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ABSTRACT. We prove that in the 2d Ising Model with a weak bidimensional quasi-periodic
disorder in the interaction, the critical behavior is the same as in the non-disordered case, that
is the critical exponents for the specific heat and energy-energy correlations are identical and
no logarithmic corrections are present. The disorder produces a quasi-periodic modulation of
the amplitude of the correlations and a renormalization of the velocities, that is the coefficients
of the rescaling of positions, and of the critical temperature. The result establishes the validity
of the prediction based on the Harris-Luck criterion and it provides the first rigorous proof
of universality in the Ising model in presence of quasi-periodic disorder in both directions
and for any angle. Small divisors are controlled assuming a Diophantine condition on the
frequencies and convergence of the series is proved by Renormalization Group analysis.
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1. INTRODUCTION

1.1. Universality and Harris-Luck Criterion. A certain number of macroscopic prop-
erties close to phase transitions shows a remarkable independence from microscopic details.
In particular, it is both predicted theoretically and observed experimentally that the critical
exponents, describing the singularities of thermodynamical functions, are the same in systems
sharing only few general features, but having different inter-molecular forces, atomic weight or
lattice structure. This phenomenon is known as universality and the Renormalization Group,
introduced by Kadanoff [39] and Wilson [63], provides an explanation introducing the con-
cepts of: scaling dimension, dimensionally relevant, marginal or irrelevant interactions, and
universality classes. The fact that interactions are dimensionally relevant or marginal does not
imply by itself that they can change the critical behavior: the neat effect on critical exponents
is ruled by an effective dimension which can be different from the scaling dimension due to
cancellations or other mechanisms.

A paradigmatic model where universality can be investigated is the Ising model which
describes a system of spins with nearest-neighbor interactions and shows a phase transition in
dimensions d > 2 described by certain values of the critical exponents. One can perturb such
model with finite-ranged or higher spin interactions, or consider it on different lattices, and
ask what happens to the critical behavior. In d > 4 universality is proven in the context of
the strictly related ¢* models, see e.g. [8] and references therein, where it has been rigorously
shown that the value of the exponents is equal to the mean field ones, e.g. the correlation
length exponent is v = 1/2 and the specific heat exponent o = (4 — d)/2. We remark that,
however, while in d > 5 the behavior is exactly the same as in mean field, in d = 4 logarithmic
corrections are present; the difference is that in the first case the interaction is irrelevant in the
Renormalization Group sense, while in the second is marginal (or, more precisely, marginally
irrelevant).

In d = 2 the Ising model with nearest neighbor interaction on a square lattice was solved
by Onsager [58]. His solution proves that the value of the critical exponents (v = 1, a« = 0) is
different from the mean field one. Having universality in mind, it is natural to ask whether
these values are robust under perturbations. One can ask, for example, if the addition of a
next-to-nearest neighbor interaction or a non quadratic one leaves the system in the Onsager
universality class or not. In this case, it is not convenient to use ¢* models, but one can use
the representation in terms of Grassmann integrals, at the basis of the exact solution, and
analyze it using Renormalization Group methods. This strategy was proposed in [61] and
applied to the computation of the specific heat and energy correlations in [62] and in the
Appendix N of [42]. The Grassmann integral representation was then used in [41, 42] to the
case of two Ising models coupled to each other by a quartic interaction, which can be mapped
in models like the Eight-vertex, Six-vertex or the Ashkin-Teller model.

Even if single or a couple of Ising models have the same exponents in absence of quartic
interaction, when the interaction is present they belong to different universality classes. In
the first case the interaction is dimensionally irrelevant, and this implies that the exponents
are, for interaction small enough, the same as in the pure Ising model (e.g. v = 1, a = 0)
and no logarithmic corrections are present; in the second the interaction is marginal, its
flow is controlled thanks to complicate cancellations related to emerging symmetries and the
exponents are continuous function of the coupling [42] verifing suitable Kadanoff extended
scaling relations [11, 12]; continuos exponents appears also in the transition between the two
universality classes in the Ashkin-Teller model [31, 44]. Subsequently, the Renormalization
Group approach to interacting Ising model was used in the proof of the universality of the
central charge [32], the scaling limit of all the energy correlations [30] and to analyze the role
of non periodic boundary conditions [6], while interacting dimer models, which are in the
same universality class of coupled Ising models in some region of parameters, were studied in
[34]. This approach typically requires a small value of the coupling.

Other approaches, different from Renormalization Group, lead to universality results for
the Ising model, like the ones in [16, 17], with nearest-neighbor interactions on different planar
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graphs. In [4] the Ising model with non-planar, or alternatively some non-nearest-neighbor pair
interactions was considered, proving gaussianity of correlations without smallness condition
but not giving information on exponents.

Another situation where the issue of universality can be posed in the Ising model is when
disorder is considered. Disorder can be introduced either in the magnetic field [1, 2, 3, 37]
or in the interaction, and we focus here on this second case, for which much less is known
at a rigorous level. Typically, one can consider two kinds of disorder in the interaction:
random or quasi-periodic. The first describes the effect of impurities, while the second is
realized in quasi-crystals or cold atoms experiments. Early investigations were done in the 2d
random Ising model; in particular, the Ising model with a layered disorder (that is constant
in one direction) was considered in [55], see also [36] and [24], and the specific heat is found
continuous (instead of logarithmically divergent), while with a bidimensional random disorder
a double logarithmic behavior in the specific heat [21] is found. In more general cases, Harris
[36] proposed a criterion to predict when random disorder is irrelevant or not; if £ is the
correlation lenght and A? is the covariance of the disorder, the condition for irrelevance is
\/AZ/Ed « |8 — Be|, where the Lh.s. is (roughly) the ratio between typical fluctuation of
the sum of disorder terms within a distance given by the correlation length £ and the mean
(B. is the critical inverse temperature); as close to criticality & ~ |5 — B¢|7", with v critical
exponent, irrelevance is predicted for vd/2 > 1, see [36], while relevance is expected for
vd/2 < 1. According to this criterion, irrelevance is predicted for d > 5 (v = 1/2 > 2/d) and
relevance d = 3 (conformal bootstrap predicts v = 0.627... < 2/3, see [60]). In the marginal
cases d = 4 (v = 1/2) and d = 2 (v = 1), Harris criterion gives no predictions in general.
On the rigorous side, a generalization of Harris result was proved in [15] where it was shown
that in all systems with continuous transitions 7 > 2/d with 7 the index of the disordered
system. In the case of layered disorder in 2d the system is effectively one dimensional as far
as the ratio between mean and fluctuations is concerned, so relevance of disorder is predicted
in agreement with [55]. A rigorous proof is still lacking, even if there are progresses in this
direction in [18]. In addition, the Harris criterion has been verified in simplified models of
probabilistic nature [29].

While the Harris criterion regards the case of random hopping, the case of quasi-periodic
disorder was considered by Luck [40] (Harris-Luck criterion). In the case of 2d Ising model with
layered quasi-periodic disorder, the condition for irrelevance was generalized to %Zi:o Oy K
|3 — B¢| where §,, is a suitable function measuring the fluctuation of the quasi-periodic hopping,
see [40]; as v = 1 then the condition for irrelevance requires that Zf::o 05 is bounded and
small uniformly in &, a condition verified in the case of weak quasi-periodic modulation,
while is violated for strong quasi-periodic disorder. Such conjectures were checked in [40] by
a perturbative method but the issue of convergence of the series was not faced; they have
been also confirmed by numerical investigations, see e.g. [35, 19]. In particular, in [19] it is
numerically found that in the Ising model with weak quasi-periodic disorder remains in the
Onsager class, while evidence of a new universality class is found at stronger disorder. Finite
difference equation for the spin correlations have been derived in [59] from which low and high
temperatures expansions are obtained.

In this paper we finally prove that the critical exponent for the specific heat and energy-
energy correlations in the weak quasi-periodic Ising model are identical to the Onsager ones,
either for layered and non layered disorder, in agreement with the Harris-Luck criterion. The
result is based on convergent series expansions in the disorder, and the small-divisor problem
is faced via Renormalzation Group analysis. This provides one of the very few cases in which
a rigorous understanding of the the critical behavior of the 2d Ising model with disorder is
achieved and universality is proved.

1.2. Main Result. The Hamiltonian of the 2d quasi-periodic Ising model is

H=—- Z [J,((I)Jxaerel + J,((O)UxeJreO] (1.1)

XEAZ'
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where ep = (1,0), e; = (0,1), x = (xg, 1), 0x = £ and:

(1) For i e N, X € AZ‘, Az = (—L07Z~/2, L07i/2] X (—LLZ‘/Q, L17i/2] N Z2, ox =t and periodic
boundary conditions are imposed.
(2) The interaction is given by

J)((]) — (1 + )\(b(J) (27Tw0,i$0 =+ 6]'70, 27'['(,«)172‘.%'1 + 6]71)) J(]) , ] = O, 1 (12)

where ¢4 (y) is such that

‘ [(Loi—1)/2] |(Lrs=1)/2l
T YR Y ) 0

no=—|Lo,i/2] n1=—|L1,:/2]

with éﬁ{) = ((]3(,]21)*, n = (ng,n1) and y = (yo,y1); moreover, for suitable real constants
A,n>0

69| < Aeinl (1.4)

(3) {wo,i}ien, {w1,i}ien are the best approximants wg; = poi/qo,; and w1 ; = p1,i/q1,; of two

irrational numbers wg,w; < 1. For j = 0,1, the latter are obtained starting from the

continuous fraction representation w; = ajo + — L from which, one has

aj1+ T
B
a; o+
3,2 aj 3+

Pj1 1 Pj2

a1 =ajo+ o= = a0+ % with ‘wj —
[20]).

aj,1’ qj5,2 aj 1 aja
(4) wi,wq are irrational numbers verifying a Diophantine condition, that is, for j = 0,1,
|2nwjin|r = ¢j|n| ™" Vn € Z\{0}, (1.5)

where | - |7 := infyez | - +2mm| and p; = 1, ¢; > 0.
(5) The side of the boxes are chosen so that

Li;=qu, Lo;i = qo, (1.6)
and lim; ,oc Ly ;/Lo; = ¢ with 0 < ¢ < 0.

Pj,i
qj,i

< q§ (see e.g. Section IV.7 in
i

(3

Remark 1.1.

(1) The energy correlations of the quasi-periodic Ising model are obtained as the limit
of the energy correlations of a sequence of Ising models in boxes with interactions
periodic in space with a period equal to the side of the boxes. In the limit i — oo

the modulation becomes >.°  _ (i,(rf)ei(”o(%”oxo*eﬁo)*"l(2““111”%1)), that is quasi-
periodic in both directions. While in principle other ways to define a quasi-periodic
Ising model can be imagined, this is the one chosen in numerical simulations in the
physical literature, see e.g. [19].

(2) The quasi-periodic Ising model has been considered up to now only with layered
disorder, corresponding e.g. to #©) = 0; for instance J,&O) = J and J,g) = J(1 +
Acos(2mwiz1 + 0)). In contrast, we consider a rather more general situation including
interactions of the form, for instance, JO = (1 + Acos(2mwoxo + 0) cos(2mwixy +
$))J O, I = (1 + A(cos(3mwozo + 1) cos(6mwozo + 2¢) cos(2mwizy + €)))JD), with
0, ¢, 1, & phases: that is the interaction is different in any bond, and quasi periodically
modulated in both directions.

(3) The form of disorder we are considering breaks essentially all the symmetries present
in the non-disordered case other than spin-flip symmetry; in particular translation
invariance and inversion symmetry z; — —x; in both directions. Less general forms
of disorder preserve some symmetry; in particular, in the case of layered disorder,
translation invariance and inversion in one space direction is preserved.

The truncated energy correlations are defined for x1,x2 € A; and j1, j2 € {£} as

Si(xhjl;XQajZ) = <0'x10'x1+ej1 ngo'xg+ej2>i - <Ux10x1+ej1>i<0'xg0'xg+ej2>i ) (1-7)
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with

<o>i:% S e, z= Y et (1.8)

{ox}e{£}h {ox}e{£}M

where Z is the partition function at inverse temperature 5 > 0.

