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HAMILTONIAN LIE ALGEBROIDS OVER POISSON MANIFOLDS

CHRISTIAN BLOHMANN, STEFANO RONCHI, AND ALAN WEINSTEIN

Abstract. We extend to Poisson manifolds the theory of hamiltonian Lie algebroids
originally developed by two of the authors for presymplectic manifolds. As in the
presymplectic case, our definition, involving a vector bundle connection on the Lie
algebroid, reduces to the definition of hamiltonian action for an action Lie algebroid
with the trivial connection. The clean zero locus of the momentum section of a
hamiltonian Lie algebroid is an invariant coisotropic submanifold, the distribution
being given by the image of the anchor. We study some basic examples: bundles
of Lie algebras with zero anchor and cotangent and tangent Lie algebroids. Finally,
we discuss a suggestion by Alejandro Cabrera that the conditions for a Lie algebroid
A to be hamiltonian may be expressed in terms of two bivector fields on A

∗, the
natural Poisson structure on the dual of a Lie algebroid and the horizontal lift by the
connection of the given Poisson structure on the base.
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1. Introduction

In [2], two of the authors have introduced a notion of hamiltonian Lie algebroid
over a presymplectic manifold. In the present paper, we will introduce the analogous
concept for Poisson manifolds. As in the presymplectic case, the definition consists of
three conditions, each of which generalizes a standard condition in the case where a Lie
algebroid is the action Lie algebroid g×M associated with an action of a Lie algebra
g on a Poisson manifold M .
Recall that an action ρ : g → X(M) of a Lie algebra g on a Poisson manifold (M,Π)

is called hamiltonian when the following three conditions are satisfied for all a, b ∈ g:

(H1) Π is invariant, LρaΠ = 0,
(H2) there is a momentum map µ : M → g∗, ρa = ιd〈µ,a〉Π,
(H3) µ is equivariant, 〈µ, [a, b]〉 = ρa · 〈µ, b〉.

To express these conditions in terms of the Lie algebroid A = g ×M , we make the
same observations as in [2]. It is rather obvious that the action is given by the anchor
ρ : A → TM and that the momentum map can be viewed as a section of the dual
vector bundle A∗. It is less obvious that the invariance of Π and the properties of µ
must not be required for all sections of A, but only for the constant ones, which can be
identified with the elements of the Lie algebra g.
For a general Lie algebroid, there is no natural notion of constant sections. We there-

fore have to add to our structure a linear connection on A and require the properties of
ρ and µ to hold for all sections which are horizontal, either locally if the connection is
flat or pointwise if it has curvature (Section 2.2). While this approach is geometrically
well-motivated, it does not lead to the most useful characterization of hamiltonian Lie
algebroids (Corollary 2.4 and Proposition 2.5). Instead, we will express the definition
in terms of equations to be satisfied by tensors involving the covariant derivatives under
the connection and under the opposite A-connection, whose definition we now recall.
When A is a Lie algebroid with anchor ρ, the opposite A-connection on TM is defined

by

(1) Ďav = [ρa, v] + ρ(Dva) .

Recall also that a linear connection on a vector bundle A → M gives rise to a
covariant derivative D on sections of not only A, but also of its dual A∗ and their
tensor products. Let a be a section of A, µ a section of A∗, and v a vector field on the
base M . The covariant derivative satisfies the Leibniz rule

(2) v · 〈µ, a〉 = 〈Dvµ, a〉+ 〈µ,Dva〉 ,

which can be viewed as definition of the dual connection on A∗.
In particular, the dual of the opposite A-connection, also denoted by Ď, is defined

by the Leibniz rule

(3) ρa · 〈β, v〉 = 〈Ďaβ, v〉+ 〈β, Ďav〉 ,

where β is a 1-form on M .

Remark 1.1. We are using the same notation D for the covariant derivative of sections
of A and A∗. Analogously, we use the same letter for the action of Ď on forms and
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multivector fields. This is consistent with the standard notation for other operations
that exist on both differential forms and multivector fields, such as the Lie derivative.

We now define the principal concepts of this paper. We will show in Section 2.2 that
these are equivalent to the pointwise definitions mentioned above.

Definition 1.2. Let (A, ρ, [ , ]) be a Lie algebroid over a Poisson manifold (M,Π). Let
D be the covariant derivative of a linear connection on A.

(H1Poi) A is Poisson anchored with respect to D if

ĎΠ = 0 .

(H2Poi) A section µ ∈ Γ(A∗) is a D-momentum section if

ρa = ι〈Dµ,a〉Π

for all sections a ∈ Γ(A).
(H3Poi) A D-momentum section µ is bracket-compatible if

(dAµ)(a, b) = Π
(
〈Dµ, a〉, 〈Dµ, b〉

)

for all sections a, b ∈ Γ(A), where dA is the Lie algebroid differential, a degree-1
differential on the graded algebra Γ(∧•A∗).

A Lie algebroid together with a connection D and a section µ of A∗ satisfying (H1Poi)
and (H2Poi) is called weakly hamiltonian. It is called hamiltonian if it satisfies
(H3Poi) as well.

Definition 1.2 satisfies the following two basic conditions. First, if A = g×M is an
action Lie algebroid equipped with the trivial connection over a Poisson manifold, we
recover the usual notion of a hamiltonian action. Second, if the Poisson bivector is non-
degenerate, the definition is equivalent to that presented in [2] for the presymplectic
case, which can be stated in the following form:

Definition 1.3. Let (A, ρ, [ , ]) be a Lie algebroid over a presymplectic manifold (M,ω).
Let D be the covariant derivative of a linear connection on A.

(H1Pre) A is presymplectically anchored with respect to D if

Ďω = 0 .

(H2Pre) A section µ ∈ Γ(A∗) is a D-momentum section if

〈Dµ, a〉 = ιρaω

for all sections a ∈ Γ(A).
(H3Pre) A D-momentum section µ is bracket-compatible if

(dAµ)(a, b) = −ω(ρa, ρb)

for all sections a, b ∈ Γ(A), where dA is the Lie algebroid differential.

A Lie algebroid together with a connection D and a section µ of A∗ satisfying (H1Pre)
and (H2Pre) is called weakly hamiltonian. It is called hamiltonian if it satisfies
(H3Pre) as well.
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Remark 1.4. (H1Pre) of Definition 1.3 is not the original form of the axiom of [2, Def.
3.3], but it was shown to be equivalent to that one in [2, Prop. 7.8].

Remark 1.5. The similarity of the definitions for Poisson and presymplectic structures
suggests that there should be a definition in the case of Dirac structures which subsumes
them both. More general still, there might be a generalization to Lie algebroids with
IM-forms in the sense of [3]. We have not yet looked into these possibilities.

1.1. Summary of the paper. In Section 2, we motivate the Definition 1.2 of a hamil-
tonian Lie algebroid, which involves a vector bundle connection on the Lie algebroid.
In Proposition 2.2, we show that, in the non-degenerate case, the definitions of hamil-
tonian Lie algebroids over Poisson and presymplectic manifolds are equivalent. Then
we give a pointwise interpretation of the axioms, which states that they hold if and
only if the usual conditions of a hamiltonian action hold pointwise at all points and
for all sections that are horizontal at that point. As the immediate Corollary 2.6, we
show that the action of a Lie algebra on a Poisson manifold is hamiltonian if and only
if the action Lie algebroid is hamiltonian with respect to the trivial connection. In
Proposition 2.9, we give an equivalent characterization of the bracket-compatibility of
momentum sections in terms of the Lie algebroid torsion, which is very useful in the
rest of the paper.
In Section 3, we study some basic examples: a bundle of Lie algebras over a Pois-

son manifold, the cotangent Lie algebroid of a Poisson manifold, and the tangent Lie
algebroid of a Poisson manifold. We show that the only condition for a bundle of Lie
algebras to be hamiltonian is that the momentum section must vanish on the first com-
mutator ideal of the Lie algebras of all fibers. (This can be satisfied trivially by the
zero momentum section.) For the cotangent Lie algebroid of a Poisson manifold, we
show that a connection on T ∗M is Poisson anchored if and only if the torsion of the
dual connection on TM vanishes on the symplectic leaves (Corollary 3.2). If there is
a 1-form η such that µ = Π♯η is nowhere vanishing, then T ∗M is weakly hamiltonian
(Theorem 3.5). The momentum section µ is bracket-compatible if and only if it is a
Liouville vector field (Proposition 3.9). For the tangent Lie algebroid over a Poisson
manifold, we show that a connection on TM is Poisson anchored if and only if the dual
connection on T ∗M has vanishing T ∗M-torsion (Theorem 3.14). For the tangent Lie
algebroid to have a momentum section, the Poisson structure must be non-degenerate.
For this case, we summarize the various equivalent characterizations of (weakly) hamil-
tonian Lie algebroids over symplectic manifolds in Theorem 3.15 and Theorem 3.17.
Finally, we show that the condition to be Poisson anchored is equivalent to a connection
being Poisson in the usual sense [1, Sec. 1(e), p. 65] for both the tangent Lie algebroid
(Proposition 3.21) and the cotangent Lie algebroid (Proposition 3.22).
In Section 4, we explore an alternative notion of compatibility of a Lie algebroid

A → M and a Poisson structure Π on M suggested to us by Alejandro Cabrera.
In Theorem 4.3, we show that the horizontal lift Π̂ of Π by some connection D on
A∗ commutes with the Lie algebroid Poisson structure ΠA on A∗ if and only if A is
Poisson anchored by D and satisfies an additional relation involving the A-torsion, the
curvature, and the characteristic distribution of the Poisson structure on M . We then
show in Theorem 4.6 that a section µ of A∗ is a bracket-compatible momentum section
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if and only if the pullback µ∗ on functions maps the brackets defined by the bivector
field Π̂ + ΠA to the Poisson brackets of Π.

