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TWO CURIOUS q-SUPERCONGRUENCES AND THEIR EXTENSIONS

HAIHONG HE AND XIAOXIA WANG∗

Abstract. We prove two single-parameter q-supercongruences which were recently con-
jectured by Guo, and establish their further extensions with one more parameter. Crucial
ingredients in the proof are the terminating form of q-binomial theorem and a Karlsson-
Minton type summation formula due to Gasper. Incidentally, an assertion of Wang, Li
and Tang is also verified by establishing its q-analogue.

1. Introduction

Except for investigating hypergeometric families of Calabi-Yau manifolds, Rodriguez-
Villegas [14] also observed (numerically) many possible supercongruences, including the
following one: for any odd prime p,

p−1
∑

k=0

(1
2
)2k

k!2
≡ (−1)(p−1)/2 (mod p2). (1.1)

Here and in what follows, the the Pochhammer symbol is defined as and (x)0 = 1 and
(x)n = x(x + 1) · · · (x + n − 1) with n a positive integer. The congruence (1.1) was first
proved by Mortenson [13]. Later, Deines et al. [3] gave the following generalization of
(1.1): for any integer d > 1 and prime p ≡ 1 (mod d),

p−1
∑

k=0

(d−1
d
)dk

k!d
≡ −Γp

(

1
d

)d
(mod p2), (1.2)

where Γp(x) denotes the p-adic Gamma function (cf. [2, §1.12]).
For any complex variable x and integer n, define the q-shifted factorial as

(x; q)∞ =

∞
∏

k=0

(1− xqk) and (x; q)n =
(x; q)∞
(xqn; q)∞

.

For simplicity, we also adopt the compact expression

(x1, x2, . . . , xm; q)n = (x1; q)n(x2; q)n · · · (xm; q)n.
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Moreover, [n] := [n]q = 1+ q+ · · ·+ qn−1 denotes the q-integer. A q-analogue of (1.1) can
be found in Guo and Zeng [10, Corollary 2.4]. Recently, Guo [6, Theorem 1.1] established
a q-extension of (1.2): for any integers d, n > 1 with n ≡ 1 (mod d),

n−1
∑

k=0

(qd−1; qd)dkq
dk

(qd; qd)dk
≡

(qd; qd)(d−1)(n−1)/dq
(d−1)(n−1)(d+n−1)/(2d)

(qd; qd)d−1
(n−1)/d(−1)(d−1)(n−1)/d

(mod Φn(q)
2). (1.3)

Here and in what follows, the n-th cyclotomic polynomial Φn(q) is given by

Φn(q) =
∏

1≤k≤n
gcd(k,n)=1

(q − ζk),

where ζ is an n-th primitive root of unity. In the same paper, Guo also presented two
analogous q-supercongruences as follows.
(i) For any odd integer d ≥ 3 and integer n with n ≡ −1 (mod d) and n ≥ 2d− 1,

n−1
∑

k=0

(qd+1; qd)d−1
k (q1−d; qd)kq

dk

(qd; qd)dk

≡
(1− q)(1− qd−1)(qd; qd)n−1−(n+1)/d

−(qd; qd)d−1
(n+1)/d

q(d(d+n)(n+1)−(n+1)2)/(2d)−1 (mod Φn(q)
2). (1.4)

(ii) For any even integer d ≥ 4 and positive integer n with n ≡ −1 (mod d),

n−1
∑

k=0

(qd+1; qd)d−2
k (q; qd)2kq

dk

(qd; qd)dk

≡
(1− q)2(qd; qd)n−1−(n+1)/d

(−1)(n+1)/d(qd; qd)d−1
(n+1)/d

q(d(d+n)(n+1)−(n+1)2)/(2d)−2 (mod Φn(q)
2). (1.5)

For recent progress on congruences and q-congruences, we recommend the literatures
[5, 7–9, 12, 16–21] to readers.

As the complements of (1.4) and (1.5), Guo [6, Conjectures 5.2 and 5.3] proposed two
q-supercongruences lined as the following two theorems respectively. Moreover, we shall
establish the common generalization of (1.4) and (1.6) and also that of (1.5) and (1.7)
with two parameters.

