))‖L2(Q).

Hence B(~s)j − hej ∈ L2(0, T ;H1
0 (Ω)) and B(~s)j ∈ H1(0, T ;H−1(Ω)) is bounded uniformly with

respect to ~s ∈ (L2(Q))k. Due to the compact embedding L2(0, T ;H1
0 (Ω))∩H1(0, T ;H−1(Ω)) ↪→↪→

L2(Q) (see [23]), the mapping B is also compact. Moreover, due to the continuous embedding
L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;H−1(Ω)) ⊂ C([0, T ];L2(Ω)), ‖B(~s)‖Z is bounded uniformly.
(Step 2): Continuity. Let the sequence {~si}i∈N converge to ~s ? in (L2(Q))k. Let M i

s

and M?
s denote the solutions of (3.9) for ~s = ~si and ~s = ~s ? respectively. Then, by using the
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L1-contraction result (3.23) we have that ‖(M i
s −M?

s )(t)‖L1(Ω) → 0 for all t ∈ (0, T ]. Since, M i
s

are bounded in L∞(Ω) (Lemma 3.3), one further has that

‖~si − ~s ?‖(L2(Q))k + ‖M i
s −M?

s ‖C([0,T ];L2(Ω)) → 0 as i→∞. (3.26)

Observe that, since B(~s ?)j ∈ L2(0, T ;H1(Ω)), for any given ε > 0, there exists sε,?j ∈ C∞(Rd)
such that

‖B(~s ?)j − sε,?j ‖L2(0,T ;H1(Ω)) ≤ ε/4Dmax. (3.27)

We consider the difference of B(~si)j and B(~s ?)j by subtracting two versions of (3.25). First,
we split up the diffusion term,∫ T

0
(Dj(M

i
s, ~s

i)∇B(~si)j −Dj(M
?
s , ~s

?)∇B(~s ?)j ,∇ζj)

=

∫ T

0
(Dj(M

i
s, ~s

i)∇(B(~si)j −B(~s ?)j) + (Dj(M
i
s, ~s

i)−Dj(M
?
s , ~s

?))∇B(~s ?)j ,∇ζj), (3.28a)

and use Hölder’s inequality to estimate the second term as follows

‖(Dj(M
i
s, ~s

i)−Dj(M
?
s , ~s

?))∇B(~s ?)j‖L2(Q)

≤ ‖(Dj(M
i
s, ~s

i)−Dj(M
?
s , ~s

?))∇sε,?j ‖L2(Q) + ‖(Dj(M
i
s, ~s

i)−Dj(M
?
s , ~s

?))∇(B(~s ?)j − sε,?j )‖L2(Q)

≤ ‖sε,?j ‖C1(Q)‖Dj(M
i
s, ~s

i)−Dj(M
?
s , ~s

?)‖L2(Q) + 2Dmax‖∇(B(~s ?)j − sε,?j ))‖L2(Q)

(3.26),(3.27)

≤ ε,

(3.28b)

for all i ≥ iε,1, where iε,1 ∈ N is large enough. Here we used the Lipschitz continuity of Dj , see
(P2). Furthermore (3.26) implies for i ≥ iε,2, where iε,2 ∈ N is large enough, that

‖fj(M i
s,B(~si))− fj(M?

s ,B(~s ?))‖L2(Ω)

(P4)

. ε+ ‖B(~si)−B(~s ?)‖(L2(Ω))k . (3.28c)

Hence, defining ðsij := B(~si)j −B(~s ?)j , it follows from (3.25) that for i ≥ max{iε,1, iε,2},∣∣∣∣∫ T

0
[〈ζj , ∂t ðsij〉H1

0 ,H
−1 + νj(Dj(M

i
s, ~s

i)∇ðsij + vj ðsij ,∇ζj)]
∣∣∣∣

(3.28)

.
∫ T

0

 k∑
j=1

‖ðsij‖‖ζj‖+ ε‖ζj‖+ ε‖∇ζj‖


.
∫ T

0

 k∑
j=1

‖ðsij‖‖ζj‖+ ε+ ε
(
‖ζj‖2 + ‖∇ζj‖2

) .
Finally, we insert the test function ζj = ðsij ∈ L2(0, T ;H1

0 (Ω)) and sum up the resulting estimates
from j = 1 to k. Then for ε > 0 small enough, one obtains using Gronwall’s lemma (2.5a)

k∑
j=1

[
‖ðsij‖2 +

∫ T

0
‖∇ðsij‖2

]
. ε.
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Hence, the right hand side can be made arbitrary small by choosing ε > 0 small enough
which simply requires i ≥ max{iε,1, iε,2}. Passing to the limit ε → 0 we conclude that
‖ðsij‖L2(0,T ;H1(Ω)) + ‖ðsij‖Z → 0 for all j = 1, . . . , k. This shows that the operator B is contin-
uous, thus, concluding the proof.

Proof of Theorem 3.1. If νj > 0 for all j ∈ {1, . . . , k}, then using Lemma 3.5 and Schauder’s

fixed point theorem, see [11, Chapter 9], we conclude that a fixed point ~s = ~S ∈ Z ⊂ (L2(Q))k

exists of the mapping B, i.e. B(~S) = ~S. It is easy to verify that this fixed point (MS , ~S) is a
weak solution of (1.1).

If νj̄ = 0 for all j̄ ∈ I ⊂ {1, . . . , k}, then the theorem is proved by first applying the
contraction mapping in Lemma 3.4 for (1.1a) and (1.1b) with j̄ ∈ I, followed by applying the
fixed point argument for j ∈ {1, . . . , k} \ I. The details are left for the avid reader.

The approach developed in this section can be extended to systems with degenerate diffusion
coefficients Dj under some additional assumptions. Below we discuss an example of such a case.

