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Abstract— This paper poses a theoretical characterization
of the stochastic reachability problem in terms of probability
measures, capturing the probability measure of the state of the
system that satisfies the reachability specification for all proba-
bilities over a finite horizon. We achieve this by constructing the
level sets of the probability measure for all probability values
and, since our approach is only for autonomous systems, we
can determine the level sets via forward simulations of the
system from a point in the state space at some time step in the
finite horizon to estimate the reach probability. We devise a
training procedure which exploits this forward simulation and
employ it to design a deep neural network (DNN) to predict
the reach probability provided the current state and time step.
We validate the effectiveness of our approach through three
examples.

I. INTRODUCTION

Stochastic reachability is an important tool to provide
probabilistic assurances of safety in stochastic, dynamical
systems, by ensuring that constraints on the state space are
met with at least a desired likelihood, despite bounded con-
trol authority. However, computing stochastic reachable sets
is a difficult challenge, because the solution to the stochastic
reachability problem is based in dynamic programming [1]–
[3]. While some progress has been made by exploiting lin-
earity in the dynamics and structure in the stochasticity [4]–
[7], computational solutions remain challenging, particularly
for systems described by general nonlinear dynamics or with
arbitrary stochastic processes. In such cases, methods based
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in approximate dynamic programming have been proposed
[8], [9], that learn the value function at each time step, which
can be expensive for longer horizons.

We propose an alternative framework for stochastic reach-
ability based in probability measures. The probability mea-
sure of a random variable returns, for a set input (e.g., a
set of states), the likelihood of the variable lying in that set.
With a probability measure, we can find a set associated with
any prescribed likelihood [10], [11]. Occupation measures,
a type of probability measure, have been used to compute
regions of attraction [12] and control invariant sets [13].
Here, we propose a measure theoretic formalism of the
stochastic reachability problem to represent the probability
measures of the state. We focus on autonomous systems,
that is, dynamical systems with no control input. One of the
main challenges in constructing this formalism is the need
for assurances of constraint satisfaction.

The main contribution of this paper is a formulation of
the stochastic reachability problem via probability measures,
that captures the state distribution which satisfies the reach-
ability specification at every time step. We synthesize a
probability measure that ensures compliance with reachabil-
ity specifications for all probabilities. We additionally seek
numerical implementations that can approximate stochastic
reachable sets by exploiting this formalism. We capture the
level sets for some likelihood as a root-finding problem
over possible probability measures, then propose a data-
driven approach based in empirical assessments of constraint
satisfaction. This approach reduces problem of constructing
a state probability measure to one of forward propagation of
the dynamics, to empirically evaluate probabilities.

Lastly, we employ a deep neural net to learn the level sets
of the state probability measure for a finite time horizon,
so that given a particular state and time step to evaluate,
the neural net predicts the stochastic reachability probability.
Our deep neural net learns the probability measure across
all safety likelihoods simultaneously, but has computational
complexity that scales with the network size (as determined
by the number of neurons and layers).

In the following, Section II presents the preliminaries and
the problem formulation. In Section III, We characterize
the stochastic reachability problem via probability measures.
Section IV describes the training procedure to create a deep
neural net that predicts the stochastic reachability probability
for a finite time horizon, for a given state and time step.
Finally, in Section V, we apply our approach to multiple
scenarios, including a satellite pointing problem.
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II. PRELIMINARIES AND PROBLEM FORMULATION

We presume Borel space, (X ,B(X )) where X ⊆ Rn and
B(X ) is a Borel sigma algebra, i.e. a non-empty collection
of subsets X ∈ B(X ) [10]. A probability measure, µ :
B(X ) → [0, 1], maps from the Borel sigma algebra outputs
a probability value between zero and one. Random variables
are in boldface, x, where we specify the probability measure
we define them over as x ∼ µ.