Theorem 1.1 (6, Conjecture 5.2). Let d ≥ 4 be an even integer and n an integer with

n ≡ −1 (mod d) and n ≥ 2d− 1. Then,

n−1
∑

k=0

(qd+1; qd)d−1
k (q1−d; qd)kq

dk

(qd; qd)dk

≡
(1− q)(1− qd−1)(qd; qd)n−1−(n+1)/d

−(−1)(n+1)/d(qd; qd)d−1
(n+1)/d

q(d(d+n)(n+1)−(n+1)2)/(2d)−1 (mod Φn(q)
2). (1.6)
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Theorem 1.2 (6, Conjecture 5.3). Let d ≥ 3 be an odd integer and n a positive integer

with n ≡ −1 (mod d). Then,

n−1
∑

k=0

(qd+1; qd)d−2
k (q; qd)2kq

dk

(qd; qd)dk

≡
(1− q)2(qd; qd)n−1−(n+1)/d

(qd; qd)d−1
(n+1)/d

q(d(d+n)(n+1)−(n+1)2)/(2d)−2 (mod Φn(q)
2). (1.7)

Particularly, letting n = p be an odd prime and q → 1 in Theorems 1.1 and 1.2, we
arrive at Guo’s two congruences [6, (5.4) and (5.5)], which have been successfully proved
by Wang, Li and Tang [15]. Besides, the authors [15] conjectured that: for any integers
d ≥ 2, n with n ≡ −1 (mod d) and n ≥ 2d− 1,

(n− 1)!dddn−d

n2

n−1
∑

k=0

(d+1
d
)d−2
k (1

d
)k(

1−d
d
)k

(1)dk
∈ Z. (1.8)

The assertion (1.8) shall be proved by determining the following q-congruence.

Theorem 1.3. Let d ≥ 2 and n be integers with n ≡ −1 (mod d) and n ≥ 2d− 1. Then,

(qd; qd)dn−1

(1− q)dn−d

n−1
∑

k=0

(qd+1; qd)d−2
k (q, q1−d; qd)kq

dk

(qd; qd)dk
≡ 0 (mod [n]2).

Clearly, (1.8) follows by letting q → 1 in Theorem 1.3.
The rest of this paper is organized as follows. We shall employ the terminating form of

q-binomial theorem to confirm Theorems 1.1 and 1.3 in Section 2. Section 3 is devoted
to proving Theorem 1.2 by means of Gasper’s Karlsson-Minton type summation formula.
In Section 4, we shall present two-parametric extensions of (1.4) and (1.6), together with
(1.4) and (1.7). The ‘creative microscoping’ method introduced by Guo and Zudilin [11]
will also be employed in the proofs.

2. Proofs of Theorems 1.1 and 1.3

To prove Theorems 1.1 and 1.3, we require the following key result.

Lemma 2.1. Let d, r be positive integers with d ≥ 3 + r and gcd(d, r) = 1. Let n be an

integer such that n ≡ −r (mod d) and n ≥ 2d− r. Then,

n−1
∑

k=0

(qd+r; qd)d−r−1
k (qr; qd)rk(q

r−d; qd)kq
dk

(qd; qd)dk
≡ 0 (mod Φn(q)

2). (2.1)

Especially, for integers d ≥ 4 and n ≥ 2d− 1 with n ≡ −1 (mod d), we have,

n−1
∑

k=0

(qd+1; qd)d−2
k (q, q1−d; qd)kq

dk

(qd; qd)dk
≡ 0 (mod Φn(q)

2). (2.2)
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Proof. Obviously, the ratio (qd+r; qd)d−r−1
k /(qd; qd)dk contains the factor (1 − q(d−1)n)2 for

n− (n+ r)/d ≤ k ≤ n− 1. Besides, it is easy to find that for k ≥ 0,

(qr; qd)rk(q
r−d; qd)k = (1− qr−d)(1− qr)r+1(qd+r; qd)r+1

k−2(1− qdk−d+r)r.