If A =0, for 8 # B., with 3. given by
sinh(28,J @) sinh(28,JV) = 1, (1.9)

the thermodynamic limit ¢ — 400 of the truncated energy correlations exists and is denoted
by S(x1,71; X2, j2). Such limit decays exponentially for large distances with correlation length
¢ diverging at B. as & = O(|3 — B¢|™'); Be is therefore the critical temperature. Moreover, in
the limit 8 — (. one has

S(x1,j15%2, J2) = Zjy Zj 9% (%1 — X2)g2 (x2 —X1) + Ry j, (X1, %2) (1.10)
|R(x1,515%2,52)|
[x1—x2 |20

0 for |x; — xo| — oo and # = 1. f. is therefore the critical temperature, defined as the
temperature at which the correlation length diverges. Note that one is taking the |A;| — oo
limit at 8 # (., so that terms O(e*LiCm*ﬁC') vanishe in the limit, see Section 5 below, if ¢ is a
constant and L; = min{Lq, L1 ;} is the shorter side of A;. Note that v1, vy are the coefficients
of the anisotropic rescaling of positions g, (x) = g(viz1, voxg) with g(z1,z¢) = $1ii1§0 (and
similar for g_); they will be also called velocities. Our main result descried the long distance
decay of correlations in the interacting case.

with ggr (x—x%2) = (01 (xl,l—x271)ii(vo(x170—x270))*1, Zj,v1,vg real constants,

Theorem 1.2. Consider the Hamiltonian (1.1) and assume (1)-(5). There exist Ao, C, k > 0,
functions b: (—Xo, Ao) = R, & 1 (=A0, Ao) x T2 = R and «; : (—Xo, Ao) — C for j = 0,1, with
supy, [b(A)], supy |aj(N)[,supy o 1€ (A, )| < C such that the following holds. For any |\ < Ao
and Be(\) = B + b(\) then

(1) for B # Be(N) the limit lim; o Si(X1, j1;X2,J2) = S(X1,j1; X2, jo) exists and is finite.
(2) For B # Bc(A)

1
|S(x1, 15 %2, jo)| < Ce 1P FelbaxaD? (1.11)
(3) For 8 — Bc(N)
S(x1,713%2,J2) = Zjy x1 (AN) Zjgxs (M) gt (X1 — X2)g— (X2 — X1) + Ry j, (X1, X2) (1.12)
with
1 1
g+ (x) = g-(x) = (1.13)

v1(AN)x1 + ivg(N)zo (v1(A\)*21 —i(vo(N))*zo |

and |R(x1, j1; X2, jo)|/|x1 — x2|?T% — 0 for |x; — x| — 00, § = 1/4 and
Zj,x()\) = Zj + )\fj()\,Qﬂ'wao,Qﬂ'wlxl) Uj()\) =v; + )\Oéj()\) (1.14)
with Zj,v; defined in (1.10).

Remark 1.3.

(1) The asymptotic behavior of the 2-point correlation at criticality is similar to the one
of the unperturbed case, with the main difference that the amplitude is the prod-
uct of two quasi-periodic functions Zj, , (A) and Zj, x,(A). The velocities and the
critical temperature are also modified. In contrast, the exponents are universal and
no logarithmic corrections are present; this provides a rigorous confirmation of the
Harris-Luck criterion. Outside the critical temperature a stretched exponential decay
is found, but this is just for technical reasons and exponential decay is expected. The
analysis could be easily extended to the n-point energy correlations.
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(2) The proof is based on the convergence of the series for the correlations, showing a small-
divisor problem similar to the one appearing in perturbation of integrable Hamiltonian
systems, see e.g. [25]. Convergence is shown assuming only a Diophantine condition
on the frequencies, the smallness of the coupling and a fast decay property of the
harmonics; without such assumptions a different behavior is expected.

(3) The result holds for any angle ;, including cases where inversion or translation in-
variance is broken in both directions. This is a peculiar fact since in many similar
models with small-divisor problems, extra conditions are usually required.

1.3. Sketch of the proof. The starting point of the analysis is the exact representation of
the quasi-periodic Ising model as a Grassmann integral, which is an immediate consequence
of the dimer representation, see e.g. [55], and the fact that the Pfaffians can be expressed as
Gaussian Grassmann integrals, see e.g. [54]. The energy correlations can be written as the
sum of terms of the form (the exact expressions is in Section 2)

§ Py (dy) P (d€)e¥ O

§ Py (dyp) Pe (d€)e”
where Py (di)), Pe(d§) are Grassmann Gaussian integrations, O is a quartic monomial in the
Grassmann variables, and V is a sum of monomials in ¥, £ and is vanishing for A = 0. The
propagator (or covariance) of Pe(d¢) is ge(k), given by

(1.15)

—itM sin ky + O sin kg img (k) > - (1.16)

gg(k) = ( 71m§(k) flt(l) sin kl — t(o) sin k?(]

with tU) = tanh 3JU) and me = m, = O(1). From the explicit expression given below in
(2.21), my (k) = my(0) + F(k) with m,(0) = O(1) and F(k) = 0 at k = 0, and bounded
away from zero uniformly in / in the other three poles of the diagonal elements of g¢ (k). One
recognizes in (1.16) the propagator of a lattice Dirac fermion with a mass m, (0) and Wilson
term F'(k). The propagator g, (k) of Py(diy) has a similar expression with a mass which can
be vanishing as a function of temperature. The variables &, being associated to a bounded
propagator (called, for this reason, non-critical variables) can be integrated out, see Section
3, expressing the energy correlations as Grassmann integrals of the form

§ Py(di)e” '
with V = “/ii| Don Dk Q,Z)_kﬁ\/n(k)wk_g,rgn with I//I\/n(k) a matrix with elements exponentially
decaying in n and analytic in A\, ¢ = (Y4,¥_), Q = Q(J)O 0 and O is still quartic in

1. This representation is an immediate consequence of the Wick theorem, allowing us to
represent the Wy(k) as sum of chain graphs, that is products of propagators of the form
Ge(k)ge(k — 2mny) ge (k — 2mQny) - - - ; convergence follows form the exponential decay of b
and the boundendness of g.

One could perform the integration in ¢ (critical variables) in a similar way, obtaining an
expansion for the correlations still expressed in terms of graphs. In this case however the
propagator of the i-variables is unbounded, and at criticality there are graphs which are
naively bounded by O(n!®) if n is the order and « a constant, due to the presence of small-
divisors. In order to achieve convergence one needs to improve the bounds showing that
such factorials are indeed not present. In order to show this one needs a multiscale analysis,
described in Section 4. One decomposes the propagator as sum of propagators supported at
different momentum shells with scale h, that is [k| ~ ¥*, v > 1, with b = 1,0, —1,-2,...;
that is gy (k) = Z/l7,=—oo §M (k) with g (k) = O(y"). Integrating the higher momentum
scales we obtain

{ pfm(d¢<<h))ev<h>(w<<h>>o(h)

1.1
SPfh)(dw(gh))ev(h)(w(sh)) (1.18)
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with P <h) (dzb ) a Gaussian Grassmann integration corresponding to scales < h and again
v — m DI ¢(_<kh) ( )¢1(<<Z7rﬂn with I//I\/r(lh) depending on the scale h. By using that,
for Gaussian Grassmann integrals, Py (dy)(SP) = Py (dyy(Sh=1)) Py (dyy™)) and we can integrate
the w(h) variable proceeding iteratively; this again produces chain graphs product of propaga-
tors of arbitrarily large size O(y~") times products of the T//[\/}(lh). In the Renormalization Group
terminology, the terms in V(") are relevant perturbations which could alter the critical behav-
ior. In order to show that this is not the case one needs to distinguish between the case n = 0,
which are called resonant terms or resonances, from the non-resonant case n # 0. In the first
case one gets an accumulation of identical small-divisors in the perturbative expansion, ending
with a non-summable behavior. Such a phenomenon is avoided by modifying the expansion in-
troducing a counterterm taking into account the modification of the critical temperature, and
by modifying the velocities at each iteration step, see Section 4.1; that is, the propagator O1f
the /(<P close to k = 0 acquires the form ~ x;, (k) <_w1’hk.1 + vo.pko - —m )
im —thkl — vy ko

where yp,(k) # 0 for |k| < +". Note that reabsorbing certain terms in the propagator is
7 (h)

possible only if the W’ have a suitable form not changing the qualitative structure of the
propagator; this is indeed what happens. When the angles 6; are generic, the breaking of
symmetries does not allow us to conclude the reality of velocities (which turn out to be real
in the layered case).

One has then to deal with the terms in V(") with n # 0; in that case the repeated small-
divisors are not identical and they cannot be reabsorbed in the propagator. If the disorder
was periodic, that is € is rational so that 27dn mod 27 is bounded, this would say that there
is a scale h so that such terms are not present for A < h; hence they could be easily bounded.
In contrast if € is irrational, that is in the quasi-periodic case, s)uch terms appear at any scale
h

h, and the propagators associated with fields multiplying T//[\/}(l are as large as O('y*h). One

needs therefore, to get convergence, to prove that W(h)(k) has a fast decay in h compensating
the small-divisor 4~". This follows from the Diophantine condition, as it implies that if k

and k — 27Qn are O(y"), then n is large, that is |n| > 77% for a suitable constant 7. The

decay in n of T//I\/I(lh)(k) can be therefore converted in a decay in y~" compensating the y~*

of the propagator. However the gain must be obtained at any iteration step and one has to
check that no non-summable combinatorial factors are present; this is done using the cluster
structure of graphs (see Section 4 and in particular Lemma 4.7 where the convergence of
the series expansion is proved). The series so obtained is in A and in the running coupling
constants (corresponding the renormalizations of the temperature and of the velocities); one
has to show that it is possible to fine tune a parameter, corresponding to the shift of the
critical temperature, to prove that they remain small at any iteration, as proved in Section
4. Finally, in Section 5 the full expansion for the energy correlations is considered. In this

case, after the integration of the ﬁelds of scales 1,0, —1,—2,...,h one gets source terms of
the form IA e an kp }(lﬂr)lw( 2wk+p 27rQnA1(D) where Zi(le are running coupling constants

associated to the source terms in the generating function for correlations and ﬁg ) is the
Fourier coefficient of an external field (see 2.1 below). In this case there are running coupling
constants corresponding to n # 0 as there is no gain due to the Diophantine condition. They
have a finite limit as h — —oo, and this implies that the critical exponents are the same
as in the unperturbed case, and they produce the quasi-periodic amplitude of the energy
correlations.

1.4. Comparison with previous results. The paper uses a fermionic Renormalization
Group approach to the Grassmann representation of the Ising model, previously used in the
case of non nearest neighbor perturbations, see [42, 32, 30|, or for coupled Ising and related
models like six vertex, Ashkin-Teller or dimer models [42, 11, 12, 34]. In such cases the
starting point is a Grassmann integral similar to (1.15) but with V' a quartic or higher order
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translation invariant interaction. In the case of the quasi-periodic Ising model, the situation
is different: the interaction in the Grassmann integral is quadratic but the modulation of the
potential breaks translation invariance and it requires the use of KAM methods to solve the
small-divisor problem.

The relation with KAM appears from (1.15); as the exponent of the integrand is quadratic
in the Grassmann variables, the energy correlations could be in principle deduced by a suitable
lattice Dirac equation in a quasi-periodic potential, essentially given by

02 (T;Z)ereo —Ux + A¢§(O)¢x) + o1 (T;Z)XJrel —Px + >‘¢§(1)7;Z)X) +imosx = Eoyyx, (1'19)

with o1, 09,03 being the Pauli matrices. Indeed, such equation has not been studied but an
extensive literature has been instead devoted to the related problem of the lattice Schrodinger
equation with a quasi periodic potential (which is strictly related to a KAM problem), like

T;Z)erl + T;Z)mfl + >\¢m¢x = Ewm (1.20)

where x € Z and ¢, = ¢(2nwz + 0) with ¢ 2m-periodic. For small A the eigenvalues and
eigenfunctions of the above equation were studied in [22] where two Diophantine conditions
are assumed, one over the frequency and the other over the energy and using KAM methods. In
particular, it was required [2rwn|r = C|n|™" and |2rwn+2p|7r = C|n|™7, with E' = cos p (first
and second Melnikov condition); in [57] instead the case p = nmw was studied corresponding to
the gaps in the spectrum. Several attempts were done to improve such conditions, culminating
in [23], where the second Melnikov condition was removed, and in [7] were w was assumed to
be any irrational. In the bidimensional case, more complicated Diophantine assumptions are
required [10] and less detailed knowledge is available.

An important related issue is the computation of the correlations of a system of several
particles (fermions in particular) in a quasi-periodic potential, with a single-body interaction
described by (1.20). In the absence of a many-body interaction, the knowledge of the sin-
gle particle properties of (1.20) could be sufficient to determine the properties of the ground
state correlations. If ¢, in (1.20) is random, this was indeed done in [5], and with a perid-
ioc potential (in the continuum) it was done in [9], where indeed the asymptotic properties
of correlations were determined only by a very precise knowledge of the singularities of the
eigenvalues (diramation points) in the complex plane. In the quasi-periodic case, a deriva-
tion of the asympotic behavior of fermionic correlations directly from Schrédinger equation
(1.20) has never been attempted. However, such asymptotic decay has been derived writing
the fermionic correlations as Grassmann integrals similar to (1.15), with interacting measure
P(dy)e", propagator (ikg + cos(k; + nw) — E)~! and V sum of monomials ¢l:;,kw1;),k+27mw'
The long distance behavior of the non-interacting ground state correlations in d = 1 has been
determined using a multiscale analysis in [13] via fermionic Renormalization Group meth-
ods, inspired by the ones used in KAM Lindstedt series [26, 27]. The result was valid for
E = cosmnw, m € N, that is assuming a gap condition like the one in [57]; the ground
state correlations decay exponentially both in space and Euclidean time. Note that there are
infinitely many gaps with size O()\qgm), the spectrum being a Cantor set. Later on, the RG
methods were extended to include the presence of a weak many body interaction (and weak
quasi-periodic potential): it was shown in [43] that the gaps are not closed by the interaction
(if the corresponding harmonic is present in the potential), but are strongly modified via
the presence of a critical interaction dependent exponent; the gaps becomes O(()\ém)”"),
n = aU + O(U?), where U is the coupling of the many body interaction and 7 a critical
exponent. A similar phenomenon was also shown to happen in the interacting Aubry-André
model where only one harmonic is present in the initial potential [47] and in the interacting
Hofstadter model [48] for the Hall effect. In higher dimensions, a class of fermionic systems in
d=2,3 known as Weyl semimetals have been considered [53] in presence of a quasi-periodic
disorder and interaction in the weak coupling regime; by assuming a first and second Melnikov
condition restricting densities it was shown the stability of the Weyl phase, that is the absence
of localization. While the above mentioned results regard the case of fermions on a lattice
with a weak quasi-periodic potential and a many body interaction, the case of strong potential
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has a different behavior, manifesting the phenomenon of Anderson localization. In this case
one considers the kinetic energy as a perturbation of the quasi-periodic potential, and not op-
posite as in the previous case. In [28] localization without many-body interaction was shown,
and later the proof of T' = 0 many body localization of interacting fermions [49, 50, 51, 52]
was established. It should be remarked that at the moment such RG methods are the only
ones allowing us to take into account rigorously the interaction in the thermodynamic limit.

