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1 Introduction

The study of unimodality of polynomials (or combinatorial sequences) has drawn great at-
tention in recent decades. There is a remarkable diversity of applicable tools, ranging from
analytic to topological, and from representation theory to probabilistic analysis. In this pa-
per, we establish the unimodality of the polynomials defined in (1.6) by refining the method
of Odlyzko-Richmond [13]. Recall that a polynomial

ap+arq+---+anq"”
with integer coefficients is called unimodal if for some 0 < 5 < N,
ap < ap S"'Saj >aj+1 > -2 an,

and is called symmetric if forall 0 < 7 < N,
a; = AN—j-

See [20, p. 124, Ex. 50]. It is well-known that the Gaussian polynomials

m (=g —g"h-- (1= g
k (1=g)(1—=¢?)---(1—q")
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are symmetric and unimodal, as conjectured by Caylay [7] in 1856 and confirmed by Sylvester
[22] in 1878 based on semi-invariants of binary forms. For more information, we refer
to [6,12,14,16].

R. C. Entringer may be the first to investigate the unimodality of polynomials by an
analytical method. By extending the argument of van Lint [11], Entringer [9] showed that
the polynomials

(1+a*(1+¢*)% - (1+¢")?

are unimodal for n > 1. This method was greatly extended by Odlyzko and Richmond [13]

to establish the almost unimodality of a class of polynomials of the form

(I+q¢™)(1+q"™)---(1+q¢™)

when n is large enough, where {a;}32, is a non-decreasing sequence of positive integers.

More precisely, let

n

N n
H(l +q¢") = Z b, (m)q™, where N = Zai, (1.1)

i=1 m=0 i=1
Odlyzko and Richmond showed that under suitable conditions (conditions (I) and (II) in Roth

and Szekeres [17, p. 241]) on the infinite sequence {a; }, the polynomials (1.1) are almost

unimodal for n sufficiently large, that is, when n — oo,

where A is some fixed constant and K = N/2or K = (N +1)/2.

When a; = i for 1 < ¢ < nin (1.1), Odlyzko and Richmond [13] verified that the
inequality (1.2) holds for A = 1 when n > 60. It can be checked that inequality (1.2)
also holds for A = 1 when n < 59. Hence Odlyzko and Richmond concluded that the
polynomials

A+ +4¢*--(1+4") (1.3)

are unimodal for n > 1. The first proof of the unimodality of the polynomials (1.3) was given
by Hughes [10] with the aid of Lie algebra results. Stanley [19] provided an alternative proof
by using the Hard Lefschetz Theorem. Stanley [18] also established the general result of this
type based on a result of Dynkin [8].

When a; = 2: — 1 for 1 < ¢ < nin(1.1), Almkvist [1] proved that the inequality (1.2)
holds for A = 3 when n > 83. This leads to the polynomials

(I+q)(1+¢) - (1+¢") (1.4)
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are unimodal for n > 27, except at the coefficient of ¢> and q"2_2

conjectured by Stan-
ley [19]. Pak and Panova [15] showed that the polynomials (1.4) are strict unimodal by
interpreting the differences between numbers of certain partitions as Kronecker coefficients

of representations of S,,.

In [1], Almkvist also made the following conjecture.

Conjecture 1.1 (Almkvist) Forevenr > 2 oroddr > 3 andn > 11, the polynomials

nl_
1+

k=1 q

T

k
- (1.5)

are unimodal.

When r = 2, the polynomials (1.5) reduces to the polynomials (1.3). Almkvist [2] first
showed that the conjecture is true when r = 4 by refining the method of Odlyzko-Richmond
[13]. Subsequently, Almkvist [3] showed that the conjecture is true when 3 < r < 20,
r = 100 and 101.

In this paper, we establish the unimodality of the following polynomials.

Theorem 1.2 For n > 0, the polynomials

n

H(l _'_q3k+1)(1 +q3k+2) (1.6)

k=0

are symmetric and unimodal.