Corollary 3.2.1 (Existence of weak solutions for degenerate Dj). Assume that (P1), (P3)–(P6)
and (P4*) hold. For some ` ∈ {1, . . . , k}, instead of (P2), assume that the diffusion coefficient
D` satisfies D`(m,~s) = D`(s`) where

D` : [0,∞)→ R is continuous and strictly increasing, with D`(0) = 0.

Moreover, let ess inf{S0,`} ≥ 0, ess inf{h`} ≥ 0, v` = 0 in Q, f`(·, ~s) ≤ f `max(sj) for some
function f `max ∈ Lip(R+) and f`(m,~s) ≥ 0 if s` = 0.

Then a weak solution (M, ~S) of (1.1) exists in the sense of Definition 1, but with ν` S` ∈
L2(0, T ;H1(Ω)) replaced by ν`

∫ S`
0 D` ∈ L2(0, T ;H1(Ω)). The solution is unique if for all j ∈

{1, . . . , k} either νj = 0 or Dj depends only on sj. Furthermore, S` is non-negative and bounded
almost everywhere in Q.

IfD` = D`(s`) is degenerate for some ` ∈ {1, . . . , k}, without loss of generality we assume ν` >
0. We define Φ` as in (3.20) and fix all sj ∈ C([0, T ];L2(Ω)), j 6= `, for s` ∈ C([0, T ];L2(Ω)). Let
Ms ∈ W be the solution of (3.9) from Lemma 3.3. Then, s̃` ∈ H1(0, T ;H−1(Ω))∩C([0, T ];L2(Ω))
with Φ`(s̃`) ∈ L2(0, T ;H1(Ω)) is defined as the solution of the following problem, for all ζ` ∈
L2(0, T ;H1

0 (Ω)),∫ T

0
[〈ζ`, ∂ts̃`〉H1

0 ,H
−1 + ν`(∇Φ`(s̃`),∇ζ`)] =

∫ T

0
(f`(Ms, (s1, . . . , s̃`, . . . , sk)), ζ`),

with s̃`(0) = S0,` and Φ`(s̃`) = Φ`(h`) on ∂Ω in the trace sense.

The existence and uniqueness of s̃` then follows from Lemmas 3.1 and 3.3. Defining Ŝ`(t) :=
S̄ +

∫ t
0 f

`
max, we have, similar to Lemma 3.2 that 0 ≤ s̃`(t) ≤ Ŝ`(t) a.e. in Ω for all t > 0.

Following Lemma 3.4, we further conclude that s̃` satisfies an L1-contraction result with respect
to s` since all other sj , j 6= `, are fixed. Finally, the arguments in the proof of Theorem 3.2
concludes the proof.
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4 Homogeneous Neumann boundary conditions

In this section, we show the existence of solutions for homogeneous Neumann boundary condi-
tions and present the proof of Lemma 3.1. The global existence of solutions cannot be guaranteed
for homogeneous Neumann boundary conditions, since the density M might reach 1 in finite
time. The local existence and uniqueness of solutions is analyzed in Section 4.1 and the finite
time blow-up in Section 4.2.

4.1 Existence of weak solutions

Theorem 4.1 (Local well-posedness for homogeneous Neumann conditions). Let Γ1 = ∅. We
assume that (P1)–(P6) and (P4*) hold. Then, there exists a positive time T ∗ ≥ sup{t : M̂(t) <
1} > 0, where M̂ ∈ C1(R+) is defined in Lemma 3.2, such that for T ∈ (0, T ∗), a weak solution
(M, ~S) of (1.1) exists in the sense of Definition 1. Moreover, the solution is unique if either
νj = 0, or Dj depends only on Sj for all j ∈ {1, . . . , k}.

This result essentially follows from the proof of Theorems 3.1 and 3.2. Indeed, note that
Lemmas 3.2 to 3.5 were proven for the general case, i.e., they also hold for homogeneous Neumann
boundary conditions. Hence, it remains to show Lemma 3.1 for the case that Γ1 = ∅. In this
subsection, we present the proof under more general assumptions that cover mixed as well as
homogeneous Neumann boundary conditions. The proof follows the Rothe method [16] that is
based on time-discrete approximations of the solutions. To simplify the notation for different
boundary conditions (see (2.2c))

without loss of generality we assume that h0 ≡ 0, implying he0 ≡ 0.

4.1.1 Well-posedness of backward Euler time–discretizations

We consider an equivalent formulation of (3.3) and discrtize it using the backward Euler scheme.
Following (3.1), we introduce

βε := Φε
−1 such that ε ≤ βε′ ≤ ε−1. (4.1)

Then replacing Φε(Ms,ε) by u and Ms,ε by βε(u), we demand that u ∈ L2(0, T ;H1) with βε(u) ∈
H1(0, T ;H−1) and βε(u(0)) = M0 satisfies∫ T

0
〈ϕ, ∂tβε(u)〉+

∫ T

0
(∇u,∇ϕ) =

∫ T

0
(f0(βε(u), ~s), ϕ) forall ϕ ∈ L2(0, T ;H1) (4.2)

and a given ~s ∈ Z. For N ∈ N, we denote by τ := T/N the time-step size and set tn := nτ
for n ∈ {0, 1, . . . , N}. Then we define the time–discrete sequence {un}Nn=1 ⊂ H1 recursively as
follows: setting u0 := Φε(M0) (i.e., βε(u0) = M0), let un ∈ H1 be the solution of

1
τ (βε(un)− βε(un−1), ζ) + (∇un,∇ζ) = (f0(βε(un), ~s(tn)), ζ) for all ζ ∈ H1. (4.3)

The following lemma implies the well-posedness of the time–discrete formulation.
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Lemma 4.1 (Well-posedness a semilinear elliptic problem). For a given F ∈ L2(Ω), there exists
a unique solution w ∈ H1 of the elliptic problem

(βε(w), ζ) + (∇w,∇ζ) = (F, ζ) for all ζ ∈ H1. (4.4)

Proof. The proof is based on monotonicity arguments. Let the operator F : H1 → H−1 be
defined by the inner product

〈ζ,F(w)〉 := (βε(w), ζ) + (∇w,∇ζ). (4.5)

Then F is strongly monotone since

〈w − v,F(w)− F(v)〉 ≥ ε‖w − v‖2 + ‖∇(w − v)‖2 ≥ ε‖w − v‖2H1 .