Acknowledgments. For comments, encouragement, and advice we would like to thank
Alejandro Cabrera, Lory Aintablian, Maarten Mol, Leonid Ryvkin, and Thomas Strobl,
as well as the audiences over several years who heard us present preliminary versions
of this work and gave invaluable feedback. Sections 2 and 3 of this work are based on
the Master’s thesis of S.R. advised by C.B. at the University of Bonn. S.R. was funded
by the Deutsche Forschungsgemeinschaft (DFG) – 446784784.

2. Hamiltonian Lie algebroids from symplectic to Poisson

2.1. Motivation of the axioms. We recall the “musical” notation for 2-forms and
bivector fields. The map given by inserting a vector field in a 2-form ω on M will be
denoted by

ω♭ : TM −→ T ∗M

v 7−→ ιvω .

Analogously, given a bivector field Π on M , we have the map

Π♯ : T ∗M −→ TM

α 7−→ ιαΠ .

We say that Π is the inverse of ω if Π♯ ◦ ω♭ = idTM , which is the case if and only
if ω♭ ◦ Π♯ = idT ∗M . (Note that ω has an inverse if and only if it is non-degenerate.)
Evaluating both arguments of ω on the images of Π♯ leads to a minus sign,

ω(Π♯α,Π♯β) = 〈ω♭Π
♯α,Π♯β〉 = 〈α,Π♯β〉

= −Π(α, β) .
(4)

The first axiom (H1Poi) in Definition 1.2 of hamiltonian Lie algebroids over Poisson
manifolds is motivated by the following fact.

Proposition 2.1. Let ω be a 2-form on M with an inverse bivector field Π. Let (A, ρ)
be an anchored vector bundle. Let D be a connection on A and Ď be its opposite
A-connection on TM . Then ĎΠ = 0 if and only if Ďω = 0.

Proof. Using Equation (3), we obtain the relation

(Ďaω)(Π
♯α,Π♯β) = ρa ·

(
ω(Π♯α,Π♯β)

)
− ω(ĎaΠ

♯α,Π♯β)− ω(Π♯α, ĎaΠ
♯β)

= −ρa ·Π(α, β) + 〈ĎaΠ
♯α, β〉 − 〈α, ĎaΠ

♯β〉

= −ρa ·Π(α, β) + ρa · 〈Π♯α, β〉 − 〈Π♯α, Ďaβ〉

− ρa · 〈α,Π♯β〉+ 〈Ďaα,Π
♯β〉

= ρa · Π(α, β)− Π(α, Ďaβ)− Π(Ďaα, β)

= (ĎaΠ)(α, β),
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for all a ∈ Γ(A) and α, β ∈ Ω1(M). If Ďω = 0, the left side vanishes, which implies
that ĎΠ = 0. Replacing α with ω♭v and β with ω♭w, we obtain the relation

(Ďaω)(v, w) = (ĎaΠ)(ω♭v, ω♭w) ,

for all vector fields v, w ∈ X(M). This shows that ĎΠ = 0 if and only if Ďω = 0. �

From Proposition 2.1, we conclude that, if ω is non-degenerate, then the axiom
(H1Poi) of Definition 1.2 for the Poisson case is equivalent to the axiom (H1Pre) of
Definition 1.3 for the presymplectic case.
For axiom (H2), the situation is even more obvious. If ω is non-degenerate, we can

apply the inverse Π♯ of ω♭ to
〈Dµ, a〉 = ω♭(ρa),

which yields the equation

(5) Π♯〈Dµ, a〉 = ρa .

We conclude that, if ω is non-degenerate, the axiom (H2Poi) of Definition 1.2 for the
Poisson case is equivalent to the axiom (H2Pre) of Definition 1.3 for the presymplectic
case.
The third axiom (H3Pre) of Definition 1.3 for the presymplectic case is given by the

equation
(dAµ)(a, b) = −ω(ρa, ρb) .

If ω is non-degenerate and if µ satisfies (5), we can replace the right side with

−ω(ρa, ρb) = −ω
(
Π♯〈Dµ, a〉,Π♯〈Dµ, b〉

)

= Π
(
〈Dµ, a〉, 〈Dµ, b〉

)
,

where the change of sign comes from (4). Combining the last two equations, we obtain
the equation of axiom (H3Poi) of Definition 1.2 in the Poisson case.
We conclude that, if ω is non-degenerate and if axiom (H2Poi) of Definition 1.2 is

satisfied, then the axiom (H3Poi) is equivalent to the axiom (H3Pre) of Definition 1.3 for
the presymplectic case. We can summarize this with the following proposition.

Proposition 2.2. A Lie algebroid A with connection D and section µ of A∗ over a
non-degenerate Poisson manifold (M,Π) is (weakly) hamiltonian if and only if it is
(weakly) hamiltonian over the symplectic manifold (M,ω = Π−1).

2.2. Pointwise interpretation. In Propositions 4.12 and 4.13 of [2] it was shown for
the presymplectic case that the axioms of a hamiltonian Lie algebroid hold if and only
if the usual conditions of a hamiltonian action hold for all horizontal sections, locally
or pointwise. We will show that this is still true in the Poisson case. First, we observe
that the invariance of any tensor under vector fields given by the anchor of horizontal
sections of a Lie algebroid can be expressed succinctly by the opposite connection (cf. [2,
Sec. 4.2] and [6]).

Lemma 2.3. Let ρ : A → TM be an anchored vector bundle with a connection D. Let
ϕ ∈ Γ

(
(TM)⊗p ⊗ (T ∗M)⊗q

)
. The following are equivalent:

(i) Ďϕ = 0
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(ii) Lρa ϕ
∣∣
m
= 0 at all m ∈ M and for all a ∈ Γ(A) that are horizontal at m.

Proof. Let v ∈ X(M) be a vector field. Let {ai} be a local frame of Γ(A) such that
all sections ai are horizontal at m ∈ M , i.e. (Dai)m = 0. Every local section of A can
be written as a = f iai for smooth functions f i ∈ C∞(M). By the definition (1) of the
opposite connection, we have

(
Ďav

)
m
=

(
f iĎai

)
m
= f i(m)

(
Lρai v + ρ(Dva)

)
m

= f i(m)
(
Lρai v

)
m
.

We conclude that (Ďav)m = 0 for all sections a ∈ Γ(A) if and only if Lρb v
∣∣
m

= 0 for

all b ∈ Γ(A) that are horizontal at m. For a 1-form α ∈ Ω1(M) we use (3) to obtain

〈Ďaα, v〉
∣∣
m
= f i(m)

(
ρai · 〈α, v〉 − 〈α,Lρai v〉

)
m

= f i(m)〈Lρai α, v〉
∣∣
m
,

for all v ∈ X(M). As before, we conclude that (Ďaα)m = 0 for all sections a ∈ Γ(A) if
and only if Lρb α

∣∣
m
= 0 for all b ∈ Γ(A) that are horizontal at m. Since both Ďa and

Lρa act as derivations on tensor products of vector fields and forms, the proposition
follows. �

Corollary 2.4. An anchored vector bundle ρ : A → TM over a Poisson manifold
(M,Π) is Poisson anchored with respect to a connection D if and only if

(6) LρaΠ
∣∣
m
= 0

at all points m ∈ M and for all sections a of A that are horizontal at m.

Proposition 2.5. Let A be a Lie algebroid over a Poisson manifold (M,Π). Then
µ ∈ Γ(M,A∗) is a D-momentum section if and only if

(ρa)m = ιd〈µ,a〉Π
∣∣
m

for all m ∈ M and all a ∈ Γ(M,A) that are horizontal at m. The momentum section
is bracket-compatible if and only if

〈µ, [a, b]〉
∣∣
m
= ρa · 〈µ, b〉

∣∣
m

for all m ∈ M and all sections a, b of A that are horizontal at m.

Proof. Let m ∈ M , and let {ai} be a local frame of Γ(A) such that all sections ai are
horizontal at m ∈ M . Every local section of A can be written as a = f iai for smooth
functions f i ∈ C∞(M). The condition (H2Poi) of Definition 1.2 evaluated at m is

f i(m)(ρai)m = Π♯
(
d〈µ, f iai〉 − 〈µ,D(f iai)〉

)
m

= Π♯
(
df i〈µ, ai〉+ f id〈µ, ai〉 − df i〈µ,Dai〉 − f i〈µ,Dai〉

)
m

= f i(m)Π♯
(
d〈µ, ai〉

)
m
.

Since the f i(m) can be chosen arbitrarily, this equation is satisfied for all f i if and only
if

(ρai)m = Π♯
(
d〈µ, ai〉

)
m
,
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which proves the first statement of the proposition. Assuming (H2Poi), the bracket
compatibility of axiom (H3Poi) is equivalent to the vanishing of

(dAµ)(a, b)− Π(〈Dµ, a〉, 〈Dµ, b〉) = (dAµ)(a, b) + ιρb〈Dµ, a〉

= (dAµ)(a, b) + ιρb
(
d〈µ, a〉 − 〈µ,Da〉

)

= ρa · 〈µ, b〉 − 〈µ, [a, b]〉 − 〈µ,Dρba〉 ,

where we have used (2) and the definition of the Lie algebroid differential. The right
side vanishes at m if and only if

f i(m)
(
ρai · 〈µ, b〉 − 〈µ, [a, b]〉

)
m
= 0 .

Since the f i(m) can be chosen arbitrarily, this proves the second statement. �

Corollary 2.6. The action of a Lie algebra on a Poisson manifold is (weakly) hamil-
tonian if and only if the action Lie algebroid is (weakly) hamiltonian with respect to the
trivial connection.

Proof. Let ρ : g → X(M) be the action of a Lie algebra on a Poisson manifold (M,Π).
The Lie algebra can be identified with the constant sections of the action Lie algebroid
A = g×M → M , which are the sections that are horizontal with respect to the trivial
connection D. If a is a constant section, then ĎaΠ = Lρa Π and D〈µ, a〉 = d〈µ, a〉. The
proof follows from Corollary 2.4 and Proposition 2.5. �

Remark 2.7. Note that the trivial connection is an essential part of the data. In fact,
even if an action is not weakly hamiltonian, its action Lie algebroid could still be weakly
hamiltonian with respect to a different connection. An example of this situation on a
symplectic manifold was given in [2, Example 4.4].

