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Isolated hypersurface singularities, spectral

invariants, and quantum cohomology

Yusuke Kawamoto

Abstract

We study the relation between isolated hypersurface singularities (e.g. ADE)
and the quantum cohomology ring by using spectral invariants, which are sym-
plectic measurements coming from Floer theory. We prove, under the assumption
that the quantum cohomology ring is semi-simple, that (1) if the smooth Fano
variety degenerates to a Fano variety with an isolated hypersurface singularity,
then the singularity has to be an Am-singularity, (2) if the symplectic manifold
contains an Am-configuration of Lagrangian spheres, then there are consequences
for the Hofer geometry, and that (3) the Dehn twist reduces spectral invariants.
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1 Introduction

1.1 Context

Degeneration is a theme that originates in classical algebraic geometry that is still
actively studied in the context of various modern topics such as the minimal model
program [KM98], Kähler–Einstein metric [DK01], mirror symmetry, and the SYZ con-
jecture [Gr13]. Its importance in symplectic topology was noticed by Arnold [Arn95]
and Donaldson [Don00], especially that Lagrangians can appear as vanishing cycles.
Seidel largely developed this idea and obtained various results on the symplectic aspect
of the Dehn twist [Sei97, Sei99, Sei00, Sei08]. In this paper, we study degeneration by
symplectic topology, and vice versa. Note that such an attempt was also made by Biran
which was highlighted in his ICM address [Bir02, Section 5.2].

Understanding the type of singularities an algebraic variety can degenerate to is
an important subject in algebraic geometry. Isolated hypersurface singularities have
been fundamental in the study of singularities since [Mil68]. Any isolated hypersurface
singularity can be associated to a positive integer called modality, which roughly speak-
ing, expresses the complexity of the singularity. Arnold classified isolated hypersurface
singularities up to modality two [Arn76, AGLV93] and according to his classification,
the ones with modality zero are called the simple (ADE) singularities. Up to right
equivalence, Am, Dm (m > 4), and Em (m = 6, 7, 8) singularities are given as

x2
1 + x2

2 + · · ·+ x2
n−1 + p(y, z) = 0

where p(y, z) is

y2 + zm+1, yz2 + zm−1, y3 + z4, y3 + yz3, y3 + z5,

respectively. The vanishing cycle of an A, D, E singularity forms a configuration of
Lagrangian spheres that intersect as expressed in the A, D, E type Dynkin diagram
(Figure 1), respectively. We call these configurations of Lagrangian spheres ADE con-
figurations.

An

Dn

E6

E7

E8

Figure 1: Dynkin diagrams of type An, Dn, E6, E7, E8.

Isolated hypersurface singularities of modality one consists of three types, namely
the parabolic (or simple elliptic) singularities Ẽ6, Ẽ7, Ẽ8, hyperbolic singularities Tp,q,r,
and 14 exceptional singularities. Similarly to the simple singularities, all the isolated
hypersurface singularities of positive modality also give rise to configurations of La-
grangian spheres by taking the vanishing cycles. We refer to Section 2.5 for further
information.
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Note that for surfaces, i.e. complex dimension two, simple singularities have many
different characterizations such as du Val singularities, rational double points, Kleinian
singularities [Rei]. For this case, algebraic geometers have a fairly good understanding
of degenerations. In fact, for Fano surfaces, i.e. the del Pezzo surfaces, du Val classi-
fied all the possible simple singularities that can occur on singular del Pezzo surfaces
[DV34]. On the other hand, very little is known for higher dimensional spaces, and the
importance of studying the higher dimensional case is emphasized by Arnold in [Arn95].

Another object that has been of interest to both algebraic and symplectic geometers
is the quantum cohomology. After its introduction in string theory by Vafa and Witten
[Vaf91, Wit91], the algebro-geometric formulation was found by Kontsevich–Manin in
[KM94], shortly followed by the symplectic formulation in [RT95] due to Ruan–Tian.
An important case is when the quantum cohomology ring is semi-simple; the (small)
quantum cohomology ring1 QH(X,ω) of a symplectic manifold (X,ω) is semi-simple if
it splits into a direct sum of finitely many fields {Qj}16j6k:

QH(X,ω) =
⊕

16j6k

Qj .

Examples of symplectic manifolds equipped with monotone symplectic forms2 that have
semi-simple quantum cohomology rings over C-coefficients3 include

• the complex projective space CP n [MS04],

• the quadric hypersurfaces Qn [Abr00],

• the del Pezzo surfaces Dk := CP 2#k(CP 2) with 0 6 k 6 4 (where k is the
number of the points blown up in such a way that the symplectic manifold become
monotone) [BM04, CM95],

• the complex Grassmannians GrC(k, n) (i.e. the space of complex k dimensional
linear subspace in Cn) [Abr00],

• some homogeneous spaces [CMP10, Per] and some generalized Grassmannians
[Gra],

• products of monotone symplectic manifolds with semi-simple quantum cohomol-
ogy rings [EP08].

In addition to the above, examples of symplectic manifolds equipped with generic
symplectic forms that have semi-simple quantum cohomology rings include

• any symplectic toric Fano manifold [FOOO10, OT09, Ush11],

1In this paper, quantum cohomology ring will always refer to the small one unless mentioned
otherwise. See Section 2.3 for further comments on different notions of semi-simplicity for small and
big quantum cohomology rings.

2Recall that a symplectic manifold (X,ω) is monotone if we have [ω]|π2(X) = κX · c1(TX)|π2(X) for
some κX > 0.

3Note that semi-simplicity depends on the choice of coefficients. For example, over Fp, a field of
characteristic p, the quantum cohomology ring of CPn is not semi-simple when p divides n+1. In this
paper, we work over C-coefficients.
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• 36 out of the 59 Fano 3-folds with no odd rational cohomology [Cio05],

• one-point blow up of any of the above [Ush11].

The semi-simplicity of the (small/big) quantum cohomology ring has also shared
interest in algebraic and symplectic geometry; for example, see [BM04, Dub96, KM94]
for the algebraic geometry side, [EP03, EP08, EP09, BC, FOOO10] for the symplectic
side. See Section 2.3 for more information on the above examples and the relation
between different notions of semi-simplicity. The semi-simplicity also has important
implication for physics; we refer the readers to [HKK+].

In this paper, we study the interaction between isolated hypersurface singularities
and the semi-simplicity of quantum cohomology rings, which are both objects lying in
the intersection of algebraic and symplectic geometry. Our method is based on Floer
theory, more precisely the theory of spectral invariants, which allows us to have less
dimensional restrictions than in the current algebraic geometry.

1.2 Isolated hypersurface singularities and quantum cohomol-
ogy

We have seen in the previous section that the theories of singularities and the quantum
cohomology are both of interest to algebraic and symplectic geometers. However, the
interaction between the two theories has not been studied.4 Our first main result, which
can be formulated in terms of algebraic and symplectic geometry, claims that semi-
simplicity of the quantum cohomology ring excludes most of the isolated hypersurface
singularities. We first state the algebro-geometric version.

Theorem A (Algebraic geometry version). Let X be a complex n dimensional smooth
Fano variety. Assume QH(X,ω) is semi-simple, where ω is the anti-canonical form of
X. If X degenerates to a Fano variety with an isolated hypersurface singularity, then
the singularity has to be

• an Am-singularity with m > 1, if n is even.

• an Am-singularity with m = 1, 2, if n is odd and dimCX+1
2rX

/∈ Z where rX is the
Fano index.

Remark 1.2.1. Here are some remarks on Theorem A:

1. A smooth Fano variety X carries a natural symplectic form called the anti-
canonical form which comes from the projective embedding f : X →֒ CPN for
some N ∈ N. From the symplectic perspective, this is a monotone symplectic
form, see (2.4.2).

2. It would be very interesting to study the case of other classes of singularities, for
example cyclic quotient singularities. See Remark 3.3.7.

3. It would be interesting to study the remaining case, i.e. when n is odd and
dimCX+1

2rX
∈ Z where rX is the Fano index.

4The author thanks Kaoru Ono and Rahul Pandharipande for pointing this out.
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4. Theorem A is expected to be slightly generalized, see Conjecture 3.3.1.

To prove Theorem A, we reduce it to the following Theorem B, which could be
regarded as the symplectic version of Theorem A (We point out that this translation
from algebraic geometry to symplectic topology is not immediate. See Section 3.3 for
further information).

Theorem B (Symplectic topology version). Let (X,ω) be a real 2n dimensional closed
monotone symplectic manifold. Assume QH(X,ω) is semi-simple. Then (X,ω) does
not contain

• a D4-configuration of Lagrangian spheres, if n is even.

• an A3-configuration of Lagrangian spheres, if n is odd and n+1
2NX

/∈ Z where NX is
the minimal Chern number.

As we pointed out in Section 1.1, the classification of singularities for varieties is
extremely important in algebraic geometry and mainly due to the lack of methods,
very little is known about the possible singularity types for the higher dimensional
varieties. Theorem A has no dimensional restriction, as our approach is based on Floer
theory.

We now look at relation to other works.
Simple singularities on surfaces. As we mentioned earlier, isolated hypersurface

singularities that can occur on surfaces are fairly well understood.

• For the Fano case (i.e. del Pezzo surfaces), the simple (ADE) singularities that can
occur on singular Fano surfaces (i.e. singular del Pezzo surfaces) were completely
classified by du Val [DV34] (see also [Sta21, Section 1]). Denote the smooth del
Pezzo surface of degree 9 − k by Dk. According to it, Dk can degenerate to a
singular Fano surface with D or E type singularities when 5 6 k 6 8, while it
can only degenerate to a singular Fano surface with A type singularities when
0 6 k 6 4. The quantum cohomology ring QH(Dk) is semi-simple (when Dk is
equipped with a monotone symplectic form) if and only if 0 6 k 6 4, so this is
consistent with Theorem A.

• For the Calabi–Yau case, it is also well-known that D,E and the 14 exceptional
singularities can appear in degenerations of the K3 surface. However, Calabi–Yau
manifolds, i.e. c1|π2 = 0, cannot have semi-simple quantum cohomology rings.
Once again, this is consistent with Theorem A.