Furthermore, F is Lipschitz continuous since, using the Cauchy-Schwarz inequality, we obtain

‖F(w)− F(v)‖H−1 ≤ sup
ζ∈H1

(
ε−1‖w − v‖‖ζ‖+ ‖∇(w − v)‖‖∇ζ‖

‖ζ‖H1

)
≤ ε−1‖w − v‖H1 .

Hence, invoking the nonlinear Lax-Milgram Lemma [26, Theorem 2.G] completes the proof.

Observe that the operator F̃ : H1 → H−1 defined by the inner product

〈ζ, F̃(w)〉 := (βε(w)− τ f0(βε(w), ~s(tn)), ζ) + (∇w,∇ζ). (4.6)

is strictly monotone with respect to w if τ < C−1
L by (P4) and Lipschitz continuous. Hence, ad-

justing the arguments in the proof of Lemma 4.1 to (4.3) we obtain the existence and uniqueness
of the time–discrete solutions.

Lemma 4.2 (Well-posedness of the time–discrete solutions). Let (P1)–(P6) hold. Then the
sequence {un}Nn=1 ⊂ H1 introduced in (4.3) is well-defined for τ < C−1

L .

4.1.2 Interpolations in time

For a fixed N ∈ N with τ = T/N , we define the time interpolates ûτ ∈ L∞(0, T ;H1) and
ūτ ∈ C([0, T ];H1) from the time–discrete solutions {un}Nn=1 ⊂ H1 such that for t ∈ (tn−1, tn],
n ∈ {1, . . . , N},

ûτ := un, and ūτ := β−1
ε

(
βε(un−1) + t−tn−1

τ (βε(un)− βε(un−1))
)
. (4.7)

Observe that ūτ satisfies for all n ∈ {1, . . . , N},

ūτ (tn) = un, and ∂tβ(ūτ ) =
βε(un)− βε(un−1)

τ
for t ∈ (tn−1, tn]. (4.8)
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Lemma 4.3 (Uniform boundedness of the time interpolates with respect to τ). Let (P1)–(P6)
hold. Then there exist constants τ∗, C > 0, independent of τ , such that for τ < τ∗,

‖βε(ûτ )‖2 +

∫ T

0
‖∇ûτ‖2 ≤ C + C

∫ T

0

(
‖~s‖2 + ‖ûτ‖2

)
, (4.9a)

‖βε(ūτ )‖2 +

∫ T

0
[‖∇ūτ‖2 + ‖∂tβε(ūτ )‖2H−1 ] ≤ C + C

∫ T

0

(
‖~s‖2 + ‖ûτ‖2

)
. (4.9b)

The above inequalities imply the uniform boundedness of βε(ûτ ), βε(ūτ ) ∈ L∞(0, T ;L2(Ω)),
ûτ , ūτ ∈ L2(0, T ;H1) and βε(ūτ ) ∈ H1(0, T ;H−1) with respect to τ < τ∗.

Proof. (Step 1) Uniform boundedness of ‖βε(uτ )‖: We choose the test function ζ =
βε(un) ∈ H1 in (4.3), yielding

(βε(un)− βε(un−1), βε(un)) + τ(∇un,∇βε(un)) = τ(f0(βε(un), ~s(tn)), βε(un)). (4.10)

Observe from the identity 2a(a− b) = a2 − b2 + (a− b)2 that

(βε(un)− βε(un−1), βε(un)) = 1
2 [‖βε(un)‖2 − ‖βε(un−1)‖2 + ‖βε(un)− βε(un−1)‖2].

Moreover, one has for some constant C ′ > 0 independent of ε and τ that

(f0(βε(un), ~s(tn)), βε(un))
(P4)

≤ C ′(1 + ‖~s(tn)‖2 + ‖βε(un)‖2),

(∇un,∇βε(un)) ≥ ε‖∇un‖2.

Then, combining these inequalities we obtain

‖βε(un)‖2 + ‖βε(un)− βε(un−1)‖2 + ετ‖∇un‖2 ≤ ‖βε(un−1)‖2 + τC ′
(
1 + ‖sn‖2 + ‖βε(un)‖2

)
.

Applying the discrete Gronwall Lemma (2.5b) for small enough τ > 0, we have for a constant
C > 0 independent of N or ε that

‖βε(uN )‖2 +
N∑
n=0

[ε‖∇un‖2τ + ‖βε(un)− βε(un−1)‖2] ≤ ‖βε(u0)‖2 + C + C
N∑
n=0

‖~s(tn)‖2τ.

(4.11)

For τ > 0 small enough, one can estimate

N∑
n=0

‖~s(tn)‖2τ ≤
(

1 +

∫ T

0
‖~s‖2

)
. (4.12)

Combining (4.11)-(4.12) we conclude that βε(uN ) and, in extension of the method, all βε(un)
are uniformly bounded in L2(Ω) with respect to N and ε. Then, the definition (4.7) implies
that βε(ûτ ) (= βε(un) for t ∈ (tn−1, tn]) and βε(ūτ ) (≤ max{βε(un), βε(un−1)} for t ∈ (tn−1, tn])
are uniformly bounded.
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(Step 2) Uniform boundedness of ‖∇uτ‖L2(0,T ;H1): Let us now test (4.3) with ζ = un ∈
H1. This yields

(βε(un)− βε(un−1), un) + τ‖∇un‖2 = τ(f0(βε(un), ~s(tn)), un). (4.13)

Now, from the convexity of the function
∫m

0 Φε (see (3.1)), one has∫ βε(un)

βε(un−1)
Φε ≤ Φε(βε(un))(βε(un)− βε(un−1)) = un(βε(un)− βε(un−1)).