At the mathematical level, the Renormalization Group methods used to analyze the above
fermion systems in the weakly disordered regime are related to the ones used here for the
quasi-periodic Ising model, but there are important differences. First of all, in fermionic
systems one has to restrict the values of the chemical potential either to ensure the validity
of a gap condition, as in [43, 47, 48], or a second Melnikov condition [53]. There is no
analogue of chemical potential in the Ising model, but we can solve the small-divisor problem
without imposing any condition. In addition, in fermionic models considered so far, the 2-point
fermionic correlation was studied, while here the energy correlations are considered, quartic
in the fermions, a fact producing new (infinitely many) marginal operators and the quasi-
periodic modulation of the amplitude. Moreover, the quasi periodic disorder is bidimensional
in space and Euclidean time and all possible choices of angles are considered, while previously
the only layered or bidimensional cases with angles chosen equal to zero were treated [52]. The
general form of the disorder considered here breaks the inversion symmetries, an important
property to prove the reality of the velocities. In addition to such technical improvements,
it should be also remarked that the application of direct methods, previously developed for
apparently unrelated problems like KAM series or non relativistic fermions, to the quasi-
periodic Ising model is a major novelty of this paper and it produces the first rigorous proof
of the Harris-Luck criterion, and a natural starting point for the inclusion of next to nearest
neighbor interactions.

2. GRASSMANN REPRESENTATION

From the dimer representation of the Ising model, see e.g. [56], one can write the energy
correlations, which are expressed in terms of four Pfaffians, in terms of Grassmann integrals,
see e.g. [54]. The energy correlations can be therefore written as

82
S 15 jo) = ———— log Z(A 2.1
(X17]17X27]2) aAX17jlaAX27j2 0og ( )‘A=O ( )
with Z(A) = %Zae{i}g TaZa(A) with 7 — =7, =7 _ =—7, . =1and
1
[ H H cosh ﬁJx + Axj) jDA ip e (®4) (2.2)
xel; j=0
with
._ (1) 77 (0) v
Sa(@,4) := ] [tanh(BJx” + Ax1)HxHype, + tanh(BJx” + Ax0)VaVacreo |+
XEAZ'
_ _ - _ _ (2.3)
+ . [HxHy + VaVic + VieHy + VicHy + Hy Vi + VieHy | .
XEAZ'

Here H x,HX,VX,V are independent Grassmann variables, four for each lattice site, and
Exq:= = HyHy.o,, while Exo:= VxVxteo- Moreover, ® := {Hy, Hy, Vx, Vx}xea, denotes the
collection of all these Grassmann variables and D2 ® is a shorthand for er A dH xdHydV xdVy;
the Grassmann integration is defined so that, Vx € A;,

deXdHXdede ~0, deXdHXdedVX(VXVXHXFX) —1. (2.4)

The label a = (a1, a9), with ay,as € {£}, refers to the boundary conditions, which are
periodic or antiperiodic in the horizontal (resp. vertical) direction. Letting Z = Zae{i}g Tala
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with Zo = Z(0), the truncated energy correlation (2.1) can be written as

‘ ‘ TaZ, T
S(x1,J1;X2,j2) = Z %<EX1J15EX2J2>Q,@‘ ) (2.5)
ae{t}?
where (), ; is the average with respect to the Grassmann “measure” DYipeSni (P / Zo With

a boundary conditions. Let us consider first the case A = 0. We perform now a (well known)
change of variables

Fx + in _ eiﬂ/41/}+7x . eiﬂ—/4X+,X7 Fx . in _ 6717'('/41/}_7)( . efi7r/4X_7X7

41 - 2.6
Vi +iVx = ¢+,x + X+.x Vx —iVx = w—,x —X—x> ( )

so that, setting =, = SDAZ'CD eSAi(q”O), and, for j = 0,1, t0) = tanh(ﬁJ(j)), defining V,ﬁj) as

t,((j) = tanh(ﬁJ,&j)) = tanh <5J(J) (1 + A(b(j)(Qmqumo + (9j70, 271'(4117@'1'1 + 6]‘71))>

. (2.7)
we can write
J H drlzZ)Jr xdT,Z) dX+ de x€ S(X)( )JrS(w)(w)JrQ(w X) (28)
x€EN;
where, denoting with - the Euclidean scalar product,
1 -1 +i) (x
S(X) — = t,((l) <X+7X> ) < : ) < +,x+e1> +
(x) 4 X§, X—,x -1 —=1) \X- xte1
_l (0) X+7X) <_i "H) <X+7x+e0)
4 x; x <x—,x —i +i) (X xten (2.9)
- Z 2 \/7 2+ 1 (X+ xX—x — X—,xX-i—,x) .
xEAZ
1 1 (Y -1 +i\ (¢
S(¢) = — ;) ( +,X> . ( . ) ( +,x+el> +
<w) 4 x;\' ¢77X —1 71 ’IJZ)*,X+91
1 (0) <w+ x> <—i +i> <¢+ x+eo)
- tx ’ M . . ’ .
4 x§ ’llz)f,x —1 +1 ’liz)f,XJreO (2 10)
- Z — 2 \/5 - 1)] (1/)+ xY— X T;Z)f,xler,x) .
xEA
l +,X —1 i X+,x+eq
-1 () (G )G
1 " ] ) (2.11)
(0) +,x I -1 X+, x+eg
”n 75x ’ * . . ’ + <> .
4 x§~ <¢_7x> <1 _1> (X—,x+eo> (TIZ) X)

Note that V3 by (2.7) is a 2m periodic function in 27Qx + 9; with Q = (wg,i WO >, and
1,i

with zero mean so that we can write

VX(J) _ Z"/\’rgj)ein-ﬂjeﬁwﬁn-x7 with ‘A/}SJ) . |A | Z V}g] e~ in: (2mQx+19; ) (212)

xeN;
with V;) defined in (2.7), n with values as in (1.3),

V)| < ceinl (2.13)
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and V) = (‘7,(2)*, ‘70(]‘ ) = 0; this follows from (1.4) and (2.7) by analyticity as a function of
the coordinates. Denoting by ¢+ = ¥+, x+,

1 S~k
Cox = T 2y Cene ™, (2.14)
" keDy
with
k; = 26 + 1 —ajl
Do = {k = (ko k1) € R? ’ L.H( 7 b L : (2.15)
e {— 150 )
Note that
Z V(l <X+ x> . <1 i ) <X+,x+el)
xEA; —1 —1 Xf,erel
— 2}\ Z Vrsl)eil’l-ﬂl (5(/:-‘1-7—1() . ei(k1727rw1n1) <1 11) <X+,k—27rﬂn>
| Z‘ keDea X—,—k —1 - X—,k—Qﬂ'Qn
neZ2
(1) 1n 9 5<\+,k—27r§2n ) —1k1 -1 i X+ —k
keD . X— k—27Qn —1i *1 X— -k
neZ2
. (1) 1n19 X+,—k i(k1—2mwing) 1 i —ikq -1 i 5(\+,k727rﬂn
= V ! —e . ~
2|A | keZD: " (X k> [ (_1 -1 i -1 X— k—27Qn
neZz?
_ 1 ﬁ(l)e—ﬂiwlmeinﬂl )’(/:Jn_k . —isin (kzl—ﬂwlnl) icos (kzlfﬂwlnl) X.ﬁl_’k_Qﬂ-Qn .
| A4 = n X—,—k —icos (k1 — 7Tw1n1) —isin (k:1 — ﬂwlnl) X— k—270n
neZz?
(2.16)
and similar expressions hold for the other quadratic expressions. By setting
A(J) V(]) —miw;jn; ein~19j , (217)

we finally obtain

x) (%) (x) )
Za _J 1_[ d¢+ kd¢ KXo xdX ke SO0 00+552) (1) +Qtree (8,) +555 () +5 (1) +Qine (10,%) (2.18)

keDa

where, if Py = (i1, Yk, ) and Xi = ()?k 4+ Xk,—)

Sf(rce)e(g = Z - Ce(k)Cx (2.19)
4|A |
keDa
—it(M sin ky — ¢ sin kg —im¢(k)
Celk) == ( ime (k) —itM sin &y + () sin ko) (220)
my(k) = tW cosky + t© cosky + 2(vV2 + 1), (2.21)
m?p(k) = tW cosky + @ cos kg —2(vV2 —1). (2.22)
and )
Qfree(V, x) = | Z [Y-k - Q(k)Xk + X—k - Q)] , (2.23)
" keDg
with (1) (0) (1) (0)
. itW sin k; — (@ sin kg i(t1 coskp — t© cosko)
Qk) = <i(t(1) cos ky — t© cos kzo) itWsink; +tOsinky ) - (2.24)
Moreover,
S1(r§t) = 4‘ ‘ Z Z A(] C k- P(] (k n)Ck 270n (225)

keDy 7=0,1
n€Z2
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Qun(¥.X) = 37 A 2 2 AR QU ) Ricznon + (1 ), (2.26)
keDg j=0,1
neZ2
with ( ) ( )
(1) _ —isin kl — TTWiNny icos kl — TW1N1 .
P (k,n) <icos (kzl — m,ulnl) —isin (kzl — wwlnl) (1 5"1’0) ’ (227)
0) _ sin (ko — muono) icos (k:o — ﬂwono) B
P (k,n) (—icos (k:o — ﬂwono) —sin (k:o — muono) (1 5”0’0) ’ (228)
and
QWkn) = PUkn), QOUkmn) = -POk,n). (2.29)
Finally, we introduce new Grassmann variables é\k
Xie = & + O 1 (K)Q(K) i (2.30)
and with a straightforward computation we get
Sfree = Sf(fe)e + Sf(rei ’ S Sl(ft) + Smt + erlft’g) : (231)

After this change of variables, we obtain Sf(re)e(£ ) = Sf(é)e(g ) and

foa() = 4‘A | keZD: k)) i (2.32)
with
(Gu(k) " = Cy(k) - Qk)CY (k) Q(k) (2.33)
QUL (R)Q(K) = My + R(K) (2.34)
where, if we denote with [M] := 3., [Mgp| the chosen norm on the space of matrices, we

have |R(k)| < Clk|, My = —((t©© — t1)2/m,)os and, if m,(0) =: m, and m?p(O) =: m?b,

my = miy — (t% = t)2/m,
= (O + ) =22 = ) +60) 4 2(v2+ 1) = (1O — ()
X
L((t(O) + t(l))z 4+ 4(75(0) 4 t(o)) - (t(o) B t(o))2)
my
= L (00 440 140 1y (2.35)
My

In conclusion,
Ea=N f P (d¢) f Py (dip)eV ¥ (2.36)

where N is a normalization constant and Pg(d¢) is the Gaussian Grassmann integration, see
e.g. Section 4.1 of [27], with propagator Qg(k) = Cgl(k)

T kg (2.37)

keDa

ocx =) = ]

Py (dv) is the Grassmann integration with propagator gy (x —y) = |/i_‘ Dk eik'(x_Y)gw(k) and
V(&) = Si(€) + S () + thw ) where

Sl(EB( 4 Z Z A(] P(] (k n)gk 270n (238)
‘ ’|keD j=0,1
nEZ2
Sl (V) = —q7 2 ¥ ( > AVPY(k, n)> Pic—2n0m (2.39)
‘ i keDq j=0,1

nez?
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and
Qunt (1,€) = Y AV QY (k) snon + (B o X)), (2.40)
4‘A | keDq 7=0,1
nEZ2
with ‘
QY (kn) = QV(k,n) — QK)CF! (k) PV (K, n), (2.41)
and

PP (k,n) = PP (k,n) — QY (k,n)C; ! (k — 2r0n)Q(k — 27(in)

- Q)G (K)QY) (k,n) + Qk)C; ! (k) PV (k,n)C; ! (k — 270n)Q(k — 27€n) .
(2.42)

Remark 2.1. The partition function is written in terms of Grassmann integrals (2.36), and a
similar representation holds for the energy correlations (see Section 5 below). The propagator
g¢(x — y) decays exponentially with rate proprtional to m¢(0), ¢ = v, x and m,(0) = O(1).
If there is no disorder (i.e. A = 0) the critical temperature j3., that is the temperature when
the correlation length diverges, is given by the condition m, = 0; indeed one finds that

this happens for sinh28.JM sinh 28,J© = 1 noting that 4%%

0 = }38 As we will see below, the critical temperature when A # 0 is different. We call
1 and x (or &) respectively critical and non-critical, or massless and massive variables. The
quasi-periodic potential produces extra terms still quadratic in the Grassmann variables but

coupling different momenta.