Compactification of Milnor fibers. First of all, notice that Theorem B immediately
implies the following.

Corollary 1.2.2. The Milnor fiber of an isolated hypersurface singularity that is not
of type A cannot be compactified to a symplectic manifold with semi-simple quantum
cohomology ring.

Milnor fiber is, loosely speaking, a smoothing of the singularity (see Definition 2.5.2).
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• In [Kea15], where Keating studied the symplectic topology of the Milnor fibers of
isolated hypersurface singularities of positive modality, an important step was to
find compactifications of the Milnor fibers to del Pezzo surfaces Dk. In [Kea15,
Proposition 5.19], Keating proves that the Milnor fibers of Ẽ6, Ẽ7, Ẽ8 (isolated
hypersurface singularities of modality one) can be compactified to D6,D7,D8,
respectively. This is compatible with Corollary 1.2.2, as D6,D7,D8 do not have
semi-simple quantum cohomology rings.

• It is also well-known that the Milnor fiber of the 14 exceptional singularities
(modality one) can be compactified to the K3 surface [Pin77, Nik79, Dol96], see
also [KMU13]. This is also consistent with Corollary 1.2.2.

1.3 Am singularities and Hofer geometry

Theorem B implies that there is a possibility that a symplectic manifold with semi-
simple quantum cohomology ring can contain an Am-configuration. In fact, this can
happen; for example, del Pezzo surfaces D3 and D4 have an A2-configuration and an
A4-configuration, respectively. If we are in such a situation, we get some implication
for the Hofer geometry. Before stating the result, recall that the set of Hamiltonian dif-
feomorphisms, denoted by Ham(X,ω), form a group and has a remarkable bi-invariant
metric called the Hofer metric [Hof93]. The study of geometric properties of the group
Ham(X,ω) with respect to the Hofer metric has been an important subject of the field
[Pol01]. For readers who are not familiar with the subject, we refer to [Kaw, Section
1.1] for a rapid overview of the aspects that are relevant to this paper. Our second
main result is the following.

Theorem C. Let (X,ω) be a real 2n dimensional closed monotone symplectic manifold
with even n. Assume QH(X,ω) is semi-simple. If (X,ω) contains an Am-configuration,
then there are m−1 pairwise distinct Entov–Polterovich quasimorphisms on H̃am(X,ω).

Remark 1.3.1. Entov–Polterovich quasimorphisms are special maps on H̃am(X,ω),
i.e. the universal cover of Ham(X,ω), constructed from Floer theory that have powerful
applications to Hofer geometry. See Section 2.2 for further information.

Application. The del Pezzo surface D4 has semi-simple quantum cohomology ring,
and by combining some toric degeneration and (complex) 2-dimensional techniques with
Theorem C, we obtain the following result on the Hofer geometry for D4.

Theorem 1.3.2 (Kapovich–Polterovich question, Entov–Polterovich–Py question). There
are four pairwise distinct Entov–Polterovich quasimorphisms on Ham(D4). Thus, Ham(D4)
admits a quasi-isometric embedding of R4. Moreover, there are three linearly indepen-
dent quasimorphisms on Ham(D4) that are both C0 and Hofer-Lipshitz continuous. In
particular, the group Ham(D4) is not quasi-isometric to the real line R with respect to
the Hofer metric.

Remark 1.3.3. The Kapovich–Polterovich question, which asks whether for a closed
symplectic manifold (X,ω), the group Ham(X,ω) is quasi-isometric to the real line
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with respect to the Hofer metric, has been an important open problem in Hofer geom-
etry for a long time, and at the time of writing, it has been answered in the negative
for symplectic manifolds that satisfy some dynamical condition [Ush13], the mono-
tone S2 × S2 [FOOO19] (see also [EliPol]), and the 2-sphere [CGHS, PS] and the
del Pezzo surfaces D3,D4 [Kaw]. Theorem 1.3.2 improves what was known about the
Kapovich–Polterovich, and the Entov–Polterovich–Py questions for D4 from [Kaw, The-
orem C(2),D,E].

Remark 1.3.4. It seems likely that the number of pairwise distinct Entov–Polterovich
quasimorphisms on Ham(D4) in Theorem 1.3.2 can be improved from four to six, see
Remark 3.4.2.

1.4 Dehn twist and spectral invariants

The proofs of Theorems A, B, and C are based on the theory of spectral invariants (see
Section 2.1 for the definition of spectral invariants). As mentioned earlier in Section
1.1, configurations of Lagrangian spheres were used by Seidel to study the Dehn twist.
Recall that the Dehn twist is a (class of) symplectomorphism(s) that is defined for a
Lagrangian sphere. By using some ingredients of the proof of Theorem B, we get the
following result which describes the effect of the Dehn twist on spectral invariants.

Theorem D. Let (X,ω) be a real 2n dimensional closed monotone symplectic manifold.
Assume QH(X,ω) is semi-simple and also either one of the following:

• n is even,

• n is odd and n+1
2NX

/∈ Z where NX is the minimal Chern number.

If (X,ω) contains an A2-configuration of Lagrangian spheres {L, L′}, then we have

ℓτL(L′)(H) 6 max{ℓL(H), ℓL′(H)}

for any Hamiltonian H, where τL is the Dehn twist about L.

Remark 1.4.1.

1. The function ℓL is the asymptotic Lagrangian spectral invariant associated to a
Lagrangian L. For the precise definition, see (2.2.3) in Section 2.1.

2. Strictly speaking, the Dehn twist τL about a Lagrangian sphere L is usually
referred to a class of symplectomorphisms, i.e. τL ∈ π0(Symp(X,ω)). In Theorem
D, we consider any representative of the class and denote it by τL by abuse of
notation. Any two representatives of the Dehn twist are Hamiltonian isotopic
and thus the spectral invariants corresponding to ℓτL(L′) might have a shift up
to the Hofer norm of the Hamiltonian isotopy between them [LZ18, Proposition
2.6]. Nevertheless, the asymptotic spectral invariant ℓτL(L′) does not depend on
the choice of the representative of the Dehn twist and is well-defined.

3. It is not difficult to find examples (e.g. in D4) where we have a strict inequality
in Theorem D.
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To put Theorem D into perspective, following the success of the barcode theory in
symplectic topology, there has been a lot of work on the filtration beyond the level
of Floer homology, namely for Fukaya categories, e.g. [BCZ, Amb]. Cone-attaching
is a fundamental algebraic operation in the A∞-category theory, which in the context
of Fukaya category has a geometric interpretation, namely the Lagrangian cobordism,
e.g. the Dehn twist of a Lagrangian sphere. Biran–Cornea studied the filtration of
Seidel’s Floer-theoretic long exact sequence involving the Dehn twist [BC21], but the
precise impact of the Dehn twist on spectral invariants was not clear. Thus, Theorem
D could be regarded as the first step in the study of spectral invariants in the filtered
A∞-categorical setting.

1.5 Structure of the paper

To prove Theorem A, we reduce it to its symplectic counterpart, namely Theorem B,
by some elementary algebro-geometric argument in Section 3.3. Theorem B is proven
by the spectral rigidity (i.e. symplectic rigidity in terms of spectral invariants) of La-
grangian spheres. The key two lemmas are Lemma 3.1.4 and Lemma 3.2.1: the former
describes some spectral rigidity of a Lagrangian sphere, and the latter describes a prop-
erty of idempotents corresponding to Lagrangian spheres forming an A2-configuration.
Although Theorems C and D stem from different perspectives compared to Theorems
A and B (where Theorem C has some Hamiltonian dynamical flavor and Theorem
D comes from the filtered A∞-categorical perspective), their proofs are based on the
spectral rigidity of Lagrangian spheres that was studied to prove Theorem B.
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2 Preliminaries

2.1 Spectral invariant theory

It is well-known that on a closed symplectic manifold (X,ω)5, for a non-degenerate
Hamiltonian H := {Ht : X → R}t∈[0,1] and a choice of a nice coefficient field Λ↓, such
as the downward Laurent coefficients Λ↓

Lau for the monotone case

Λ↓
Lau := {

∑

k6k0

bkt
k : k0 ∈ Z, bk ∈ C},

or the downward Novikov coefficients Λ↓
Nov for the general case

Λ↓
Nov := {

∞∑

j=1

ajT
λj : aj ∈ C, λj ∈ R, lim

j→−∞
λj = +∞},

one can construct a filtered Floer homology group {HF τ(H) := HF τ (H ; Λ↓)}τ∈R. Note
that in this paper, we only use Novikov coefficients, i.e.

Λ↓ = Λ↓
Nov.

For two numbers τ < τ ′, the groups HF τ (H ; Λ↓) and HF τ ′(H ; Λ↓) are related by a
map induced by the inclusion map on the chain level:

iτ,τ ′ : HF τ(H ; Λ↓) −→ HF τ ′(H ; Λ↓),

and especially we have

iτ : HF τ(H ; Λ↓) −→ HF (H ; Λ↓),

where HF (H ; Λ↓) is the Floer homology group. There is a canonical ring isomorphism
called the Piunikhin–Salamon–Schwarz (PSS)-map [PSS96], [MS04]

PSSH;Λ : QH(X,ω; Λ)
∼−→ HF (H ; Λ↓),

where QH(X,ω; Λ) denotes the quantum cohomology ring of (X,ω) with Λ-coefficients,
i.e.

QH(X,ω; Λ) := H∗(X ;C)⊗ Λ.

Here, Λ is the Novikov coefficients (the universal Novikov field) ΛNov

ΛNov := {
∞∑

j=1

ajT
λj : aj ∈ C, λj ∈ R, lim

j→+∞
λj = +∞}.

From now on, we will always take the the universal Novikov field to set-up the quantum
cohomology ring, so we will often abbreviate it by QH(X,ω), i.e.

QH(X,ω) := QH(X,ω; ΛNov).

5Although the results in this section hold for general closed symplectic manifolds, we will only be
using the monotone case due to some Floer-theoretic constraints that will appear later, which is not
from the spectral invariant theory.
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The ring structure of QH(X,ω) is given by the quantum product, which is a quantum
deformation of the intersection product

− ∗ − : QH(X,ω)×QH(X,ω) → QH(X,ω).