Definition 1 ( [10, Definition 7.12]). A discrete-time, au-
tonomous stochastic system is a Borel measurable transition
kernel, Q : B(X ) × X → [0, 1], that takes a set from the
Borel sigma algebra and outputs a value between zero and
one. We denote this function as

Q(·|x). (1)

We denote whether a state resides within a set, T ∈ B(X ),
by an indicator function,

1T (xk+1) =

{
1, x ∈ T

0, x /∈ T .
(2)

The probability of the current state residing within a set,
provided we know the probability measure of the current
state, µk(·), is described by the integral

µk(Tk) =

∫
X
1Tk

(xk+1)µk(dxk). (3)

In addition, we can relate the probability measure of the next
state for all sets in the Borel sigma algebra to the probability
measure of the current state by

µk+1(X) =

∫
X
Q(X|xk)µk(dxk), ∀X ∈ B(X ) (4)

We note that µk+1 is unique [14, Lemma 10.4.3].

Problem 1. Given a target tube, Tk for k = {0, . . . ,N},
find the state probability measures µk(·) for a finite horizon
N such that the system in Definition 1 resides in the target
tube for all probability values α ∈ [0, 1].

Problem 1 can be adapted to different types of stochas-
tic reachability specifications including reach-avoid [8],
terminal-hitting time [1], and, as it is now, for target-
tube [6]. This is accomplished by writing the reachability
specifications using the appropriate indicator functions in
(2).

We address Problem 1 by providing a theoretical charac-
terization of the solution to Problem 1 in Section III, and a
numerical implementation based in deep neural nets (DNNs)
in Section IV.

III. THE MEASURE-THEORETIC CHARACTERIZATION OF
STOCHASTIC REACHABILITY

We now present the measure-theoretic formulation of the
stochastic reachability problem that will form the basis
for our neural network-based reachable set approximation
method. First, we define the stochastic reachability specifi-
cations in terms of probability measures; then, we charac-
terize how to use measures to solve stochastic reachability
problems.

A. Backward Recursion of the State Probability Measure

First, we seek to characterize the backward recursion that
enables propagation of probability measures that satisfy stay-
ing within a target tube for all probability values. Satisfaction
of the target tube requires additional constraints to be placed
on this propagation. To ensure that the state probability
measure µk resides within the target tube set for a time step
k, we constrain

µk(Tk) =

∫
Rn

1Tk
(xk)µk(dxk), (5)

to equal α. For the final state probability measure to meet the
target tube requirement for any probability values α ∈ [0, 1],
we constrain µN−1,

µN (TN ) =

∫
X
1TN

(xN )Q(dxN |xN−1)µN−1(dxN−1),

(6)

to equal α.
We utilize these constraints in the following theorem to es-

tablish satisfaction of the reach measure via state probability
measures.

Theorem 1. If we constrain the state measures such that
• (5) holds for k ∈ N[0,N−2],
• (6) holds for k = N − 1,

then the system in Definition 1 satisfies the reachability
specification in Problem 1 for all probability values, α.

Proof. Consider the case in which k = N − 1: Note that
(6) holds as long as µN−1 satisfies (5). Now consider k ∈
N[0,N−2]. We employ backwards induction, beginning with
the base case k = N − 2,

µN−1(X) =

∫
X
Q(X | xN−2)µN−2(dxN−2), (7)

holds ∀X ∈ B(X ) provided that µN−2 satisfies (5). If the
equality holds for the case k = j where j < N − 2, then
it must also hold for the case k = j − 1. Observe that for
k = j and k = j − 1 respectively, the recursions are,

µj+1(X) =

∫
X
Q(X | xj)µj(dxj), (8a)

µj(X) =

∫
X
Q(X | xj−1)µj−1(dxj−1), (8b)

holds ∀X ∈ B(X ) as long as µj and µj−1 satisfy (5). Thus,
the propagation of the state probability measures satisfy the
reach specification in Problem 1.

Theorem 1 draws inspiration from [10, Proposition 7.28]
which proves the existence of a unique probability measure,
stepping backwards in time, to an initial probability measure
via the transition kernel. Here, we additionally constrain
the state measure to reside in the target tube for some
probability α. Nonetheless, by restricting the propagation
of the state measures, we are able to characterize state
probability measures addressing Problem 1.