It is worth mentioning that Borwein conjectured that the coefficients of the polynomials

n

H<1 _ q3k+1)(1 _ q3k+2)

k=0
have a repeating sign pattern of + — —, which has been called as Borwein’s conjecture, see
Andrews [4]. Recently, Borwein’s conjecture has been proved by Wang [23] by an analytical
method.

2 Preliminaries

In this section, we collect several identities and inequalities which will be useful in the proof
of Theorem 1.2.

e = cos(r) + isin(x), (2.1)



cos(2z) = 2cos?(x) — 1 (2.2)

=1 — 2sin®(z), (2.3)
sin(2z) = 2sin(z) cos(x), (2.4)
2sin(«) cos(f) = sin(a + 5) + sin(a — 5), (2.5)
sin(z) > ze™ /3 for 0 <xz<2, (2.6)
cos(z) > e for |z| <1, (y = —logcos(1) = 0.615626....), (2.7)
3
T — % <sin(z) <x for x>0, (2.8)
| cos(x)| < exp (—% sin’ () — isinﬂ‘(x)) for = >0, (2.9)
S;Ef(if)) <n, (2.10)
~ ~n osin((2n+1)z) 1

;sm ko) =5~ "1 (2.11)

SN ~3n sin((2n+1)z)  sin((2n+1)22) 3
;Sln (k) = 5 = st 16sin(22) | 16 @.12)

The identity (2.1) is Euler’s identity, see [21, p. 4]. For the formulas (2.2)—(2.5) of trigono-
metric functions, please see [5, Chapter 8]. The inequalities (2.6)—(2.10) were proved by
Odlyzko and Richmond [13, p. 81].

It remains to show (2.11) and (2.12).

Proofs of (2.11) and (2.12). First, by (2.5), we obtain

2sin(x) <% + Z Cos(2k‘x))

= sin(x) 4 2sin(x) cos(2z) + 2sin(z) cos(4x) + - - - + 2sin(x) cos(2nz)

= sin(z) + (sin(3z) — sin(z)) + (sin(5z) — sin(3z))

4+t (sin((Qn + l)aj) — sin((2n — 1)35))
= sin((2n + 1)x).

Hence, we have

Y cos(2ka) = Smg(:;z;)l)x) - % (2.13)
k=1




Using (2.3) and (2.13), we deduce that

n 1 n
Z sin?(kx) @ g b Z cos(2kx)
k=1 k=1

@i n 1<sin((2n+1)x) 1)

2 2 2sin(z) 2
~n sin((2n+1)z) N 1
2 4sin(x) 4’

which is (2.11).

The identity (2.12) can be derived in the same way. To wit,

- . 4 (23) - 1-— COS(2/€JJ) 2
E sin®(kx) = E (—2
k=1 k=1

@y 3n 1 1 —
= 5 73 cos(2kx) + g Z cos(4kx)
k=1 k=1
@3 3n 1 (sin(@n+1x) 1 N 1 /sin((2n+1)22) 1
8 2 2 sin(z) 2) 8 2 sin(27) 2
3n sin((2n+1)z)  sin((2n+1)2z) 3
-8 4 sin(x) 16 sin(27) 16’
in agreement with (2.12). This completes the proof. 1
3 Proof of Theorem 1.2
Let d,, = 3(n + 1)? and define
n dn
B,.(q) = H(l + (14 ¢ ) = Z an(m)q™. (3.1)
k=0 m=0

In order to prove Theorem 1.2, we first show the following lemma.