The spectral invariants, which were introduced by Schwarz [Sch00] and developed
by Oh [Oh05] following the idea of Viterbo [Vit92], are real numbers {c(H, a) ∈ R}
associated to a pair of a Hamiltonian H and a class a ∈ QH(X,ω) in the following way:

c(H, a) := inf{τ ∈ R : PSSH;Λ(a) ∈ Im(iτ )}.

Remark 2.1.1. Although the Floer homology is only defined for a non-degenerate
Hamiltonian H , the spectral invariants can be defined for any Hamiltonian by using
the following Hofer continuity property :

∫ 1

0

min
x∈X

(Ht(x)−Gt(x)) dt 6 c(H, a)− c(G, a) 6

∫ 1

0

max
x∈X

(Ht(x)−Gt(x)) dt (2.1.1)

for any a ∈ QH(X,ω), H and G.

Spectral invariants satisfy the triangle inequality : for Hamiltonians H,G and a, b ∈
QH(X,ω), we have

c(H, a) + c(G, b) > c(H#G, a ∗ b) (2.1.2)

where H#G(t, x) := Ht(x) +Gt((φ
t
H)

−1
(x)) and it generates the path t 7→ φt

H ◦ φt
G in

Ham(X,ω).
When we take the zero function as the Hamiltonian, we have the valuation property :

for any a ∈ QH(X ; Λ)\{0},
c(0, a) = ν(a) (2.1.3)

where 0 is the zero-function and ν : QH(X ; Λ) → R is the natural valuation function

ν : QH(X ; Λ) → R

ν(a) := ν(

∞∑

j=1

ajT
λj ) := min{λj : aj 6= 0}. (2.1.4)

Note that from the triangle inequality (2.1.2) and the valuation property (2.1.3), for
any a ∈ QH(X ; Λ)\{0}, λ ∈ Λ and a Hamiltonian H , we have

c(H, λ · a) = c(H, a) + ν(λ). (2.1.5)

Analogous invariants for Lagrangian Floer homology, namely the Lagrangian spectral
invariants, were defined in [Lec08, LZ18, FOOO19, PS]. We summarize some basic
properties of Lagrangian spectral invariants from these references. Once again, given a
pair of a (non-degenerate) Hamiltonian H and a class a ∈ HF (L)6, we define

ℓ(H,α) := inf{τ ∈ R : PSSL,H(α) ∈ Im(iLτ )}
6The Lagrangian Floer homology for L without a Hamiltonian term HF (L) stands for the La-

grangian quantum cohomology [BC08], which is also written as QH(L) in the literature.
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where
PSSL,H : HF (L) → HF (L,H),

iLτ : HF τ(L,H) → HF τ(L,H).

In this paper, we pay particular attention to the case where α = 1L. In this case, we
simply denote

ℓL(H) := ℓ(H, 1L).

Analogously to the Hamiltonian case (c.f. (2.1.1)), we have the Lagrangian control
property for ℓL: ∫ 1

0

min
x∈L

Ht(x)dt 6 ℓL(H) 6

∫ 1

0

max
x∈L

Ht(x)dt (2.1.6)

Properties analogous to (2.1.2), (2.1.3), (2.1.5) also hold for Lagrangian spectral
invariants.

Note that both Hamiltonian and Lagrangian spectral invariants satisfy the homo-
topy invariance, i.e. if two normalized Hamiltonians H and G generate homotopic
Hamiltonian paths t 7→ φt

H and t 7→ φt
G in Ham(X,ω), then

c(H,−) = c(G,−).

Thus, one can define spectral invariants on H̃am(X,ω):

c : H̃am(X,ω)×QH(X,ω) → R

c(φ̃, a) := c(H, a)
(2.1.7)

where the path t 7→ φt
H represents the class of paths φ̃. Similarly, one can define

ℓ : H̃am(X,ω)×HF (L) → R.

Hamiltonian and Lagrangian Floer homologies are related by the closed-open and
open-closed maps

CO0 : QH(X,ω) → HF (L),

OC0 : HF (L) → QH(X,ω),
(2.1.8)

which are defined by counting certain holomorphic curves. The closed-open map CO0

is a ring homomorphism and the open-closed map OC0 defines a module action. As
they are defined by counting certain holomorphic curves, which have positive ω-energy,
they have the following effect on spectral invariants.

Proposition 2.1.2 ([BC08, LZ18, FOOO19]). Let H be any Hamiltonian.

1. For any a ∈ QH(X,ω), we have

c(H, a) > ℓ(H, CO0(a)).

2. For any α ∈ HF (L), we have

ℓ(H,α) > c(H,OC0(α)).

It is a basic property of the open-closed map (c.f. [BC12, Section 2.5.2]) that

OC0(1L) = [L], (2.1.9)

and thus, by Proposition 2.1.2, we have

ℓ(H, 1L) > c(H, [L]). (2.1.10)

11



2.2 Entov–Polterovich quasimorphisms and (super)heaviness

Based on spectral invariants, Entov–Polterovich built two theories, namely the theory
of (Calabi) quasimorphisms and the theory of (super)heaviness, which we briefly review
in this section.

Quasimorphisms. Entov–Polterovich constructed a special map on H̃am(X,ω) called
the quasimorphism for under some assumptions. Recall that a quasimorphism µ on a
group G is a map to the real line R that satisfies the following two properties:

1. There exists a constant C > 0 such that

|µ(f · g)− µ(f)− µ(g)| < C

for any f, g ∈ G.

2. For any k ∈ Z and f ∈ G, we have

µ(fk) = k · µ(f).

The following is Entov–Polterovich’s construction of quasimorphisms on H̃am(X,ω).

Theorem 2.2.1 ([EP03]). Suppose QH(X,ω; Λ) has a field factor, i.e.

QH(X,ω) = Q⊕ A

where Q is a field and A is some algebra. Decompose the unit 1X of QH(X,ω) with
respect to this split, i.e.

1X = e+ a.

Then, the asymptotic spectral invariant of φ̃ with respect to e defines a quasimorphism,
i.e.

ζe : H̃am(X,ω) −→ R

ζe(φ̃) := lim
k→+∞

c(φ̃k, e)

k
= lim

k→+∞

c(H#k, e)

k

(2.2.1)

where H is any mean-normalized Hamiltonian such that the path t 7→ φt
H represents the

class φ̃ in H̃am(X,ω).

Remark 2.2.2. By slight abuse of notation, we will also see ζe as a function on the
set of time-independent Hamiltonians:

ζe : C
∞(X) −→ R

ζe(H) := lim
k→+∞

c(H#k, e)

k
.

(2.2.2)

Remark 2.2.3. The Lagrangian spectral invariants do not appear in the result of
Entov–Polterovich, but we define the asymptotic Lagrangian spectral invariants, as we
will use them later on in the proofs.

12



ℓL : H̃am(X,ω) −→ R

ℓL := lim
k→+∞

ℓ(φ̃k, 1L)

k

(2.2.3)

As mentioned in the introduction, Entov–Polterovich quasimorphisms are useful to
study the Hofer geometry. For example, in some cases Entov–Polterovich quasimor-
phisms on H̃am(X,ω) descend to Ham(X,ω), e.g. when X = S2,CP 2, S2×S2. Denote
one by ζe : Ham(X,ω) → R. Then, by using the homogeneity of ζe and the Hofer
Lipschitz continuity, we can prove the Hofer diameter conjecture by

lim
k→+∞

dHof(id, φ
k) > lim

k→+∞
|ζe(φk)| = lim

k→+∞
k · |ζe(φ)| = +∞. (2.2.4)

Superheaviness. Entov–Polterovich introduced a notion of symplectic rigidity for
subsets in (X,ω) called (super)heaviness.

Definition 2.2.4 ([EP09],[EP06]). Take an idempotent e ∈ QH(X,ω) and denote the
asymptotic spectral invariant with respect to e by ζe. A subset S of (X,ω) is called

1. e-heavy if for any time-independent Hamiltonian H : X → R, we have

inf
x∈S

H(x) 6 ζe(H),

2. e-superheavy if for any time-independent Hamiltonian H : X → R, we have

ζe(H) 6 sup
x∈S

H(x).

Remark 2.2.5. Note that if a set S is e-superheavy, then it is also e-heavy.

The following is an easy corollary of the definition of superheaviness which is useful.

Proposition 2.2.6 ([EP09]). Assume the same condition on QH(X,ω) as in Theorem
2.2.1. Let S be a subset of X that is e-superheavy. For a time-independent Hamiltonian
H : X → R whose restriction to S is constant, i.e. H|S ≡ r, r ∈ R, we have

ζe(H) = r.

In particular, two disjoint subsets of (X,ω) cannot be both e-superheavy.

Proof. The first part is an immediate consequence of the definition of (super)heaviness.
As for the second part, suppose we have two disjoint sets A,B in (X,ω) that are both
e-superheavy. Consider a Hamiltonian H that is

H|A = 0, H|B = 1.

Then, by superheaviness, we have

1 = inf
x∈B

H(x) 6 ζe(H) 6 sup
x∈A

H(x) = 0,

which is a contradiction.

13



We end this section by giving a criterion for heaviness, proved by Fukaya–Oh–Ohta–
Ono (there are earlier results with less generality, c.f. [Alb05]) using the closed-open
map

CO0 : QH(X,ω) → HF (L).

Theorem 2.2.7 ([FOOO19, Theorem 1.6]). Assume HF (L) 6= 0. If

CO0(e) 6= 0

for an idempotent e ∈ QH(X,ω), then L is e-heavy.

Remark 2.2.8. When ζe is homogeneous, e.g. when e is a unit of a field factor of
QH(X,ω) and ζe is an Entov–Polterovich quasimorphism, then heaviness and super-
heaviness are equivalent so Theorem 2.2.7 will be good enough to obtain the superheav-
iness of L.