= 1 is true for

3. INTEGRATION OF NON-CRITICAL VARIABLES

3.1. Series expansion. We define

SV _ f Pe(de)e’ W8 = (X #BL(V(w)i)

(3.1)
= exp Il;bk 27dn
keD
neZ?
where Eg(V(qb, -);q) are the truncated expectations with respect to P¢(d€) defined as
01 o
B (Vi) = 5 log | Pi(dg)esV 89| (3:2)

where o € R and E¢ is constant. f/n(k) is a 2 x 2 matrix which can be expressed as sum of
connected graphs defined as follows.

Definition 3.1. A graph with ¢ vertices and index n is defined, see Fig. 1, as a chain of
q lines ¢y,..., 0441 connecting points (vertices) vy,...,v,, so that ¢; enters v; and and ¢;1
exits from v;; ¢1 and /441 are external lines of the graph and both have a free extreme, while
the others are the internal lines. A labeled graph I' is defined from the graph defined above
associating the following labels

(1) To each point v is associated a label j, € {0,1} and momentum label n, € Z? with the
constraint that >Y_; n,, = n.

(2) To each line ¢ is associated a momentum k, with the constraint that k
—270mn,,; moreover ky, =k and ks, =k — 270n

(3) Gn,q is the set of all possible graphs with ¢ vertices.

vl kfi =

The value of the labeled graph I' is defined as

Wr(k) := Fy, (k) (H 9e (ke ) Fy, (kzi)> (3-3)
=2
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where
QY (keymy),  ifv=1,q

3.4
(k57nv)7 if’l}:273’___7q_1 ( )

F,(k;) = AYY x {

(
with the definitions in (2.7), (2.17), (2.41) and (2.42).
)

Lemma 3.2. The effective potential V() admits the representation ﬁ D ikeDy 2omez2 Yk -
n( )Tpk—Qan with

[oe}
=, Wr(k). (3.5)
qg=1 FEgn,q
For the proof, see Appendix A.
Dk e (key) e (key) e (ke, ) Pk—270m
7 V2 U3 V4

FIGURE 1. A graph I with ¢ = 4.

We denote by [A] := 3, ;[4; ], if A is a square matrix. Note that Wr(k) depends on n.

Lemma 3.3. There exist C,\g > 0 independent of i such that for |\ < Ao, Va(k) and its
derivatives satisfy, for s < 2,

05 Vn(k)| < CAe2M (3.6)
Moreover,
o = (40 ) (37)

with a(k) = —a(—k) € C and b(k) = b(—k) € R.

Proof. Using that |6k ge(k)| < Gg¢ and recalling that by (2.7) and (2.13) one has |F, (kin)| <

IA|C1 el and by (2.17), (3.3) and (3.4) we get, for suitable constants G¢,Cy > 0 inde-
pendent of i,

W (k)| < 9IAIGE CI] [e ™™ < 97A[9GE e ——‘nlﬂe zlnel (3.8)

where 9 is un upper bound for the number of derivatives on the propagators and on the Fy’s.
The sum over graphs consists simply in the sums over all possible j, and n, so that, using

that >~ ezl < a 47%)2 and the sum over j, is bounded by 2, one gets
q
1 72C,G¢ _n
25 Vn( A= | =28 ) il 3.9
4 qZ_lHGg(( )> (39)

n
and the sum over ¢ > 1 is convergent for || < % The proof of (3.7) is in Appendix B.
]
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4. INTEGRATION OF CRITICAL MODES

4.1. Multiscale Decomposition. We write

1 R ~ R
Eaq =N |Py(dy) exp {4|A<| Z Yok Vn(k)"/’k—QnQn}
! keDgy
neZ2

- 6 [P @ {1 7 2o vt iy 3o Palhcanan 1)
keDq
neZ?

where P(SD(dy) := %—P(dw) exp{—m D keD,, ¥_1 - Y2voa}. Note that, in writing the
above expression we have added and subtracted a counterterm proportional to v, which will
be suitably chosen below.

As we noticed, in the integration over the v we cannot repeat the analysis done for the &
because the propagator is unbounded. The integration of ¢ in (4.1) is done via a multiscale
analysis. We define a Gevrey class 2 function x (see e.g. [33, Appendix A]) such that x/(|k|r) <
0 and

if ‘k"ﬂ" < ’)/71

x(9) = x(lkir) = {; ek (4.2
) Z 3

us
2

with T denoting the two dimensional torus of lenght 27, k|t := 1/|ko|% + k1|2 with |k|p =
inf ez |k + 2mm|. We also define, if v > 1, h <0

xn(k) = x(v"k), (4.3)

and x1(k) = 1. The functions fj(k) := xn(k) — xn—1(k) and fh(k) = xn(k)(1 —xp-1(k)) are
Gevrey class 2 compact support functions with support gfyh*Q < k|t < g'yh, see Fig. 2.

x([k|r) ~ Ju((k|r) | |
i | foa(k)
_i_‘_/\i 3 f—l(k),\
i | folk)
i } f1(k)
2 gy : k|t

FIGURE 2. Plot of the function x and some of the f},.

The integration is defined recursively in the following way. Suppose we have just integrated
the field on scale h, h =1,0,—1,—2,... obtaining

S = N, f PUSH) (=) eV @ ) (4.4)

with A}, constant in 1 and P(S?) (dw(gh)) a Grassmann Gaussian integration with propagator
9= (k) = xn (k) Apsa (k) (4.5)

with

B 1a(h)/<:1—a(h)/€o—b1(k) —ip —iba (k) B
Ah(k)_< 1 iu+i%2(k) @)k + ()R + b)) (4.6)
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and |y (k)|, |b2(k)| < C|k|?; moreover

RICISRINE S S VP 0wy o - (4.7)
4|A | keDqn

n€Z2

If h = 1, (4.5) holds with x; (k) = 1; moreover yu = my +v*v and V() given by the exponent
of the second line of (4.1).

Remark 4.1. We will show in the following that v has to be chosen as a suitable non trivial
function of A, i, B; the condition for criticality, that is so that the correlation length vanishes,
is given by p = 0 and not by py, = 0 as in the non disordered case.

We define a localization operation as

LymEmy = L gk, ( +Zka ) B )
4|A|keD
and
RV (S = W) (y(sh)y — £y () (y(sh)y (4.9)

We move the second term of LV " (1/1(<h ) in the Gaussian integration and by the change
of integration property of Gaussian Grassman Integrals [27, Eq. 2.24], we have for suitable
./\_/ h € R,

J\/hfPKh)(dw(@))ellV“’)(w( WY +RY (W) (<)) _

2 (<h) 2 (<h) (4.10)
= N, f PN (dop(Sh)) e A1 Skepa Pk Y no2 S RV (M)
where P(S")(dyp)(SP)) has propagator
7S (k) = xn (k) A (k) (4.11)
with
~1
= (=1dP )k — 6l (K)ko — b (k) —ip — iby (k)
Ap(k):= . () (h) 1y . (4.12)
i+ by (k) —i(ay” (k))*k1 + (ag (k) ko + b7 (k)
and

af () = af" ™V + i W[V 0], a0 = oY = xa() [V (0)],, (4.13)

where a(th )= a§-h+ )( 0) for any j = 0,1 and for any h, and with vpo9 = 7~ V(h)( 0). To
begin the iteration, one can define
2 . _ 2 . . _
af =[2G O], o =i[aEE) )], (4.14)

We can write
S (M) = PERD (@ Sh0) PO (@) (4.15)
where P(S"=1(dyp(Sh=1)) has propagator
gD (k) = xn-1(k) An (k) (4.16)
with Aj, (k) being defined in (4.6). P (dy(™)) has propagator
9" (k) = g'=" (k) — g!="" D (k) (4.17)

where the analogous of (3.7) has been used. We can integrate P (dy()) and the procedure
can be iterated.
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4.2. The single scale propagator. Inserting (4.16) and (4.11) in (4.17) one obtains
" (k) = fr(k)An(k) + fu(k)(An(k) — An(k)), (4.18)

where f; and fj, are defined after (4.3). It is important to notice that supp x(k)(Ap (k) —
Ap(k)) < [29"71, 24" (therefore we can multiply for free with (1 — x,—1(k) to obtain fr)
and therefore g )(k) is a Gevrey compact support function, with supp g/ < [gfyh*Q, %fyh].
Note also that in the expression of g(1) the second term is not present because xi(k) = 1.
Assuming iteratively (what will be proved inductively below in Lemma 4.7 for |A| small

enough) that %agg) <a (h) < 94 \we can show that for s = 0,1,2,

J 877
059" (k)| < Cpy~h+) (4.19)
Indeed,
| det A7 (k)] = lia{Ey + oV ko + b ()] + [ + ba(K)[? (4.20)

with by (k), b2(k) = O(|k|?) as k — 0. Then, by algebraic manipulations, one obtains
[det A1 (10)] = [af” k2 + | 123 + 23m (a0l koks + F (k) (4.21)
with F(k) = O(]k|?) as k — 0. Using now that a(1 ),a(()Q) € R and the iterative hypothesis on

oM , one has

J
h) (h ~ h) (h)* 2) (2
\Jm(a(1 )a(o ) )| = \Jm(a(1 )a(() - oL(1 )a(o M|

*
= [am((af” —a?)ay”" — o (" ~ af)]

h 19 1 (4.22)
o~ a? ol + ol oY < (55 + 5 ) lolef?

N

8 8
17 o2la®
< ila”lai?].
Thus, (4.21) can be estimated as
|det A, (k)| = | ‘ QI G |k0f2|m<a1 6" Vkoky| — | F (k)|
(2 2 (2) _
> S0P P+ ol PR ol lkollll ~ FGOl (a.23)

2 2

> 2 (@8 + @) ~ IR0

where in the last step we used |(a(()2)k0)(ag2)k1)| < %((a((f))kag + (a§2))2k%).

4.3. Graphs and clusters. The outcome of the multiscale integration described above is
again a representation of the effective potential in terms of graphs, which are called renormal-
ized graphs.

Definition 4.2. g,’f, ’qh is the set of renormalized graphs I', which are labeled graphs defined
starting from the chain graphs defined in Section 3 adding the following labels

(1) To each point v is associated a label n, and a label i, € {v,V}, with the constraint
that >/ | n,, =n.

(2) To each line /¢ is associated a momentum k, with the constraint that ky,
—270n,,; moreover ky, = k and ky ., = k — 270n.

(3) To each line ¢ is associated a scale index hy = 1,0,...,—o0; if £ is an internal line
hy = h + 1; the minimal scale of the internal lines is Apr. To each external line is
associated a scale and h®** < h is the greatest of such scales.

k;, =

i1

Given a renormalized graph, we associate a set of clusters defined in the following way.

Definition 4.3. Given a renormalized Graph I'
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(1) A non-trivial cluster T is defined as the connected subset of internal lines and points
attached to them such that if A7 is the minimum of the scales of the lines of 7', then
hr > h$t, where h5*" is the maximal of the scales of the external lines of T' (the lines
¢ T attached to a single point of T'). The points are trivial clusters and T is also a
cluster.

(2) The difference of the momenta of the external lines of T' is given by 27Qnp with
ny = >, .rny,. If np = 0 then T is a resonant cluster (or resonance), otherwise is
a non-resonant cluster. An inclusion relation is established between clusters and we
say that T < T if all the elements of T belong also to 7. T is a maximal cluster
(trivial or not trivial) contained in T if T < T and there is no other cluster T such
that T T < T.

(3) Qr is the number of maximal clusters in 7', M7 is the number of the maximal non-
resonant clusters contained in T'; Rp is the number of the maximal resonant clusters
contained T; Qr = My + Ry; MY (ML) is the set of resonant (non-resonant) maximal
trivial clusters (i.e. points) in 7T'.

Given a cluster, we can associate a value in the following way.

Definition 4.4. The value of a cluster T with maximal clusters Tw, w=1,...,Qr is given
by
Qr-1 L
WT(k) = 1_[ wa (kw)g(hT)(karl) WTQT (kQT) ) (4'24)
w=1

where k,, — kyy_1 = 27TQnT~w_1, k; = k and wa (ky) is defined as

(1) if T,, is a trivial cluster, then by Definition 4.2 (item (1)) it has two labels iy, and n,,.
If 4, = v, then n,, = 0 and WTw(kw) = ’)/th/hTO'Q; if 4, = V then either n,, = 0 and

then Wy (ky) = RVo(Ky) or n, # 0 and then Wiz (ky) = V., (ky) defined in (3.1).
(2) if T, is a non-trivial cluster then wa =RWj with R =1 — L defined in (4.8).

Remark 4.5. Let v be a maximal trivial cluster v € T'. If v is a resonant V-point (i.e. n, = 0),
then by (4.9), Lemma 3.3 and Definitions 4.2 and 4.3, we have
en () (k — 25 m)R V5 ()| < 427 CIA (4.25)
With the above definitions, the following lemma holds.

Lemma 4.6. V") (k) in (4.7) can be written as

1?1(1”)(1{):% 3 wr(k). (4.26)

1=l regay
Similarly, the running coupling constants verify
h—1 h
Vp—1 = YV + ﬁy,h ag» ) _ a§~ ) + ﬁaj,h (4.27)
with

Byp =iy "1 Z Z [WF(O)]LQ ’

=2 R,h—1
4=2reGl " hp=h

ﬂal,h = - Z Z [akd WF(O)]le /Bao,h = Z Z [akOWF(O)]l,l :

4=2regl " hr=h 1=2 gl hp=h

(4.28)

The proof is an immediate consequence of Appendix A and Section 3.