Lemma 3.1 Ifn > 1 and % <m< w, then

an(m) — ap(m —1) > 0. (3.2)



Proof. We first show that (3.2) holds for n > 168 and % <m< 3(";1)2. Putting ¢ = ¥
in (3.1), by (2.1), (2.2) and (2.4), we derive that

n

Bn(€2i9) _ H(l + (€2i9)3k+1)(1 + (€2i9)3k+2>

k=0

@D H (1+cos (2(3k + 1)0) + isin(2(3k + 1)6))

x (1 + cos (2(3k + 2)0) + isin(2(3k + 2)0))

@2&24 ﬁ (2cos?((3k + 1)) + 2isin((3k + 1)8) cos((3k + 1)6))

k=0

x (2 cos®((3k + 2)0) + 2isin((3k + 2)8) cos((3k + 2)6))

@D ﬁ 4 cos((3k + 1)0) cos((3k + 2)0) exp(i(3k + 1)0) exp(i(3k + 2)0)
k=0

= 4" exp(id,0) ﬁ cos((3k + 1)0) cos((3k + 2)0). (3.3)

k=0
Using Taylor’s theorem [21, p. 47—49], we find that
1 [2 B,(e* .
ap(m) = — /2 7(6 )d (e*)

2 g (eQig)m—i-l

= 1 /E B, (6%9) o—2im0 g

s us
2

(3.3) 4n+1

T _
@1 4n+1

m _

Observe that

jus

N

exp(i(d, — 2m)0) ﬁ cos((3k + 1)0) cos((3k + 2)0)do

[NIE] INE

(cos((d,, —2m)0) + isin((d,, — 2m)0)) ﬁ cos((3k + 1)0) cos((3k + 2)0)de.

k=0

(MIE]

/% sin((d,, — 2m)0) ﬁ cos((3k + 1)) cos((3k +2)0)dé = 0,

[SIE]

we have therefore,

22n+3
a,(m) =

/S cos((d, —2m)0) ﬁ cos((3k + 1)0) cos((3k + 2)0)d6.

™
k=0

‘We next show that
3 3(n+1)2

a 2
S—a,(m) >0 for n>168 and % <m< = —, (3.4)
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from which, it follows that (3.2) is valid for n > 168 and 22 <y < 3007

It is easy to see that

9 =2 / * psin ((d, — 2m)0) ﬁ cos((3k -+ 1)8) cos((3k + 2)8)d6.

m T
9 0 k=0

Let d,, — 2m = p, and let

I(p) = /2 0 sin (ud) H cos((3k + 1)) cos((3k + 2)6)d6.

0 k=0
Under the condition that % <m< M , we see that
0<pu=d,—2m < 6n+3. (3.5
To prove (3.4), it suffices to show that

I,(u) >0 for n>168 and 0<pu<6n+3. (3.6)

To this end, we write

=[]

= I () + 1P ().

} 0 sin (10) ﬁ cos((3k + 1)) cos((3k + 2)0)do

We next show that
IM () > 1P (u)| for n>168 and 0<p <6n+3, (3.7)
which implies (3.6).

We first evaluate the value of 13" (1), which is defined by

IV () = /0671+4 0 sin (ub) H cos((3k + 1)0) cos((3k + 2)0)de. (3.8)
k=0

When 0 < 6 < by (3.5), we have

s
0<wh<2and 0<Bk+1)0 < (3k+2)0 <1 for 0 <k <mn,

so that

0 sin (ub) ﬁ cos((3k + 1)0) cos((3k + 2)0)



n

(2.6)&(2.7) 2p2
> ph*exp (—M; ) exp (—792 Z ((3k +1)* + (3k + 2)2)>

k=0

6 3)%6?
> 116 exp <—%) exp (—76* (6n° +18n° + 17Tn +5))  (by 0 < p < 6n+ 3)

12 12 3 18 17 5
=u92exp<—92n3(<;+$+$) <6+—+—+$)))

> pb” exp (—en’0®)  (by n > 168),

where ¢ = 3.832. Applying (3.9) to (3.8), we find that when n > 168 and 0 < p < 6n + 3,