For the last term, we observe that

(f0, un)
(2.4)

≤ 1

2
[‖f0(βε(un), ~s(tn))‖2 + ‖un‖2]

(P4)

≤ C[1 + ‖βε(un)‖2 + ‖~s(tn)‖2 + ‖un‖2]. (4.14)

Hence, summing the inequalities from n = 0 to n = N , using the uniform boundedness of
‖βε(un)‖ from (4.11), and

N∑
n=1

∫ βε(un)

βε(un−1)
Φε =

∫ βε(uN )

0
Φε −

∫ βε(u0)

0
Φε,

the estimate becomes∫
Ω

∫ βε(uN )

0
Φε +

N∑
n=0

‖∇un‖2τ ≤
∫

Ω

∫ M0

0
Φε + C T + C

N∑
n=0

(
‖~s(tn)‖2 + ‖un‖2

)
τ. (4.15)

Hence, noting that
∫ T

0 ‖ûτ‖
2 =

∑N
n=0 τ‖un‖2 we have that

∫ T
0 ‖∇ûτ‖

2 =
∑N

n=1 ‖∇un‖2 τ is
bounded as stated in (4.9a), and correspondingly, following its definition, the other interpolate
ūτ is also bounded in L2(0, T ;H1) as in (4.9b).

(Step 3) Uniform boundedness of ‖∂tβε(ūτ )‖L2(0,T ;H−1): We have from (4.3) that

‖∂tβε(ūτ )‖H−1
(4.8)
= ‖ 1

τ (βε(un)− βε(un−1))‖H−1 = sup
ζ∈H1

1
τ 〈βε(un)− βε(un−1), ζ〉

‖ζ‖H1

= sup
ζ∈H1

−(∇un,∇ζ) + (f0(βε(un), ~s(tn)), ζ)

‖ζ‖H1

≤ ‖∇un‖+ C(1 + ‖~s(tn)‖+ ‖βε(un)‖).

The bound in (4.9b) for ∂tβε(ūτ ) now follows from Steps 1 and 2.

Observe that, since βε satisfies (4.1), the
∫ T

0 ‖ûτ‖
2 terms on the right hand side of (4.9a)–

(4.9b) can be bounded above using the Gronwall Lemma in (4.9a), which yields the uniform
boundedness of the quantities stated in (4.3) in their respective spaces with respect to τ . How-
ever, note that the bounds may still depend on ε > 0.

Lemma 4.4 (Higher regularity of the time interpolates for M0 ∈ H1). Let the assumptions of
Lemma 4.3 hold. If, in addition M0 ∈ H1, then for a constant C > 0 independent of τ , one has

‖∇ûτ (t)‖2 + ε
2

∫ T

0
‖∂tβε(ūτ )‖2 ≤ ‖∇Φε(M0)‖2 + C + C

∫ T

0
‖~s‖2. (4.16)

24



Proof. We insert the test function ζ = un − un−1 in (4.3). This gives term-wise

(βε(un)− βε(un−1), un − un−1)
(4.1)

≥ ετ2

∫
Ω

∣∣∣∣βε(un)− βε(un−1)

τ

∣∣∣∣2 (4.8)
= τ2ε‖∂tβε(ūτ )‖2,

τ(∇un,∇(un − un−1)) = τ
2 [‖∇un‖2 − ‖∇un−1‖2 + ‖∇(un − un−1)‖2],

τ(f0, un − un−1) ≤ τ2

2ε3
‖f0‖2 + ε3

2 ‖un − un−1‖2
(4.1),(4.8)

≤ τ2

2ε3
‖f0‖2 + ετ2

2 ‖∂tβε(ūτ )‖2.

Similarly to (4.14), we obtain

‖f0‖2 ≤ C(1 + ‖~s(tn)‖2 + ‖βε(un)2‖) ≤ C

[
1 + ‖~s(tn)‖2 +

N∑
n=1

‖~s(tn)‖2τ

]
,

where we used Lemma 4.3. Finally, summing the resulting inequalities from n = 1 to n = N
and cancelling out τ one has

‖∇uN‖2 + ε
2

N∑
n=1

‖∂tβε(ūτ )‖2τ ≤ ‖∇Φε(M0)‖2 + C

N∑
n=1

(1 + ‖~s(tn)‖2)τ, (4.17)

which proves the lemma.

Remark 4.1 (Covering homogeneous Neumann condition). The above lemmas cover both ho-
mogeneous mixed boundary conditions and homogeneous Neumann conditions. In the latter case,
H1 = H1(Ω). To cover the case of inhomogeneous mixed boundary conditions, we have to test
with ζ = βε(un)− he0 in Step 1 of Lemma 4.3 and with ζ = un − Φε(h

e
0) in Step 2. The details

are straightforward, and hence, omitted.

4.1.3 Proof of Lemma 3.1

(Step 1) Existence: Note that βε is Lipschitz and strictly increasing by (4.1). Using this
fact and applying Gronwall’s Lemma to (4.9a) implies that ûτ , βε(ûτ ) are uniformly bounded
in L∞(0, T ;L2(Ω)) with respect to τ . Consequently ūτ , βε(ūτ ) are uniformly bounded as well
by (4.9b). Thus, using (4.9b) we obtain the uniform boundedness of βε(ūτ ) ∈ X . Due to the
compact embedding of L2(Q) in X [23], there exists u ∈ X such that along a subsequence τ → 0,

βε(ūτ ) ⇀ βε(u) weakly in X = L2(0, T ;H1) ∩H1(0, T ;H−1), (4.18a)

βε(ūτ )→ βε(u) strongly in L2(Q). (4.18b)

Using (4.11), one has∫ T

0
‖βε(ûτ )− βε(ūτ )‖2 =

N∑
n=1

∫ tn

tn−1

∥∥ tn−t
τ (βε(un)− βε(un−1))