Example 2.8. The cotangent Lie algebroid T ∗g∗ ∼= g × g∗ of a Lie-Poisson manifold
g∗ is isomorphic to the action Lie algebroid of the coadjoint action. The coadjoint
action is hamiltonian with momentum map the projection g× g∗ → g∗. It follows from
Corollary 2.6 that T ∗g∗ is hamiltonian with respect to the trivial connection.

2.3. Bracket-compatibility in terms of Lie algebroid torsion. In the presym-
plectic case, the condition of bracket-compatibility has a useful equivalent description
in terms of the A-torsion of D [2, Prop. 5.1], which is defined by

(7) TA(a, b) := Dρab−Dρba− [a, b] .

An analogous result holds in the Poisson case:

Proposition 2.9. A D-momentum section µ of a Lie algebroid A over a Poisson
manifold (M,Π) is bracket-compatible if and only if

(8)
〈
µ, TA(a, b)

〉
= −Π

(
〈Dµ, a〉, 〈Dµ, b〉

)

for all sections a and b of A.
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Proof. Using the assumption that µ is a momentum section, we obtain

Π
(
〈Dµ, a〉, 〈Dµ, b〉

)
= 1

2
(ι〈Dµ,b〉ι〈Dµ,a〉Π− ι〈Dµ,a〉ι〈Dµ,b〉Π)

= 1
2
(ι〈Dµ,a〉ρb− ι〈Dµ,a〉ρa)

= 1
2
(〈Dρbµ, a〉 − 〈Dρaµ, b〉) .

(9)

The Lie algebroid differential of µ can be expressed in terms of the Lie algebroid torsion
of D as

(dAµ)(a, b) = ρa · 〈µ, b〉 − ρb · 〈µ, a〉 − 〈µ, [a, b]A〉

= 〈Dρaµ, b〉+ 〈µ,Dρab〉 − 〈Dρbµ, a〉+ 〈µ,Dρba〉 − 〈µ, [a, b]A〉

= 〈Dρaµ, b〉 − 〈Dρbµ, a〉+ 〈µ, TA(a, b)〉

= 2Π
(
〈Dµ, a〉, 〈Dµ, b〉

)
+ 〈µ, TA(a, b)〉 ,

where in the last step we have used (9). By subtracting Π(〈Dµ, a〉, 〈Dµ, b〉) on both
sides, we obtain

(dAµ)(a, b)−Π
(
〈Dµ, a〉, 〈Dµ, b〉

)
= Π

(
〈Dµ, a〉, 〈Dµ, b〉

)
+ 〈µ, TA(a, b)〉 .

The left side vanishes if and only if the momentum section µ is bracket-compatible, and
the right side does if and only if (8) holds. �

2.4. The zero locus of the momentum section. Let A → M be a hamiltonian Lie
algebroid over the Poisson manifold (M,Π) with momentum section µ : M → A∗. Let

I := {〈µ, a〉 ∈ C∞(M) | a ∈ Γ(M,A)}

be the space of functions we obtain by pairing µ with all sections of the Lie algebroid.
Since f〈µ, a〉 = 〈µ, fa〉 for all f ∈ C∞(M), I is an ideal. The zero locus Z = µ−1(0) is
the set of common zeros of the elements of I. The following statement is analogous to
the presymplectic case [2, Prop. 5.2].

Proposition 2.10. In a hamiltonian Lie algebroid over a Poisson manifold, the zero
locus Z of the momentum section is invariant in the sense that every orbit which meets
Z is contained in Z.

Proof. In the proof of Proposition 2.5, we have shown for a hamiltonian Lie algebroid
that the Lie derivative of a function 〈µ, b〉 with respect to ρa can be expressed as

(10) Lρa〈µ, b〉 = 〈µ, [a, b] +Dρba〉 ∈ I .

This shows that I is invariant under the Lie derivative of every vector field in the image
of the anchor. It follows that I and hence its set Z of common zeros are invariant under
the flow of every vector field in the image of the anchor. We conclude that every orbit
of A that meets Z is contained in Z. �

Remark 2.11. In the analogous proposition for the presymplectic case [2, Prop. 5.2],
it was shown that all orbits in the zero locus are isotropic. In the Poisson case, it is
straightforward to prove the isotropy of orbits in the clean locus of Z, as we will see in
Theorem 2.12. However, we do not know any example of a hamiltonian Lie algebroid
over a Poisson manifold with a non-isotropic orbit in the zero locus of the momentum
section.
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The zero locus of a momentum section is not necessarily a smooth submanifold. For
the coisotropic property of Z and the isotropic property of the orbits in Z, we have
to restrict our attention to the clean zero locus Zcl, which consists of the points of
smoothness where the tangent space of the zero locus is the entire zero space of the
differential of the momentum section. The clean zero locus can be identified in algebraic
terms as the set of points m ∈ M for which there is a neighborhood U on which Z is
a smooth submanifold and on which the defining ideal I is no smaller than the ideal
IZ ⊇ I consisting of all functions vanishing on Z.

Theorem 2.12. The clean zero locus Zcl of the momentum section for a hamiltonian
Lie algebroid over a Poisson manifold is a coisotropic submanifold which is invariant
under the Lie algebroid. The characteristic distribution of Zcl is equal to the image of
the anchor. The orbits in Zcl are isotropic.

Proof. Since Z is determined by I, so is IZ , and hence the latter is invariant under all
the diffeomorphisms generated by the image of ρ. It follows that the subset where they
agree locally is invariant. So is the set of smooth points of Z, and hence so is Zcl.
Now let m belong to the clean zero locus. A vector v ∈ TmM is tangent to µ−1(0) if

and only if for all a ∈ Γ(M,A),

0 = v · 〈µ, a〉 = ιv
(
d〈µ, a〉

)
m
= ιv(〈Dµ, a〉m + 〈µ,Da〉m)

= ιv〈Dµ, a〉 ,

where in the last step we have used that µ vanishes atm. This shows that the annihilator
(TmZcl)

◦ or, in other words, the fiber at m of the conormal bundle of Zcl, is spanned
by the 1-forms 〈Dµ, a〉m for all a.
Since µ is a momentum section, we have Π♯(〈Dµ, a〉) = ρa. It follows that

(11) Π♯
(
(TmZcl)

◦
)
= ρ(Am) ⊂ TZcl ,

where the inclusion on the right follows from the invariance of Zcl. Equation (11) shows
that Zcl is coisotropic and that the characteristic distribution at m is ρ(Am).
The tangent space of an orbit S through m ∈ Zcl is given by TS = ρ(Am) ⊂ TmZcl.

It follows that (TmS)
◦ ⊃ (TmZcl)

◦ and, therefore, Π♯
(
(TmS)

◦
)
⊃ Π♯

(
(TmZcl)

◦
)
. With

Equation (11), we conclude that

Π♯
(
(TmS)

◦
)
⊃ TmS ,

which means that S is isotropic. �

Theorem 2.12 shows how reduction works for a hamiltonian Lie algebroid A over a
Poisson manifold: Since the anchor is tangent to Zcl, the Lie algebroid can be restricted
to Zcl. If the leaf space of the characteristic distribution of A|Zcl

is smooth, then it is a
Poisson manifold [7], called the Poisson reduction of A.

3. Examples

3.1. Bundles of Lie algebras. A bundle of Lie algebras is a Lie algebroid with zero
anchor. In this case, the opposite connection Ď, defined by Eq. (1), of every connection
D is zero. This shows that a bundle of Lie algebras over a Poisson manifold is Poisson
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anchored with respect to every connection. This is the same as in the presymplectic
case discussed in Section 6.1 of [2].
Since ρ = 0, a section µ of A∗ is a momentum section if and only if Π♯〈Dµ, a〉 = 0

for every section a of A. This is the case if and only if

0 =
〈
η,Π♯〈Dµ, a〉

〉
=

〈
〈Dµ, a〉,−Π♯η

〉

= 〈D−Π♯ηµ, a〉

for all sections a of A and all sections η of A∗. This shows that µ is a momentum
section if and only if it is horizontal in the direction of the symplectic leaves of (M,Π).
One possible momentum section is µ = 0.
For every momentum section we have Π(〈Dµ, a〉, 〈Dµ, b〉) = 0, so that µ is bracket-

compatible if and only if dAµ = 0. Since ρ = 0, dAµ = −〈µ, [a, b]〉. This shows that µ
is bracket-compatible if and only if

〈µ, [a, b]〉 = 0

for all sections a and b of A, which is the same condition as in the presymplectic case.
We conclude that a bundle of Lie algebras over a Poisson manifold is always hamil-

tonian with momentum section µ = 0 and arbitrary connection D. If the fibre of A
over at least one point of every symplectic leaf of M is semisimple, then µ = 0 is the
only momentum section.

3.2. The cotangent Lie algebroid of a Poisson manifold. Recall that the cotan-
gent Lie algebroid of a Poisson manifold [10, Thm. 4.1] is the vector bundle A = T ∗M

with anchor ρ = −Π♯ and Lie bracket

(12) [α, β] = −LΠ♯α β + LΠ♯β α+ dΠ(α, β)

for all 1-forms α and β on M .

3.2.1. Poisson anchored connections. In the first step, we will determine the conditions
for the cotangent Lie algebroid to be Poisson anchored with respect to some connection
D on T ∗M . The T ∗M-torsion (7) of D is given by

(13) TT ∗M(α, β) = −DΠ♯αβ +DΠ♯βα− [α, β] .

The dual connection defined by (2) is a (usual) connection on TM , so that there is the
usual TM-torsion, which we denote by

(14) TTM(v, w) = Dvw −Dwv − [v, w] .