2.3 Semi-simplicity of the quantum cohomology ring

In this section, we review the notion of semi-simplicity of the quantum cohomology ring,
both in the context of algebraic and symplectic geometry. Indeed, the semi-simplicity
of the quantum cohomology ring is an algebraic structure that has been studied and
used widely across algebraic geometry [BM04, Dub96, Man99] and symplectic topology
[BC, EP03, FOOO10], even though the definitions are slightly different. See the final
paragraph for the conclusion. Recall that the (small) quantum cohomology ring7 of
a symplectic manifold (X,ω) is semi-simple when it splits into a direct sum of finite
fields:

QH(X,ω) =
⊕

16j6k

Qj

where each Qj is a field. For examples of symplectic manifolds whose quantum coho-
mology rings are semi-simple, we refer to Section 1.1.

Remark 2.3.1.

1. By the definition of semi-simplicity, it follows immediately that if QH(X,ω) is
semi-simple, then there is no nilpotent in QH(X,ω).

2. Also, note that symplectic manifolds with semi-simple quantum cohomology ring
provide examples to which one can apply Entov–Polterovich’s construction of
quasimorphisms (Theorem 2.2.1).

3. In this paper, we take the universal Novikov field Λ to define the quantum coho-
mology ring, but the quantum cohomology ring can defined by other coefficient
fields, e.g. the field of Laurent series. The choice of a coefficient field does not
impact the semi-simplicity [EP08, Proposition 2.1].

7We emphasize that in this paper, quantum cohomology ring always refers to the small one unless
mentioned otherwise.
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In fact, Usher proves that the existence of one symplectic form for which the (small)
quantum cohomology ring is semi-simple implies semi-simplicity for a generic choice
of a symplectic form [Ush11, Proposition 7.11] (However, having semi-simple quantum
cohomology ring for a generic symplectic form does not imply that for all symplectic
forms we have semi-simple quantum cohomology ring [OT09]). Usher also proves that
this generic semi-simplicity for the (small) quantum cohomology ring implies the generic
semi-simplicity for the big quantum cohomology ring [Ush11, Proposition 7.5].8 In
practice, the equivalent properties in [Ush11, Theorem 7.8, Proposition 7.11] are easier
to understand and are more useful.

Moreover, he proves that the notion of semi-simplicity of the big quantum cohomol-
ogy ring used in the algebraic geometry community, e.g. [BM04, Dub96, Man99], which
is stated in terms of the Frobenius manifold, is equivalent to the symplectic definition of
the generic semi-simplicity of the big quantum cohomology ring [Ush11, Section 7.3.3].

In summary, the monotone semi-simplicity, namely the assumption of Theorem A,
implies the semi-simplicity of the big quantum cohomology ring used in the algebraic
geometry community. Thus, strictly speaking, the assumption of Theorem A is stronger
than the notion of semi-simplicity commonly used in algebraic geometry.

2.4 Degeneration

In this section, we review some basics of degeneration. A recommended reference for
the topic of this section is [Eva].

Definition 2.4.1. Let X be a smooth variety. A degeneration of X is a flat family
π : X → C such that

• The only singular fiber is X0 := π−1(0).

• Some regular fiber is isomorphic to X.

• The variety X is smooth away from the singular locus of X0.

If there is a degeneration of a variety X such that the central fiber is X0 := π−1(0),
we say that X degenerates to X0. Note that up to here, the notion of degeneration is
completely in the realm of algebraic geometry, but if we are in a situation where the
following is valid, then we can start seeing the variety X as a symplectic manifold.

• There is a relatively ample line bundle L → X with respect to π : X → C (also
said π-relatively ample line bundle).

Remark 2.4.2. In the proof of Theorem A, we will consider the anti-canonical bundle
−ΩX (sometimes also written −KX ) on X . We will make this precise, as the variety
X is singular. Recall that if a complex n-dimensional variety Y is smooth, then the
canonical line bundle is ΩY :=

∧n T ∗Y . When Y is singular, the same object cannot be
defined. In order to circumvent this problem, Grothendieck introduced the dualizing
complex ω•

Y , which turns out to be a dualizing sheaf ωY = ω•
Y if Y is Cohen–Macaulay.

8For the definition of the generic semi-simplicity for the big (resp. small) quantum cohomology
ring, see [Ush11, Section 7.2] (resp. [Ush11, Definition 7.4]).
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Furthermore, if Y is Gorenstein, then ωY is an invertible sheaf, i.e. a line bundle. Note
that if Y is smooth, we have ωY = KY , thus the dualizing sheaves can be considered as
the canonical bundles for singular varieties.

In this paper, we will only be concerned with singular varieties X , X0 that have at
most isolated hypersurface singularities, which are Gorenstein, so we can define the
line bundles ωX , ωX0 as well as their inverse line bundles −ωX ,−ωX0 . For a Gorenstein
variety Y , we say that it is Fano if the line bundle −ωY is ample.

The π-relative ample line bundle L → X defines the following map:

Xt {t} × CP n

X P(π∗L) = C× CP n

C .

it

ft

f

π
pr1

(2.4.1)

The restriction of the form f ∗ωFS on each fiber Xt, t 6= 0 gives a symplectic form
on it. Moreover, by using the form f ∗ωFS on X , one can define a symplectic parallel
transport for π : X → C, and from a standard argument, it follows that all the smooth
fibers are symplectomorphic with respect to the symplectic form ωt := (f |Xt

)∗ωFS on
Xt (c.f. [Eva, Lemma 1.1]).

One point we need to be careful about is that if we are interested in the monotone
symplectic form on X = X1, then we need to find a π-relatively ample line bundle
L → X that restricts to the anti-canonical bundle on Xt := π−1(t), t 6= 0. When the
anti-canonical bundle −KX of a variety X is ample, i.e. X is Fano, the sections of some
power (−KX)

⊗m, m ∈ N give rise to an embedding

f : X →֒ P(V ),

where V is the dual of the space of sections, and the pull-back f ∗ωFS is monotone. To
see this,

f ∗[ωFS] = f ∗c1(O(1))

= c1(((
n∧
T ∗X)−1)⊗m)

= m · c1((
n∧
T ∗X)−1)

= −m · c1(
n∧
T ∗X)

= m · c1(TX).

(2.4.2)

This is precisely the point where one needs to be careful about when reducing Theorem
A to Theorem B. See the proof of Theorem A on this.

Remark 2.4.3. In this paper, we only study Fano varieties/monotone symplectic
manifolds, but for general type varieties/negative monotone symplectic manifolds, there
are examples of degenerations in [ES20, EU21] for which the relative canonical bundle is
not relatively ample. Thus, to study these degenerations one needs to use a symplectic
form that is not negative monotone.
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2.5 Isolated hypersurface singularities

In this section, we gather some facts about the isolated hypersurface singularities. A
recommended reference with more details is [Kea15, Section 1,2].

As we mentioned in the introduction (Section 1.1), isolated hypersurface singularities
have been used to produce Lagrangian spheres. The modality is a non-negative integer
associated to an isolated hypersurface singularity, which could be thought of as the
number of complex parameters of the miniversal deformation space (we refer to [Kea15]
for more details). Arnold classified isolated hypersurface singularities up to modality
two. The modality zero case is precisely the simple singularities, which have three types
Am, Dm (m > 4), and Em (m = 6, 7, 8) and they are locally expressed as

x2
1 + x2

2 + · · ·+ x2
n−1 + p(y, z) = 0 (2.5.1)

where p(y, z) is

y2 + zm+1, yz2 + zm−1, y3 + z4, y3 + yz3, y3 + z5,

for Am, Dm, E6, E7, and E8, respectively. Now, suppose the variety X0 has an Am

singularity. The vanishing cycle of the Am singularity in its smoothing (X,ω) forms a
collection of Lagrangian spheres

SAm
:= {Sj}16j6m

satisfying the following intersection property:

#(Si ∩ Sj) =

{
1 if |i− j| = 1

0 otherwise.
(2.5.2)

One can see the intersection pattern of (2.5.2) in the Dynkin diagram of the type
Am (Figure 1), where each dot in the diagram corresponds to a Lagrangian sphere
and a segment between two dots implies that the Lagrangian spheres corresponding to
the dots intersect transversally at one point. We call such a collection of Lagrangian
spheres an Am configuration. Similarly, we define Dm (m > 4), and Em (m = 6, 7, 8)
configurations of Lagrangian spheres to be the collections of Lagrangian spheres that
satisfy the intersection patterns of the Dm and Em type Dynkin diagrams, respectively
(Figure 1). These configurations appear as the vanishing cycles of singularities of type
Dm (m > 4), and Em (m = 6, 7, 8), respectively.

As for the isolated hypersurface singularities of modality one, which were also clas-
sified by Arnold, there are the following three types:

1. (parabolic or simple elliptic singularities) Ẽ6, Ẽ7, Ẽ8.

2. (hyperbolic singularities) Tp,q,r, where

Tp,q,r = x2
1 + x2

2 + · · ·+ x2
n−2 + h(x, y, z),

h(x, y, z) = xp + yq + zr + axyz, a 6= 0
(2.5.3)

with integers p, q, r such that

1

p
+

1

q
+

1

r
< 1.
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Note that the three pairs (p, q, r) = (3, 3, 3), (2, 4, 4), (2, 3, 6), which are the solu-
tions to 1

p
+ 1

q
+ 1

r
= 1, are precisely the three parabolic singularities;

Ẽ6 = T3,3,3, Ẽ7 = T2,4,4, Ẽ8 = T2,3,6.

3. 14 exceptional singularities.

Other than the simple singularities and the three types of modality one singularities,
all the other isolated hypersurface singularities have modality greater than or equal to
two.

Example 2.5.1. There are other famous classes of singularities such as the Brieskorn–
Pham singularities. The Brieskorn–Pham singularities are isolated hypersurface sin-
gularities which include a part of simple singularities, parabolic (or simple elliptic)
singularities, the 14 exceptional unimodal singularities. Thus, Brieskorn–Pham singu-
larities are covered in Theorems A, B. See [FU11, Kea21] for some symplectic results
related to Brieskorn–Pham singularities.

In [Kea15], Keating executed a detailed study of the vanishing cycles and the Milnor
fibers for these singularities. We recall the definition of the Milnor fiber.