B. Constructing Probability Measures via Level Sets

The backward recursion in Theorem 1, if computed di-
rectly, would yield the probability measure µk associated
with the state at each time step. However, a direct com-
putation constitutes a search through a space of probability
measures, which is cannot practically be done in the case
of continuous domains. We instead use a more tractable
formulation based on the relationship between the level sets
of the probability of the state lying within the reach tube,
α, and the state probability measure. This relationship is
predicated on the relationship between the value function
in standard stochastic reachability and the relationship to the
measure theoretic formulation.

To make this link clear, we reintroduce the backward
recursion from [1], [2] with our reachability specification
with target tubes, Tk,

VN−1(xN−1) = 1TN−1
(xN−1)E[1TN

(xN )|xN−1], (9a)
VN−2(xN−2) = 1TN−2

(xN−2)E[VN−1(xN−1)|xN−2],
(9b)

...
Vk(xk) = 1Tk

(xk)E[Vk+1(xk+1)|xk]. (9c)

We compute the conditional expectation of the value func-
tion, Vk+1 : Rn → [0, 1] at time step k ∈ N, given xk, from
the transition kernel in (1) as

E[Vk+1(xk+1)|xk] =

∫
X
Vk+1(xk+1)Q(dxk+1|xk), (10)

where xk+1 denotes the random state at the next time step.
To infer the probability measure from (9) and relate it to
the measure-theoretic approach, we introduce the following
proposition.

Proposition 1. If the expectation of the value function,
represented by the Lebesgue integral with respect to state
probability measure µ̂k, equals α, That is

E[VN−1(xN−1)] =∫
X
1TN−1

(xN−1)E[1TN
(xN )|xN−1]µ̂N−1(dxN−1),

(11a)

E[Vk(xk)] =

∫
X
1Tk

(xk)E[Vk+1(xk+1)|xk]µ̂k(dxk),

for k ∈ N[0,N−2], (11b)

both equal α, then the state probability measure µ̂k from
(11) and µk from Theorem 1 are equivalent.

Proof. We show this by stepping backwards in time, starting
with k = N − 1. Given µ̂N−1 which satisfies (11a), it also
satisfies both (5) and (6) for some α. Therefore, µ̂N−1 =
µN−1. Likewise, given state probability measures µ̂k which
satisfy (11b) for k ∈ N[0,N−2], they must satisfy (5) since,

µ̂k+1(X) =

∫
X
Q(X | xk)µ̂k(dxk), (12)

∀X ∈ B(X )via (4), results in

µ̂k+1(Tk+1) =

∫
X
1Tk+1

(xk+1)µ̂k+1(dxk+1), (13)

equaling α. Thus µ̂k = µk.

The value function determines if the current state, xk, is
within the target tube prior to evaluating the conditional
expectation, (10). This conditional expectation represents
both the state probability measure via the transition kernel
and whether each state probability measure lies in the reach
tube for the rest of the time horizon. In contrast, as shown
in Theorem 1, our approach constrains the current state
probability measure, µk, prior to the propagation to the next
constrained state probability measure, µk+1, which we define
via the transition kernel. More importantly, what Proposi-
tion 1 identifies is that, for each time step k ∈ N[0,N−1],
the evaluation of the value function at state xk corresponds
to the level sets of the state probability measure. That is,
by identifying the states xk that align with a given level set
probability, α, we can infer the respective level sets of the
state probability measures, µk, such that (11) holds.

IV. APPROXIMATING THE LEVEL SETS OF THE STATE
PROBABILITY MEASURE

To obtain the exact probability measures µk would re-
quire a direct solution of (9) using direct knowledge of
the transition kernel. In cases where this knowledge is not
available, we must instead turn to an approximation using
what information is available. In this section, we consider an
approximation method based on the assumption that the only
information available to us is trajectory data. Our ultimate
goal is to form a surrogate of the measure as shown in
Figure 1: a function approximation that returns, for a given
state value and time step, as accurate an estimate of Vk as
our data allow.

The essence of our strategy is as follows: first, form
empirical estimates V̂k of the measures µk using sample
data; then, use the empirical estimates to form training data
comprising (state, time step, empirical measure) tuples; and
finally, to train a function approximator on that data.