∥∥2
dt

=

N∑
n=1

‖(βε(un)− βε(un−1))‖2
∫ tn

tn−1

(
tn−t
τ

)2
dt = τ

3

N∑
n=1

‖βε(un)− βε(un−1)‖2 → 0.
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This, along with the uniform bound with respect to τ of ûτ , ūτ in L2(0, T ;H1) in (4.9) and
the strict monotonicity of βε in (4.1) implies that

ûτ , ūτ ⇀ u weakly in L2(0, T ;H1), (4.18c)

ûτ , ūτ → u strongly in L2(Q). (4.18d)

Observe from (4.3) and (4.7) that ûτ and ūτ satisfy∫ T

0
[〈ζ, ∂tβε(ūτ )〉+ (∇ûτ ,∇ζ)] =

∫ T

0
(f0(βε(ûτ ), ~s), ζ), (4.18e)

for all ζ ∈ C([0, T ];H1) which is dense in L2(0, T ;H1). Passing to the limit τ → 0 we conclude
from (4.18) that u solves the system∫ T

0
[〈ζ, ∂tβε(u)〉+ (∇u,∇ζ)] =

∫ T

0
(f0(βε(u), ~s), ζ).

DefiningMs,ε = βε(u) we obtain the desired solution. We conclude thatMs,ε ∈ X ↪→ C([0, T ];L2(Ω)),
see [11, Section 5.9] for the continuous embedding result.

(Step 2) A-priori bounds: The a-priori estimate (3.4) follows by inserting ϕ = Ms,ε and
ϕ = Φε(Ms,ε) in (3.3) and proceeding similar to the steps of the time-discrete case in Lemma 4.3.
Lemma 4.4 shows that if in addition M0 ∈ H1(Ω) then ∂tMs,ε ∈ L2(Q) which implies by the
definition of weak derivatives that

∆Φε(Ms,ε) = (∂tMs,ε − f0) ∈ L2(Q).

Multiplying the above equation with ∂tΦε(Ms,ε) = ∂tu ∈ L2(Q), integrating in Q, and using
integration by parts we conclude that∫

Q
∂tu∆u = −

∫ T

0
∂t(

1
2‖∇u‖

2) = 1
2‖∇Φε(M0)‖2 − 1

2‖∇u(T )‖2,

which proves (3.5). The detailed steps mimic its discrete counterpart in Lemma 4.4.

4.2 Finite time blow-up

The model (1.1) breaks down when M reaches 1. Henceforth, we will refer to this as blow-up.
Unlike in the case of Dirichlet or mixed boundary conditions, this situation cannot in general
be excluded for homogeneous Neumann conditions. Whether a solution will blow-up in finite
time or not depends on the initial values M0, ~S0. One can construct cases when the solution
will definitely blow-up in finite time. We give a simple example below.

Example 4.1 (Constant initial states). Let us focus on the cellulolytic biofilm model with a
single substrate [6], i.e., we look at the system

∂tM = ∆Φ(M) + f0(M,S1) in Q, M(0) = M0 in Ω, [∇M · n̂]|∂Ω = 0, (4.19a)

∂tS1 = f1(M,S1) in Q, S1(0) = S0,1 in Ω. (4.19b)
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Moreover, the reaction terms are given by a non-dimensionalized version of (1.2),

f0(m, s) =

(
s

1 + s
− λ

)
m, f1(m, s) = − sm

1 + s
. (4.20)

For the initial and boundary values we assume that

M0 ≡ M̄ ∈ (0, 1), S0,1 ≡ S̄, (4.21)

where M̄, S̄ > 0 are given constants. Then it is clear that the solution (M,S1) of (1.1) remains
constant in space for a given time. Hence, the system evolves according to the system of ODEs

∂tM =
MS1

1 + S1
− λM, ∂tS1 = − MS1

1 + S1
for t > 0 with (M(0), S1(0)) = (M̄, S̄). (4.22)

Clearly, for M̄ close to 1, S̄ large, and λ small, the biomass density M reaches 1 in finite time.

It is possible to generalize Lemma 3.2 to provide a necessary condition for blow-up in finite
time, or a sufficient condition for M to stay bounded away from 1. This is stated in the following
proposition for the single substrate (k = 1) case.

Proposition 4.1 (Upper and lower bounds of (M,S1)). Let (P1)–(P6) and (P4*) be satisfied,
k = 1 (single substrate) and Γ1 = ∅ (homogeneous Neumann condition) in (1.1). Recall (P5),
and let f0(m, s) be increasing with respect to s ≥ 0 for fixed m, and let f1(m, s) be decreasing
with respect to m ≥ 0 for fixed s. Let (M̌, Š, M̂ , Ŝ) ∈ C1(R+)4 be the solution of the ODE system{

∂tM̌ = f0(M̌, Š), ∂tŠ = f1(M̂, Š),

∂tM̂ = f0(M̂, Ŝ), ∂tŜ = f1(M̌, Ŝ),
(4.23)

with (M̌, Š, M̂ , Ŝ) = (M,S,M, S) at t = 0. Further, assume that if ν1 > 0, then for h1 defined
in (P6), Š(t) ≤ h1 ≤ Ŝ(t) a.e. in ∂Ω for all t ∈ [0, T ]. Let (M,S) be the weak solution of (1.1)
in the sense of Definition 1. Then for all t ∈ [0, T ],

M̌(t) ≤M(t) ≤ M̂(t) and Š(t) ≤ S1(t) ≤ Ŝ(t) a.e. in Ω. (4.24)

Remark 4.2 (Assumptions in Proposition 4.1). Observe that the assumptions of Proposition 4.1
are satisfied by the reaction terms in (1.2) and (4.20) which were considered, e.g., in [6, 7].
Moreover, the assumption h1 ∈ [Š(t), Ŝ(t)] a.e. in ∂Ω is a consistency condition that can be
omitted in the case of immobile substrates (ν1 = 0) which occurs in the models for cellulolytic
biofilms [6], or when homogeneous Neumann conditions are assumed for S.