Definition 2.5.2. The Milnor fiber of a hypersurface singularity h = 0, where h is the
polynomial expressing the singularity (e.g. (2.5.1), (2.5.3)), is the intersection of the
affine hypersurface h−1(t) ⊂ Cn+1 for a small |t| and a small ball B(0; ε) (the ball of
radius ε > 0 around the origin), i.e. h−1(t) ∩B(0; ε).9

Note that Milnor fibers are Liouville domains. We collect some of Keating’s results
that will be used in the proof of Theorem A.

Proposition 2.5.3. The vanishing cycles of the parabolic singularities form a config-
uration of Lagrangian spheres with the intersection property as in the Dynkin diagram
of Gabrielov [Kea15, Figure 4].

Proposition 2.5.4 ([Kea15, Lemma 2.12 (resp. 2.13), Corollary 2.17]). Take any
isolated hypersurface singularity with positive modality. Then, the Milnor fiber (resp.
vanishing cycles) of one of the three parabolic singularities Ẽ6, Ẽ7, Ẽ8 can be symplec-
tically embedded to the Milnor fiber (resp. the vanishing cycles) of the taken isolated
hypersurface singularity with positive modality.

Proposition 2.5.4 will be used in the second part of the proof of Theorem A.

Remark 2.5.5. Note that Proposition 2.5.4 was used by Keating in the first line of
the proof of [Kea15, Theorem 5.7], which might be instructive for the reader.

9The definition depends on the choices of t and ε, but it is unique up to diffeomorphism. From a
symplectic viewpoint, different choices of t and ε will give non-symplectomorphic Milnor fibers, but
they both have completions that are symplectomorphic.
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3 Proofs

3.1 Spectral rigidity of Lagrangian spheres

In this section, we study properties of spectral invariants for Lagrangian spheres, which
will be relevant in the later sections. Note that in this section, we do not assume
semi-simplicity but we assume that (X,ω) is a real 2n-dimensional closed monotone
symplectic manifold with even n (which means that the results in this section are not
directly relevant for the odd n case). The monotonicity is assumed for technical reasons.

In [BM16, Theorem 3.3], Biran–Membrez proved that for an even dimensional mono-
tone Lagrangian sphere L in (X,ω) (which forces the real dimension of (X,ω) to be 2n
with even n) satisfies the following property: the cohomology class [L] ∈ QH(X,ω),
which is the Poincaré dual of the homology class represented by L, satisfies the cubic
equation

[L]3 = 4βL[L] (3.1.1)

for some βL ∈ Λ. When βL 6= 0, then the cubic equation (3.1.1) implies that

eL± = ± 1

4
√
βL

[L] +
1

8βL
[L]2 (3.1.2)

gives two orthogonal idempotents of QH(X,ω). In fact, the idempotents eL± are not
only idempotents of QH(X,ω), but are units of field factors of QH(X,ω).

Claim 3.1.1 ([San21, Proposition 5.8]). The idempotents eL± are units of field factors
of QH(X,ω), i.e.

eL± ·QH(X,ω) = Λ · eL±.

Although this is already proven in [San21, Proposition 5.8] (for the monotone case for
technical reasons), we explain Claim 3.1.1 with an additional assumption that QH(X,ω)
is semi-simple, which is the situation we consider in the rest of the paper, as in this
case the argument is elementary.

Proof. We know that eL± are idempotents of QH(X,ω) which we assume to be semi-
simple, so what we want to check is that eL± are not sums of finer idempotents, i.e.
eL± = e1 + e2 + · · · where ej are idempotents. In Sanda’s proof of Biran–Membrez’s
Lagrangian cubic equation ([San21, Proof of Proposition 5.7], which works for the
monotone case), it is shown that for any Lagrangian sphere L, we have

CO0 ◦ OC0(1L) = 2pL,

CO0 ◦ OC0(pL) = βL1L,
(3.1.3)

where pL is the Poincaré dual of the point class of HF (L), and βL is defined by the
equation p2L = βL1L. The equations (3.1.3) imply that the map CO0 ◦ OC0 is an
isomorphism (between Λ-vector spaces);

QH(X,ω)

HF (L) HF (L).

CO0OC0

∼

(3.1.4)
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Thus,
OC0 : HF (L) → Im(OC0)

is also an isomorphism (between Λ-vector spaces). We have Im(OC0) = (eL+ + eL−) ·
QH(X,ω), which follows from the following two facts:

1. OC0(1L) = 2
√
βL(e

L
+ − eL−), OC0(pL) = 2βL(e

L
+ + eL−).

2. OC0 is a QH(X,ω)-module map, i.e. α · OC0(a) = OC0(CO0(α) · a) for any
α ∈ QH(X,ω), a ∈ HF (L) (combined with eL± ∈ Im(OC0) from the first item).

Remark 3.1.2. Note that in the first item, we used that [L] = 2
√
βL(e

L
+ − eL−) and

OC0(pL) =
1

2
OC0(CO0 ◦ OC0(1L)) =

1

2
OC0(1L) · OC0(1L) =

1

2
[L]2 = 2βL(e

L
+ + eL−).

We know that HF (L) ≃ Λ ⊕ Λ as a Λ-vector space, i.e. dimΛHF (L) = 2, and
thus, by the isomorphism OC0 : HF (L)

∼−→ Im(OC0) as Λ-vector spaces, we have
dimΛ(e

L
+ + eL−) · QH(X,ω) = 2. This implies that eL± cannot further split to finer

idempotents, i.e. they satisfy eL± ·QH(X,ω) = Λ · eL±.

Remark 3.1.3. It is useful to keep in mind that, when βL 6= 0, the class [L] can be
expressed by the two idempotents in (3.1.2) as follows:

[L] = 2
√

βL(e
L
+ − eL−). (3.1.5)

Lemma 3.1.4. Let L an even-dimensional monotone Lagrangian sphere in a closed
monotone symplectic manifold (X,ω). Assume βL 6= 0. The spectral invariants for
1L ∈ HF (L) and eL± ∈ QH(X,ω) are related as follows:

ℓL(H) = max{ζeL+(H), ζeL
−
(H)} (3.1.6)

for any Hamiltonian H. In particular, L is eL±-superheavy, i.e. superheavy with respect
to both eL±.

Proof of Lemma 3.1.4. From (2.1.10), we have

ℓ(H, 1L) > c(H, [L])

for any Hamiltonian H . By using (3.1.5), we further get

ℓ(H, 1L) > c(H, [L])

= c(H, 2
√
βL(e

L
+ − eL−))

= c(H, eL+ − eL−) + ν(2
√

βL).

(3.1.7)

Note that the last equality uses (2.1.5). By using (3.1.3), we can see that the closed-open
map

CO0 : QH(X,ω) −→ HF (L)
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satisfies

CO0(eL±) = ± 1

4
√
βL

CO0 ◦ OC0(1L) +
1

8βL
(CO0 ◦ OC0(1L))

2

= ± 1

4
√
βL

2pL +
1

8βL

(2pL)
2

= ± 1

2
√
βL

pL +
1

8βL
4βL · 1L

= ± 1

2
√
βL

pL +
1

2
1L.

(3.1.8)

Thus, we have
CO0(eL+ + eL−) = 1L.

This implies
c(H, eL+ + eL−) > ℓ(H, 1L). (3.1.9)

Inequalities (3.1.7) and (3.1.9) imply

c(H, eL+ + eL−) > ℓ(H, 1L) > c(H, eL+ − eL−) + ν(2
√

βL).

By homogenizing this, we get

ζeL++eL
−
(H) 6 ℓL(H) 6 ζeL+−eL

−
(H). (3.1.10)

We claim the following.

Claim 3.1.5. We have

ζeL++eL
−
(H) = ζeL+−eL

−
(H) = max{ζeL+(H), ζeL

−
(H)}

for every Hamiltonian H.

Claim 3.1.5 will be proved shortly after the proof. The inequality (3.1.10) and Claim
3.1.5 imply

ℓL(H) = max{ζeL+(H), ζeL
−
(H)}

for any H , which completes the proof of (3.1.6). Now, by combining (2.1.6) and (3.1.6),
we obtain

max{ζeL+(H), ζeL
−
(H)} = ℓL(H) 6 ℓL(H) 6

∫ 1

0

max
x∈L

Ht(x)dt

for every Hamiltonian H , which implies that L is superheavy with respect to both eL+
and eL−. This completes the proof of Lemma 3.1.4.

Proof of Claim 3.1.5. We first prove ζeL++eL
−
(H) > max{ζeL+(H), ζeL

−
(H)} for any H .

By the triangle inequality (2.1.2), we get

c(H, eL+ + eL−) + ν(eL±) = c(H, eL+ + eL−) + c(0, eL±)

> c(H, eL±)

for any Hamiltonian H , and thus

ζeL++eL
−
(H) > ζeL

±
(H)
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for any Hamiltonian H . Therefore,

ζeL++eL
−
(H) > max{ζeL+(H), ζeL

−
(H)} (3.1.11)

for any Hamiltonian H .
Next, we prove ζeL++eL

−
(H) 6 max{ζeL+(H), ζeL

−
(H)} for any H . The characteristic

exponent property of spectral invariants (c.f. [EP03, Section 2.6.4]) implies

c(H, eL+ + eL−) 6 max{c(H, eL+), c(H, eL−)},

and thus by homogenizing, we obtain

ζeL++eL
−
(H) 6 max{ζeL+(H), ζeL

−
(H)} (3.1.12)

for any Hamiltonian H . From (3.1.11) and (3.1.12), we have

ζeL++eL
−
(H) = max{ζeL+(H), ζeL

−
(H)} (3.1.13)

for any Hamiltonian H . By an analogous argument, one can also prove

ζeL+−eL
−
(H) = max{ζeL+(H), ζeL

−
(H)} (3.1.14)

for any Hamiltonian H . This completes the proof of Claim 3.1.5.

Now, we consider the situation where there are several Lagrangian spheres, especially
when they are (homologically) intersecting. Biran–Membrez (as well as Sanda) proved
that if two Lagrangian spheres L and L′ are (co)homologically intersecting, i.e.