A. Forming the Training Data

We assume that the information available to us takes the
following form.

Assumption 1. The transition kernel is not given, but we can
compute state samples, i.e. xk+1,i ∼ Q(·|xk) where xk+1,i ∈
Rn provided some xk ∈ Rn, where xk ∈ Rn is the current
state and xk+1,i ∈ Rn is the sample of the next state.



From these data we compute the empirical estimates

V̂N−1(xN−1) = 1TN−1
(xN−1)

1

L

L∑
j=1

1TN
(xN ,j), (14a)

V̂N−2(xN−2) = 1TN−2
(xN−2)

1

L

L∑
j=1

V̂N−1(xN−1,j),

(14b)
...

V̂k(xk) = 1Tk
(xk)

1

L

L∑
j=1

V̂k+1(xk+1,j). (14c)

Here, L denotes the number of samples of the subsequent
states xj,k+1 starting from a state xk that is sampled from
a uniform distribution over the state space, i.e. xk ∼
Uniform(X ). We restrict our attention to a hyperrectangle
in the state space, taking X = [−b, b]n with bounds b ∈ R,
which we assume encompass the tube sets Tk. This process
is contingent on the fact that since we are handling dynam-
ical systems which have no control input, we can avoid a
backward recursion via dynamic programming and, instead,
employ forward simulation to obtain an empirical estimate.
We also note that this process would not be effective for a
dynamical system with a control input.

The following algorithm outlines the procedure to generate
the sample trajectories {{xl,j}Lj=1}Nl=k+1 given a single state
sample xk and L xk+1 samples via Assumption 1.

Algorithm 1 Trajectory generation procedure.

Input: xk ∈ Rn, L ∈ N
Output: {{xl,j}Lj=1}Nl=k+1

1: for l ∈ N[k,N−1] do
2: for j ∈ N[1,L] do
3: xl,k+1 ∼ Q(·|xk)
4: end for
5: end for

To demonstrate the consistency of our choice of empirical
measures, the following result shows that (14) converges to
(9) in the limit for a single evaluation point of the state, xk,
as L goes to infinity.

Proposition 2. If the state samples are produced according
to Algorithm 1, then limL→∞ V̂k(xk) = Vk(xk), ∀k ∈
N[0,N−1].

Proof. Let (9) denote the true value function that is defined
via a Lebesgue integral [14, Ch. 2, Definition 2.4.1] of
a function with respect to the previous transition kernels
as well as prior state probability measures and let (14)
denote an empirical value function averaged over L samples
detailed in Algorithm 1. The strong law of large numbers [14,
Ch. 10, 10.10(v)] ensures, as L increases, V̂k will con-
verge almost everywhere to Vk. Thus, for k ∈ N[0,N−1],
limL→∞ V̂k(xk) = Vk(xk).

Function Approximator
x

k
α

Fig. 1. The function approximator takes as input the state and
time step, then outputs a reach probability value of satisfying
the reach specification.

Having established the trajectory data and empirical mea-
sures, we proceed to the second step of our strategy: forming
the training data. We associate to each trajectory datum xk a
value of the corresponding measure value as estimated by the
empirical measures V̂k to form these estimates. Algorithm 1
demonstrates the exact procedure.

Algorithm 2 Training data generation procedure.

Input: [−b, b]n ⊆ Rn, M ,L ∈ N
Output: data ∈ RM×N

1: for k ∈ {N − 1,N − 2, . . . , 1, 0} do
2: for i ∈ N[1,M ] do
3: xi ∼ Uniform([−b, b]n)
4: {{xl,j}Lj=1}Nl=k+1 via Algorithm 1
5: α̂i,k = V̂k(xk,i) with {{xl,j}Lj=1}Nl=k+1.
6: datai,k = ((xi,k, k), α̂i,k)
7: end for
8: end for

To facilitate the training process, we restructure the train-
ing dataset, denoted by data, into data′ so that each entry,
data′i′ , corresponds to datai,k for every i within [1,M ] and
k within [0,N − 1]. Thus, the training dataset comprises a
collection of tuples, data′ = {(xi′ , ki′), α̂i′}M+N

i′=1 , where the
input includes the state and the time step, while the output
is the probability value corresponding to that state and time
step.