Proposition 3.1. Let (M,Π) be a Poisson manifold and D a connection on T ∗M .
Then

(15) (ĎγΠ)(α, β) = −
〈
γ, TTM(Π♯α,Π♯β)

〉

for all 1-forms α, β, and γ.
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Proof. The left side of (15) can be written as

(ĎγΠ)(α, β) = Ďγ

(
Π(α, β)

)
− Π(Ďγα, β)−Π(α, Ďγβ)

= −Π♯γ · Π(α, β) + 〈Ďγα,Π
♯β〉 − 〈Ďγβ,Π

♯α〉

= −Π♯γ · Π(α, β) + Ďγ 〈α,Π
♯β〉 − Ďγ 〈β,Π

♯α〉

−
〈
α, Ďγ(Π

♯β)
〉
+
〈
β, Ďγ(Π

♯α)
〉

= Π♯γ · Π(α, β) +
〈
α, [Π♯γ,Π♯β] + Π♯(DΠ♯βγ)

〉

−
〈
β, [Π♯γ,Π♯α] + Π♯(DΠ♯αγ)

〉

= Π♯γ · Π(α, β) +
〈
α, [Π♯γ,Π♯β]

〉
−

〈
β, [Π♯γ,Π♯α]

〉

−
〈
DΠ♯βγ,Π

♯α
〉
+
〈
DΠ♯αγ,Π

♯β
〉
.

Pairing the Poisson condition [Π,Π] = 0 with α ∧ β ∧ γ, we obtain the relation

0 = Π♯α · Π(β, γ) + Π♯β · Π(γ, α) + Π♯γ · Π(α, β)

−
〈
α, [Π♯β,Π♯γ]

〉
−

〈
β, [Π♯γ,Π♯α]

〉
−
〈
γ, [Π♯α,Π♯β]

〉
.

Using this relation, we can write the right side of (15) as

(ĎγΠ)(α, β) = −Π♯α · Π(β, γ) + Π♯β · Π(α, γ) +
〈
γ, [Π♯α,Π♯β]

〉

− 〈DΠ♯βγ,Π
♯α〉+ 〈DΠ♯αγ,Π

♯β〉

= −Π♯α · 〈γ,Π♯β〉+ 〈DΠ♯αγ,Π
♯β〉

+Π♯β · 〈γ,Π♯α〉 − 〈DΠ♯βγ,Π
♯α〉+

〈
γ, [Π♯α,Π♯β]

〉

= −
〈
γ,DΠ♯αΠ

♯β −DΠ♯βΠ
♯α− [Π♯α,Π♯β]

〉

= −
〈
γ, TTM(Π♯α,Π♯β)

〉
,

where in the last step we have used the Definition (14) of the TM-torsion. �

Corollary 3.2. The cotangent Lie algebroid A = T ∗M of a Poisson manifold (M,Π)
is Poisson anchored with respect to a connection on T ∗M if and only if the torsion of
the dual connection on TM vanishes on the characteristic distribution Π♯(T ∗M).

Remark 3.3. From an arbitrary connection D on TM we obtain a connection with
vanishing torsion by

D′
vw = Dvw − 1

2
TD(v, w) .

By Corollary 3.2, the dual connection to D′ is Poisson anchored.

Let us determine the space of connections whose torsion satisfies the condition of
Corollary 3.2. The torsions of two connections D′ and D on TM are related by

(16) T ′
TM(v, w) = TTM(v, w) + Γ(v, w)− Γ(w, v) ,

where Γ is the difference tensor of the connections, i.e. the C∞(M)-bilinear map Γ :
X(M)× X(M) → X(X) defined by

(17) Γ(v, w) = D′
vw −Dvw .

From Proposition 3.1 we deduce the following result.
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Corollary 3.4. Let the cotangent algebroid of a Poisson manifold (M,Π) be Poisson
anchored with respect to a connection D. Then it is Poisson anchored with respect to
another connection D′ if and only if the difference tensor (17) satisfies

(18)
〈
γ,Γ(Π♯α,Π♯β)− Γ(Π♯β,Π♯α)

〉
= 0

for all 1-forms α, β,and γ. The Poisson anchored connections form an affine space
modelled on the vector space of morphisms of vector bundles Γ : TM ×M TM → TM

that satisfy (18).

3.2.2. Momentum sections.

Theorem 3.5. Let (M,Π) be a Poisson manifold. Assume that there is a 1-form η on
M such that the vector field µ = Π♯η is nowhere vanishing. Then, for a suitable Poisson-
anchored connection, the cotangent Lie algebroid of (M,Π) is weakly hamiltonian, with
momentum section µ.

Proof. The proof is similar to that of Proposition 6.7 in [2]. Let D be a Poisson
anchored connection. In general, µ will not be a D-momentum section. Let D′ be
another connection. From (2) it follows that the difference of the connections satisfy

〈
(D′

v −Dv)α,w
〉
= −

〈
α, (D′

v −Dv)w
〉
= −

〈
α,Γ(v, w)

〉
,

where Γ is defined by (17). The condition for µ to be a D′-momentum section is

(19) −Π♯α = Π♯〈α,D′µ〉 ,

for all 1-forms α on M . By pairing the right side with a 1-form β, we obtain
〈
β,Π♯〈α,D′µ〉

〉
= −〈α,D′

Π♯βµ〉

= −Π♯β · 〈α, µ〉+ 〈D′
Π♯βα, µ〉

= −Π♯β · 〈α, µ〉+ 〈DΠ♯βα, µ〉+
〈
(D′

Π♯β −DΠ♯β)α, µ
〉

= −Π♯β · Π(η, α) + Π(DΠ♯βα, η)−
〈
α,Γ(Π♯β, µ)

〉

= −(DΠ♯βΠ)(η, α)−Π(α,DΠ♯βη) +
〈
α,Γ(Π♯β,Π♯η)

〉
.

With this relation (19) takes the form
〈
α,Γ(Π♯β,Π♯η)

〉
= (DΠ♯βΠ)(η, α) + Π(α,DΠ♯βη) + 〈α,Π♯β〉

= B(α,Π♯β) ,
(20)

where
B(α, v) := (DvΠ)(η, α) + Π(α,Dvη) + 〈α, v〉

is C∞(M)-linear in α and v.
Since µ is a nowhere-vanishing vector field on M , there exists a 1-form η̄ on M , such

that 〈η̄, µ〉 = Π(η, η̄) = 1. Consider the expression

C(α, v, w) := 〈w, η̄〉B(α, v) + 〈v, η̄〉B(α,w)− 〈v, η̄〉〈w, η̄〉B(α,Π♯η) ,

which is C∞(M)-linear in α ∈ Ω1(M) and v, w ∈ X1(M), so that there is a unique
C∞(M)-linear map Γ : X(M)⊗ X(M) → X(M) that satisfies

〈
α,Γ(v, w)

〉
= C(α, v, w) .
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for all α, v, and w. Let now D′ = D + Γ for this choice of Γ.
Evaluating C on v = Π♯β and w = Π♯η yields

C(α,Π♯β,Π♯η) = 〈Π♯η, η̄〉B(α,Π♯β) + 〈Π♯β, η̄〉B(α,Π♯η)

− 〈Π♯β, η̄〉〈Π♯η, η̄〉B(α,Π♯η)

= B(α,Π♯β) .

This shows that Γ satisfies (20), which means that D′ satisfies (19), so that µ is a
D′-momentum map. Furthermore, C is symmetric in v and w, so that Γ(v, w) is
symmetric in v and w. It follows from (16), that D′ has the same TM-torsion as D.
(In particular, if D is torsion-free, so is D′.) Since by assumption D was assumed to
be Poisson anchored, we conclude by Proposition 3.1 that D′ is Poisson anchored. �

Corollary 3.6. Let (M,Π) be a regular Poisson manifold with non-zero Poisson struc-
ture. If the characteristic distribution Π♯(T ∗M) ⊂ TM admits a nowhere vanishing
section, then the cotangent Lie algebroid of (M,Π) is weakly hamiltonian.

Proof. Let the nowhere vanishing section of Π♯(T ∗M) be denoted by µ. Since Π
is regular, every point m ∈ M has a neighborhood U with Darboux coordinates
(q1, . . . , qr, p1, . . . , pr, y

1, . . . , ydimM−2r) in which the Poisson bivector field takes the
form Π = ∂

∂qi
∧ ∂

∂pi
. In local coordinates the section µ takes the form µ = αi ∂

∂qi
+ βi

∂
∂pi

.

It is easy to check that η = βidq
i − αidpi satisfies µ = Π♯η on U . Since the map

Π♯ : Ω1(M) 7→ X(M) is C∞(M)-linear, we can use a standard partition of unity argu-
ment to show that there is a globally defined form η ∈ Ω1(M) such that µ = Π♯η. Now
we can apply Theorem 3.5. �

The assumption of Theorem 3.5 that µ = Π♯η be nowhere vanishing implies that Π
is nowhere vanishing. This is not necessary for the cotangent Lie algebroid to have a
momentum map, as the Example 2.8 of Lie-Poisson manifolds shows. Even when Π
is regular, as is assumed in Corollary 3.6, a momentum section need not be nowhere-
vanishing, nor of the form Π♯η, as the following example shows.

Example 3.7. Let M = R
3 with Poisson structure Π = ∂x∧∂y. The trivial connection

D on T ∗M is Poisson anchored because its dual, the trivial connection on TM , is
torsion-free. Consider µ := −x∂x − y∂y. We have

〈Dµ, α〉 = −αxdx− αydy = −α + αzdz.

for all 1-forms α = αxdx+ αydy + αzdz. It follows that

Π♯〈Dµ, α〉 = Π♯(−α + αzdz) = −Π♯(α) .

This shows that µ is a momentum section, even though it vanishes on {(0, 0)} × R.
Consider now µ′ := µ − ∂z. Since µ′ and µ differ by a constant vector field, their

covariant derivatives are equal, Dµ = Dµ′, which implies that µ′ is a momentum section,
too. Since µ′ is not tangent to Π♯(T ∗M), it cannot be of the form Π♯η.