Proof. The proof generalizes the arguments in Lemma 3.2 and follows the proof of Proposition
1 of [18]. The existence and uniqueness of the solution (M̌, Š, M̂ , Ŝ) is evident from the Picard-
Lindelöf Theorem. Moreover, f0(m, s) is increasing with s, f1(m, s) is decreasing with m, along
with M̂(0) = M̄ ≥M = M̌(0) and Ŝ(0) = S̄ ≥ S = Š(0), together imply for all t > 0,

M̂(t) ≥ M̌(t), and Ŝ(t) ≥ Š(t). (4.25)
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This follows by writing from (4.23),

1

2
[M̌(t)− M̂(t)]2+ =

∫ t

0
[M̌ − M̂ ]+(f0(M̌, Š)− f0(M̂, Ŝ)),

1

2
[Š(t)− Ŝ(t)]2+ =

∫ t

0
[Š − Ŝ]+(f1(M̂, Š)− f1(M̌, Ŝ)),

for t > 0. Then, following the manipulations in Lemma 3.2 (also repeated below), Gronwall’s
Lemma yields [M̌(t)− M̂(t)]+ = [Š(t)− Ŝ(t)]+ = 0. We omit the detailed proof for brevity.

Insert the test functions ϕ = [M − M̂ ]+ and ζ1 = [S1 − Ŝ]+ in (2.9). Observe that, ζ1 ∈
L2(0, T ;H1

0 (Ω)) is a valid test function for ν1 > 0 since S1 − Ŝ = h1 − Ŝ ≤ 0 on ∂Ω. Then
following the manipulations in Lemma 3.2, one obtains from the first equation that∫ T

0
∂t

(
1

2
‖[M − M̂ ]+‖2

)
≤
∫ T

0
(f0(M,S1)− f0(M̂, Ŝ), [M − M̂ ]+)

=

∫ T

0
(f0(M,S1)− f0(M̂, S1), [M − M̂ ]+) +

∫ T

0
(f0(M̂, S1)− f0(M̂, Ŝ), [M − M̂ ]+)

(P3)

≤ CL

∫ T

0
‖[M − M̂ ]+‖2 + CL

∫ T

0
([S1 − Ŝ]+, [M − M̂ ]+)

≤ C
∫ T

0
[‖[M − M̂ ]+‖2 + ‖[S1 − Ŝ]+‖2]. (4.26a)

Here, we used that f0(M̂, ·) is increasing to conclude that

(f0(M̂, S1)− f0(M̂, Ŝ))[M − M̂ ]+ ≤ CL[S1 − Ŝ]+[M − M̂ ]+.

Similarly, from the second equation, noting that f1(·, s) is decreasing for a given s, one obtains∫ T

0
∂t

(
1

2
‖[S1 − Ŝ]+‖2

)
≤
∫ T

0
(f1(M,S1)− f1(M̌, Ŝ), [S1 − Ŝ]+)

=

∫ T

0
(f1(M,S1)− f1(M̌, S1), [S1 − Ŝ]+) +

∫ T

0
(f1(M̌, S1)− f1(M̌, Ŝ), [S1 − Ŝ]+)

≤ CL
∫ T

0
([M − M̌ ]−, [S1 − Ŝ]+) + CL

∫ T

0
‖[S1 − Ŝ]+‖2

≤ C
∫ T

0
[‖[M − M̌ ]−‖2 + ‖[S1 − Ŝ]+‖2]. (4.26b)

Finally, inserting the test functions ϕ = [M − M̌ ]− and ζ1 = [S1− Š]− in (2.9) we get analogous
estimates to (4.26). Adding these inequalities and using Gronwall’s Lemma completes the proof.

Remark 4.3 (Guaranteed finite time blow-up/ boundedness). If the solution M̌ in Proposi-
tion 4.1 reaches 1 in finite time, then it implies that the solution of the original system (M,S1)
blows up in finite time. On the other hand, if the solution M̂ remains bounded by a constant
strictly less than 1, then M does not blow up and hence, the solution (M,S1) is global-in-time.
The bounds are sharp if |M̄ −M | and |S̄ − S| are small.
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5 Spatial regularity of the biomass density

In this section, we analyze the spatial regularity of solutions of the degenerate diffusion equation
(1.1a), i.e., we focus on the scalar equation

∂tM = ∇ · [D(M)∇M ] + f(M, ·) in Q, (5.1)

where D : [0, 1) → [0,∞) and f : [0,∞) × Q → R. The regularity results we derive apply to
a broad class of degenerate diffusion problems, see Remark 5.1, including the biofilm growth
models [6, 7].

It is well known that the degeneracy of the diffusion coefficient D(0) = 0 causes a finite speed
of propagation and sharp fronts at the interface between the regions {M > 0} and {M = 0}
corresponding to steep gradients of M . Despite this fact, the solution M is locally Hölder
continuous. This was shown for porous medium type equations in [5] and for equations with
degenerate and singular diffusion in [14]. The global space-time regularity of solutions of the
porous medium equation in Rd has also been studied extensively using optimal regularity theory,
see [12] and the references therein. Assuming homogeneous Neumann boundary conditions, in
this section we show that M can further inherit global spatial regularity in the more general
case (5.1), i.e. M ∈ L2(0, T ;Hr(Ω)), where r = 1 for a < 2, and r < 1 otherwise. This fact
is not only mathematically intriguing but has important consequences in designing numerical
tools and test functions for such problems. We now specify the assumptions on the functions D
and f .

Assumption 5.1 (Assumptions on D and f). The diffusion coefficient satisfies (P1). In addi-
tion, there exists a ∈ R+ and a constant C > 0 such that

D(m) ≥ Cma

for all m ∈ [0, 1). The function f : [0,∞)×Q→ R is Lipschitz continuous with respect to the first
variable, and there exists a non-negative function fmax ∈ Lip(R) such that f(·, (x, t)) ≤ fmax(·).
Moreover, we assume that f(0, (x, t)) ≥ 0 for all (x, t) ∈ Q.