(3.9

IV () = /#+4 0 sin (ud) ﬁ cos((3k + 1)0) cos((3k + 2)0)dd
0 k=0

" i (1u6) [T cos((3k + 1)9) cos((3k + 2)6)d6

0 k=0

g
37L+2
> / Zex

p (¢
} exp cn392) do
T2

1 1
5 ( v2e ”dv—/ , vie ”dv)
5 cns
(3n+2)2

1
3 5 < v2e ”dv).
cin2
(3n+2)2

Observe that when n > 168,
cn? c-1683

(3n+2)2 = (3 x 168 +2)%’

392)

Sn

l\)lw

\%

SO
o [o.¢] 1
2 Vdv < v2e'dv < 1.29 x 107,
cn3 c-1683
(3n+2)2 (3x168+2)2

Consequently, when n > 168 and 0 < p < 6n + 3,

VT 1929 x 10730 0.8862 0.0583
LIS oy, D00 (3.10)

IW () > -2 :
(n) 2 92 % 3.8323 n:  152n2 n2

We now turn to estimate the value of I.”) (1), which is defined by

s

ID () = " fsin (ub) ﬁ cos((3k + 1)0) cos((3k + 2)0)de. (3.11)

™

6n+4 k=0



When 6n7jr4 <6< 5, by (2.9), (2.11) and (2.12), we deduce that

ﬁ cos((3k + 1)0) cos((3k + 2)0)

k=0

(Zgg) exp (—% Z (sin*((3k + 1)8) + sin®((3k + 2)6))

k=0

e, . 4 -4
-1 ; (sm ((3k +1)0) + sin*((3k + 2>9))>

= exp (% (Z sin?(k0) — Zsin2(3k9)> - % (Z sin (k) — ) sin4(3k:9)>>
k=1 k=1 k=1 k=1

QIge) (_ 11(n+1)  3sin((6n+5)0) sin((6n + 5)26)

16 16sin(d)  64sin(26)
3sin((2n +1)30) sin((2n+1)60)\
T 16sin(36) 64 sin(60) ) = E(n).

We proceed to prove that

E(n) < exp (—0.163n — 0.031) for —— <#<" and n>168. (3.12)
6n +4 2
The proof of (3.12) is divided into two steps. When 57 < 0 < %, using (2.8) and (2.10),
we obtain
11(n+1) 3 1 3 sin((2n + 1)66)
E(n) < —
(n) < exp < 16 T6sin(6) « 6dsimn(20) ~ 16sm(38) | G6dsin(66)
(2.8)&(2.10) 11(n+1 3 1
< exp—(q6 )+ (W)Q + (W)2
o () (e ()
3 2n + 1 ( T 7
+ : + by <0< —) :
16 <6214 (1_ (62%4)2)) 64 6n + 4 6
(3.13)
Applying

r\2 ro\2 r\2
1_(@) >1_(m) >1_(62+4)



to (3.13), we derive that

42n 443 3 1
E(n) S exp | — 64 + ( 3 )2 - ( 3 )2
16 (67;:-4 (1 - Gn? )) 64 <3n7:r2 <1 - Gng4 ))
N 3
3 ( SW )2
16 (25 (1- =50 )
42n 4 43 L 33
=exp | — - 3
64 - (%)
128 (_ <1_76 = ))
42n + 43 33(6n + 4)
=exp | — 64 + -

Note that when n > 168,

672 672 3

- >1- =1
(12n+8)2 = (12 x 168 +8)2 2048288’

us s
so when ] <fg< % and n > 168,

20443 33(6n+4) )

F(n) <ex —
) = exp ( 64 1287 (1 - 20%;88

_exp<< 21 99 )n 13 33 )
- Yy 2 - A 2
32 64m (1 - 2028288) 64 327 (1 - 20?18288)

< exp (—0.163n — 0.343) . (3.14)

When & < < 5, by (2.10), we deduce that

11(n+1) 3
+ ;
16 16 sin(0)

(
)

)