Remark 3.8. The vector field µ in Example 3.7 is the negative Euler vector field in
Darboux coordinates of the symplectic leaves. For the symplectic case it was shown
in [2, Thm. 6.9] that the vector field of a momentum section may have isolated zeros at
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which it has the form of the negative Euler vector field in Darboux coordinates. Such
a vector field exists on a compact manifold if and only if the Euler characteristic is
nonnegative. (See Theorem 3.15 below.)

3.2.3. Bracket-compatibility of momentum sections. The Lie algebroid cohomology of
the cotangent Lie algebroid of a Poisson manifold is the same as the Poisson cohomology.
In particular, the differential of a vector field v on M , viewed as Lie algebroid 1-form
on T ∗M , is given by

dT ∗Mv = dΠv = [v,Π]

= Lv Π .

Proposition 3.9. Let µ ∈ X(M) be a momentum section of the cotangent Lie algebroid
of a Poisson manifold (M,Π). Then µ is bracket-compatible if and only if it is a
Liouville vector field, that is Lµ Π = Π.

Proof. The right side of the condition (H3Poi) of bracket-compatibility of µ is given by

Π
(
〈Dµ, α〉, 〈Dµ, β〉

)
=

〈
Π♯〈Dµ, α〉, 〈Dµ, β〉

〉

=
〈
−Π♯α, 〈Dµ, β〉

〉

=
〈
α,Π♯〈Dµ, β〉

〉

= 〈α,−Π♯β〉

= Π(α, β)

for all α, β ∈ Ω1(M), where we have used that Π♯〈Dµ, α〉 = −Π♯α because µ is a
momentum section. It follows that the condition for bracket compatibility is

LµΠ = dΠµ = dT ∗Mµ = Π ,

which was the claim. �

Proposition 3.10. Let (M,Π) be a Poisson manifold. Assume that there is a 1-form η

on M such that the vector field µ = Π♯η is nowhere vanishing and Liouville, LµΠ = Π.
Then, for a suitable Poisson-anchored connection, the cotangent Lie algebroid of (M,Π)
is hamiltonian, with momentum section µ.

Proof. This follows from Theorem 3.5 and Proposition 3.9. �

The condition of bracket-compatibility of a momentum section of the form µ = Π♯η

can be expressed directly in terms of η as follows.

Proposition 3.11. Let η be a 1-form on the Poisson manifold (M,Π). Then the vector
field µ = Π♯η is Liouville if and only if

(21) (dη)
(
Π♯α,Π♯β

)
= −Π(α, β)

for all α, β ∈ Ω1(M).

Proof. The anchor ρ := −Π♯ : T ∗M → TM is a morphism of Lie algebroids. On Lie
algebroid forms it induces a map

ρ∗ : Ω(M) → X(M) ,
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that intertwines the differentials, dT ∗Mρ∗ = ρ∗d, where d is the de Rham differential.
On a 1-form η this is given explicitly by

(dT ∗Mρ∗η)(α, β) = (ρ∗dη)(α, β) = (dη)(−Π♯α,−Π♯β)

= (dη)(Π♯α,Π♯β)

for all α, β ∈ Ω1(M). Since µ = −ρ∗η and since dT ∗M = dΠ, it follows that the condition
for µ to be Liouville, dΠµ = Π, is given by Equation (21). �

Proposition 3.12. The cotangent Lie algebroid of every regular Poisson manifold is
locally hamiltonian.

Proof. It follows from the splitting theorem [11] that every point m ∈ M has a neigh-
borhood with coordinates

(q1, . . . , qr, p1, . . . , pr, y2r+1, . . . , yn)

mapping m to 0, in which Π has the form

Π =
∂

∂qi
∧

∂

∂pi
.

Let η := qidpi + dp1. We have

µ = Π♯η = −qi
∂

∂qi
−

∂

∂q1
,

which is nowhere vanishing in a possibly smaller neighborhood of m = 0. It is straight-
forward to check that the differential dη = dqi ∧ dpi satisfies (21), so that the assump-
tions of Proposition 3.10 are satisfied for the cotangent Lie algebroid restricted to the
coordinate neighborhood. �

Remark 3.13. Using Proposition 2.9, we see that a momentum section µ of the cotan-
gent Lie algebroid of (M,Π) is bracket-compatible if and only if

〈
TT ∗M(α, β), µ

〉
= −Π(α, β)

for all 1-forms α and β. This implies that, if Π is non-vanishing at a point, neither µ

nor TT ∗M can vanish at that point.

3.3. The tangent Lie algebroid over a Poisson manifold. We now consider the
usual tangent Lie algebroid A = TM , where M is a Poisson manifold. In this case,
a connection is related to its opposite A-connection, which is now a connection in the
usual sense, by

(22) Ďvw = [v, w] +Dwv = Dvw − TTM(v, w) ,

for all vector fields v and w on M . If D is torsion-free, it follows that TM is Poisson
anchored with respect to D if and only if DΠ = 0. Such connections are called Poisson
connections and will be considered in more detail in Section 3.5. In the general case,
we have the following surprising relation to the torsion of the cotangent Lie algebroid
of (M,Π).
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Theorem 3.14. The tangent Lie algebroid of a Poisson manifold (M,Π) is Poisson
anchored with respect to a connection on TM if and only if the T ∗M-torsion (13) of
the dual connection on T ∗M vanishes.

Proof. For the covariant derivative of the connection we have

〈DΠ♯αβ, v〉 = Π♯α · 〈β, v〉 − 〈β,DΠ♯αv〉

= 〈LΠ♯α β, v〉+ 〈β,LΠ♯α v〉 − 〈β,DΠ♯αv〉

= 〈LΠ♯α β, v〉 −
〈
β,Dv(Π

♯α)
〉
−
〈
β, TTM(Π♯α, v)

〉

= 〈LΠ♯α β, v〉 − v · 〈β,Π♯α〉+ 〈Dvβ,Π
♯α〉 −

〈
β, TTM(Π♯α, v)

〉

=
〈
LΠ♯α β − dΠ(α, β), v

〉
+Π(α,Dvβ)−

〈
β, TTM(Π♯α, v)

〉
.

With this relation we obtain for the T ∗M-torsion the following equation:
〈
TT ∗M(α, β), v

〉
= −〈DΠ♯αβ, v〉+ 〈DΠ♯βα, v〉 − 〈[α, β], v〉

=
〈
−LΠ♯α β + LΠ♯β α+ dΠ(α, β)− [α, β], v

〉

+
〈
dΠ(α, β), v

〉
− Π(α,Dvβ) + Π(β,Dvα)

+
〈
β, TTM(Π♯α, v)

〉
−

〈
α, TTM(Π♯β, v)

〉
.

The first line on the right side vanishes by Equation (12). The second line is equal to
(DvΠ)(α, β). We conclude that the T ∗M-torsion (13) of the dual connection and the
TM-torsion (14) of the connection on TM are related by

(23)
〈
TT ∗M(α, β), v

〉
= (DvΠ)(α, β) +

〈
β, TTM(Π♯α, v)

〉
−

〈
α, TTM(Π♯β, v)

〉

for all 1-forms α, β and all vector fields v on M .
By the derivation property of the covariant derivatives, we have

Ďv(u ∧ w) = Ďvu ∧ w + u ∧ Ďvw

=
(
Dvw + TTM(v, u)

)
∧ w + u ∧

(
Dvw + TTM(v, w)

)

= Dv(u ∧ w) + TTM (v, u) ∧ w + u ∧ TTM(v, w) .

It follows that the action of the covariant derivative and its opposite covariant derivative
on the bivector Π are related by

(ĎvΠ)(α, β) = (DvΠ)(α, β)−
〈
α, TTM(Π♯β, v)

〉
+
〈
β, TTM(Π♯α, v)

〉
.

Inserting Equation (23), we obtain

(ĎvΠ)(α, β) =
〈
TT ∗M(α, β), v

〉
,

for all 1-forms α and β and all vector fields v on M . We conclude that ĎΠ = 0 if and
only if TT ∗M = 0. �

The condition for µ ∈ Ω1(M) to be a D-momentum section of the tangent Lie
algebroid is

ι〈Dµ,v〉Π = v

for all vector fields v. This condition can be written as

Π♯ ◦ 〈Dµ, 〉 = idTM ,
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where 〈Dµ, 〉 : TM → T ∗M , v 7→ 〈Dµ, v〉. We conclude that Π must be symplectic
for TM to have a momentum section.

3.4. The symplectic case revisited. Assume that the Poisson bivector Π on M is
non-degenerate. Let ω = Π−1 be the symplectic form. In Proposition 2.2, we have seen
that in this case the axioms (H1)-(H3) of the Poisson and the presymplectic case are
equivalent. Moreover, the anchor of the cotangent Lie algebroid ρ = −Π♯ : T ∗M →
TM is an isomorphism of Lie algebroids. Therefore, we can equivalently consider the
following three Lie algebroids:

• the cotangent Lie algebroid of the Poisson manifold (M,Π),
• the tangent Lie algebroid over the Poisson manifold (M,Π),
• the tangent Lie algebroid over the symplectic manifold (M,ω).

Each one of the axioms (H1)-(H3) of hamiltonian Lie algebroids holds if it is, equiv-
alently, satisfied for all three Lie algebroids. It follows that the topological conditions
for (weakly) hamiltonian Lie algebroids over symplectic manifolds of Theorem 6.9 in
[2] apply to the Poisson case:

Theorem 3.15. Let (M,Π) be a non-degenerate Poisson (i.e. symplectic) manifold.
The following are equivalent:

(i) The cotangent Lie algebroid of (M,Π) is weakly hamiltonian.
(ii) The tangent Lie algebroid over (M,Π) is weakly hamiltonian.
(iii) The tangent Lie algebroid over (M,ω) is weakly hamiltonian.
(iv) M is either non-compact or compact with non-negative Euler characteristic.