[L] · [L′] 6= 0,

then we have

βL = βL′. (3.1.15)

This implies that if there is an ADE configuration

S := {S1, · · · , Sm},

then all the βSj
coincide. In such a case, we simply denote

β = βS := βSj
. (3.1.16)

3.2 Proof of Theorem B

In this section, we prove Theorem B. We separate the proof depending on the parity of
n.

Proof of Theorem B: case of even n. We start with an important lemma, which will
also be used in the proof of Theorem C.

Lemma 3.2.1. Assume βL, βL′ 6= 0. If [L] · [L′] 6= 0, then

{eL+, eL−} ∩ {eL′

+ , eL
′

− } 6= ∅.
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Remark 3.2.2. In Lemma 3.2.1, the Lagrangian spheres L, L′ do not necessarily have
to form an A2 configuration. However, if they do form an A2 configuration, then we
can say furthermore that only one of the two idempotents is shared by L and L′, i.e.

{eL+, eL−} 6= {eL′

+ , eL
′

− }.

For this, see the proof of Proposition 3.5.1. Also note that if [L] · [L′] = 0, then

{eL+, eL−} ∩ {eL′

+ , eL
′

− } = ∅,

as they are all orthogonal.

We postpone the proof of Lemma 3.2.1 until the end of the proof of Theorem B. We
argue by contradiction; assume that (X,ω) contains a D4 configuration of Lagrangian
spheres. As in Figure 2, there is a Lagrangian sphere S that intersects three other
Lagrangian spheres S1, S2, S3,

|S ∩ Sj| = 1, 1 6 j 6 3.

D4

Figure 2: D4-configuration: The sphere S corresponds to the sphere in the middle.

Since n is even and L is a Lagrangian sphere, we have [L] · [L] = −2, and thus
[L] 6= 0. Therefore, by the semi-simplicity of QH(X,ω), [L] is not a nilpotent, and since
[L]3 = 4βL[L] by the cubic equation (3.1.1), we deduce that βL 6= 0. By the intersection
property (3.1.15), all the Lagrangian spheres involved in the Dm, Em configuration have
the same βL, which is non-zero, i.e.

β := βS = βSj
6= 0, ∀j.

Thus, by Claim 3.1.1, each Lagrangian sphere produces two idempotents that are units
of field factors of QH(X,ω) as (3.1.2):

eS± = ± 1

4
√
β
[S] +

1

8β
[S]2,

e
Sj

± = ± 1

4
√
β
[Sj ] +

1

8β
[Sj ]

2.
(3.2.1)

From Lemma 3.2.1, S and S1 share at least one idempotent, i.e.

{eS+, eS−} ∩ {eS1
+ , eS1

− } 6= ∅. (3.2.2)

We assume
eS− = eS1

− (3.2.3)

without loss of generality. Applying Lemma 3.2.1 to S and S2, we get

eS− /∈ {eS2
+ , eS2

− },
eS+ ∈ {eS2

+ , eS2
− },

(3.2.4)

as
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• S and S2 share at least one idempotent,

• S1 and S2 are disjoint, so they cannot share any idempotent (if they did, then
this will contradict the superheaviness property Proposition 2.2.6),

• and we have assumed (3.2.3).

Once again, without loss of generality we can assume

eS+ = eS2
+ . (3.2.5)

Finally, we apply Lemma 3.2.1 to S and S3:

{eS+, eS−} ∩ {eS3
+ , eS3

− } 6= ∅. (3.2.6)

Property (3.2.6), combined with (3.2.3) and (3.2.5), implies

{eS1
− , eS2

+ } ∩ {eS3
+ , eS3

− } 6= ∅. (3.2.7)

In view of Proposition 2.2.6, property (3.2.7) contradicts the superheaviness prop-
erties (by Lemma 3.1.4, S1 is eS1

− -superheavy, S2 is eS2
+ -superheavy, and S3 is eS3

± -
superheavy), as S1 and S2 are both disjoint from S3, i.e.

(S1 ∪ S2) ∩ S3 = ∅.

This completes the proof of Theorem B for even n.

We prove Lemma 3.2.1.

Proof of Lemma 3.2.1. First of all, the assumption [L] · [L′] 6= 0 implies βL = βL′ 6= 0.
We call this β, i.e.

β := βL = βL′ 6= 0.

We have
1

2β1/2
[L] = eL+ − eL−,

1

2β1/2
[L′] = eL

′

+ − eL
′

− ,
(3.2.8)

and [L] ∗ [L′] 6= 0 implies

(eL+ − eL−) ∗ (eL
′

+ − eL
′

− ) 6= 0. (3.2.9)

By developing the left hand side, we get

eL+ ∗ eL′

+ − eL− ∗ eL′

+ − eL− ∗ eL′

− + eL− ∗ eL′

− 6= 0. (3.2.10)

This implies that at least one of the four terms is non-zero. We can assume eL+ ∗ eL′

+ 6= 0
without loss of generality. We prove eL+ = eL

′

+ = eL+ ∗ eL
′

+ . As eL+ is a unit of a field
factor, i.e. eL+ ·QH(X,ω) = Λ · eL+ (Claim 3.1.1), we have

eL+ ∗ eL′

+ = α · eL+
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for some α ∈ Λ\{0}. The left hand side eL+ ∗ eL′

+ is an idempotent, so we have

(α · eL+)2 = (eL+ ∗ eL′

+ )2 = eL+ ∗ eL′

+ = α · eL+,
which is

α2 = α,

and thus, α = 1. Therefore,
eL+ ∗ eL′

+ = eL+.

By applying the same argument to eL
′

+ , we get

eL+ ∗ eL′

+ = eL
′

+ ,

which is
eL+ = eL

′

+ (= eL+ ∗ eL′

+ ).

Thus,
{eL+, eL−} ∩ {eL′

+ , eL
′

− } 6= ∅.
This finishes the proof of the lemma.

Proof of Theorem B: case of odd n. Assume n is odd and (X,ω) satisfies n+1
2NX

/∈ Z.
Then, any Lagrangian sphere L in (X,ω) satisfies a dimΛHF (L) = 2 as a vector space
([BM16]) and pt2L = 0, both for degree reasons. Thus, 1L is the only idempotent of
HF (L). By using the semi-simplicity, we decompose the unit 1X into a sum of units of
field factors:

1X =
∑

16j6l

ej . (3.2.11)

As CO0(1X) = 1L, CO0 : QH(X,ω) → HF (L) is a ring homomorphism, and 1L is the
only idempotent of HF (L), there exists a unique unit ej0 of a field factor such that

CO0(ej) = δj,j0 · 1L,
where δj,j0 = 1 if j = j0 and δj,j0 = 0 otherwise. We denote this distinguished idempo-
tent corresponding to L by eL := ej0 .

Now, we consider an A2-configuration L, L′. As they intersect at one point, we have
HF (L, L′) 6= 0(= Λ · 〈L ∩ L′〉). Together with CO0(eL) = 1L and CO0(eL

′

) = 1L′, we
obtain eL ∗ eL′ 6= 0 (see, for example, [San21, Lemma 4.7]). As eL, eL

′

are units of fields
factors of QH(X,ω), we conclude that eL = eL

′

(by the same argument that starts right
after the equation (3.2.10)). This implies that L and L′ are both eL = eL

′

-superheavy.
Now, we suppose there is an A3-configuration L1, L2, L3 and deduce a contradiction.

The pairs L1, L2 and L2, L3 both form A2-configurations. Thus, from the previous
argument, we have

eL1 = eL2 = eL3 .

Thus, the three Lagrangian spheres L1, L2, L3 are all superheavy with respect to the
same idempotent eL1 = eL2 = eL3 . This contradicts that L1 ∩ L3 = ∅ (Proposition
2.2.6). Thus, there cannot be any A3-configuration when n is odd and (X,ω) satisfies
n+1
2NX

/∈ Z.

Remark 3.2.3. We can also prove the even n case of Theorem B by an argument
closer to the above argument for the odd n case.
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3.3 Proof of Theorem A: From SG to AG

In this section, we prove Theorem A by reducing it to its symplectic counterpart, namely
Theorem B. Before we start the proof, we mention the following expected statement
that extends Theorem A, which will hold as soon as [AFOOO] is established.

Conjecture 3.3.1 (Algebraic geometry version: expected). Let X be a complex n
dimensional smooth Fano variety. Assume either one of the following two:

• QH(X,ω) is semi-simple, where ω is the anti-canonical form.

• n > 2 and QH(X,ω) is semi-simple for a generic choice of a symplectic form ω.

If X degenerates to a Fano variety with an isolated hypersurface singularity, then the
singularity has to be

• an Am-singularity with m > 1, if n is even.

• an Am-singularity with m = 1, 2, if n is odd and dimCX+1
2rX

/∈ Z where rX is the
Fano index.

Remark 3.3.2.

1. As we have pointed out in Section 2.3, the two versions of the semi-simplicity that
we pose in Conjecture 3.3.1, namely the monotone one and the generic one, will
imply the semi-simplicity that is commonly used in the community of algebraic
geometry.

2. Conjecture 3.3.1 does not hold with the the generic semi-simplicity (i.e. the
second) assumption when n = 2. In fact, the del Pezzo surface D5 = CP 2#5 ·
(CP 2) is known to have semi-simple quantum cohomology ring with respect to
a generic symplectic form, but it can degenerate to a singular del Pezzo surface
with a D5 singularity.

Proof of Theorem A. As we have pointed out in Section 2.4, in order to reduce Theorem
A to Theorem B, we need to prove that there is a π-relative ample line bundle that
gives us a monotone symplectic form on the general fibers (in the neighborhood of the
origin).

Suppose X degenerates to a Fano variety X0 with hypersurface singularities, that
is, we have a degeneration π : X → C of X whose central fiber X0 is Fano (in the
sense of Remark 2.4.2) and has hypersurface singularities. We claim the following in
this situation.

Claim 3.3.3. The variety X /C(= X ) is Gorenstein. Thus, the dualizing sheaf ΩX/C =
ΩX is a line bundle over X (Remark 2.4.2). There exists a Zariski-open neighborhood
U ⊂ C of the origin such that the restriction of ΩX to X |U = π−1(U) is π-relative ample
line bundle.

Remark 3.3.4.
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1. In this case, C satisfies KC = 0, so we have

ΩX/C = ΩX .