Equivalently, we just prove the truth of the subsequent congruence,

n−1−(n+r)/d
∑

k=0

(qd+r; qd)d−r−1
k (qd+r; qd)r+1

k−2(1− qdk−d+r)rqdk

(qd; qd)dk
≡ 0 (mod Φn(q)

2). (2.3)

Before that, we confirm the following parametric generalizations of (2.3), which are both
symmetric about a and a−1:

n−1−(n+r)/d
∑

k=0

(ad−1qd+r, ad−3qd+r, · · · , ar+2qd+r, a−r−2qd+r, · · · , a3−dqd+r, a1−dqd+r; qd)kq
dk

(qd, ad−2qd, ad−4qd, · · · , ar+3qd, a−r−1qd, · · · , a4−dqd, a2−dqd; qd)k

×
(arqd+r, ar−2qd+r, · · · , a−r+2qd+r, a−rqd+r; qd)k−2(1− qdk−d+r)r

(ar+1qd, ar−1qd, · · · , a−r+3qd, a−r+1qd; qd)k
≡ 0 (mod (1− aqn)(a− qn)) (2.4)

for d+ r ≡ 1 (mod 2), and

n−1−(n+r)/d
∑

k=0

(ad−1qd+r, ad−3qd+r, · · · , ar+3qd+r, qd+r, a−r−3qd+r, · · · , a3−dqd+r, a1−dqd+r; qd)k
(qd, ad−2qd, ad−4qd, · · · , ar+4qd, aqd, a−r−2qd, · · · , a4−dqd, a2−dqd; qd)kq−dk

×
(ar+1qd+r, ar−1qd+r, · · · , a2qd+r, a−2qd+r, · · · , a−r+1qd+r, a−r−1qd+r; qd)k−2

(ar+2qd, arqd, · · · , a3qd, a−1qd, · · · , a−r+2qd, a−rqd; qd)k(1− qdk−d+r)−r

≡ 0 (mod (1− aqn)(a− qn)) (2.5)

for d ≡ r ≡ 1 (mod 2).
Next, we concentrate on the proof of (2.4). Since gcd(d, r) = gcd(d, n) = 1, the

denominator of the left-hand side of (2.4) does not contain the factor 1− aqn or a− qn.
Thus, for a = q−n or a = qn, noticing that (qd+r−(d−1)n; qd)k = 0 for k > n−1− (n+ r)/d,
the left-hand side of (2.4) equals

n−1−(n+r)/d
∑

k=0

(qd+r−(d−1)n, qd+r−(d−3)n, · · · , qd+r−(r+2)n, qd+r+(r+2)n, · · · , qd+r+(d−1)n; qd)kq
dk

(qd, qd−(d−2)n, · · · , qd−(r+3)n, qd+(r+1)n, · · · , qd+(d−2)n; qd)k

×
(qd+r−rn, qd+r−(r−2)n, · · · , qd+r+(r−2)n, qd+r+rn; qd)k−2(1− qdk−d+r)r

(qd−(r+1)n, qd−(r−1)n, · · · , qd+(r−3)n, qd+(r−1)n; qd)k

=

n−1−(n+r)/d
∑

k=0

(−1)kqd(
n−1−(n+r)/d−k

2 )
[

n− 1− (n+ r)/d

k

]

qd
P (qdk). (2.6)
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Here P (qdk) is a polynomial in qdk of degree n− 2− (n+ r)/d and
[

n

k

]

:=

[

n

k

]

q

=
(q; q)n

(q; q)k(q; q)n−k

denotes the q-binomial coefficient. In the derivation of (2.6), we have utilized the following
formulas, which can be certified readily:

(qd+r−(d−1)n; qd)kq
dk

(qd; qd)k
= (−1)k

[

n− 1− (n+ r)/d

k

]

qd
qd(

k
2)+(n+2d+r−dn)k,

d

(

k

2

)

+ (n+ 2d+ r − dn)k = d

(

n− 1− (n+ r)/d− k

2

)

− d

(

n− 1− (n+ r)/d

2

)

