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The iron-based superconductor FeSe1−xTex (FST) has recently gained significant attention as
a host of two distinct physical phenomena: (i) Majorana zero modes which can serve as potential
topologically protected qubits, and (ii) a realization of the orbital selective Mott transition (OSMT).
In this Letter, we connect these two phenomena and provide new insights into the interplay between
strong electronic correlations and non-trivial topology in FST. Using linearized quasiparticle self-
consistent GW plus dynamical mean-field theory, we show that the topologically protected Dirac
surface state has substantial Fe(dxy) character. The proximity to the OSMT plays a dual role, it
facilitates the appearance of the topological surface state by bringing the Dirac cone close to the
chemical potential, but destroys the Z2 topological superconductivity when the system is too close to
the orbital selective Mott phase (OSMP). We derive a reduced effective Hamiltonian that describes
the topological band. Its parameters capture all the chemical trends found in the first principles
calculation. Our findings provide a framework for further study of the interplay between strong
electronic correlations and non-trivial topology in other iron-based superconductors.

Introduction. Quantum information science is a surg-
ing frontier of physical science. By creating quantum
states and utilizing them as quantum bits (qubits) [1],
it promises vastly improved performance over what we
has been achieved in computing, sensing, communication,
and cryptography in the 20th century [2, 3]. Several mile-
stones of quantum technologies, such as universal quan-
tum computers and the notion of quantum supremacy,
have been reached successfully. Today’s quantum tech-
nologies are built on a few tens of qubits. They often suf-
fer from computation-destroying noise [4], spurring the
search for bigger and more robust quantum systems. Ma-
jorana states are emergent quantum states at the bound-
ary of topological superconductors. This quantum sys-
tem provides a topologically protected route to realize
more robust qubits [5–7] against noise than the front
runners such as superconducting qubits and trapped-ion
qubits.

Among various topological superconductor candidates,
FeSe1−xTex (FST) compounds hold an unique posi-
tion [8–10] by realizing topological superconductivity
(TPSC), Majorana states, and time-reversal symmetry
breaking in a single material. These compounds are
correlated quantum materials with a s-wave supercon-
ducting gap [11–13]. In the normal phase, parity-even
and parity-odd bands are inverted along the Γ − Z di-
rection in the first Brillouin zone, and as a result, the
spin-orbit coupling (SOC) opens an energy gap at the
band crossing point [8]. This enables non-trivial Z2

bulk-band topology and “spinless” two-dimensional sur-
face Dirac cone[14–16]. This non-trivial bulk-band topol-

ogy makes the superconductivity at the surface fascinat-
ing. When the chemical potential touches the “spinless”
surface state, the bulk s-wave superconductivity induces
topologically non-trivial superconductivity at the “spin-
less” surface states [17]. In contrast, the surface states
are topologically trivial when the chemical potential is far
from the “spinless” surface bands [9]. Following a theo-
retical prediction[9, 17], signatures of Majorana states
were found at the core of the vortices and at antiphase
structural domain walls of FST [14, 18, 19].

FST has also been intensively studied due to the rich
physical phenomenon related to its multi-orbital corre-
lated nature, such as orbital differentiation (which takes
place when some orbitals display significant levels of cor-
relation) and its extreme version, the realization of an
orbital selective Mott phase (OSMP) [20–22]. This phase
features a localized Fe(dxy) orbital, whereas the rest of
the Fe(d) orbitals remain itinerant [20–22]. Up to now,
the concepts of Majorana states and OSMP have been
addressed separately as independent phenomena. In this
Letter, we show that both are intimately connected.

Density functional theory (DFT) [23, 24] is very suc-
cessful in predicting the topological properties of weakly
correlated materials, and it has been used as a stan-
dard method of discovery and screening new topological
systems. However, it is well known that DFT fails to
describe the strong correlation phenomena, such as the
OSMP, which occurs in multi-orbital correlated materi-
als. Hence, there are important disagreements between
DFT bands and experimental observations on FST. For
instance, in undoped FST, DFT puts the surface Dirac
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cone excitation energy ∼ 100 meV above the Fermi level
[8, 9]. This implies that the surface is topologically triv-
ial in the undoped state, and only becomes non-trivial
when the system is sufficiently electron-doped, in stark
contrast to the experimental findings [25]. DFT plus dy-
namical mean-field theory (DMFT) flattens the quasi-
particle bands and brings the Dirac surface bands closer
to the chemical potential [26].