An example of a renormalized graph with its clusters is given in Fig. 3: in Fig. 4 is rep-
resented the same graph with only its maximal clusters. Note that a set of clusters can be
equivalently represented as a Gallavotti-Nicolo tree, see e.g. [54].



UNIVERSALITY IN THE 2D QUASI-PERIODIC ISING MODEL AND HARRIS-LUCK IRRELEVANCE 19

FiGureE 3. Graphical representation of a Renormalized graph I': ¢ = 11,
hs < hy < hg < hy < h1, hy = hs. Qr = 4 (with 2 non-trivial clusters, i.e.
Ty and Ty, and two trivial ones, i.e. the points 1 and 9). Qp, = 3 (with 2
non-trivial clusters T3 and Ty and a trivial one, v = 6). T3 has two maximal
clusters, a trivial one v = 2 and a non-trivial one T5. T5 has two maximal
clusters, a non-trivial one Tg and a trivial one, ns. Tg, T4 and 75 have two
maximal trivial clusters each.

______ i

T )------

FiGURE 4. The same graph as in Fig. 3 with only its maximal clusters repre-
sented. Trivial clusters are represented by dots, non-trivial clusters by ellipses.

If we consider as first non-trivial cluster T' = I' and we use the above definition we get an
expression similar to the graphs defined in Section 3 with the difference that a)the propagators
associated to the lines ¢ are g(M); b) to each resonant cluster is associated the R operation;
c¢) the vertices are of type v or V; d) the vertices do not have a j, index. In contrast with
the expansion in A seen in Section 3, the renormalized expansion is in A and in the running
coupling constants vy,.

In the following we denote by [[ =  []

T n.t. Tel
T non-trivial

4.4. Bounds. We define

RS sup (k) 2rm) [V (k)| . (4.29)
€l

The following lemma holds. We denote with subscript [ the infinite volume limit of a quantity.

Lemma 4.7. Let 7 := min{p1, po}, take vy > 4™ and assume that for k' > h one has |vp| < |)|.
Then, there exist A\g,C > 0 independent of i and h such that, for any |A| < A\g one has

(i) the limit lA)r(lhl)(k) = lim; 4o l’},(lh)(k) exists;

(ii) for s =0,1,2, the following estimates hold

|05 RVL) | <AM1=9C|Ae M, (4.30)
|ﬁu,h| < (C)‘)27h ) |/8aj,h < (C)‘)2’7h . (431)

Proof. Wr is obtained by Wt replacing ; with 2, considering n, € 72 and k € [—m,7)2.
First, we show that we can multiply by xr, ¢.e. we show that

Xn(k)xn(k — 2mm)Wr (k) = xn(k)xn(k — 270Qn0) xr Wr i (k) (4.32)
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where xr = 1 if, for any non-resonant cluster 7" in IT', it is true that

hext

Ing| > Coy™ 7 (4.33)

and xp = 0 otherwise. Indeed if ki, and ko are the momenta associated to the external
lines of T, then by the compact support properties of ¢™’s or ys, kin|T < %VheTM and

Kout|T < T4 (note that h < hs*'). Therefore

7T hext

|kin - kout|’]T < |kin|’]I‘ + |kout|']T <2 27 (434)

and by the Diophantine condition (1.5) we get

T heact

2— > |kin — kout|T = 27 min \/(wlnl —mq)? + (wong — myp)?

2 mo,mi1€Z

(4.35)

> ma | > max(er, o)l |~ ")
hence the Lh.s. of (4.32) is vanishing if for at least one non resonant 7', (4.33) is not true.
The proof proceeds then by induction. First, notice that the first step is a straightforward
consequence of Lemma 3.3. For the inductive step, let us assume that (4.30) and (4.31) hold
for any scale 2,...,h + 1 and we prove that they hold at scale h. First of all by (4.31) we get

2
(h) 2 242 22 7
la5” — a7 | < CPA2 ) A CAfy_l (4.36)
k=h+1
hence for CQ)\Q,YV—EI < min; %af) we get %a§2) < agh) < g g) this implies, for s = 0,1,2

(4.19). To estimate the quantities appearing in (4.24), we recall that from Lemma 3.3, there
exists a constant Cy independent of i, such that |5 V|| < Ca|Ale™2MI and from (4.19) there
exists a constant C independent from i and b’ such that |5 g""")|| < C1y~(1+9). Moreover,

by Remark 4.5, we can estimate resonant V vertices as [RVp| < |A[7"7 (see also Remark 4.9
below). Thus,

|ORRXTWr g (K)]| < (cC1Ca) 0" |A|x

(Ileghh4> (:[I oy~ (Mr-+ Ry~ 1) ( 1~ hwt/m~> [T At (4.37)

v T n.t. Tnt T n.t.

where ¢ = 9 counts the number of derivatives produced by R or ¢, the factor v2(7" —h1) ig
the result of the application of the R operation described in Appendlx C and W_hT(MTJrRT_l)
comes from the product of propagators. We can write

[Je#iml < =i (He”;nv> (Hegm) , (4.38)
v v v

Slmd — ] e 2 bl
and e” 8™l = [] e * 16/™! g0 that

h=—o00
1_[6 gl < 1_[ e -2 7| (4.39)

Tn.t.
The presence of xr guarantees that when ny # 0, the estimate (4.33) holds and the assumption
~ > 47 ensures that 4 := 72/ > 1. Therefore,

e " I e—CMry~"T ifnpr #0
n Tn.t.
[]e sl < . (4.40)
v [] e SMri™"7 if np =0

T n.t.
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with ¢ = 1£Cp a constant independent of i and k. We get therefore

|G RXEWE ]| < (cCLC2) Ty~ A7 foge 417! (H) (H vhﬂMT*RT”) x

T n.t.
(4.41)
( H ,YQ(heXt hT> (1_[ e—CMTﬁ_hT> 1_[ ,},hTM%7
Tnt T n.t. T n.t.
nT—
where
—¢y ~
foxt =1 € ifnp 20 (4.42)
1 ifnyr =0

- In~y
Using that for any M € N, one has e~¢7 "L M (@) AMhr (this is a consequence

of the bound e~ M < (%)Me_M) and )., . Mr < 4q, we can bound

H e—CMT’y_hT < Cg (H ,thTMT) H fyhTMql“ (4.43)
T n.t. Tn.t.

T n.t.

121In~y

by setting M = 3 and with C5 = 12 (31%) . We bound My with M%, that is the

number of non resonant maximal trivial clusters. Therefore

([ [l e (o) [ o0 o

T n.t. T n.t. T n.t. Tn.t.

and

R Wi < (eC1CaCl)Ty M Al foe 410 (H) x

v

(4.45)
% (H v—hT(RT—1)> < 1—[ 72(hext—hT)> <H 7hTMT> 1—[ (M7 +Mz),

Tn.t. T n.t. Tn.t. T n.t.
I’IT=0

Finally, using that Ry = MY+ R%" where R%:* is the number of non-trivial resonant maximal
clusters in T we get

< H ,yth(RT 1) )( 1_[ ’YheXt hT) H ryhTM;—' < 'Y (446)

T n.t. Tnt Tn.t.
an

with ep = 1 if np = 0 and ep = 0 otherwise. Equation (4.46) follows from the fact that

(11 )( 1) 1
Tn.t. Tnt Tn.t.

nT—

(4.47)

Tn.t. Tn.t. T n.t.
nry= 0 T#F

_ 7th< 1—[ 7heTxt> ( H ,y—hTRT> 1—[ ShTME _ ek

and, moreover

[T [[r" =<1 (4.48)

T n.t. Tn.t.
nT—O

We define

~ - if
e ifnr#0
fowt 1= . 4.49
ext { h if r 0 ( )
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Inserting (4.46) and (4.49) in (4.45), we get

[OxRxTWr | < W*Sh(c010203)q|)\|qf“emtef§\nl (H egnv> «

(2

(4.50)
% ( H hext— hT> (H ,yhTMT> H ,yhTMI

Tn.t. T n.t. Tn.t.
l’lT:O

- ' y=h 1y \™7 n 1 [y \ 7
We use the inequality e=¢7"" < v~ (%) ~", and we call Cy := max<{ 1,7~ (TV) )

~ ext ext__p
If T < T is maximal and 7T is non-resonant we have 7 = ’yhf < ’yhf "7 and therefore

fm( I1 'yheTXthT> [T A <o [T A" " (4.51)

T n.t. T n.t. T n.t.
I’IT=0

Inserting (4.51) in (4.50), we get

JRXe W] < 7079 (cCyCyC3)e Afte 0! (He ) [T, (452
Tn.t.

The sum over I' consists in the sum over the label n, associated to the vertices and the
sum over the scales. We use that

HZe & 0ol <H4<Ze 8") 49(1 — e )% (4.53)

vV Ny n=0

The sum over the scale labels of the lines, hy can be controlled by summing over the scales of
non-trivial clusters and keeping only the constraint that, for each non-trivial cluster, h$" <

hr:

Z H A e H Z AT —hT <27 )ZTMT < (ﬁ)élq, (4.54)

{h¢} T'n.t. Tn.t. hp>heet >0
where we used again ) . M7 < 4q. Inserting (4.53) and (4.54) in (4.52), we get

|G RXT W] < A1 hemdInl N0, (4.55)

_n
with C := 40016’26’304% a constant independent on 7 and h. The sum over ¢ is

convergent if |A| < C, therefore, if |\| < § one gets
BRI < 37 2 10kRxe Wil <4020 e (4.56)
q=1TeGn 4

To estimate 3,5, and B, n, we have to bound Wr(0) for I' gé*;f, with hr = h (see (4.28)). In
this case we have to conmder only the case ¢ > 2, since the sums in (4.28) starts from ¢ = 2
Moreover, there must be at least two maximal non-resonant clusters in I', therefore Mt >
Indeed, if this was not the case, then there must be an internal line with k, = 0, implying
g (k;) = 0 by the support properties of g(*)’s, which yields Wy (0) = 0. Thus, in particular,
we must have Mr # 0 and g > 2.

One can repeat the same argument used to estimate J;, Rxr Wr with the following difference.
By construction, I is a resonant cluster on which no R operator acts. Therefore, analogously
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0 (4.41), one obtains

|Bun| < i 2(00102)q|)\|q<neg|nvl> ( H ,YhT(MT+RT1)>

q=2 T Tn.t.
ext ..,hT v (457)
X 1_[ 72(hT 7hT) H efcMT'Y H ,-YhTMT X
Tn.t. T n.t. Tn.t.
npy=
T#I

Using that Mr # 0 and hr = h, one can replace (4.43) with

1_[ e—CMT,’)‘/—hT <72hé§ <H ,YQhTMT> H f)/h‘TMTI" (458)

T n.t. T n.t. T n.t.

~ 20In~y
where C3 = max {03,720 (5léw> }

Moreover,

( H ,thT(RT 1) ) ( 1—[ ’Yhm hT> H ,yhTM; <1. (4.59)

T n.t. Tnt T n.t.
l’le

The sum over the graphs is done in the same exact way, with regard to the effective potential.
To sum over ¢, one first notices that we have no graphs with ¢ = 1 and therefore the sum
starts from ¢ = 2, and then one proceeds obtaining, for |A| < %,

1Bun| <" Z A(C < 2(C")2 N2 (4.60)

for a constant C’ independent of i and h. With the exactly same argument one proves

|Ba; ] < 2(C7)2N%A" (4.61)
We can therefore choose C' = max{2C,2C"} so that (4.30) and (4.31) hold. Moreover,
1 1 1
Ao = min { roike, L m]m a§2)} (4.62)

so that the inductive step is proved.

It remains to prove the existence of the limit in ¢, where ¢ is the index of the box side
L; introduced in point (iii) after (1.3). We have just proved that the expression obtained
replacing L; with co and w; with w is finite.

To prove the existence of the limit ¢ — 00, and that it coincides with this expression. Let
us denote with L; := min{Lg;, L1;}. Define for shortness of notation k(t) = (k — k;)t + k;
where k € [-m,7m)? and k; € D__ with |k — k;| < L”, and Q(t) = (Q — Q;)t + ; and
xXn(k, Q) = xn(k)xn(k — 270n)xr, then let us consider the term with n # 0 and s = 0. One
has

R R +00
Vin(k) = Valka)| < D7 >0 Wk, Q) — Wi (i, )]
q=1T€Gn q

(4.63)
[| & bt 20w 0,20 ai]

—ZZ

q=1T€Gn,

By Leibnitz rule there are three terms: one in which there is a difference k — k; which can

be estimated using the same argument of eq. (4.37)-(4.56) with an additional term 2”%—41

Therefore, at the end, this is bounded by C\)\\e_%n‘%.
In the second term, the derivative can act either on a vertex or on a propagator producing
terms that can be estimated as |Q; — Q||n,|y™". Then, the procedure to estimate the sum is

i
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again similar to (4.37)-(4.56) but in the sum over n (4.53) one sums »; _q(|n| + e 5" to
absorb the term |n,| <[], [ny|. One then uses that |; — Q| < % because the sizes of the

lattice are the best approximants of the Diophantine numbers wy and w; (see Section IV.7 in
[20]). Therefore, the second term can be estimated as C|)\|67g|n‘%.

In the third term, we denoted by x' = %X- To estimate this term we use the same procedure
from (4.37) to (4.56) and the fact that either |k; — k| < 27/L; or |Q; — Q| < C/L?.