With the training data formed, we proceed to the final
step: training the function approximator. Training a function
approximator, V̂θ : X ×N → [0, 1] according to the training
data tuples from the previous step corresponds to solving the
following optimization problem:

minimize
θ

1

M +N

M+N∑
i′=1

J
(
V̂θ(xi′ , ki′), α̂i′

)
, (15)

where J : R×R → R is a loss function and θ represents the
parameters of the function approximator. Once the training
is complete, we may use the resulting approximator to solve
Problem 1 for any reachability specification we like: the
procedure reduces to numerical root-finding to learn the level
sets of the state probability measure that satisfy the reach
tube specification at time step k.

B. Using DNNs as the Function Approximator

With the strategy for training a function-approximator
surrogate for the measures established for an abstract func-
tion approximator, we turn to the design choices required



(a) Double integrator with variance of σ2 = 0.01

(b) Double integrator with variance of σ2 = 0.1

Fig. 2. We compare our approach (left) to the ground truth (middle) via dynamic programming (DP) as well as to a
reproducing kernel Hilbert space (RKHS) approach (right) [9]. In the top row, for a Gaussian disturbance with σ2 = 0.01,
the RKHS outperforms our method, matching closely with DP, as the neural network struggles to learn the sharp drop
off of probabilities at the boundaries. However, in the second row, when the Gaussian disturbance has σ2 = 0.1 variance,
our approach is close to the DP solution in comparison to RKHS. Note that we are able to train the neural network with
more samples (M = 5000 state samples at training time with L = 2000 to compute α offline) versus the RKHS method
(M = 10, 201 samples at training time). When attempting to use the same number of samples (M ·L = 10, 000, 000 samples)
for the RKHS approach, we ran out of memory.

to implement the method using a DNN. There are three
design choices to make: the loss function, the layer activation
functions, and the layer architecture.

Activation Functions: Since the output must lie between
zero and one, the last layer uses a sigmoid function. All
others use ReLU functions.

Loss Function: Recall that the training problem at hand
is to estimate a measure from point evaluations. For this type
of supervised learning problem, an effective loss function is
the binary cross entropy (BCE) loss,

BCE = −
1

s

s∑
i′=1

[
α̂i′ · log

(
Ṽθ(xi′ , ki′)

)
+ (1− α̂i′) · log

(
1− Ṽθ(xi′ , ki′)

)]
.

(16)

Here, s ∈ N denotes the batch size of the data that is
being learned in a single pass of the training loop, which
continues until the model has trained on the entire data set,
i.e. s < M + N , then repeats the process over again for a
finite number of iterations known as epochs.

Neural Network Structure: We design our DNN as a
fully-connected, feed-forward neural network.

We use 4 hidden layers where each layer consists of 64
neurons, each employing the Rectified Linear Unit (ReLU)
activation function. The input into the neural network is the
state, x ∈ X , and the current time step, k ∈ N.

Before turning to the examples, we briefly consider the
matter of computational complexity involved in evaluating
the function approximator. Note that DNNs evaluations scale
with the architecture’s size, specifically the arrangement and
connectivity of its layers, and not the sample size. This means
that a trained neural network can accommodate additional
data without a proportional increase in the evaluation time.
In comparison, kernel methods, which scale with the number
of samples, struggle at evaluation time due to the size of
the Gram matrix [15]. Although kernel methods have seen
scalability improvements via random Fourier features [16],
neural networks have made parallel strides in scalability
through techniques such as quantization [17], to represent
neural networks on a smaller memory footprint, and batching
of the data for training with limited memory [18, Ch. 8].



V. EXAMPLES

We demonstrate our approach on three examples. For
training the algorithm we use PyTorch [19] with the Adam
optimizer [20]. Specifically, we use a learning rate scheduler,
which initially starts with a rate of 0.001, and adjusts the
learning rate by multiplying it by 0.1 when the loss function
flattens, i.e. stops improving, during the training. We use an
Xavier initialization scheme to prevent exploding and van-
ishing gradients which keeps the variance of the activation
functions the same across each layer [21]. All computations
were done in Python on an Apple M1 Macbook Pro with
16GB of RAM with PyTorch running in CPU mode, making
no use of GPU or neural network hardware acceleration.
For comparisons to the proposed approach, we employ both
dynamic programming (DP) [22] and a reproducing kernel
Hilbert spaces (RKHS) approach [9].