In this Letter, we demonstrate that the strong orbital-
selective correlations and the non-trivial topology of FST
are intimately connected. We use linearized quasiparticle
self-consistent GW [27, 28] combined with DMFT[29–37]
(LQSGW+DMFT) [38, 39] to treat static and dynamic
correlations. Taking into account both electronic cor-
relation and SOC, we successfully reproduces the bulk
band topology and surface Dirac cone excitation energy
of FST. We then derive an effective Hamiltonian to elu-
cidate the character of the band which disperse along
kz and undergoes band inversion. This turns out to be
our main character, the correlated Fe(dxy) orbital which
can undergo an orbital selective Mott transition (OSMT),
rather than the chalcogen pz orbital as it is usually as-
sumed in the literature [26, 40]. We use this Hamiltonian
to elucidate the sensitivity of the emerging TPSC of FST
to the chemical variations in concentration of Se and Te
and to the chalcogen height and conclude that electronic
correlations are significant in determining the region of
TPSC, which should be not too far but not to close to
the OSMT.

Method. We model the FeSe0.5Te0.5 alloy by replac-
ing it by a crystal structure with an averaged chalcogen
height, in the spirit of the virtual crystal approximation
(see Figs. 1(a) and (b)). We use the lattice constants
of FeSe0.49Te0.51 determined from the neutron powder-
diffraction experiments of Ref. [41], and the chalcogen
height, ZSe=1.48 Å, from high-resolution x-ray diffrac-
tion data of FeSe0.45Te0.55 [42]. We confirm that this
Se chalcogen height of FST (x ≈ 0.5) is an optimized
value for the description of angle resolved photoemission
(ARPES) experiments along the Γ−M line (see the Sup-
plemental Material (SM) [43] Sections I, II.A, and III).

The quasiparticle bands of FST was computed using
the Hamiltonian,

HLQSGW +DMF T +SOC(k) = HLQSGW +DMF T (k)

+ fF e-dZimp(λ1 + ∆λ1)(L · S)f †
F e-d

+ fSe/T e-pλ2(L · S)f †
Se/T e-p,

(1)

where the SOC term was added to the
HLQSGW +DMF T (k) from the Hnl

QP (k) (double count-
ing compensated non-local LQSGW Hamiltonian, see
SM[43] Section II.B-F). In Eq.1, fF e-d/Se-p/T e-p is the
projection operator to Fe-d / Se-p / Te-p orbitals.
Zimp(λ1+∆λ1) is the quasiparticle SOC of Fe(d) orbital
renormalized from electronic correlations [46–49]. λ2 is
the average of the SOC of Se/Te(p) states. (See SM [43]
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Figure 1. Structural inversion symmetry, and the band inver-
sion in experiments [8, 44, 45] and the present theory. (a) and
(b) The present structural model for FST and the atomic co-
ordinate in the unit cell. The Cn indicates a chalcogen atom,
and the inversion center is [0,0,0]. (c) Experimental quasi-
particle dispersions in the Γ-Z k point line, adapted from
P. D. Johnson et al.(ARPES1 from Ref.[44]), H. Lohani et
al.(ARPES2 from Ref.[45]), and Z. Wang et al.(ARPES3 from
Ref.[8]). (d) Theoretical quasiparticle dispersions in the Γ-Z k
point line in the present LQSGW+DMFT+SOC framework.
Parity eigenvalues for each band are denoted in (d), as α′

(+), α (+), β (+), and xy− (−). The band has the z2 orbital
character is also denoted in (c) and (d).

Section II.G-H). For the LQSGW+DMFT scheme, we
used ComDMFT [39]. For more details, see Ref.[50].

Correlated Electronic Structure and Topological Su-
perconductivity. Figs. 1(c) and (d), displays the
ARPES quasiparticle dispersions along the Γ-Z direc-
tion from several experimental groups [8, 44, 45], and
from LQSGW+DMFT+SOC quasiparticle dispersions,
respectively. Even parity bands of α′, α, and β are shown,
as well as an odd parity band which is the main character
in this Letter. The odd parity band is the most dispersive
band along the kz axis and is responsible for the topo-
logical phenomena. We anticipate that this band will be
primarily made of a correlated Fe(dxy) orbital close to an
OSMT and we anticipate this fact, which will be demon-
strated later in this Letter, by using the notation xy−