,

for 1 ≤ j ≤ d− 1 and j 6= (d− r − 1)/2, · · · , (d+ r − 1)/2

(qd+r−(d−2j−1)n; qd)k
(qd−(d−2j)n; qd)k

=
(qd−(d−2j)n+dk; qd)(n+r)/d

(qd−(d−2j)n; qd)(n+r)/d

, (2.7)

and for (d− r − 1)/2 ≤ j ≤ (d+ r − 1)/2

(qd+r−(d−2j−1)n; qd)k−2

(qd−(d−2j)n; qd)k
=

(qd−(d−2j)n+dk; qd)(n+r)/d−2

(qd−(d−2j)n; qd)(n+r)/d
. (2.8)

We see that the right-hand sides of (2.7) and (2.8) are polynomials in qdk of degree
(n + r)/d and (n + r)/d − 2 respectively. Then, by the terminating form of q-binomial
theorem (see, for example, [1, p. 36]):

n
∑

k=0

(−1)k
[

n

k

]

q(
n−k
2 )+jk = 0 for 0 ≤ j ≤ n− 1,

we deduce that the right-hand side of (2.6) equals zero. This implies that the congruence
(2.4) holds modulo (1 − aqn)(a − qn). Similarly, we are able to prove (2.5) and we omit
the details here.

Apparently, the limit (1 − aqn)(a − qn) has the factor Φn(q)
2 as a → 1. Moreover,

the denominators on the left-hand side of (2.4) and (2.5) are both coprime with Φn(q) as
a → 1. Hence, letting a → 1 in (2.4) and (2.5), we are led to (2.3). Thus, we verify the
correction of (2.1). �

Now, we are ready to prove Theorems 1.1 and 1.3.

Proof of Theorem 1.1. It is routine to check that: for any integer d ≥ 2,

n−1
∑

k=0

(qd+1; qd)d−1
k (q1−d; qd)kq

dk

(qd; qd)dk

= [d]

n−1
∑

k=0

(qd+1; qd)d−2
k (q, q1−d; qd)kq

dk

(qd; qd)dk
− q[d− 1]

n−1
∑

k=0

(qd+1; qd)d−2
k (q; qd)2kq

dk

(qd; qd)dk
, (2.9)
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where we have applied the following identity:

(qd+1, q1−d; qd)k = −q[d− 1]

(

1 +
1− qd

qd − qdk+1

)

(q; qd)2k.

Hence, from (1.5), (2.2) and (2.9), we arrive at Theorem 1.1. �

Proof of Theorem 1.3. At first, we claim that the following two q-congruences hold, which
are the d = 2, 3 cases of (2.2): for any integer n, modulo Φn(q)

2,

n−1
∑

k=0

(q, q−1; q2)kq
2k

(q2; q2)2k
≡ 0 if n ≥ 3 and n ≡ 1 (mod 2), (2.10)

n−1
∑

k=0

(q4, q, q−2, ; q3)kq
3k

(q3; q3)3k
≡ 0 if n ≥ 5 and n ≡ 2 (mod 3). (2.11)

In fact, taking d = 2 in (2.9), we have, modulo Φn(q)
2,

[2]

n−1
∑

k=0

(q, q−1; q2)kq
2k

(q2; q2)2k
=

n−1
∑

k=0

(q3, q−1; q2)kq
2k

(q2; q2)2k
+ q

n−1
∑

k=0

(q; q2)2kq
2k

(q2; q2)2k

≡ (−1)(n+1)/2q(n
2+3)/4 + q(−1)(n−1)/2q(n

2−1)/4, (2.12)

where we have used a q-supercongruence from the work [6, p. 9] and the d = 2 case of
(1.3). Analogously, letting d = 3 in (2.9), we have, modulo Φn(q)