Theorem 5.1 (Global spatial regularity of M). Let Γ1 = ∅ (homogeneous Neumann condition).

Let M ∈ W with Φ(M) =
∫M

0 D ∈ L2(0, T ;H1(Ω)), and M(0) = M0 (see (P5)) be the weak
solution of (5.1), i.e.,∫ T

0
〈ϕ, ∂tM〉+

∫ T

0
(∇Φ(M),∇ϕ) =

∫ T

0
(f(M, ·), ϕ), (5.2)

for all ϕ ∈ L2(0, T ;H1(Ω)). Then under the Assumption 5.1, M ∈ L2(0, T ;Hr(Ω)) for

(a) r = 1 if either a < 2 or M = ess inf{M0} > 0.

(b) all r < 2/a, if a ≥ 2 and M = 0.
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Remark 5.1 (Generality of Theorem 5.1). Theorem 5.1 applies to the solution M of the coupled
system (1.1) under the conditions (P1)–(P6) and (P4*). Since the spatial irregularity of M
stems from the degeneracy at M = 0, our regularity results also cover diffusion coefficients D
that are degenerate but non-singular, for instance, porous medium type equations. In this case,
the additional assumption that f is bounded by fmax can be omitted as solutions are not required
to take values in [0, 1).

Remark 5.2 (Assumptions on the boundary conditions in Theorem 5.1). To simplify notations
Theorem 5.1 is stated for homogeneous Neumann boundary conditions. However, the result
remains valid for Dirichlet or mixed boundary conditions provided that Φ(M) = Φ(he0) at Γ1

and the functions Ψε(h
e
0) ∈ H1(Ω) are uniformly bounded with respect to ε ∈ (0, 1), where Ψε is

introduced in (5.3) and he0 in (P6).

The rest of this section is dedicated to the proof of Theorem 5.1. The main idea behind the
proof is to use a test function ϕ of the form M−α (α > 0) in (5.2). However, ϕ might not be a
valid test function due to M not being sufficiently regular, and M−α having a singularity at 0.
To resolve this, we will construct a modified function that is admissible.

5.1 Some auxiliary functions

As in the proof of Theorem 5.1 we consider the regularized problem introduced in Lemma 3.1.
The function Φε is taken as in (3.2). For a given constant α > 0, we further introduce the C1(R)
function

Ψε(m) :=

∫ m

1

d%

min{max{ε, %α}, 1}
. (5.3)

Note that

Ψ′ε ≥ 0 and Ψε(m) < 0 for m < 1. (5.4)

Lemma 5.1 (Growth of Ψε). For a given α > 0 and ε ∈ (0, 1), let Ψε be defined as in (5.3).
Then, the following estimate holds,

|mΨε(m)| . 1 +

∫ m

1
Ψε for all m ≥ 0. (5.5)

Proof. Case 1 (1 < m): For m > 1, Ψε(m) = m−1, and the inequality can be verified directly.

Case 2 (ε
1
α ≤ m ≤ 1): If ε

1
α ≤ m ≤ 1 and α 6= 1, we have

|mΨε(m)| ≤
∣∣∣∣m∫ m

1

1

%α

∣∣∣∣ dρ| = ∣∣∣∣m(m1−α − 1

1− α

)∣∣∣∣ . |m2−α −m|. (5.6a)

Observe that, if α ≤ 2 then the right hand side is bounded since m ≤ 1, and (5.5) definitely
holds. The case when α = 1 can also be handled rather easily since it yields Ψε(m) = log(m).
The interesting case is when α > 2. Then, we can estimate the right-hand side of (5.5) as
follows,

1 +

∫ m

1
Ψε = 1 +

∫ m

1

∫ s

1

1

%α
dρds = 1 +

∫ m

1

s1−α − 1

α− 1
ds &

∫ m

1
s1−α & m2−α − 1. (5.6b)
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Combining (5.6) and noting that m < 1, we have (5.5) for this case.

Case 3 (0 ≤ m < ε
1
α ): We only focus on α > 2 since the case α ≤ 2 can be shown exactly

as in Case 2. We observe that

|mΨε(m)| =

∣∣∣∣∣mΨε(ε
1
α ) +m

m
∫
ε

1
α

d%
max(ε,%α)

∣∣∣∣∣ =

∣∣∣∣∣mΨε(ε
1
α ) +m

m
∫
ε

1
α

1
ε

∣∣∣∣∣
≤|mΨε(ε

1
α )|+ m(ε

1
α −m)

ε
≤ |ε

1
αΨε(ε

1
α )|+ ε

1
α
−1(ε

1
α −m). (5.7a)

From Case 2 we conclude that |ε
1
αΨε(ε

1
α )| . 1 +

∫ ε 1
α

1 Ψε, and we obtain

1 +

∫ m

1
Ψε = 1 +

∫ ε
1
α

1
Ψε +

∫ m

ε
1
α

∫
1

d%
max(ε,%α) = 1 +

∫ ε
1
α

1
Ψε +

∫ ε
1
α

m

∫ 1
d%

max(ε,%α)

≥ 1 +

∫ ε
1
α

1
Ψε +

∫ ε
1
α

m

∫ 1

ε
1
α

d%
max(ε,%α) & |ε

1
αΨε(ε

1
α )|+ (ε

1
α −m)

∫ 1

ε
1
α

d%
%α

& |ε
1
αΨε(ε

1
α )|+ ε

1
α
−1(ε

1
α −m)− (ε

1
α −m). (5.7b)

Hence, combining again (5.7) we have (5.5).

5.2 Boundedness of M in L2(0, T ;Hr(Ω))

To prove Theorem 5.1 we first show the following lemma.