Remark 3.16. The assumption of Theorem 3.5 that there is a nowhere vanishing
vector field on M is equivalent to M being non-compact or compact with zero Euler
characteristic. This shows that, in the non-degenerate case, Theorem 3.15 implies
Theorem 3.5.

Theorem 3.17. Let (M,Π) be a non-degenerate Poisson manifold. The following are
equivalent:

(i) The cotangent Lie algebroid of (M,Π) is hamiltonian.
(ii) The tangent Lie algebroid over (M,Π) is hamiltonian.
(iii) The tangent Lie algebroid over (M,ω) is hamiltonian.
(iv) The bivector field Π is exact in Poisson cohomology.
(v) The symplectic form ω is exact.

Proof. The theorem follows from Proposition 6.15 and Theorem 6.18 in [2]. Theo-
rem 6.18 relies on the recent work by Stratmann [8], and by Karshon and Tang [5], who
proved that if ω = dλ is an exact symplectic form on a (necessarily non-compact) man-
ifold M , then we can remove rays containing the zeros of λ by a symplectomorphism
and obtain a primitive of ω that is nowhere vanishing. �

There is an interesting subtlety about the equivalence of the cotangent Lie algebroid
of and the tangent Lie algebroid over a Poisson manifold. On the one hand, it follows
from Corollary 3.2 that T ∗M is Poisson anchored by a connection on T ∗M if the TM-
torsion of the dual connection on TM vanishes. On the other hand, Theorem 3.14 states
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that TM is Poisson anchored by a connection on TM if the T ∗M-torsion of the dual
connection on T ∗M vanishes. However, according to (23), the vanishing of the T ∗M-
torsion is equivalent to the vanishing of the TM-torsion of the dual connection only if
the connection is Poisson. This seeming contradiction is resolved by observing that the
isomorphism of Lie algebroids −Π♯ : T ∗M → TM does not map a connection D on
T ∗M to its dual connection on TM , but rather to the isomorphic connection D′

vw =
(Π♯ ◦Dv ◦ ω♭)w. This observation is made more precise by the following statement.

Proposition 3.18. Let ω be a symplectic form on M and Π = ω−1 its Poisson bivector
field. Let D be a connection on TM and D′ another connection on TM defined by

(24) D′
vu = Dvu− Π♯(ιuDvω) ,

for all vector fields u and v. The following are equivalent:

(i) D has vanishing torsion.
(ii) The cotangent Lie algebroid of (M,Π) is Poisson anchored by the dual connec-

tion of D.
(iii) The tangent Lie algebroid over (M,Π) is Poisson anchored by D′.
(iv) The tangent Lie algebroid over (M,ω) is symplectically anchored by D′.

Proof. Let D be a connection on TM . In the non-degenerate case Corollary 3.2 states
that T ∗M is Poisson anchored with respect to the dual connection if and only if the
TM-torsion of D vanishes. This shows that (i) and (ii) are equivalent.
The isomorphism of Lie algebroids −Π♯ : T ∗M → TM , maps the connection on T ∗M

to a connection D′ on TM given by

D′
vu := (Π♯ ◦Dv ◦ ω♭)u .

It follows that TM is Poisson anchored by D′ if and only if T ∗M is Poisson anchored
by D′. The covariant derivative can be expressed explicitly as

〈α,D′
vu〉 =

〈
α,Π♯

(
Dv(ω♭u)

)〉

= −
〈
Dv(ω♭u),Π

♯α
〉

= −v · 〈ω♭u,Π
♯α〉+

〈
ω♭u,Dv(Π

♯α)
〉

= −v · 〈α, u〉+ ω
(
u,Dv(Π

♯α)
)

= −ω(Dvu,Π
♯α) + (Dvω)(u,Π

♯α)

= 〈α,Dvu〉 − (Dvω)(Π
♯α, u) ,

for all 1-forms α. The second term can be written as

(Dvω)(Π
♯α, u) = −(Dvω)(u,Π

♯α) = −〈ιuDvω,Π
♯α〉

=
〈
α,Π♯(ιuDvω)

〉
.

From the last two equations we see that D′
vu is given by Eq. (24). We conclude that

TM is Poisson anchored by D′ if and only if T ∗M is Poisson anchored by the dual
connection of D, that is (ii) and (iii) are equivalent. It follows from Proposition 2.2
that (iii) and (iv) are equivalent. �
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Proposition 3.19. Let ω be a symplectic form on M and Π = ω−1 its Poisson bivector
field. Let D be a connection on TM and D′ the connection on TM defined by (24).
Let n be a vector field on M and let

µ := −Π♯n .

The following are equivalent:

(i) Dvn = −v for all v ∈ X(M).
(ii) n is a momentum section of the cotangent Lie algebroid of (M,Π) with respect

to the dual connection of D.
(iii) µ is a D′-momentum section of the tangent Lie algebroid over (M,Π).
(iv) µ is a D′-momentum section of the tangent Lie algebroid over (M,ω).

Proof. The proof is analogous to the proof of Proposition 3.18. Since Π♯ is by assump-
tion an isomorphism, it follows from (19) that a vector field n is a momentum section
of T ∗M with respect to a connection D if and only if

Dvn = −v .

This shows that (i) and (ii) are equivalent. The isomorphism of Lie algebroids −Π♯ :
T ∗M → TM maps D to D′ and the vector field n to the 1-form µ = −Π♯n. It
follows that (ii) and (iii) are equivalent. The equivalence of (iii) and (iv) follows from
Proposition 2.2. �

It is remarkable that condition (i) of Proposition 3.18 and condition (i) of Proposi-
tion 3.19 both do not depend on the Poisson or symplectic structure. This is consistent
with the topological condition (iv) of Theorem 3.15 which was proved in [2, Thm. 6.9].
We finally turn to the bracket-compatibility.

Proposition 3.20. Let ω be a symplectic form on M and Π = ω−1 its Poisson bivector
field. Let D be a connection on TM and D′ the connection on TM defined by (24).
Let n be a vector field and µ = −Π♯n. Assume that D has vanishing torsion and that
Dvn = −v for all v ∈ X(M) so that the equivalent statements of Propositions 3.18 and
3.19 hold. The following are equivalent:

(i) DnΠ = −Π.
(ii) The momentum section n of the cotangent Lie algebroid of (M,Π) with respect

to the dual connection of D is bracket-compatible.
(iii) The D′-momentum section µ of the tangent Lie algebroid over (M,Π) is bracket

compatible.
(iv) The D′-momentum section µ of the tangent Lie algebroid over (M,ω) is bracket

compatible.

Proof. In the non-degenerate case, Equation (19) implies that 〈α,Dn〉 = −α. It follows
from Proposition 2.9 that n is bracket-compatible if and only if

〈TT ∗M(α, β), n〉 = −Π
(
〈α,Dn〉, 〈β,Dn〉

)

= −Π(α, β) ,
(25)

for all 1-forms α and β. The T ∗M-torsion can be expressed by Equation (23) as
〈
TT ∗M(α, β), v

〉
= (DvΠ)(α, β) ,



HAMILTONIAN LIE ALGEBROIDS OVER POISSON MANIFOLDS 21

where we have used that, by assumption, TTM = 0. It follows that n is bracket-
compatible if and only if DnΠ = −Π, that is (i) and (ii) are equivalent. That −Π♯ :
T ∗M → TM is an isomorphism of Lie algebroids implies that (ii) and (iii) are equivalent.
The equivalence of (iii) and (iv) follows from Proposition 2.2. �

3.5. Relation with Poisson connections. In [1, Sec. 1(e), p. 65] a Poisson connec-

tion was defined to be a torsion-free connection D on the tangent bundle of a Poisson
manifold (M,Π) such that DΠ = 0. In this terminology we can rephrase the condition
for a tangent Lie algebroid to be Poisson anchored by a torsion-free connection in the
following way.

Proposition 3.21. Let D be a torsion-free connection on the tangent bundle of a
Poisson manifold (M,Π). The following are equivalent:

(i) TM is Poisson anchored by D.
(ii) D is Poisson.

Proof. Since D is torsion free, Equation (22) shows that Ď = D. It follows that
condition (i), which is ĎΠ = 0, is equivalent to DΠ = 0. �

It was shown in Theorem 2.20 of [10] that a Poisson connection exists if and only if
Π is regular. As corollary of Proposition 3.21 it then follows that the tangent algebroid
is Poisson anchored by a torsion-free connection if and only if Π is regular.
It follows from Corollary 3.2 that the cotangent Lie algebroid of a Poisson manifold

is Poisson anchored by the dual of every torsion-free connection, in particular by the
dual of a Poisson connection. However, Proposition 3.21 and Theorem 3.15 imply that
the T ∗M-torsion of the dual of a Poisson connection vanishes. It then follows from
Equation (25), that T ∗M cannot have a bracket-compatible momentum section with
respect to the dual of a Poisson connection unless Π = 0.
In [9, Sec. III] the notion of contravariant derivatives on vector bundles over a Poisson

manifold was introduced. They are the same as T ∗M-connections of the cotangent Lie
algebroid of the Poisson manifold. In [4, Sec. 2.5] a T ∗M-connection ∇ on TM was
called Poisson if ∇Π = 0. In this terminology we can rephrase the condition for T ∗M

to be Poisson anchored in the following way.

Proposition 3.22. Let (M,Π) be a Poisson manifold. Let D be a connection on T ∗M .
The following are equivalent:

(i) The cotangent Lie algebroid is Poisson anchored by D.
(ii) The opposite T ∗M-connection Ď is Poisson.

4. Interpretation in terms of Poisson structures on A∗

After a talk on hamiltonian Lie algebroids over presymplectic manifolds given in
Banff in 2017 by one of the authors, Alejandro Cabrera proposed interpreting the
compatibility conditions between a symplectic structure on M , a connection on a Lie
algebroid A over M , and a section of A∗ in terms of a certain pair of Poisson structures
on A∗. Since the natural setting for his idea involves a (not necessarily symplectic)
Poisson structure on M , the present paper is a natural setting for investigating his
proposal. This section is devoted to just that.
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Given a connection on A, the dual connection on A∗ allows one to lift the Poisson
structure Π on M to a horizontal bivector field Π̂ on the manifold A∗. There, one
also has the natural Lie-Poisson structure ΠA such as one has on the dual of any Lie
algebroid. In this context, a section µ of A∗ can be seen as a map between manifolds
equipped with bivector fields.