2,

[3]
n−1
∑

k=0

(q4, q, q−2; q3)kq
3k

(q3; q3)3k
=

n−1
∑

k=0

(q4, q4, q−2; q3)kq
3k

(q3; q3)3k
+ q[2]

n−1
∑

k=0

(q4, q, q; q3)kq
3k

(q3; q3)3k

≡
(1− q)(1− q2)(q3; q3)(2n−1)/3−1

−(q3; q3)2(n+1)/3

q(3(3+n)(n+1)−(n+1)2)/6−1

+ q[2]
(1− q)2(q3; q3)(2n−1)/3−1

(q3; q3)2(n+1)/3

q(3(3+n)(n+1)−(n+1)2)/6−2, (2.13)

where we have utilized (1.4) and (1.7) with d = 3. Therefore, the q-results (2.10) and
(2.11), respectively, follow from (2.12) and (2.13). In addition, we notice that: for any
integer d ≥ 2,

(qd; qd)dn−1

(1− q)dn−d
=

∏

1≤m<n

(

1− qmd

1− q

)d

≡ 0 (mod
∏

1<m<n
m|n

Φm(q)
2). (2.14)

Combining the following property

[n] = Φn(q)
∏

1<m<n
m|n

Φm(q)

with the congruences (2.2), (2.10), (2.11) and (2.14), we obtain Theorem 1.3. �
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3. Proof of Theorem 1.2

Proof. We shall prove Theorem 1.2 by using Gasper’s Karlsson-Minton type summation
formula (see [4, (1.9.9)] for more general form): for nonnegative integers N, n1, · · · , nm

with N = n1 + · · ·+ nm,

N
∑

k=0

(q−N , b1q
n1, · · · , bmq

nm; q)k
(q, b1, · · · , bm; q)k

qk = (−1)N
(q; q)Nb

n1
1 · · · bnm

m

(b1; q)n1 · · · (bm; q)nm

q(
n1
2 )+···+(nm

2 ). (3.1)

Below, the two conditions d > 3 and d = 3 of Theorem 1.2 shall be discussed separately.
(i) For d > 3, we consider the following generalization of (1.7): modulo (1− aqn)(a− qn),

n−1
∑

k=0

(ad−1qd+1, ad−3qd+1, · · · , a4qd+1, a2q, qd+1, a−2q, a−4qd+1, · · · , a3−dqd+1, a1−dqd+1; qd)k
(ad−2qd, ad−4qd, · · · , a4−dqd, a2−dqd; qd)k(qd; qd)kq−dk

≡
(1− a2q)(1− q/a2)(qd; qd)n−1−(n+1)/d

(ad−2qd, ad−4qd, · · · , a4−dqd, a2−dqd; qd)(n+1)/d

q(d(d+n)(n+1)−(n+1)2)/(2d)−2. (3.2)

In fact, we take the substitutions q → qd, m = d−1, N = n−1−(n+1)/d, bj = qd−(d−2j)n

(1 ≤ j ≤ d − 1), n(d−3)/2 = n(d+1)/2 = (n + r)/d − 1 and nj = (n + r)/d (1 ≤ j ≤ d − 1
and j 6= (d− 3)/2, (d+ 1)/2) in (3.1). Thus, for a = q−n or a = qn, the left-hand side of
(3.2) can be simplified as

(−1)n−1−(n+1)/dq(d−1)(n+1)−2(d−n)+d(d−3)((n+1)/d
2 )+2d((n+1)/d−1

2 )

(qd−(d−2)n, qd−(d−4)n, · · · , qd−5n, qd−n, qd+3n, · · · , qd+(d−4)n, qd+(d−2)n; qd)(n+1)/d

×
(qd; qd)n−1−(n+1)/d

(qd−3n, qd+n; qd)(n+1)/d−1

=
(1− q1−2n)(1− q1+2n)(qd; qd)n−1−(n+1)/dq

(d(d+n)(n+1)−(n+1)2)/(2d)−2

(qd−(d−2)n, qd−(d−4)n, · · · , qd+(d−4)n, qd+(d−2)n; qd)(n+1)/d
.