2. A Zariski-open subset of C is the complement of finitely many points.

Before we prove Claim 3.3.3, we continue with the proof of Theorem A. Take a
Zariski-open subset U of C as in Claim 3.3.3. Then, we have a π-relative ample line
bundle ΩX |X|U on X |U . As explained in Section 2.4, this defines a projective embedding

ft : Xt →֒ CPN

for every t ∈ U\{0} which gives us a symplectic form ωt := (ft)
∗ωFS, where ωFS is

the Fubini–Study form on CPN . Now, the symplectic form ωt is a monotone form on
Xt, t 6= 0, as ΩX |X|U → X|U is π-relatively ample, and ΩX |Xt

= ΩXt
= KXt

, where
KXt

is the canonical line bundle (see also (2.4.2)). Now, from the degeneration, we
obtain a configuration of Lagrangian spheres in (Xt, ωt) as the vanishing cycles of the
hypersurface singularities. We deal with simple singularities and isolated hypersurface
singularities of positive modality separately.

Case of simple singularities, i.e. modality zero. First, assume n is even. We argue
by contradiction; assume that X degenerates to a Fano variety X0 with a D or E
singularity. Then, as we have discussed above, (X,ω) contains a D or E configuration
of Lagrangian spheres. In either case, as in Figure 3, there is a Lagrangian sphere S
that intersects three other Lagrangian spheres S1, S2, S3,

|S ∩ Sj| = 1, 1 6 j 6 3.

Dn

E6

E7

E8

Figure 3: The sphere S corresponds to, the sphere at the end of the straight line in the
Dn diagram, and the third sphere in the E6, E7, E8 diagrams, respectively.

By Theorem B, these configurations do not occur. Thus, DE singularities cannot
occur on X. Next, assume n is even and dimCX+1

2rX
/∈ Z where rX is the Fano index.

Similarly to the even n case, by Theorem B, an A3-configuration is prohibited, so A1

and A2 singularities are the only two simple singularities that can occur on X.
Case of positive modality. The argument goes similarly to the case of modality zero,

i.e. simple singularities. We argue by contradiction; assume that X degenerates to
a Fano variety X0 with a positive modality singularity. Then (X,ω) contains a con-
figuration of Lagrangian spheres coming from a positive modality singularity. From
Proposition 2.5.4, we know that the vanishing cycle of an isolated hypersurface singu-
larity with positive modality includes the vanishing cycle of one of the three parabolic
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singularities Ẽ6, Ẽ7, Ẽ8. Keating studied the geometry of the vanishing cycles of the
three parabolic singularities Ẽ6, Ẽ7, Ẽ8 and proved that the Lagrangian spheres that
appear in the vanishing cycles of the three parabolic singularities intersect as in the
Dynkin diagram of Gabrielov [Kea15, Figure 4]. In the Dynkin diagram of Gabrielov
[Kea15, Figure 4], one can find a collection of four Lagrangian spheres {S, S1, S2, S3}
just as in the case of simple singularities: there is a Lagrangian sphere S that intersects
three other Lagrangian spheres S1, S2, S3,

|S ∩ Sj| = 1, 1 6 j 6 3.

Remark 3.3.5. The Lagrangian spheres S, S1, S2, S3 correspond to the Lagrangian
spheres 4,1,2,3, respectively, in Keating’s numbering in [Kea15, Figure 4].

The rest of the proof is exactly the same as the modality zero case. We complete the
proof of Theorem A by proving Claim 3.3.3. As we assume that X0 is Fano, which is
equivalent to the ampleness of the line bundle ΩX0 = ΩX/C|X0 , Claim 3.3.3 is a direct
consequence of [Gro61, Théorème 4.7.1] (see also [Laz04, Theorem 1.2.17]). Note that
[Gro61, Théorème 4.7.1] requires the morphism π : X → C to be proper and ΩX to
be a line bundle. The properness of π is satisfied, as all the fibers of π : X → C are
compact. As for verifying that the dualizing sheaf ΩX is indeed a line bundle, it suffices
to show that X is Gorenstein (see Remark 2.4.2), and this follows from the following
proposition.

Proposition 3.3.6. Let X, Y be varieties and π : X → Y a flat morphism. If Y is
Gorenstein and all the fibers π−1(y), y ∈ Y are Gorenstein, then X is also Gorenstein.

In our case

• Xt, t 6= 0 is a smooth variety, and smooth varieties are Gorenstein,

• X0 has at most isolated hypersurface singularities, so it is Gorenstein,

and thus all the fibers of the flat morphism of the degeneration π : X → C are Goren-
stein. Thus, ΩX is a line bundle from Proposition 3.3.6. We have completed the proof
of Theorem A.

Remark 3.3.7. It would be very interesting to study the spectral rigidity of sin-
gularities that are not isolated hypersurface singularities, for example cyclic quotient
singularities. They are ‘similar’ to the Am-singularities in the sense that their vanish-
ing cycles are Am-configurations attached to a certain singular Lagrangian called the
Lagrangian pinwheel, c.f. [Eva, Section 1.2.3]. In this case, it is interesting to see if
a property similar to Lemma 3.2.1 would hold between a Lagrangian pinwheel and a
Lagrangian sphere. Studying the spectral rigidity of Lagrangian pinwheels is also an
interesting topic. If one could prove results similar to Lemma 3.1.4 for Lagrangian
pinwheels, it will bring new applications to Hofer geometry.
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3.4 Proof of Theorem C

In this section, we prove Theorem C.

Proof of Theorem C. Denote the Lagrangian spheres forming the Am-configuration by

SAm
:= {S1, · · · , Sm}.

As QH(X,ω) is semi-simple, there is no nilpotent, thus any Lagrangian sphere L with
[L] 6= 0 ∈ QH(X) is not a nilpotent. This implies βL 6= 0, where βL is the scalar in the
cubic equation. Thus, for the Am-configuration SAm

we have

β = βSAm
= βSj

6= 0

by (3.1.16). Thus, by (3.1.2), each Lagrangian sphere Sj gives rise to two idempotents
e
Sj

± , where

e
Sj

± = ± 1

4
√
β
[Sj ] +

1

8β
[Sj ]

2. (3.4.1)

From Lemma 3.1.4, we have for every j,

ℓSj
(H) = max{ζ

e
Sj
+

(H), ζ
e
Sj
−

(H)} (3.4.2)

for any Hamiltonian H , and Sj is e
Sj

± -superheavy for any j. By Lemma 3.2.1, the two
idempotents corresponding to the Lagrangian spheres that are next to each other in
the Am-configuration, say Sj and Sj+1, share one of the two; without loss of generality
we can assume

e
Sj

+ = e
Sj+1

− . (3.4.3)

To prove Theorem C, it is enough to prove the following.

Claim 3.4.1. The Entov–Polterovich quasimorphisms

{ζ
e
Sj
+

}16j6m−1

are pairwise distinct.

We prove this claim. We need to prove that for any i, j such that 1 6 i < j 6 m−1,
we have ζ

e
Si
+
6= ζ

e
Sj
+

. For such i, j, we have that

• Si is eSi
+ -superheavy,

• Sj+1 is e
Sj

+ -superheavy, as e
Sj

+ = e
Sj+1

− .

As j − i > 1, we have Si ∩ Sj+1 = ∅. Thus,

ζ
e
Si
+
6= ζ

e
Sj
+

.

This proves Claim 3.4.1 and thus completes the proof of Theorem C.
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We now prove Theorem 1.3.2. In [Kaw, Theorem C(2)], the author proved the
existence of three Entov–Polterovich quasimorphisms on H̃am(D4). The proof uses
a set of Lagrangian configurations arising from a toric degeneration studied by Y.
Sun in [Sun20] that consists of a Lagrangian torus, an A1-configuration, and an A2-
configuration. Here, we manage to improve [Kaw, Theorem C(2)] by completing the
union of the A1 configuration and the A2 configuration to an A4 configuration by
finding an additional Lagrangian sphere using some four (real) dimensional technique.
This allows us to apply Theorem C and complete the proof.

Proof of Theorem 1.3.2. First, we find four linearly independent Entov–Polterovich
quasimorphisms on H̃am(D4), the universal cover of Ham(D4). By considering the de-
generation of the del Pezzo surface D4 studied in [Sun20, Appendix B, case of X6], one
obtains a monotone Lagrangian torus L, an A2 configuration SA2 := {S1, S2}, an A1

configuration SA1 := {S3}, that are mutually disjoint (i.e. L∩S1 = ∅, L∩(S2 ∪ S3) = ∅,
S1 ∩ (S2 ∪ S3) = ∅). By looking at the moment polytope of the degeneration, one can
see that the homology classes represented by the A2 configuration SA2 and the A1

configuration SA1 are as follows 10 :

[S1] = E2 − E3,

[S2] = E3 − E4,

[S3] = H − E2 −E3 − E4.

(3.4.4)

Now, consider the class E4 −E1. By [BLW14, Lemma 5.3], one can take a Lagrangian
sphere S that represents the class E4 −E1, i.e.