(See Eq.2 and Eq.3). As seen in Fig.1(d), a SOC-induced
gap opens at the band crossing point between α′ and xy−

bands. Although there are differences in the energy posi-
tion of the xy− band at Z among different experiments,
there is consensus that there is a band inversion between
the α′ and xy− bands [8, 44, 45]. Fig.1(c) displays that,
in Refs. [44, 45], the flat band just beneath the chemical
potential undergoes a switch of band character (parity)
from α′ (+) to xy− (−) in the Γ-Z direction. In contrast,
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Figure 2. Theoretical (001) surface state electronic struc-
ture in the LQSGW+DMFT+SOC near Γ, compared with
the experimental surface electronic structure in the ARPES
of Ref.[14]. The black horizontal dashed line is the original
chemical potential in the present theory. The purple horizon-
tal dashed line is the chemical potential for the electron dop-
ing of 0.035 (electrons/formula unit), +6 meV in the present
theory. The orange horizontal dashed line is the chemical po-
tential for the hole doping of 0.025 (electrons/formula unit), -4
meV in the present theory. For the comparison of the present
theory to the ARPES of Ref.[14], the original chemical poten-
tial in the present theory is shifted to the purple horizontal
dashed line.

in Ref.[8], the energy position of the xy− band at Z is at
least below -0.2 eV (See SM [43] Section I.B).

Fig. 1(d) presents the electronic structure obtained
within the LQSGW+DMFT+SOC method along Γ-Z.
The chemical potential lies within the SOC-induced gap,
which is in agreement with ARPES experiments [8, 44,
45]. The even-parity α′ band lies below the chemical
potential at Γ and above it at Z, while the odd-parity
xy− band lies above the chemical potential at Γ and
below it at Z. This band inversion, in the presence of
time-reversal and inversion symmetries, leads to a non-
trivial Z2 invariant at the bulk, resulting in the emer-
gence of a surface state Dirac cone at Γ in the (001)
surface. Our calculations are in good agreement with
ARPES experiments [8, 44, 45], indicating that it prop-
erly describes the topological properties of the material.
Interestingly, the energy position of the xy− band at Z
obtained by the present theory lies between the exper-
iments of Refs. [44, 45] and Ref. [8]. This has been
attributed to the sensitivity of the xy− band dispersion
to the orbital-selective correlation of the Fe(dxy) orbital,
which is affected by the Se/Te ratio. Additionally, the
energy position of the Fe(dz2 ) driven bands is in agree-
ment with the experiment of Ref. [8]. This confirms the
effectiveness of the LQSGW+DMFT+SOC framework in
treating electronic correlations.

Figure 2 displays the surface electronic structure near

Figure 3. Orbital selective Mott transition effects on the elec-
tronic structure of FST. (a) Band structure of FST in the
LQSGW+DMFT framework. (b) Band structure of FST in
the orbital selective Mott phase (OSMP) by forcing Zxy to
zero from the LQSGW+DMFT result. For (a) and (b), the
size of green, red, and blue circles present Fe(dxz/yz), Fe(dxy),
and Se(pz) orbital contributions, respectively. The size of blue
circles for the Se(pz) orbital is multiplied by the factor of 1.6.
(c) Same as (a) in a wide energy window. (d) Same as (b) in
a wide energy window. For (c) and (d), the size of red, blue,
and orange circles present Fe(dxy), Se(pz), and Fe(s) orbital
contributions, respectively. The parity for α, α′, β, and xy−

bands are denoted in (a) and (b). The characterization of p−

z

majority and p+
z majority bands are denoted for (c) and (d)

(See Eq.3 for the p−

z and p+
z majority bands).

Γ. It was obtained by constructing a 99-layer slab from
the HLQSGW +DMF T +SOC(k) of the bulk in Eq.1 (See
SM [43] Section II.I). A comparison of the surface state
Dirac cone of this theory with the ARPES data reported
in Ref. [14] for FST reveals an excellent agreement after
a small chemical potential shift of +6 meV (0.035 elec-
trons/formula unit). This agreement implies that the
present theoretical tools can be used for the quantitative
description of the TPSC of FST. This agreement requires
the following important ingredients (i) the static self-
energy driven lowering of the Fe(dxz/yz) orbital energy
level, (ii) the dynamical correlation driven renormaliza-
tion of bands, and (iii) the renormalized SOC from the
consideration of the orbitally off-diagonal self-energy (See
SM [43] Section I).
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Orbital Selective Mott Transition and Non-Trivial Z2

Topology. We now demonstrate the assertion that the
xy− odd-parity band, which is the most dispersive band
along kz, has a dominant Fe(dxy) orbital contribution
hybridizing with the Se(pz) orbital. The band inversion
in this band drives the Z2 topology. Its sensitivity to
the orbital selective correlation derives from its dominant
Fe(dxy) orbital character depicted in Fig. 3. This is not
widely recognized in the literature and this band is often
labeled as a pz band in the literature [26, 40] with regards
to the band dispersion along Γ-Z.