The last term involves graphs with at least a vertex with n, > L; and this is O(e*Li).

Therefore, there exists a \g > 0 and C > 0 independent of h such that, for any A < Ag one
has

Vin(k) — Va(k;)| < <. (4.64)

i

This implies the existence of the limit. u

~i

Remark 4.8. Take the Graph in Fig. 3 and consider the case in which the only resonant
cluster is T5. We repeat the argument of Lemma 4.7, applied to this graph only, in order to
clarify the procedure. One has,

[ [19™9 (ee)] < Cionoqhon iy mhay =2y mhay =2hs mhe
(el (4.65)
— C%O,y*h4(ST171)77]12(57"271),Y7h3(ST371),Y7h3(ST471)77h2(ST571)77]15(51"71)

with Qr, = 3, @, = 2, Q1, = 2, Qr, = 2, Q, = 2, Q7. = 3; moreover the action of the R
operator on Ty produces a factor v2("5~"2) in agreement with (4.37).

Remark 4.9. Note that in (4.52) we have bounded the factor [[v"*M7 in (4.50) with a
constant, and an extra v"7 coming from the analysis of Remark 4.5 has been estimated by a
constant before (4.37). Such terms will be used after (5.32) in the proof of Lemma 5.5 and in
the proof Corollary 5.6.

4.5. The choice of the counterterm. In Lemma 4.7 we have proved the convergence of
the expansion considering vy, as parameters and provided that v, are small enough. v}, are
determined recursively by (4.27) starting from the initial value v which is a free parameter;
we show that there exists a unique choice of v so that vy is bounded uniformly in h. We

impose the condition v_., = 0 choosing v verifying 83, = Bun(Vh, Va1, .-, V5 A)
2
v=- Z fykﬁl/,k(ykaykJrla"wy;)‘) (466)
k=—o0

from which
h
v, = — Z ’}/kihﬁy’k(yk,yk_;’_l, U A) (4.67)
k=—o0
and we want to show that (4.67) has a solution.
We define the Banach space M of sequences v = {vj }r<2 with norm vy := 3] o | |y R/ A1/

and we consider the ball B © M of sequences v such that [v|y < [A]. We define the map
T: M— M as

h
T(Z)h = - Z fykih/gl/,k(yka Vi4+1y---,V; )‘) . (468)

k=—o00

Therefore, (4.67) can be rewritten as
@)h =T @) - (4.69)

Lemma 4.10. For |\| < X\, T : B — B is a contraction.
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Proof. To prove that T leaves B invariant, we prove a stronger statement: if v is such that
|vp| < A, then T'(v) € B. Under these hypothesis, Lemma 4.7 holds and, using (4.31), we get

_h

< Y, 3 A gl < —L OV (@)
h<2k=—0 ) )

3

where C is the constant of Lemma 4.7. Choosing now A\g < % we get [T'(v)|m < A
If v,/ € M, then
T(H)hi Z ’7 /Bl/k‘ Vk:ayk:-i-la"'ay;)\)75V,k(]/];a]/];+1,""yl;)‘))' (471)
k=—o0

The r.h.s. can be expressed as a sum of graphs identical to I' with the difference that in a
vertex instead of v, there is v, — v;. Indeed, repeating the argument of Lemma 4.7, one gets

1Bun(v) = Bun (W) < D7 Y (eC1CyC) | A9~ 2r Mi h(l_[e snv>

q=2 T

(4.72)
ext L4 /MV
(n ) T~ T
T n.t. T n.t. T n.t.
Using now that v € B, one has | [T, v — [T, vt | < (2A)M#Lu—/| . Therefore,
summing over I' as in Lemma 4.7, calling Cy := 8¢C1C5C3(1 — e ¥)~2(y — 1)~ one gets
1Bun(®) = Bun(@)] < D CIANT Y v = V- (4.73)
q=2
If |\ < 20 , then
1Bun(®) = B ()] < 2CE A" v = V| pa - (4.74)
Using (4.74), we now have
IT(w) = TW)|m < D7 “I 2T (), — TW )l
h<2
.
<20t D A1) = Bup ()] (4.75)
h<2 k=—00
bl
<29 PCHA [y =V m DT D) R
h<2 k=—00
Thus, choosing Ay < %, T is a contraction on B. =
4

Remark 4.11. Since, by construction, v € B, we have the bound -, lup|y =412 <N,
that implies
vl < AP <A (4.76)

which improves, and hence also justifies, the assumption in Lemma 4.7.

Remark 4.12. (4.69) and Lemma 4.10 determines uniquely v = v(A, i, 5) and proves the
assumption |v5| < C|A| used in Lemma 4.7. From (4.6), u = my + My?v(\, i, ) with my =
my () given by (2.35). The criticality condition is imposed setting p = 0; from 0 = my,(8) +
A2 (A, 0, B) we determine the value of B.(\) = £.(0) +O(\) by the implicit function theorem
as the derivative is non vanishing. In addition p = O(|5 — Bc(N)])-
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5. ENERGY-ENERGY CORRELATIONS

5.1. Integration of ¢ variables. The energy correlation (2.1) can be written as

Talao 02
S(x1,j1;%2, j2) = Wa(A)| 41— (5.1)
ae{Zi}Q 2Z anl,jl é’AX2 ,j2 ‘A_O

with Z, 7o and Z, defined as in (2.5),

Wa(A) :=log f DA S(®0)+B(2,4) (5.2)
where
B(®,A4) = Y [B)(A) HxHxre, + 5 (A)VxVireo] (5.3)
XGAi

and t%xj)(A) = tanh(ﬁJ,((j) + Axj) — tanh(ﬁJ,((j)). Proceeding as in Section 2 we perform the
change of variables ® = ®(x, 1) defined in (2.6) and then (2.30) to get

V) — [Py (dv) [ Peldg)el v BOED (5.4
where
B(,&,A) :== B(,6 + C'Qp, A), By, x, A) := B(®(¢, x), A) . (5.5)
Using the following representation in Fourier series for A
1 .
Ax,j = Z Ap’jelp-x7 (56)
Al PED ¢+

expanding in Taylor series t%x] )(A) around A = 0 and denoting by ¢ = 1, &, one has
B(y,&,4) =

s
Z {48, |1+s > X G Kaan(p iy p-2mon [ [Api (5
C 7CQ:¢7€ kEDOH r=1
EE(D++)S7
nez?
Jje{o,13°

We can integrate over the £ field obtaining

Wal(A) _ oNi(A) fpw(dw) ¥)+B (4,A) (5.8)
where
B (y, A Z Ty |1+s >, o Kalep heys. lpr_QﬂQnHApr,jr (5.9)
keDq,
pe(D14 )",
neZ?,
jefo,1}

where I@l(k, P, Jj) can be expressed as sum over graphs I' similar to the ones in Definition 3.1
with the following differences. To each point v of the graph T' is associated a label j, € {0,1, 2}
and momentum label n, € Z2, if j, € {0, 1}, or p, if j, = 2, with the constraint that ), n, = n
and p, is equal to one of the p1,...,ps or a linear combination of them; the number of points
with j, = 0,1 is q. To each line £ is associated a momentum ky; if k; and k, are two lines
attached to the same point v, then k; — k, = 270n,, if j, = 0,1 and k; — k, = p, if j, = 2.
The proof of Lemma 3.3 can be repeated up to some trivial modifications and we get, under
the same conditions, the exponential decay of the kernels in f)’(l)(zp, A):

Ki(k,p, j)] < C%e 2 (5.10)

for a suitable constant C.
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5.2. Multiscale analysis. The integration of (5.8) is done inductively, by a generalization of
the analysis in Sections 3 and 4. Suppose we have just integrated the scales 1,0,—1,—2,... h+
1 obtaining

WalA) — oNu(4) fp(sh) (dw(gh))ev(h)(¢(<h))+3(h)(¢(sh),,4)’ (5.11)
with
BM (w(Sh)7A) —
+00 ) ~ s
Z 1+3 Z Z ’(p ,C27S7h( p7])¢1((<_h§)35 —2710n H Apth (512)
4|A | keDg, pe(D++)* o b r=1
HGZ ]E{O 1}5
and
+00 1 . h
Np(A) = >’ AT D D KR (. 4)ds, petarano HApT g (5.13)
s=0 v BE(D++) neZ? r=1
je{o,1}¢

where 0 denotes the Kronecker delta. We define a localization operation as

A L 2 (<h) o (<h 3
£B(h) (¢7 A) = m Z /llb(_k ) : K?l’17h(07 Oa])wl((—p)—QﬂﬂnApvj . (514)
" keDqy,peDy 4,
neZ?,
Jj€{0,1}

Note that, in contrast with the analysis in Section 4, the localization acts also on the terms
n # 0. We get therefore

Nal(d) _ Nh(A)f D) (dgp (<) T S PSS A oa S

(5.15)
64\/\1' 2 Zinez2 2ik,p.j P52 02T onAp s RV (S +RBM (4(<h) 4)

with Z}(ljzl = I/C\?{l’h(0,0,j). Note that, in writing the above expression, we have used that

I/C\Iz{l’h(O, 0,7) is proportional to oy. This latter fact can be checked simply using the anticom-

mutation property of Grassmann variables. We can write P(SP) (dip(Sh)) = P(Sh=1)(gyp(<h=1)) p(

and integrate (") so that the procedure can be iterated as in Section 4.
Let us introduce the following definitions.

Definition 5.1. QR 25hT §s the set of special renormalized graphs I', which are labeled graphs
defined starting from the renormalized graphs in Definition 4.2 with the following additional
labels and modifications

(1) if z = 2 the first and the last line are attached to a single point while if z = 0 there
are no external lines.

(2) To each point v is associated with a label S,; if S, = 0 (normal point) v is associated
with a label i, € {v,V} and a momentum label n, € Z?; if S, = 1 (special point) it is
associated with a momentum p,, an index j, € J, a momentum label n, € Z? and an
index 7, € {#, B}. The normal points are q and the special ones are s.

Similarly to what we did in Section 4.3, to a special renormalized graph we associate a set
of clusters in the following way.

Definition 5.2. Given a special renormalized graph I', we define clusters as in Definition 4.3.
Then, a non-trivial cluster T is associated with Sp = 1,2 if it contains Sp special end-point
and ST = 0 otherwise; in the first case the cluster is called special, and is associated with
a momentum 27Qny + pr (where pr := > .p Py), and in the second case is called normal,
and it is associated with a momentum 27On7p. We call Q7 the number of maximal clusters
in T; S} = M} + R} the number of normal maximal clusters and S7” the number of maximal
special clusters; M7” is the set of maximal special trivial clusters (i.e. points) in 7. The scales

h) (dap(W)

)
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are such that, when z = 2, hp = h; when z = 0 to each external line is associated a scale and
h is the greatest of such scales.

§h5§h3§h1§h2§ §h5§h3§h1§h2§
o 5 ne e (Y Cﬂl L) me n ‘f’;;@

FIGURE 5. (left) A graph T e G229} (right) a graph T e gioO2Mm b2}

Definition 5.3. The value of graph I" € QR’Q’l’h 7 with maximal clusters Tw, w=1,...,Qr
is defined as
Qr-1 .
Wr(p) = [ [Tz <kw>g<hf><kw+1>] s, (kar) (5.16)
w=1

where ky, = ko1 — 27rQn7:wf1 if T,y is a normal cluster, ky, = ky_1 + Py~ 27TQnwa1 if

Tw—_1 is a special cluster k; = k. wa(kw) is defined as

( Z;(LJ;}S if 7},} is a special z-point,
RICn’i’l if T, is a special B-point,
Wo — ’YthhTO'Q %f ij 15 a V—pOi.Dt (ny, = 0), (5.17)
w RV if T, is a V-point (n,, = 0),
Va,, if Ty, is a V-point (n,, # 0),
RWy if T, is a non-trivial cluster.
Similarly, if the special renormalized graph is I' € QR 92,87
1"
Wilp) = i ) H 0 (1) | Wz, (kr)g™lgr)  (518)
keD w=1
with k; = k.
Lemma 5.4. The kernels K can be written as a sum of graphs
[oe}
KoMk, p.j) = >, > Wrkp.j),
q=0 Fegx}i,qQ,s,h,J
) " (5.19)
K:O,&h(R’ l) = Z WF(E’ l)
7=0peglt0shd
and the running coupling constants verify
Zl(lj)ln_Zj) +anh’ znh_z Z WF(O707]) (520)
q= 1FEgR’21h 1,5
hr=h

Also in this case, the proof follows along the lines Appendix A and Lemma 4.6.