Lemma 5.2 (An estimate for the regularized solutions). Let Assumption 5.1 hold and Γ1 = ∅.
For ε ∈ (0, 1) and α > 0, let Φε and Ψε be defined by (3.2) and (5.3) respectively. Let Mε ∈ X
satisfy Mε(0) = M0 and∫ T

0
〈ϕ, ∂tMε〉+

∫ T

0
(∇Φε(Mε),∇ϕ) =

∫ T

0
(f(Mε, ·), ϕ),

for all ϕ ∈ L2(0, T ;H1(Ω)). Then, we have∫ T

0

∫
Ω

min{Ma−α
ε , 1}|∇Mε|2 . 1 +

∫
Ω

∫ M0

1
Ψε. (5.8)

Proof. First, we show that the following estimate holds,

Φ′ε(m) Ψ′ε(m) & min{1,ma−α} for all m ≥ 0. (5.9)

We distinguish several cases. Case 1: Φε
′(m) = D(m). This implies that ε ≤ Φε

′(m) =
D(m) ≤ 1

ε and hence, m < 1. If Ψε
′(m) = m−α, then the result follows from Assumption 5.1.

If Ψε
′(m) = 1

ε , then Φ′ε(m) Ψ′ε(m) = D(m)/ε > 1. Finally, if Ψε
′(m) = 1, then m ≥ 1 which is

excluded.
Case 2: Φε

′(m) = ε. Consequently, m < 1. The definition of Φε in (3.2) implies that
ε ≥ D(m) & ma, where the last inequality holds by Assumption 5.1. Hence, for Ψ′ε = ε−1 the
product Φ′ε Ψ′ε = 1 and for Ψ′ε = m−α we have Φ′ε Ψ′ε & ma−α.
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Case 3: Φε
′ = 1

ε . This case follows similarly.
Inserting the test function ϕ = Ψε(Mε) in (3.3), the first term becomes∫ T

0
〈∂tMε,Ψε(Mε)〉 =

∫
Ω

∫ Mε(T )

1
Ψε −

∫
Ω

∫ M0

1
Ψε. (5.10a)

The second term of (3.3) gives∫ T

0
(∇Φε(Mε),∇Ψε(Mε)) =

∫ T

0

∫
Ω

Φ′ε(Mε) Ψ′ε(Mε)|∇Mε|2

(5.9)

&
∫ T

0

∫
Ω

min{Ma−α
ε , 1}|∇Mε|2. (5.10b)

Finally, the third term of (3.3) yields using f(0, ·) ≥ 0 and (5.4) that∫ T

0
(f(Mε, ·),Ψε(Mε)) =

∫ T

0
(f(Mε, ·)− f(0, ·),Ψε(Mε)) +

∫ T

0
(f(0, ·),Ψε(Mε))

(P3)

≤ CL

∫ T

0

∫
Ω
|MεΨε(Mε)|

f(0,·)≥0
+

∫ T

0
(f(0, ·), [Ψε(Mε)]+)

.
∫ T

0

∫
Ω
|MεΨε(Mε)|

(5.5)

.
∫ T

0

∫
Ω

[1 +

∫ Mε

1
Ψε]. (5.10c)

In the above, noting that Ψε(m) > 0 only when m > 1, we estimated f(0, ·)[Ψε(Mε)]+ ≤
fmax(0)|MεΨε(Mε)|. Combining the inequalities (5.10) we have∫

Ω

∫ Mε(T )

1
Ψε +

∫ T

0

∫
Ω

min{Ma−α
ε , 1}|∇Mε|2 . 1 +

∫
Ω

∫ M0

1
Ψε +

∫ T

0

∫
Ω

∫ Mε

1
Ψε. (5.11)

Using Gronwall’s Lemma (2.5a) the estimate (5.8) follows.

To conclude the proof of Theorem 5.1 from (5.8), we need the following lemma. For its proof
we refer to Lemma 1.3 and Lemma B.1 of [24].

Lemma 5.3 (Property of Hr(Ω)). If uγ ∈ H1(Ω) for some γ > 1 then u ∈ Hr(Ω) for all
r ∈ (0, γ−1].

Proof of Theorem 5.1. Case 1 (M = ess inf{M0} > 0): In this case, taking ε
1
α
1 < M we

conclude by (5.3) that ∫
Ω

∫ M0

1
Ψε is uniformly bounded for all ε ≤ ε1.

Hence, taking α = a in Lemma 5.2 provides a uniform bound on
∫ T

0 ‖∇Mε‖2. Moreover,
‖Mε‖L∞(0,T ;L∞(Ω)) is bounded by Lemma 3.2. Hence, Mε is uniformly bounded in L2(0, T ;H1(Ω)).
Passing to the limit ε→ 0, the convergence of Mε to a unique M ∈ W follows from Lemma 3.3
(see (3.12)). Consequently, the uniform bound implies that M ∈ L2(0, T ;H1(Ω)).
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Case 2 (a < 2): In this case, put α = a. Then, passing the limit ε → 0 on the right hand
side of (5.8) one has

lim
ε↘0

∫
Ω

∫ M0

1
Ψε .

∫
Ω

∫ 1

M0

(1− %1−a) d% . 1.

Here we used that M2−a
0 ≤ 1 a.e. in Ω by assumption (P5). Hence, we again obtain a uniform

bound on
∫ T

0 ‖∇Mε‖2 and consequently, M ∈ L2(0, T ;H1(Ω)).
Case 3 (a ≥ 2): We set α = 2− δ for sufficiently small δ > 0. Then the previous case and

(5.8) gives that (Mε)
1+a−α

2 ∈ L2(0, T ;H1(Ω)) and it is uniformly bounded. From Lemma 5.3 it
follows that Mε ∈ L2(0, T ;Hr(Ω)) for

r ≤ 2

2 + a− α
=

2

a+ δ
and sufficiently small δ > 0.

This concludes the proof.
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