A. Double Integrator Experiments
1) 2D Double Integrator: This example compares our

approach against dynamic programming and RKHS [9] ap-
proaches. Consider dynamics of a double integrator with time
horizon N = 3 and sampling time ∆T = 0.25,

xk+1 =

[
1 ∆T
0 1

]
xk +wk, (17)

where xk ∈ X = [−2, 2]2 is the random state vector. We
consider Gaussian disturbances, wk ∼ N (02,σ

2I2×2). We
consider variances of σ2 = 0.01 and σ2 = 0.1. The target
sets are Tk = [−1, 1]2 for k ∈ N[0,N ].

We trained the DNN with M = 5000 initial samples of the
state and L = 2000 state samples, which we split into batches
of size 101 over 50 epochs to train the neural network.
Results for both values of σ are shown in Figure 2a, as
well as comparisons with RKHS and dynamic programming.
We train the RKHS approach with a sample size of 10, 201
for both variances. For the example with variance σ2 =
0.01, the RKHS approach matches closely with the dynamic
programming solution, while our approach has error at drop
offs in probability at the edges (Figure 2a). However, with
variance σ2 = 0.1, the RKHS approach does not accurately
match the dynamic programming solution. In contrast, our
approach is able to handle the larger noise, and is close to
the dynamic programming solution, as seen in Figure 2b. We
report the errors for both examples in Table I. When using
the same number of state samples (M ·L = 10, 000, 000) as
we use to train the DNN, we ran out of memory attempting
to train the RKHS method.

2) n-Dimensional Stochastic Chain of Integrators: In this
example, we show that our approach scales linearly with
dimension. We consider the n-dimensional stochastic chain
of integrators from [5], [23],

xk+1 =


1 ∆T · · · ∆Tn−1

(n−1)!

0 1 · · · ∆Tn−2

(n−2)!

...
...

. . .
...

0 0 · · · 1

xk +wk, (18)

Fig. 3. This plot shows that the training time scales with
dimension for the neural network when we fix the number
of samples during training. For a fixed sample size, but
with increasing state dimension, the neural network scales
linearly, similarly to RKHS [23]. Note that increasing the
number of epochs increases the slope of the training curve.

where we vary n from 2 to 10, 000 dimensions, xk ∈ X ⊆
Rn is the random state vector evaluate with a zero vector 0n,
and wk ∼ N (0n, 0.01In×n) is the Gaussian noise vector,
sampling rate is ∆T = 0.25, and the time horizon is N = 5.
For the reachability specification, we specify the tube sets
to be Tk = [−1, 1]n for k ∈ N[0,N ]. We trained our DNN
with M = 1024 initial samples of the state and L = 1 state
samples, which we split into batches of 10 samples during
training time. We iterate through the entire training set for
5 and 10 epochs, respectively, to determine how the training
procedure scales with additional passes through the training
set. Our approach scales linearly and has performance similar
to RKHS [23], as shown in Figure 3. In contrast to RKHS,
in which samples are contained within the Gram matrix, a
neural network can utilize batch processes to train over large
amounts of data, without increases to the time needed to
evaluate the neural network. Note that the increase in epochs
results in a steeper slope.