Namely, the q-congruence (3.2) is true modulo (1− aqn)(a− qn).
(ii) For d = 3, we regard the following q-congruence: modulo (1− aqn)(a− qn),

n−1
∑

k=0

(a2q, q4, q/a2; q3)kq
3k

(aq3, q3/a, q3; q3)k
≡

(1− a2q)(1− q/a2)(q3; q3)n−1−(n+1)/3

(aq3, q3/a; q3)(n+1)/3

q(n
2+5n−2)/3. (3.3)

Actually, the q-congruence (3.3) follows by choosing q → q3, m = 2, N = (2n − 1)/3,
b1 = q3−n, b2 = q3+n, n1 = (n + 1)/3 and n2 = (n + 1)/3 − 1 in (3.1). Hence, we finish
the proof of Theorem 1.2 by letting a → 1 in (3.2) and (3.3). �

4. The extensions of Theorems 1.1 and 1.2

In this section, we present the common extension of (1.4) and (1.6) and also that of
(1.5) and (1.7) with two parameters. Our discoveries are as follows.
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Theorem 4.1. Let d, r be positive integers with d ≥ 3 + r and gcd(d, r) = 1. Let n be an

integer such that n ≡ −r (mod d) and n ≥ 2d− r. Then, modulo Φn(q)
2,

n−1
∑

k=0

(qd+r; qd)d−r
k (qr; qd)r−1

k (qr−d; qd)kq
dk

(qd; qd)dk
≡

(1− qr)r(1− qd−r)(qd; qd)n−1−(n+r)/d

−(−1)n−1−(n+r)/d(qd; qd)d−1
(n+r)/d

qA(d,n,r),

(4.1)

where A(d, n, r) = [d(d+ n)(n + r) + dn(r − 1)− (n+ r)2]/(2d)− r(r + 1)/2. Moreover,

the congruence (4.1) also holds for d = 2, 3 and r = 1.

Theorem 4.2. Let d, r be positive integers with d > r and gcd(d, r) = 1. Let n > 1 be a

positive integer such that n ≡ −r (mod d). Then, modulo Φn(q)
2,

n−1
∑

k=0

(qd+r; qd)d−r−1
k (qr; qd)r+1

k qdk

(qd; qd)dk
≡

(1− qr)r+1(qd; qd)n−1−(n+r)/d

(−1)n−1−(n+r)/d(qd; qd)d−1
(n+r)/d

qA(d,n,r)−r, (4.2)

where A(d, n, r) is stated in Theorem 4.1.

Clearly, taking r = 1 in Theorems 4.1 and 4.2, we can easily attain (1.4)-(1.7) on the
basis of the parity of d.

In fact, the proof of Theorem 4.1 depends on the relationship between (4.1) and (4.2).
So, we first prove Theorem 4.2 via Karlsson-Minton type summation (3.1) again.

Sketch of proof of Theorem 4.2. Totally classified by the parities of d and r, we discuss
the following four q-congruences (4.3)–(4.6), which are all symmetric with respect to a
and a−1.
(i) For d+ r ≡ 1 (mod 2), modulo (1− aqn)(a− qn),

n−1
∑

k=0

(ad−1qd+r, ad−3qd+r, · · · , ar+2qd+r, arqr, ar−2qr, · · · , a−rqr, · · · , a1−dqd+r; qd)k
(ad−2qd, ad−4qd, · · · , a4−dqd, a2−dqd; qd)k(qd; qd)kq−dk

≡
(1− arqr)(1− ar−2qr) · · · (1− a−rqr)(qd; qd)n−1−(n+r)/d

(−1)n−1−(n+r)/d(ad−2qd, ad−4qd, · · · , a4−dqd, a2−dqd; qd)(n+r)/d

qA(d,n,r)−r (4.3)

with d− r ≥ 3, and

n−1
∑

k=0

(ad−1qd−1, ad−3qd−1, · · · , a3−dqd−1, a1−dqd−1; qd)kq
dk

(qd, ad−2qd, ad−4qd, · · · , a4−dqd, a2−dqd; qd)k
≡ Bq(d, n, d− 1) (4.4)

with d− r = 1. Here Bq(d, n, r) denotes the right-hand side of (4.3).
(ii) For d ≡ r ≡ 1 (mod 2), modulo (1− aqn)(a− qn),

n−1
∑

k=0

(ad−1qd+r, ad−3qd+r, · · · , ar+3qd+r, ar+1qr, · · · , a2qr, qd+r, a−2qr, · · · , a1−dqd+r; qd)k
(ad−2qd, ad−4qd, · · · , a4−dqd, a2−dqd; qd)k(qd; qd)kq−dk