Now we can impose compatibility conditions such as [Π̂,ΠA] = 0 or that Π̂ + ΠA be

a Poisson structure (somewhat different, because Π̂ might not be a Poisson structure
if the connection is not flat). Then we can compare these compatibility conditions
with ours. Given such compatibility, to see whether a section µ of A∗ is a (bracket
compatible) momentum section, we can consider the behavior of µ with respect to the
bivector fields on its domain and codomain.

Example 4.1. For an action Lie algebroid with the trivial connection, the sections with

covariant derivative zero correspond to elements of g. The horizontal lift Π̂ is just the
product of Π with the zero Poisson structure on g∗. On the other hand, the algebroid
Lie-Poisson structure ΠA (which ignores the Poisson structure on M) is the sum of the

algebra Lie-Poisson structure Π′
A in the g∗ direction, which clearly commutes with Π̂,

and the “mixed structure” Π′′
A defined by the action (i.e. the anchor of the action Lie

algebroid). Either version of the condition of Cabrera thus reduces to [Π̂,Π′′
A] = 0,

which (as in the definition itself of Poisson anchoring), depends only on the action and
not on the bracket structure in the Lie algebra.

Now it is not hard to see that [Π̂,Π′′
A] = 0 if and only if the Lie derivative of Π by

the anchor applied to any constant section of the action algebroid is 0, which is just the
condition that the algebroid be Poisson anchored with respect to the trivial connection,
i.e., that the Lie algebra action be a Poisson action.
Next, we ask when a map µ : M → g∗, thought of as a section of A∗, is a Poisson map,

where A∗ carries the Poisson structure Π̂ + ΠA. The functions on A∗ which are affine
on fibres (which are enough for our purposes, since they suffice to test bivector fields)
are generated by two kinds. The first, which we will call “vertical” (V), are the linear
functions on fibres coming from fixed elements a of g. The second are “horizontal”
(H); these are the pullbacks by the bundle projection of functions f on M. By abuse of
notation, we will also denote the corresponding functions on A∗ by a and f . Thus, we
can write the Poisson bracket relations on A∗ as

{f, g}Π̂+ΠA
= {f, g}Π(26a)

{a, f}Π̂+ΠA
= ρa · f(26b)

{a, b}Π̂+ΠA
= [a, b].(26c)

(In the equations above, the Poisson bracket on the right side is that on M, while the
one on the left is that on A∗.)
To check whether a section µ is a Poisson map, it suffices to see whether each of the

three bracket relations above is preserved under pullback by µ. For the first (HH) one,
this is true for any µ, since the HH part of the Poisson structure on A∗ is essentially
the structure on M .



HAMILTONIAN LIE ALGEBROIDS OVER POISSON MANIFOLDS 23

For the second (VH) equation, we first note that the pulled back function a ◦ µ

can be written as the pairing 〈a, µ〉 (where µ in the first expression is a section of
A∗, while in the second it is a map from M to g∗). We thus have to check whether
{〈µ, a〉, f}Π = ρa · f for all Lie algebra elements a and all functions f on M . But that
is precisely the condition that µ be a momentum map (or section).
Finally, the third (VV) equation is satisfied exactly when the momentum map µ is a

Poisson map.
We conclude that the structure given by Equations (26) is a Poisson structure on

A∗ if and only if the action of g preserves the Poisson structure on M . When this is
satisfied, the section µ of A∗ is a Poisson map if and only if the action is hamiltonian
with momentum map µ.

We go on from the example of action Lie algebroids to the general case. To begin, we
translate the condition that two bivector fields commute with respect to the Schouten
bracket into a relation between the corresponding brackets on scalar functions, defined
for a bivector field Φ by

{f, g}Φ := Φ(df, dg).

The bracket is bilinear, antisymmetric, and a derivation in each argument. It satisfies
the Jacobi identity if and only if [Φ,Φ] = 0.

Lemma 4.2. Let Φ and Ψ be bivector fields on M . Let

C(f, g, h) := {f, {g, h}Ψ}Φ + {f, {g, h}Φ}Ψ + cycl. perm.

for f, g, h ∈ C∞(M). The following are equivalent:

(i) [Φ,Ψ] = 0
(ii) C(f, g, h) = 0 for all functions f, g, h.

Proof. It is straightforward to show, e.g. in local coordinates, that that C(f, g, h) is
obtained by applying the 3-vector field [Φ,Ψ] to f⊗g⊗h, which implies the equivalence.
It also follows that C(f, g, h) is totally antisymmetric and a derivation in each argument.

�

We now consider the special case where the underlying manifold is A∗, Φ = Π̂ is
the horizontal lift of a Poisson bivector on M , and Ψ = ΠA is the Poisson bivector

associated to the Lie algebroid structure on A∗. The bracket of Π̂ is given by

{f, g}Π̂ = {f, g}Π(27a)

{a, f}Π̂ = DXf
a(27b)

{a, b}Π̂ = Π(Da,Db) ,(27c)

where {f, g}Π is the Poisson bracket on M , Xf = { , f} is the hamiltonian vector field
generated by f , and the notation Π(Da,Db) denotes the tensor pairing 〈Da⊗Db,Π〉.
In local coordinates, we have

Π(Da,Db) = Πij(Dia)(Djb) ,
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where Di = D ∂

∂xi
. The bracket of ΠA is given by

{f, g}ΠA
= 0(28a)

{a, f}ΠA
= ρa · f(28b)

{a, b}ΠA
= [a, b] ,(28c)

where [ , ] is the bracket of A and ρ is the anchor, as usual. For an action Lie algebroid
and constant sections a, b we retrieve Equations (26). The following is the first of the
two main results of this section.

Theorem 4.3. Let A → M be a Lie algebroid equipped with a connection D. Let Π be

a bivector field on M . Let Π̂ ∈ X2(A∗) be the horizontal lift of Π and ΠA ∈ X2(A∗) the
Lie algebroid Poisson bivector field. The following are equivalent:

(i) The bivector fields commute,

[Π̂,ΠA] = 0 ,

with respect to the Schouten bracket.
(ii) The conditions

ĎaΠ = 0

(DvTA)(a, b)− R(v, ρa)b+R(v, ρb)a = 0

hold for all a, b ∈ A and all v ∈ Π♯(T ∗M), where TA is the A-torsion (7) and
R(v, w)a = DvDwa−DwDva−D[v,w]a the curvature.

Remark 4.4. The first condition in (ii) above is that the connection D be Poisson
anchored. The second is a compatibility condition between the Lie algebroid structure,
the connection, and the symplectic leaves of the Poisson structure. Note that TA in-
volves the Lie algebroid bracket as well as the anchor. It would be interesting to better
understand this condition.
In the case of an action Lie algebroid with the trivial connection, the second condition

always holds. Not only is the curvature zero, but the covariant derivative of the A-
torsion vanishes because the algebroid bracket of constant sections is again constant.

Proof of Theorem 4.3. We define

C(F,G,H) := {F, {G,H}ΠA
}Π̂ + {F, {G,H}Π̂}ΠA

+ cycl. perm.

for all F,G,H ∈ C∞(A∗). As noted in the proof of Lemma 4.2, C(F,G,H) is totally
antisymmetric and a derivation in each argument.
The condition C(F,G,H) = 0 holds if and only if it holds for F,G,H each being

either a function f, g, h on M or a section a, b, c of A. For three functions, we have

(29) C(f, g, h) = 0 ,

since {f, g}ΠA
= 0.
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For two functions on M and one section of A we have:
C(f, g, a) = {f, {g, a}ΠA

}Π̂ + {g, {a, f}ΠA
}Π̂ + {a, {f, g}ΠA

}Π̂
+ {f, {g, a}Π̂}ΠA

+ {g, {a, f}Π̂}ΠA
+ {a, {f, g}Π̂}ΠA

= −{f, ρa · g}Π + {g, ρa · f}Π

+ ρ(DXga) · f − ρ(DXf
a) · g + ρa · {f, g}Π

= −Π(df, dLρa g) + Π(dg, dLρa f)

+
〈
df, ρ(DXga)

〉
−

〈
dg, ρ(DXf

a)
〉
+ ρa · Π(df, dg)

= −〈Lρa dg,Π
♯df〉+

〈
dg, ρ(DΠ♯dfa)

〉

+ 〈Lρa df,Π
♯dg〉 −

〈
df, ρ(DΠ♯dga)

〉
+ ρa · Π(df, dg) .

(30)

For all sections a of A, 1-forms β on M , and vector fields v on M , we have

〈Ďaβ, v〉 = ρa · 〈β, v〉 − 〈β, Ďav〉

= 〈Lρa β, v〉+ 〈β,Lρa v〉 − 〈β, Ďav〉

= 〈Lρa β, v〉 −
〈
β, ρ(Dva)

〉
.

(31)

Using this relation, Equation (30) can be written as

C(f, g, a) = −〈Ďadg,Π
♯df〉+ 〈Ďadf,Π

♯dg〉+ ρa · Π(df, dg)

= (ĎaΠ)(df, dg) .

We conclude that the condition C(f, g, a) = 0 holds for all f , g, and a, if and only if

(32) ĎΠ = 0 ;

i.e., if and only if A is Poisson anchored with respect to D.
For one function on M and two sections of A, we have:

C(f, a, b) = {f, {a, b}ΠA
}Π̂ + {a, {b, f}ΠA

}Π̂ + {b, {f, a}ΠA
}Π̂

+ {f, {a, b}Π̂}ΠA
+ {a, {b, f}Π̂}ΠA

+ {b, {f, a}Π̂}ΠA

= −DXf
[a, b] +DXρb·f

a−DXρa·f
b

+ {f,Πij(Dia)(Djb)}ΠA
+ [a,DXf

b]− [b,DXf
a] .