5.3. Bounds. Let us now define

IKZ5R) = sup sup sup |xa(K)xa(k + p — 2rQn)K2"(k, p, §)] . (5.21)

jE{O,l} p€D++ keDq
We will denote by [ [, = [ loer S,=0
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Lemma 5.5. If |\| < Ao and v is chosen as in Section 4.5, then there exists a constant C
independent of 1,8 and h such that

HVE%’I’hH\ < Cemilml, sup |/€g’2’h(P1,p2,j1,j2)\ < Cemslnl (5.22)
P1,P2€D++
and
1BY) 4] < ClAly e, (5.23)

Proof. Assume inductively that the statement is valid for £ > h + 1; then |Zr(1j%| < Creinl
by (5.10) and by induction

nh - Z(] + Z 5,2 n,r < QCZQ*%U‘ (5.24)

assuming [A\4C(1 — e 1)2 < C}.
We start from the ﬁrst of (5.22). Considering that the operator R acting on a special

cluster gives a factor 47 ~"7 one proceeds as in the proof of Lemma 4.7 to get (instead of
(4.37))
I Wrll <Ci(eC1Ca)? || ( [+ hT>€ ilnsl (H |"”|>
Tnt VU I.S.
T T
7 (5.25)
n n sp ext v
(1‘[7 T (MR+R2+S3 1><H7h hT>H,yhTMT
Tn.t Tn.t Tn.t.
l’le
St=0

where ¢ = 18 (up to 2 derivatives to points and vertex, with j = 0,1), ny is the momentum
label of the special point, S;p is the number of special end-points contained in T. We can
write

hr( I vh?“hr> [T~ (5.26)

T n.t. T n.t.
Sr=1
T#T

We get therefore

e Wl <(eCiCo)? A%y~ (H%W”ﬁ<ﬂf%ﬂf%4

Tn.t V.S,
o
(5.27)
% (1_[ ,y—hT(M;L-;-R%_;_S;P 1> < 1—[ ’72(heXt hT> <H ,yhTMéi> 1_[ ,yhTM;p‘
T n.t. Tnt Tn.t. T n.t.
I’IT—
ST=0
We now use that
n Sp ext
(H’V (R34S 1><H7hT hT>
Tn.t T n.t.
g (5.28)
(T (T ) [ <o
T n.t. T n.t. T n.t.
nT:O

Sr=0
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and following the same argument of Lemma 4.7 from (4.39) to (4.45) we get rid of all y~h7Mr7g

and, since I' is a special cluster, we finally obtain

IxeWr il <C’1(0010203)q\)\\q< 11 VheTXthT> ( I1 VheTXthT>
T n.t. T n.t.

For Sr=0 (5.29)

X eig‘ns‘ (H eg|nv|> H 67g|nv| i

vV 1n.s. v n.s.

To handle the sum over I', we perform the sum over the scales as in Lemma 4.7, while in the
sum over n,’s one uses that n is fixed, and 23:1 n, + ng = n: the sum over n,’s and ng can
be performed only on ni,...,n,. Thus, using triangular inequality >)?_; |n,| + |ng| = |n| in
the last product of (5.29), one has

67g|ns| (H eg|nv|> H 67g|nv\ < e*g‘rﬂ (H eg|nv|> (530)

vV 1n.s. vV 1.s. vV 1n.s.
and then one can sum over ny,...,n, as in Lemma 4.7. Therefore
M e Wil < e iy C (5.31)

Fngi’qQ’s’h’j

with C' = (c x 3)010203%; by summing over g we get, for |A\| < C/2 we get

SN haWil < el (5.32)

q=0 Fegffﬁ’s’h’J

We choose |A| < min{C/2,C1/(4C(1 — e~ )2}, with C' = C14C,Cs.

In order to prove (5.23), we note that we have to bound ﬁi’l’h(o, 0,7). This is exactly the
same argument used to prove (4.31).

Finally we have to prove the second of (5.22). Using that I e GEJ*"
(4.37) becomes

, the analogue of

Wr(p1, P2, i, j2)| <(AC1Co) 2 me Imsledlmel] o ( [ ’Y”eT”_hT>
T n.t.
S

=1
T#T"
" (H ) (H w‘hT(M%+R%+S?"—1+5T)> (5.33)
VN.S. T n.t.
« < 1_[ 72(heTX°—hT)> H A My
Tn.t. Tn.t.
I’IT=0
S7=0

where the extra 42"" comes from the integration over k and the compact support properties
of the propagators at scale hr; moreover ér = 1 and ér = 0 if T" # I'. Note that, since I" has
two special points, we have

- w‘””( [ VST(heTXt_hT)> [T (534

Tn.t., Tn.t.
T#I
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To prove the second of (5.22), one repeats the argument used to prove the first of (5.22) with,
instead of (5.28), the following

( H ,y—hT(R%-q-S%”-i-(ST—l))( H ,YheTxt_hT>

T n.t. T n.t.
T2T
(5.35)
< 1—[ PthXt hT> <1_[ ,YhTM%> H ,YhTMSP
Tnt T n.t. T n.t.
nT—
S7=0

Then, to perform the sum over n,’s one now can not repeat the previous argument to isolate
the ng as one has to sum to at least one of them. Thus, one has

e_%ll Zv special ‘nv‘e*g ?):1 |n'U| < 67g|n‘6_181 v special ‘nv‘ 1_[ eig‘nv‘ . (536)

v1n.s.

The rest of the proof proceeds as in the cases before. u

We now denote by ,%9172,/1(131, P2, j1,j2) the contribution to l@g’Q’h(pl, P2, j1,j2) given by the
graphs with at least one v or V point:

a0
,C%S’h(ply p27j17j2) = Z Z Wr(pl, p27j1,j2) . (5.37)
0= reghi g
Corollary 5.6. Let |\| < Ao and let v be chosen as in Section 4.5. Then,
~. .. h _n
sup |,C91727h(p15 p2a]1,]2)| < 0746 gln‘ . (538)
P1,P2€D 4 ¢

Proof. Repeating the argument of Lemma 5.5, one has to estimate Wr; for graphs that have
g = 1. One gets a bound identical to (5.33) with (]_[Tn.t_ ’y%hTM”;> replacing ([ [, 7"7M7)

(we used Remark 4.11 to estimate the v vertices, i.e. |vp| < 7%|)\| and Remarks 4.5 and 4.9
to estimate resonant V' vertices as |RVO| < WghT). We also decompose the exponential as in

(4.38) and from (4.43) we keep the factor [ [, . Ahr M < [t VihTM%. Using now (5.36),
and (5.35), we get

|xpr,l<p1,p2,j1,j2>|<<cclczés>qwqe‘%'“<H€ Sln”)( Il €—g|nv|>

VLS. v special

[ [ o) [,
T n.t. T n.t.

(5.39)

We now split

Tn.t. Tn.t. T n.t.

and since, by hypothesis, ¢ > 1 for at least one cluster, one has My + M:,Iﬂ > 1. Therefore,
using the telescopic sum, we can bound

( [ ﬁ”‘%’“_“> [] brma <25 4, (5.41)

T n.t. T n.t.
At this point, one has

|xFWmm<<cclczég>m|qe‘%'“v%<ﬂ6_%11”')( 1 e_%lnvg L1~ .

v n.s. v special Tn.t
(5.42)
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and one can sum over all n,’s and one proceeds as in the proofs of Lemma 4.7 to sum over
scales to get (5.38). n

5.4. The decay of the energy correlations. Before starting the analysis, let us recall that
w = O(|8—B.|) and, in particular, u = 0 identifies the critical temperature (see Remark 4.12).

We have now to consider the energy correlation S(x1, j1;X2,j2) given by (2.5). We consider
first the infinite volume limit ﬁWa,l(A):

1,91 941%2,52
82 2 .
WW‘”(A)'A:O = D >, ¢ MRRE N (xy — X2, 1, 2) (5.43)
x1,J1 Y41x2,j2 hoh* nen?

where h* = log, u and
o 1 —ip(x1—x3) £ o
ICl(']l,Zh(Xl - X2,]17]2) = |A| Ze ip-(a XQ)IC%Zh(pa p+ 27TQII,]1,]2). (544)
(2
P

. 2 . . .
Indeed, one can write Ko ’h(xl —X3,7J1,J2) as the sum over graphs in coordinate space. On

each graph, the constraint between the labels n, and the scales hy remains unchanged, due
to the presence of the yr function.

Due to the Gevrey regularity of the cutoff function x defined in (4.2), there exist constants
C,k > 0 such that, for &k > h*, the propagator obeys to the bounds, see e.g. Appendix A of
[33]

1
|9 (x)] < Cyfem 0 XD (5.45)
and
195" (x)| < O e h O BT (5.46)

Note that 4" = O(p) for small p. In the analysis of the graphs in coordinate space, we use
(5.45) to bound each propagator. Fixing xi, the L1 norm is therefore bounded exactly as in
the proof of Lemma 5.5.

Regarding the bound on the pointwise norm (i.e. when both x; and x9 are fixed), we can

_ _ 1
write, if h is the scale of the smallest cluster T' cI' such that Sp = 2, for k > h, e—r("IxD2

e*””/Q('yﬁ'X‘)%e*””/Q('yk'X‘)% so that we can extract a factor e*“/Q(“fB‘XD% from each propagator.
Moreover there is an extra v2" in the bound due to the lack of sum over the coordinates so
that
2 _ _ 1
< Z Cr2her20Mi—xD? o oy emmlula—x2 (5 47)
h=h*

—

82

1 Wai(A)|a=0
aAXl,haAXm]é “

for some constant x; > 0. In deriving the above expression we have used that the sum over
all the scales can be done fixing h instead of h. To get a sharper estimate in the case p = 0,

& Wa,i(A)|a=o in the contribution with ¢ > 1 and in the contribution

we can split > F R v

with ¢ = 0. The term with ¢ > 1, according to Corollary 5.6, has an extra 'y%. The term with

q = 0 contains two special vertices, each one of which is associated with a Zlijl)j, with k& = h.
In the term with ¢ = 0 we replace the velocities a§k) appearing in the propagators ¢*) with

agm) since the difference agfoo) - agk) is bounded by v*/* by (4.31).
In the same way we can replace Z,gj ) with ZY)__and the difference is bounded by /4.

n —oo,n
Moreover, Z(jo)o,o = Z(fjo)o,O,A:O + AFp(A) and Z(_qun = AL (A) for n # 0, with Fp, Fj, bounded.
Therefore, we can write
52
Wa,i(A)|a=0 = Sa(x1, j1;X2, j2) + Sp(x1, j1; X2, j2) , (5.48)

aAXl ,J1 a‘43(2 \J2
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where we have included in Sy(x1, ji; X2, j2) the contributions with ¢ = 1 and the terms with

q = 0 and containing a§ ©) _ ag»k) or Z,gjl)l — Z(_jgo o SO that
. . _ 3 Co
il <€ 3 A S
h=—00
In S,(x1,j1;X2,j2) are collected the terms with ¢ = 0 and a§k), Zflj L replaced by their limiting

(=)

values, so that, calling g(x1,x2) the propagator with velocities a;

Sax1,j1i%2,2) = ), 29 0 22 gy i D Gow(X1,X2)F 0, (X2,%1) -

ni,neZ2 we+

, we have

(5.50)
Finally, we have to perform the sum over a in (5.1). First note that Z is non-vanishing; we
write

Z=2_2°4¢72_ ) 71aZ ( — ) (5.51)
ae{+}? -
where Z° = Z|\_o denotes the partition functlon of the Ising model for A = 0, Zow = Zoy /79

and Z9 = Z9|r—o. In the limit i — oo, e A,‘ log | ZY| is independent of boundary conditions 1f

B # Be, see e.g. chapter IV in [56], and the limit is reached as O(e~#Li) if L; := min{L; o, L; 1};
moreover Z° is non vanishing as for 1 < 0 then Z9 is positive while for 4 < 0 then Z9 is
negative for @ = ++ and positive otherwise.

We consider now Z > note that w; is the same in Zg for any . log Za i sum of graphs

containing at least a dlfference of propagators with different boundary condlmons We choose
a point X € A; and we decompose the graphs in a term in which all the sums are in a rectangle
around X of side L; (/4 and L; /4 and a remainder. In the remainder there is a product of
propagators connecting X to a point distant O(I_Li), L; = min{L; o, L; 1}, hence such term
is O(|A\||A;]e=#L4). In the first term we use Poisson summation allowing us to write the
propagator as the infinite volume limit plus a term depending on boundary conditions and
exponentially decaying, as x; —Xgp are both in the rectangle around x of side L; ¢/4 and L; 1 /4,

hence again we get for it a bound O(|A||A;|e=#Li). Therefore,

A

Za

— 1] < CIN||Ayle— i (5.52)

by using the uniform convergence, see Lemma 4.7. This says that
alz__7° <|Z| < e Z__2° (5.53)

where ¢1,c2 = 1 + O()\) constants.
Using that 27 = )|, TaZa, We can write (5.1) as

52
S(x1,d15%2,J2) = 55— W--(4)]a=0
aAX17J’16AX27J2 (5 54)
Talao 02 02 .
o Dlaco— —C W (A)|a
+; 57 aAthlanMQW (A)]a=o anmaAXmQW (A)]a=o

where in the first term Z cancels out by (5.53).

The graphs contributing to WWQ(AH A=0 can be also decomposed as the limit
1 — 00, independent from « and a difference which is vanishing. Indeed the difference contains
a difference of propagators, whose contribution is vanishing at |u| > 0, and a difference of
oscillating factors e?™™* swhich is bounded by |x||n|lw — ws|; note that |x| produces an
extra max;{L;;} and |w — w;| < C/L? (see Section IV.7 in [20]) while for the sum over
n one uses the exponential decay of the Fourier coefficients of the potential. Hence the

difference vanishes in the limit because we take the limit on sequences of L;; such that
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lim;, 4o L1,5/Lo,; = ¢ > 0. Moreover, if u # 0, as a consequence of
that Zg,/zg = 1+ O(|Aile=*Li) and Zg/Zo = 1+ O(|A||Ai]e—cH
term in (5.54) vanishes in the limit ¢ — .