(220) 11(n+1)+ 3 +6n+5+3(2n—|—1)+2n—|—1
ex —

= &P 16 16sin(Z) 64 16 64

E(n) < exp (—

sin((6n + 5)20) 3sin((2n + 1)360)
64 sin(20) 16 sin(360)

sin((2n + 1
64 sin (60

1
= exp <—13—6n — 3—2) < exp (—0.187n — 0.031) . (3.15)
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Combining (3.14) and (3.15) yields (3.12). Applying (3.12) to (3.11), and in view of (2.8)
and (3.10), we derive that when n > 168,

™

2.8)
1@ ()] < uexp(—0.163n—0.031)/2 620

67L7r+4
3
pr? (1 1
< (Z-—" —0.1 —0.031
<53 (8 (6n+4)3) exp (—0.163n — 0.031)
3
pr? (1 1 1 1 1
= [ Z - — —0.163n — 0.031
3 (2 6n+4) (22 T+ T onrap )Pl " )

pr 3 1 1
< — = |=- —0.1 —0.031
T 1 (2 6n+4) exp (—0.163n — 0.031)

G10)  3n5 1 1
< ——==ls— —0.163n — 0. W),
= 1x0.0583 (2 6n+4) exp (—0.163n — 0.031) [,7 (u)
Define .
mn2 1 1
= (5 —0.163n — 0.031).
T = 10,0583 (2 6n+4) exp (~0-163n )

To show (3.7), it remains to show that f(n) < 1 for n > 168. We claim that f'(n) < 0 for
n > 168. Since f(n) > 0 for n > 168, we have

d ! In f(n) _ d
—f(n) = e = f(n)—In f(n). (3.16)
Observe that when n > 168,
d 9 6
—1 = —0.1
dn nfn) 2n * (3n+1)(6n +4) 0163
9 6

—0.163 < —0.13 < 0.

< +
= 2x168 ' (3x 168+ 1)(6 x 168+ 4)

Hence, we derive from (3.16) that f'(n) < 0 for n > 168, and the claim is proved. Conse-
quently, f(n) < f(168) < 0.851 when n > 168. Therefore, (3.7) is valid, and so (3.4) is
valid. This leads to (3.2) holds for n > 168 and % <m< w Using Maple, we can

check that (3.2) also holds for n < 168 and % <m< w Thus the lemma is proved. i
We conclude this paper with the proof of Theorem 1.2.

Proof of Theorem 1.2. When n. > 0, we first show that B,(¢) is a symmetric polynomial.
Replacing ¢ by ¢! in (3.1), we deduce that

n

Bu(q") = [J (1 + ¢ ) (1 + g~
k=0

11



n

_ q—dn H(l +q(3k+l))(1 +q(3k+2))
k=0

= q_dan(Q)'

To wit,
B.(q) = g™ Bu(a™),
from which, it follows that B,,(q) is symmetric.
We proceed to show that the polynomial B, (q) is unimodal by induction on n. When
n = 0, we have
Bo(q) = (1+q)(1+¢*) =1+q+¢ +¢"
Clearly, the coefficients of By(q) are unimodal.

dn—1 ]
b

Suppose that B,,_1(g) is unimodal for n > 1, namely, forn > 1 and 1 <m < |7

an—l(m) > an—l(m - 1) (317)

We intend to show that B,,(¢) is unimodal. Since B,,(q) is a symmetric polynomial, it suffices
to show that forn > land 1 <m < |% |,

a,(m) > a,(m—1). (3.18)

Observe that
Bu(q) = (1+ ") (1+¢**?) Ba-1(q),

which implies the following recurrence relation:

an(m) = an_1(m) + ap_1(m—3n—1)+ a,_1(m —3n—2) + a,_1(m — 6n — 3).
(3.19)

It’s evident from (3.17) and (3.19) that (3.18) holds forn > 1and 1 < m < Ld”T*lJ In view
of Lemma 3.1, we see that (3.18) also holds for n > 1 and (dg—*l} <m< L%J Hence, we
conclude that (3.18) is valid forn > 1and 1 < m < L%"J, and so B,,(q) is unimodal. Thus,

we complete the proof of Theorem 1.2. |
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