B. Quaternion Attitude Dynamics
This example demonstrates solution to stochastic reach-

ability problems with nonlinear dynamics. The rigid body
dynamics of a torque-free, tumbling object is given by
Euler’s rotation equations,

ω̇x = [(Iyy − Izz)/Ixx]ωyωz

ω̇y = [(Izz − Ixx)/Iyy]ωzωx, (19)
ω̇z = [(Ixx − Iyy)/Izz]ωxωy

where I ∈ R3 is the inertia matrix with diagonal entries,
Ixx, Iyy , and Izz , since we assume no products of inertia,
and angular velocity about the principle axes is denoted by
ω = [ωx ωy ωz]

⊤ ∈ R3. The evolution of a unit quaternion
representing attitude in the earth-centered inertial frame with
the angular velocity in the body frame is

q̇ =
1

2
q ⊗

[
0
ω

]
, (20)



where q = a + bi + cj + dk is a unit quaternion on
the 3-sphere, denoted by S3, and it is of unit length,
i.e., a2 + b2 + c2 + d2 = 1 [24]. The state vector is
x = [ωx,ωy,ωz, qw, qx, qy, qz]

⊤ ∈ R7, where [ωx,ωy,ωz]
⊤

represents the angular velocity about the principal axes, qw is
a scalar that represents the angle of rotation, and [qx, qy, qz]

⊤

is a unit vector that represents the axis of rotation.
To obtain (1), we discretized (19) and (20) via a fourth-

order Runge-Kutta scheme, then added Gaussian noise with
mean 0 and variance σ2 = 0.1 to each of the elements
of the quaternion kinematics. We generated points on the
surface of the unit sphere, which we represent as pure
quaternions, i.e. q = [0,x, y, z], then simulated the attitude
dynamics via fourth-order Runge Kutta with time horizon
N = 3, sampling time ∆T = 0.25, initial constant angular
velocity ω0 = [0, 0.5, 1]⊤, and moments of inertia Ixx = 10,
Iyy = 5, and Izz = 7. Our reachability specification is
on a projected space comprised of elevation and azimuth,
i.e. Tk =

{
θ,ϕ | π

4 ≤ θ ≤ π
2 ,

π
4 ≤ ϕ ≤ 3π

4

}
for k ∈ N[0,N ],

which we can derive via the unit vector component of the
quaternion that represents a point in three-dimensional space.

θ = arccos(qz) (21a)
ϕ = arctan(qy/qx) (21b)

These equations are standard for converting unit quaternions
to spherical coordinates [25].

We trained our DNN with M = 2500 initial samples
of the state and L = 500 state samples, which we split
into batches of size 10 over 50 epochs to train the neural
network. Due to the dimensionality of the state, we could not
utilize dynamic programming. However, as shown in Figure
4, the DNN approach matches closely with the empirical
estimate via (14), whereas the RKHS does not match closely
and yields higher probability values. The error with respect
to (14) is provided in Table I. The RKHS approach has both
a higher maximum absolute error and average error, which
could indicate that it requires additional hyperparameter
tuning, cross-validation, and additional data.

VI. CONCLUSION

In this paper, we provide a measure theoretic formalism of
the stochastic reachability problem for uncontrolled systems,
that characterizes stochastic reachability in terms of proba-
bility measures. This approach enables new computational
tools for approximate solutions to stochastic reachable sets,
by computing level sets of the probability measure for all
probability values. We develop a numerical implementation
that employs deep neural nets to approximate the stochastic
reachability probability, for a given state and time step within
a finite time horizon. Future work will focus on extensions
to accommodate dynamical systems with control inputs.
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Double Integrator with variance σ2 = 0.01
State Max Absolute Average

Method Samples Error with DP Error with DP Time (s)
DNN 5000 0.8433 0.0205 18.905
DP 10201 – – 8.99
RKHS 10201 0.4074 0.0142 53.23

Double Integrator with variance σ2 = 0.1
State Max Absolute Average

Method Samples Error with DP Error with DP Time (s)
DNN 5000 0.3106 0.0063 20.35
DP 10201 – – 9.13
RKHS 10201 0.5091 0.0669 50.158

Quaternion Attitude Dynamics
State Max Absolute Average

Method Samples Error with (14) Error with (14) Time (s)
DNN 2500 0.1477 0.0023 52.186
RKHS 2500 0.3901 0.0164 1.108

TABLE I. Number of state samples, maximum absolute error,
average error, and computation times for each method for
the double integrator and the quaternion attitude dynamics.
The time reported for dynamic programming consists of
evaluation on a uniform grid to compute the probabilities via
backward recursion. For the DNN and RKHS approaches, we
show the combined training and evaluation times.
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