(33)

Using the derivation property of the brackets and that {f,Πij}ΠA
= 0, we obtain

{f,Πij(Dia)(Djb)}ΠA
= Πij{f, (Dia)}ΠA

(Djb) + Πij(Dia){f, (Djb)}ΠA

= −Πij
(
ρ(Dia) · f

)
(Djb)− Πij(Dia)

(
ρ(Djb) · f

)

From Equation (31), we get

ρ(Dia) · f = ∂i · (ρa · f)− 〈Ďadf, ∂i〉 ,

so that
−Πij

(
ρ(Dia) · f

)
(Djb) = DXρa·f

b+Π(Ďadf,Db) .

Inserting this in Equation (33), we obtain

C(f, a, b) = −DXf
[a, b] + [DXf

a, b] + [a,DXf
b]

+ Π(Ďadf,Db) + Π(Da, Ďbdf) .
(34)
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In order to rewrite the second line, we will use the relation

Π(Ďaβ, γ) = ρa · Π(β, γ)− Π(β, Ďaγ)− (ĎaΠ)(β, γ)

= ρa · 〈γ,Π♯β〉 − 〈Ďaγ,Π
♯β〉 − (ĎaΠ)(β, γ)

= 〈γ, ĎaΠ
♯β〉 − (ĎaΠ)(β, γ) ,

(35)

which holds for all sections a of A and 1-forms β, γ on M . Using this relation, Equa-
tion (34) can be written as

C(f, a, b) = −DXf
[a, b] + [DXf

a, b] + [a,DXf
b]−DĎaXf

b+DĎbXf
a

− (ĎaΠ)(df,Db) + (ĎbΠ)(df,Da) .
(36)

Let TA be the A-torsion of D, R the (usual) curvature of D, and v a vector field on M .
Then

(DvTA)(a, b) = Dv

(
Dρab−Dρba− [a, b]

)

−Dρ(Dva)b+DρbDva+ [Dva, b]

−DρaDvb+Dρ(Dvb)a+ [a,Dvb]

= −Dv[a, b] + [Dva, b] + [a,Dvb]

+R(v, ρa)b+D[v,ρa]b−Dρ(Dva)b

− R(v, ρb)a−D[v,ρb]a+Dρ(Dvb)a

= −Dv[a, b] + [Dva, b] + [a,Dvb]−DĎav
b+DĎbv

a

+R(v, ρa)b− R(v, ρb)a .

(37)

Comparing this with Equation (36), we get

C(f, a, b) = (DXf
TA)(a, b)−R(Xf , ρa)b+R(Xf , ρb)a

− (ĎaΠ)(df,Db) + (ĎbΠ)(df,Da) .
(38)

We conclude that, under the assumption that ĎΠ = 0, the condition C(f, a, b) = 0
holds for all f , a, and b if and only if

(DXf
TA)(a, b)−R(Xf , ρa)b+R(Xf , ρb)a = 0

holds. Since the hamiltonian vector fields Xf span the distribution Π♯(T ∗M), this is
the second of conditions (ii) of the theorem.
Finally, for three sections of A, we have

C(a, b, c) = {a, {b, c}ΠA
}Π̂ + {a, {b, c}Π̂}ΠA

+ c.p.

= Π
(
Da,D[b, c]

)
+ {a,Π(Db,Dc)}ΠA

+ c.p.

= Πij(Dic)
(
Dj [a, b]

)
+ {a,Πij(Dib)(Djc)}ΠA

+ c.p.

= −(Dic)
(
DX

xi
[a, b]

)
+ {a,Πij(Dib)(Djc)}ΠA

+ c.p. ,

(39)

where we have used in the third line that we can permute a,b, and c cyclically in the
first term. In the last step, we have used that the hamiltonian vector field is defined
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by Xf = { , f} = −Π♯df , so that Xxi = −Πij∂j and ΠijDj = −DX
xi
. Using the

derivation property of the Poisson brackets, we get for the second term

{a,Π(Db,Dc)}ΠA
= {a,Πij(Dib)(Djc)}ΠA

= {a,Πij(Dib)}ΠA
(Djc) + (Dib){a,Π

ij(Djc)}ΠA

− {a,Πij}ΠA
(Dib)(Djc)

= [a,DX
xj
b](Djc)− (Dib)[a,DX

xi
c]− (ρa · Πij)(Dib)(Djc) .

(40)

For the last term on the right side of Equation (40) we have the relation

ρa · Πij = ρa ·Π(dxi, dxj)

= (ĎaΠ)(dx
i, dxj) + Π(Ďadx

i, dxj) + Π(dxi, Ďadx
j)

= 〈dxj, ĎaΠ
♯dxi〉 − 〈dxi, ĎaΠ

♯dxj〉 − (ĎaΠ)(dx
i, dxj)

= −〈dxj , ĎaXxi〉+ 〈dxi, ĎaXxj〉 − (ĎaΠ)(dx
i, dxj) ,

where we have used Equation (35). With this, the last term on the right side of
Equation (40) takes the form

(41) (ρa · Πij)(Dib)(Djc) = −(DĎaXxi
c)(Dib) + (DĎaXxi

b)(Dic)− (ĎaΠ)(Db,Dc) .

By inserting first (40) and then (41) into (39), we obtain

C(a, b, c) = −(Dic)
(
DX

xi
[a, b]

)
+ [a,DX

xj
b](Djc)− (Dib)[a,DX

xi
c]

+ (DĎbXxi
a)(Dic)− (DĎaXxi

b)(Dic)

+ (ĎaΠ)(Db,Dc) + c.p.

=
(
−DX

xi
[a, b] + [DX

xi
a, b] + [a,DX

xi
b]−DĎaXxi

b+DĎbXxi
a
)
(Dic)

+ (ĎaΠ)(Db,Dc) + c.p.

=
(
(DX

xi
TA)(a, b)−R(Xxi , ρa)b+R(Xxi , ρb)a

)
(Dic)

+ (ĎaΠ)(Db,Dc) + c.p. ,

where in the last step we have used Equation (37) for v = Xxi. We conclude that
C(a, b, c) = 0 does not yield a new condition, and our proof is complete. �

Our second result in this section concerns sections µ of A∗ as candidates for (bracket
compatible) momentum sections with respect to a connection which is Poisson anchored.

We will equip A∗ with the bivector field Π̂+ΠA, which, as we noted earlier, is generally
not a Poisson structure if the connection is not flat. We may then ask when µ is a

“Poisson” map, i.e. when it pulls back brackets on functions for Π̂+ΠA on A∗ to those
for Π on M .

Definition 4.5. Let (M,Φ) and (N,Ψ) be pairs consisting of a manifold and a bivector
field on the manifold. A smooth map ϕ : M → N will be called a bivector map if

ϕ∗{f, g}Ψ = {ϕ∗f, ϕ∗g}Φ

for all f, g ∈ C∞(N).
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Theorem 4.6. Let Π be a Poisson bivector field on M . Let A → M be a Lie algebroid
equipped with a Poisson anchored connection D. Let Π̂ be the horizontal lift of Π to
A∗ and ΠA the Lie algebroid Poisson bivector field on A∗. A section µ of A∗ is a
bracket compatible momentum section if and only if it is a bivector map from (M,Π)

to (A∗, Π̂ + ΠA).

Proof. As in the proof of Theorem 4.3, we can consider separately those functions on
A∗ that come from functions f, g on M and those that come from sections a, b of A.
By adding Equations (27) and Equations (28), we obtain

{f, g}Π̂+ΠA
= {f, g}Π(42a)

{a, f}Π̂+ΠA
= DXf

a+ ρa · f(42b)

{a, b}Π̂+ΠA
= Π(Da,Db) + [a, b] .(42c)

Equation (42a) shows that for f and g there are no conditions on µ to be a bivector
map, just as in the case of an action Lie algebroid with the trivial connection.
For a and f , we deduce from Equation (42b) that for µ to be a bivector map,

(43) (DXf
a) ◦ µ+ ρa · f = {〈µ, a〉, f}Π

must be satisfied. This equation can be rewritten as

〈ρa, df〉 = ρa · f

= {〈µ, a〉, f}Π − (DXf
a) ◦ µ

= Xf · 〈µ, a〉 − 〈µ,DXf
a〉

= 〈DXf
µ, a〉

= Π
(
〈Dµ, a〉, df

)
,

where we have used the Definition (2) of the dual connection. Since this relation
must hold for all functions f , we see that (43) is equivalent to condition (H2Poi) of
Definition 1.2, the condition for µ to be a momentum section.
Finally, for a and b, we deduce from Equation (42c) that for µ to be a bivector map,

we must have

(44)
(
Π(Da,Db) + [a, b]

)
◦ µ = {〈µ, a〉, 〈µ, b〉}Π .

The left side of Equation (44) can be written as
(
Π(Da,Db) + [a, b]

)
◦ µ = Π

(
〈µ,Da〉, 〈µ,Db〉

)
+ 〈µ, [a, b]〉 .

Assuming that (H2Poi) holds, the right side of Equation (44) can be written as

{〈µ, a〉, 〈µ, b〉}Π = Π
(
d〈µ, a〉, d〈µ, b〉

)

= Π
(
〈Dµ, a〉+ 〈µ,Da〉, 〈Dµ, b〉+ 〈µ,Db〉

)

= Π
(
〈Dµ, a〉, 〈Dµ, b〉

)
+ 〈µ,Dρab〉 − 〈µ,Dρba〉

+Π
(
〈µ,Da〉, 〈µ,Db〉

)
.

Using the last two equations, Equation (44) takes the form

0 = Π
(
〈Dµ, a〉, 〈Dµ, b〉

)
+ 〈µ, TA(a, b)〉 ,
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which is the torsion form (8) of (H2Poi). �
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