Regarding the first term in (5.54), using the decomposition (5.48) the terms coming from
Sa, given by (5.50), give the first term in the Lh.s. of (1.12), while the terms from S, by
(5.49), given the second term in the Lh.s. of (1.12). This concludes the proof of Theorem 1.2.

3) and (5.52) we have

(55
c#Li) Therefore the second

APPENDIX A. PROOF OF LEMMA 3.2

We begin by recalling that, for m € N, Wick theorem states that

Ee (£k1701 pipor gkmﬂ'mgpmypm) = Z (*1)Sgn(p) H Ee (gkjvo'j gpp(j)vpp(j)) (A1)

peEGm 7j=1

where for all j, (pj)o <0, (kj)o > 0 and 0}, p; € {£} and &,, denotes the set of permutations
of m elements. From the definition of propagator of a Grassmann Gaussian measure (see e.g.
[54, eq. (2.21)]), one has

E5 (&k o&p, p) [ (5)( )]a,pékﬁp‘Aﬂ . (A.2)

For g € N, let us compute E¢(V9). Using linearity of the expectation and the explicit form
of V(1,€) (given in (2.39), (2.40), (2.41) and (2.42)), we can write

9 = iE§<ﬁM#r(kT,nr,O-raprajr)> (A.3)
r=1

where }.* is the sum over k., n,., o, p, #. € {,€,(Q, L), (Q, R)}, j- € {0,1}. The monomials
My are defined as

Mw(k, n,o,p, ]) = ‘ ‘ Ag) [P@S)j) (k7 n)]a,pwkf%rﬂn,p s (A4)
Me(k,n,0,p,) = 13- ‘s o A [P (k1)1 2m0m,p (A5)
M. k N A(j) (4) k
Q,L( , 1, O-,/Oa.]) | | —k,04n [Qw ( an)]o,pgk—Qan,pa
(A.6)
MQ R(k n,o,p, .]) |A ‘ [Q¢ (k n)]o pwk 270n,p 5

and each one of them can be represented as in Fig. 6 by associating a dashed line to each
1 variable and a solid line to each £ variable. To compute each of the expectations on the

____________ S B

FIGURE 6. Vertices associated to monomials in (A.4), (A.5) and (A.6).

r.h.s. of (A.3) we use Wick theorem (A.1) and therefore E¢(My, --- My,) reduces to the
sum over permutations of products of expectations of pairs of & variables. Each of such
summand has a graphical interpretation obtained as follows. First, one draws the vertices
in Fig. 6 corresponding to the monomials My, ,..., My, . Second, one connects the solid
lines corresponding to a pair (§k;,0;5&p;.p;) Whenever the expectation E¢(Sk; 0,€p; p;) appears
in the product of expectations of the summand. In this way one obtains a graphical object
that we define as unordered graph. As a consequence of this correspondence, one writes
E¢(My, --- My,) as the sum over all unordered graphs obtained by contracting all solid lines
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of the graphical elements associated to My, ,..., My, . Note that there are two types of
unordered graphs: connected and disconnected.

We now write truncated expectations in terms of expectations. Let us consider S =
{1,---,s} and let us denote by &, the set of all possible partitions of S into p pairwise
disjoint subsets. Define for any I < S

ET(Mp) = BT (M. M), I ={i1,ia,... i}, (A7)

where each of the M;’s is one of the monomials in (A.4), (A.5) and (A.6).
One can prove (see eq. 2.100 in [54]) that the following formula connects expectations and
truncated expectations:

S p
B (M5 s My,) = Be(My, - My )= >, > []EL(My). (A.8)
p:2 {117"' 7IP}€L0717 j=1

Using this formula, one can prove inductively that the truncated expectations are obtained
as the sum over connected unordered graphs only.
Using multilinearity of the truncated expectations, one has

*
B (Viq) = Y \Ef (M- My,) (A.9)

where the >.* is the same as in (A.3) and the dependence on all parameters is understood.
From (A.9) and the observation after (A.8) we obtain a representation of ET(V;q) in terms
of connected unordered graphs.

When ¢ =1, Eg(V(Q/), €);q) = Si(;pt) (1) which gives the first term in the sum (3.5) with Wr
given by the definition (3.3) in the case ¢ = 1.

For the case ¢ = 2, one notices that with the vertices in Fig. 6 one can make only two types
of connected graphs: either one picks ¢ vertices of type M, or one picks two vertices of type
Mg, 1, Mg,r and g — 2 vertices of type M.

In the first case, the value of the associated truncated expectation does not depend on ¥
and it contributes to Ef.

In the second case, one first notices that each of the entries of the truncated expectation on
the r.h.s. of (A.9) is a quadratic monomial in the Grassmann variables, and then it commutes
with the monomials on each other entry. Fixing an order of the entries in the truncated
expectation produces a ¢! in front and restricts the sum over the graphs of Definition 3.1.
Last, the relation between Eg(M#l; o+ My, ) and (3.5) (with Wr defined as in (3.3)) follows
from (A.4), (A.5), (A.6), (A.1) and (A.2) after noting that each unordered connected graph
has the same sign. Indeed, it is sufficient to take the sign appearing in Wick’s theorem (A.1)
and to note that to keep the graph connected one must always exchange an even number of
Grassmann variables.

APPENDIX B. DERIVATION OF (3.7)

The value of a graph Wr is product of complex valued scalar functions A, and matrices of the

an(k)  bn(k) — g (— an - _ i e
form <b:‘l(k) —aﬁ(k)) such that an(k) = —a_n(—k) € C and by(k) = b_n(—k) € iR. Th

same is therefore true for Wr. This follows by induction. For the graph with three vertices
we have to consider the product of three matrices Ay, (k), gy(k —270n4), By, (k — 270ny).
Here A and B can be either PY) or QU). The following explicit computation yields

(A) (4) ©(k — ©(k —

| ang(k)  ba,(k) a's) (k —2m0mny) b'&)(k — 270ny)
i riing = ((b&? ) (k) >*> (o amomay a0tk smomay
_ ( Bk,n4) a(k,nA)>

~o*(leny) Bk

)
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where, explicitly,
alk,ny) = af (k)b® (k — 27n4) — b5Y (k) (a® (k — 27m4))*
Bk,np) = a5 (k)a® (k — 200n,4) + b5 (k) (b© (k — 27 4))* .
It follows now from the symmetry properties of a and b that a(k,ny) = —a(—k, —ny4) and
Bk,ny4) = B(—k, —ny).
Computing the value of the graph, one has
An,(k)gy(k —2700m4) By, (k — 270ny) =

_< B(k,n4) a(k,nA)> al? (k — 270my) b2 (k — 27Ony)
C\—af(kna) B(kna)) \ ) (k - 270n4))* —(al) (k — 27Qn,))*

- (izt i)
with

an(k) = Bk, n2)als) (k — 270m4) + a(k,n4) (02 (k — 200n 4))* |
bu(k) = Bk, n )b (k — 27r0n4) — alk,n4)(al) (k — 270n4))* .

@

From the symmetry properties of a, b, & and 3 it follows that under the exchange {n4,npg,k} —
{—n4, —np,k} one has that ay(k) = —a_n(—k) and by (k) = b_,(—k). This completes the
proof for the graph with two vertices. By inductive hypotesys we assume that the property
holds for the product of the matrices associated to the sub-graph of the first ¢ — 1 points, and
repeat the argument.

We note now that, calling Val(T'(, (k)) the value Wr with I' € Gy 4

D Yo VoK) = — Z Yo Y, [Val(F{gv}(k)) — (Val(l(_p ,(-Kk))) " +
keDa = T, €05, (B.1)

FVal(T_p (k) = (Val(Tgn, ) (—K)) " |

We start by computing

Val Iy (k) = Val I,y (= (HA )G{nv}(k) - (Hﬁ(—jﬁg (Giony(-K)"

vel’ vel’
(B.2)

It is convenient to call fn := [ [,op 251]5) Then, using that f_,, = f), we have

ValT'y (k) — (valr{,gv}(_k))T
() b)) e fan(-k) b (—K)
‘f“<b:;<k> —a:;<k>) In <b_n<—k> —ain<—k>) b
_ an(k)  bn(k) an(k) by (k) B.3
‘f“<b:<k> a<>> fn( ba(K) a;i(k))

_ ( (fn+fn)an( ) Jnb n( )*frﬂ;b;(k) > _ <an(k) ﬁn(k) >
Jabr (k) — faba(k)  —(fa(k) + f)ag (k) Balk) —ap(k)

with
an(k) = (fn + f:’:)an(k) 5n(k) = fnbn(k) - f:’:b;kl(k) : (B'4)
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With those explicit expressions at hand, it is clear that (k) € iR and an (k) € C, in general.
Finally

ValF{QU}(k)—VaIF{ ny(—k )T—i—ValF{ n }(k)—valr{,gv}(—k)T

o ) (e )
B (k) (k) —a* (k)

_(mﬂo+an<> Ba (k) &)) (B.5)

- \Bak) + B2,(k) —ap(k ) - a*n(k)

_ (an(k) —an(=k)  Ba(k) + Ba(-k) )

Bak) + Ba(=k) —an(k) +ap(=k)/ -

Remark B.1. In the case of layered disorder constant in one direction, say eg, the theory
is translation invariant in one direction and one has to the additional property that ay, € iR,
implying that the velocities are real. Indeed only P() matrices are present and, as we are
interested in the case kg = k1 = 0 with w; # 0. This implies that also the entries of the

propagator are purely imaginary, and the product of an odd number of imaginary numbers is
imaginary.

Remark B.2. With respect to the simmetries of Section II.D in [30] we break manifestly sym-
metries 1)-3) (which are, in order, parity, diagonal reflection and orthogonal reflection). More-
over, note that all kernels K, (k) appearing in Section 2 are such that Ky (k) = [K_n(—k)]*
which is nothing but the symmetry by complex conjugation (i.e., the symmetry 4) in Section
I1.D of [30].

APPENDIX C. ACTION OF THE R OPERATION

In this appendix, for j € N, we denote by R; the set of resonant clusters strictly contained
in R;_; and not in any other resonant cluster. (We also denote by R := U“O R;.) Denoting
with R the set of maximal resonances contained in Ry, the value of renormahzed resonant
cluster can now be estimated as, if T' is a resonance

k| <

& ()
P WT (tkr) (C.1)
One has now to analyze what happens when a derivative acts on a renormalized cluster.

If two derivatives corresponding to a resonance 7" acts on the value of some renormalized
resonant cluster 7" < T', recalling that ks, = tk + q for suitable q, one has

& ) A [ (i) (hs0) (hg0)
RWTtk = — | W T (tk —W_ 1(0) — (tk W T (0
7 (tk+aq) = 2 |[Wh™ (tk+a) = W™ (0) = (tk + ) - 4™ (0)] .
d? hay .
= Witk +q).
If one derivative acts on a renormalized cluster, we have instead
d - .
%RW(hT’)(tk +a) = k-aWom (tk + q) — k- aW o (0)
P SWOT (s(tk + q)) ds = 1 A4y 0 (g1 + q)) ds )
k] s W= Grds 1 ) as-
Whence we get the two bounds
d—QRW( (tk + q L o q) (C.4)
dt? de2 1 ’
d d
H—RW ™)tk + q H sup |- Lyl T’)(s(tk+q))H : (C.5)
stef0,1] | At ds

So, summarising, for the estimate we have the following:
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e if two derivatives corresponding to a resonance 7" act on the value of some resonance
T’ = T, one can replace with 1 the R operator;

e if one derivative corresponding to a resonance T acts on the value of some resonance
T’ < T, one can replace with % the R operator and take the supremum over s € [0, 1];

. . . 2
e if no derivatives act on a resonance, one can replace R with C‘li? and take the supremum
over s € [0,1].

These remarks permit us to iterate this procedure considering the action of derivatives on
resonances inside resonances. Proceeding in this way, we see that the R.H.S. of (C.1) can be
bounded in the following way. We denote by f either a line or a vertex and with T € R a
resonant cluster.

e There is one term for each ordered pair (fi, f2), with f1, fo € Tg, not necessarily
different (i.e. it may happen that fi = f3).

o If f1 € Ty and T is a cluster contained in Tx, then T = T < 701 < ... c T = T}
is the chain of clusters associated to f; containing T and contained in Tk. Similarly,
if fo € Th and T is a cluster contained in Ty, one constructs the chain of clusters
associated to fo containing T and contained in Tg.

e At this point we replaced the R operator acting on the cluster Tr with two derivatives.

e If a resonant cluster belongs to both the chain of clusters (the one associated with f;
and the one associated with f5), then its R operator is removed.

e If instead there is a cluster (say, Ty ) belonging to only one of the chain of clusters,
then there is one term for any f3 € Ty. If f3 € (T{,)o < Ty, then one considers the
chain of cluster associated to f3, containing Ty, and contained in Ty. One replaced
the R operator acting on Ty.

e This construction is repeated until all R operators are replaced. At this point each
cluster inside a resonance belongs to two chains of vertices.

e From their explicit expression, it is also obvious that one can estimate the action of
a derivative on a vertex with the action of a derivative on a propagator on the same
scale.

e Last, the number of terms that are generated in this procedure is estimated by 99
(that is the number of terms generated when each vertex or each line can be derived
zero, one or two times without any constraint).

Note that, an adaptation of this argument permits to treat the terms ¢}, appearing in (3.6)
and (4.30).
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