≡ Cq(d, n, r) with d− r ≥ 4, (4.5)
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n−1
∑

k=0

(ad−1qd−2, ad−3qd−2, · · · , a2qd−2, q2d−2, a−2qd−2, · · · , a1−dqd−2; qd)kq
dk

(ad−2qd, ad−4qd, · · · , a4−dqd, a2−dqd; qd)k(qd; qd)k

≡ Cq(d, n, d− 2) with d− r = 2, (4.6)

where

Cq(d, n, r) =
(qd; qd)n−1−(n+r)/dq

A(d,n,r)−r

(ad−2qd, ad−4qd, · · · , a2−dqd; qd)(n+r)/d

(r+1)/2
∏

j=1

(1− a2jqr)(1− a−2jqr).

Actullay, the proof of per condition needs the help of Karlsson-Minton type summation
(3.1). Taking the congruence (4.3) for example, it follows by letting q → qd, m = d − 1,
N = n− 1− (n + r)/d, bj = qd−(d−2j)n (1 ≤ j ≤ d− 1), and

nj =

{

(n+ r)/d− 1 (d− r − 1)/2 ≤ j ≤ (d+ r − 1)/2

(n+ r)/d 1 ≤ j < (d− r − 1)/2 and (d+ r − 1)/2 < j ≤ d− 1

in (3.1). Similarly, the other three congruences (4.4)-(4.6) can also be proved and we
will not present the details here. Hence, letting a → 1 in (4.3)–(4.6) and making an
integration, we are led to Theorem 4.2. �

Proof of Theorem 4.1. In view of

(qd+r, qr−d; qd)k = −qr
[d− r]

[r]

(

1 +
1− qd

qd − qdk+r

)

(qr; qd)2k,

we investigate the relation between (4.1) and (4.2): for integers d > r ≥ 1,

n−1
∑

k=0

(qd+r; qd)d−r
k (qr; qd)r−1

k (qr−d; qd)kq
dk

(qd; qd)dk

=
[d]

[r]

n−1
∑

k=0

(qd+r; qd)d−r−1
k (qr; qd)rk(q

r−d; qd)kq
dk

(qd; qd)dk
−

[d− r]

q−r[r]

n−1
∑

k=0

(qd+r; qd)d−r−1
k (qr; qd)r+1

k qdk

(qd; qd)dk
.

Hence, from (2.1), (2.10), (2.11), Theorem 4.2 and the above result, we acquire Theorem
4.1. �

Particularly, letting n be a prime p ≥ 5 and q → 1 in Theorems 4.1 and 4.2, we gain
the following conclusion.

Corollary 4.3. (i) Let d, r be positive integers with d ≥ 3 + r and gcd(d, r) = 1. Then,

for any prime p ≥ 2d− r with p ≡ −r (mod d),

p−1
∑

k=0

(d+r
d
)d−r
k ( r

d
)r−1
k ( r−d

d
)k

k!d
≡ d−r

d

(

r
d

)r
Γp

(

− r
d

)d
(mod p2).
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(ii) Let d, r be positive integers with d > r and gcd(d, r) = 1. Then, for any prime p ≥ 5
with p ≡ −r (mod d),

p−1
∑

k=0

(d+r
d
)d−r−1
k ( r

d
)r+1
k

k!d
≡ −

(

r
d

)r+1
Γp

(

− r
d

)d
(mod p2).

In the derivation of Corollary 4.3, we have used the following formula: for any positive
integers d, r with d > r and prime p ≥ 5 with p ≡ −r (mod d),

(

p− 1− p+r
d

)

!

(p+r
d
)!d−1

≡ −(−1)
p+r
d Γp

(

− r
d

)d
(mod p2),

which can be proved like the formulas [6, (4.4) and (4.8)] by means of some basic properties
of the p-adic Gamma function.
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