[S] = E4 − E1,

that is disjoint from the Lagrangian sphere S1, i.e. S1∩S = ∅. By computing the inter-
section number, one can see that the Lagrangian spheres S1, S2, S, S3 form a partial A4

configuration in the sense that they satisfy the intersection property (2.5.2) expect for
S, which instead satisfies the following weaker, homological version of the intersection
property

[S] · [Sj] =

{
1 if j = 2, 3

0 if j = 1.
(3.4.5)

However, this is enough to obtain three Entov–Polterovich quasimorphisms

ζ
e
S1
+
, ζ

e
S2
+
, ζeS+ = ζ

e
S3
−

which come from the Lagrangian spheres involved in the partial A4 configuration, and
they are linearly independent, as the Lagrangian spheres S1, S2, S, S3 above satisfy
S1 ∩ S = ∅, S2 ∩ S3 = ∅. This is enough to conclude ζ

e
S1
+

6= ζ
e
S2
+
, ζ

e
S2
+

6= ζeS+. As it was

shown in [Kaw, Proof of Theorem C], there is an Entov–Polterovich quasimorphism ζeL
for which the monotone Lagrangian torus L is eL-superheavy. As the Lagrangian torus
L, the A2 configuration SA2 , and the A1 configuration SA1 are all mutually disjoint,
we conclude that

{ζj}16j64 := {ζeL, ζeS1
+
, ζ

e
S2
+
, ζeS+ = ζ

e
S3
−

} (3.4.6)

10This was communicated to the author by Yuhan Sun.
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are four linearly independent Entov–Polterovich quasimorphisms on H̃am(D4). Evans
proved that Symp0(D4) = Ham(D4) is weakly contractible, i.e. πk(Ham(D4)) = {id}
for all k ∈ N [Eva11, Theorem 1.3]. Thus, any quasimorphism on H̃am(D4) descends
to a quasimorphism on Ham(D4) and thus, {ζj}16j64 defines four pairwise distinct
Entov–Polterovich quasimorphisms on Ham(D4). As each of the four Entov–Polterovich
quasimorphisms is Hofer Lipschitz continuous, we conclude that R4 embeds quasi-
isometrically to Ham(D4), which in particular answers the Kapovich–Polterovich ques-
tion for X = D4 in the negative. The three quasimorphisms that are C0 and Hofer-
Lipschitz continuous can be obtained as in [Kaw22, Theorem 22]. This completes the
proof of Theorem 1.3.2.

Remark 3.4.2. It seems very likely that one can furthermore prove that quasimor-
phisms ζ

e
S1
−

, ζ
e
S3
+

are pairwise distinct to the quasimorphisms in (3.4.6) and obtain six

pairwise distinct quasimorphisms on Ham(D4). We will just briefly outline the argu-
ment: given an Am-configuration {Lj}16j6m in a del Pezzo surface, one can construct
a new Lagrangian sphere Lm+1 that completes the Am configuration into a m+ 1-gon
by taking a Lagrangian sphere representing the class [Lm+1] = −(

∑m
j=1[Lj ]) (Seidel

considers this configuration of Lagrangian spheres in [Sei08, Example 1.10]). It should
be able to show that Lm+1 can be taken so that it is disjoint to {Lj}26j6m−1 by a
similar argument to above, which shows that ζ

e
S1
−

, ζ
e
S3
+

are pairwise distinct to the

quasimorphisms in (3.4.6) by superheaviness.

3.5 Proof of Theorem D

In this section, we prove Theorem D. For the definition and the basic properties of the
Dehn twist, we refer to [Sei97].

Proof of Theorem D. Case of even n: First, notice that as β is a symplectic invariant
and τL ∈ Symp(X), we have

βτL(L′) = βL.

Note that we have βL 6= 0, as QH(X,ω) is semi-simple. We denote them all by β, i.e.

β := βτL(L′) = βL 6= 0.

From (3.1.2), the idempotents induced by τL(L
′) are as follows.

e
τL(L

′)
± = ± 1

4
√
β
[τL(L

′)] +
1

8β
[τL(L

′)]2

= ± 1

4
√
β
(τL)∗[L

′] +
1

8β
((τL)∗[L

′])
2
.

(3.5.1)

The Picard–Lefschetz formula implies

(τL)∗[L
′] = [L′]− (−1)n(n−1)/2([L] · [L′])[L], (3.5.2)

and we also have
[L] = 2

√
β(eL+ − eL−),

[L′] = 2
√
β(eL

′

+ − eL
′

− ).
(3.5.3)
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As Lagrangian spheres {L, L′} form an A2 configuration, i.e. |L ∩ L′| = 1, there are
two possibilities for the intersection number, i.e. [L] · [L′] = ±1. We have the following
relation between the homological intersection number [L] · [L′] and the idempotents
corresponding to L and L′.

Proposition 3.5.1. Let (X,ω) is a 2n-dimensional monotone symplectic manifold with
even n. Suppose there is an A2 configuration {L, L′}. The idempotents corresponding
to L and L′, namely {eL+, eL−} and {eL′

+ , eL
′

− }, and the intersection number [L] · [L′] have
the following relationship:

1. (−1)n(n−1)/2[L] · [L′] = −1 if and only if eL+ = eL
′

− or eL− = eL
′

+ .

2. (−1)n(n−1)/2[L] · [L′] = 1 if and only if eL+ = eL
′

+ or eL− = eL
′

− .

Remark 3.5.2. As pointed out in Remark 3.2.2, only one of {eL+, eL−} and {eL′

+ , eL
′

− }
is shared. See the proof of Proposition 3.5.1 for this.

We prove Proposition 3.5.1 at the end of this section, after the proof of Theorem D.
First, we assume (−1)n(n−1)/2[L] · [L′] = −1. From Proposition 3.5.1, this implies that
we have either eL+ = eL

′

− or eL− = eL
′

+ . We assume the former, as the proof for the latter
goes identically.

Putting equations (3.5.2) and (3.5.3) together, we get

(τL)∗[L
′] = [L′] + [L]

= 2
√

β
(
(eL

′

+ − eL
′

− ) + (eL+ − eL−)
)

= 2
√

β(eL
′

+ − eL−).

(3.5.4)

From (3.5.4), we get

e
τL(L

′)
± = ± 1

4
√
β
[τL(L

′)] +
1

8β
[τL(L

′)]2

= ± 1

4
√
β
2
√
β(eL

′

+ − eL−) +
1

8β

(
2
√
β(eL

′

+ − eL−)
)2

= ±1

2
(eL

′

+ − eL−) +
1

2
(eL

′

+ + eL−)

=

{
eL

′

+ if ± = +,

eL− if ± = −.

(3.5.5)

The equation (3.5.5) and Lemma 3.1.4 imply

ℓτL(L′) = max{ζeL
−
, ζeL′

+
}. (3.5.6)

Comparing it with
ℓL = max{ζeL+, ζeL−},
ℓL′ = max{ζeL′

+
, ζeL′

−

},
(3.5.7)

we obtain
ℓτL(L′) 6 max{ℓL, ℓL′}. (3.5.8)
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The other case where we have (−1)n(n−1)/2[L] · [L′] = +1 can be dealt exactly in the
same way.

Case of odd n: As we have seen in the proof of Theorem B for the case of odd n, for
any Lagrangian sphere L, we can find a distinguished unique unit eL, which satisfies

ℓL = ζeL.

We have also seen that for any Lagrangian spheres satisfying HF (L, L′) 6= 0, we
have eL = eL

′

. Now, for an A2-configuration L, L′, we have HF (L, L′) 6= 0 and
HF (L, τL(L

′)) 6= 0, so we have

eL = eL
′

= eτL(L
′).

Thus,
ℓτL(L′) = ℓL = ℓL′(= ζeL = ζeL′ = ζeτL(L′)),

so we have
ℓτL(L′) = max{ℓL, ℓL′}. (3.5.9)

We have completed the proof of Theorem D.

We end this section with a proof of Proposition 3.5.1 which was used in the proof of
Theorem D.

Proof of Proposition 3.5.1. First of all, the assumption [L] · [L′] 6= 0 implies βL = βL′ 6=
0. We define

β := βL = βL′ 6= 0.

By using
[L] = 2β1/2(eL+ − eL−),

[L′] = 2β1/2(eL
′

+ − eL
′

− ),
(3.5.10)

we have

[L] · [L′] =

∫

X

4β(eL+ − eL−) · (eL
′

+ − eL
′

− )

= 4β

∫

X

(eL+ · eL′

+ − eL− · eL′

+ − eL+ · eL′

+ + eL− · eL′

− ).

(3.5.11)

We will show that only one of the four terms survive. This is because only one of the
two idempotents between {eL+, eL−} and {eL′

+ , eL
′

− } is shared, i.e. {eL+, eL−}∩{eL′

+ , eL
′

− } 6=
∅ and {eL+, eL−} 6= {eL′

+ , eL
′

− }. To see this, first from Lemma 3.2.1, we know that
{eL+, eL−} ∩ {eL′

+ , eL
′

− } 6= ∅. However, we also have {eL+, eL−} 6= {eL′

+ , eL
′

− }, as if we had
{eL+, eL−} = {eL′

+ , eL
′

− }, then (3.5.10) implies

[L] = ±[L′].

On one hand, L, L′ forming an A2 configuration implies

[L] · [L′] = ±1,

but on the other hand, L being an even-dimensional Lagrangian sphere implies

[L] · [L′] = [L] · (±[L]) = ±2,
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which is a contradiction. Thus, we have proven that only one of the two idempotents
between {eL+, eL−} and {eL′

+ , eL
′

− } is shared. From the proof of Lemma 3.2.1, when two
idempotents from {eL+, eL−} and {eL′

+ , eL
′

− } do not coincide, then they are orthogonal to
each other, so only one of the four terms in (3.5.11) remains.

We have ∫

X

eL± =

∫

X

(
± 1

4
√
β
[L] +

1

8β
[L]2

)

=

∫

X

1

8β
[L]2

=
1

8β

∫

X

[L] ∪ [L]

=
1

8β
[L] · [L]

=
1

8β
· (−1)n(n−1)/2χ(L)

= (−1)n(n−1)/2 · 1

4β
.

(3.5.12)

Note that the second and the third equality follow from degree reasons, and the fifth
equality uses the fact that L is a Lagrangian sphere, χ(L) is the Euler characteristic of
L, i.e. two. The same property applies for L′:

∫

X

eL
′

± = (−1)n(n−1)/2 · 1

4β
. (3.5.13)

Now, it follows from (3.5.11), (3.5.12), and (3.5.13) that the intersection number [L]·[L′]
satisfies the following:

• eL+ = eL
′

− or eL− = eL
′

+ if and only if [L] · [L′] = −(−1)n(n−1)/2.

• eL+ = eL
′

+ or eL− = eL
′

− if and only if [L] · [L′] = (−1)n(n−1)/2.

This completes the proof of Proposition 3.5.1.

Remark 3.5.3. A recent work of Biran–Cornea [BC21, Lemma 5.3.1] contains a result
that is based on a spirit similar to Theorem D. Although they work in a different setting,
namely with exact Lagrangians in a Liouville manifold, it would be interesting to study
if one can obtain a similar inequality to Theorem D by their method.
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