Analysis of Fig. 3 reveals that the OSMT in FST re-
moves the non-trivial Z2 topology of the bulk from the
xy− band, as the β (even parity) and xy− (odd par-
ity) bands merge to identical flat bands at the chemical
potential, with the loss of spectral weights due to the in-
coherent nature of the Fe(dxy) orbital in the OSMP. The
p−

z majority band is also shifted up in the OSMP due
to the removed hybridization induced repulsion between
|p−

z 〉 and |xy−〉 orbitals (Eq.3). This explains the disap-
pearance of the Dirac band from the enhancement of the
Te ratio in the experiment[25] (Further analysis of the Z2

topology is provided in the SM [43] Section IV).
We now construct an effective Hamiltonian in Eq.2

and Eq.3 to analyze the relation between the non-trivial
Z2 topology and the substantial correlation strength in
the Fe(dxy) orbital. The Hamiltonian was written in the
basis of two Fe(dxy) orbitals (|xy1〉 and |xy2〉) and two
Se(pz) orbitals (|pz1〉 and |pz2〉) in the unit cell, and was
transformed to the crystal momentum space with kx,y

set to 0 for the Γ-Z momentum path. The tight-binding
parameters in Eq.2 and Eq.3 are effective variables that
encompass contributions from longer range hoppings and
other dispersive orbitals. The effective on-site energy
levels for Fe(dxy) and Se(pz) orbitals are ǫ̃xy and ǫ̃pz

,
respectively. The effective nearest neighboring hopping
between Fe(dxy) orbitals is t̃xy, and the effective nearest
neighboring hopping between Se(pz) orbitals is t̃pz

. The
effective out-of-plane hopping of Se(pz) is t̃2, and the ef-
fective nearest hopping between Fe(dxy) and Se(pz) is t̃1.
All effective hopping elements are real and positive, thus
accounting for the parity of all four orbitals (See SM [43]
Section V).

Hmn(0, 0, kz) =




ǫ̃xy −4t̃xy 2t̃1 2t̃1

−4t̃xy ǫ̃xy 2t̃1 2t̃1

2t̃1 2t̃1 ǫ̃pz 4t̃pz +4t̃2eikz

2t̃1 2t̃1 4t̃pz +4t̃2e−ikz ǫ̃pz




(2)

We transform the Hamiltonian Hmn(0, 0, kz) in Eq.2 to
the Hm̃ñ(0, 0, kz) in Eq.3 using the basis transformation
as |xy−〉 = 1√

2
(|xy1〉−|xy2〉), |xy+〉 = 1√

2
(|xy1〉+ |xy2〉),

|p−
z 〉 = 1√

2
(|pz1〉 + |pz2〉), and |p+

z 〉 = 1√
2
(|pz1〉 − |pz2〉).

The Hamiltonian Hm̃ñ(0, 0, kz) in Eq.3 is in the order
of |xy−〉, |xy+〉, |p−

z 〉, and |p+
z 〉 basis. In this transfor-

mation, from the even parity of the Fe(dxy) wave func-
tion, |xy−〉 and |xy+〉 indicate odd parity Fe(dxy) and
even parity Fe(dxy) basis, respectively. Concerning the
odd parity of the Se(pz) wave function, |p−

z 〉 and |p+
z 〉

indicate odd parity Se(pz) and even parity Se(pz) basis,
respectively.

Hm̃ñ(0, 0, kz)

=




ǫ̃xy−4t̃xy 0 4t̃1 0

0 ǫ̃xy+4t̃xy 0 0

4t̃1 0 ǫ̃pz +4t̃pz +4t̃2coskz −4it̃2sinkz

0 0 +4it̃2sinkz ǫ̃pz −4t̃pz −4t̃2coskz




(3)

Analysis of Eq.3 reveals that the |xy+〉 basis does not
hybridize with any other vector in the basis at Γ-Z, and
can be regarded as a non-bonding state of Fe(dxy). The
band associated with this orbital character is the β band,
which is consistent with Eq.3 as it has an even parity with
very weak dispersion in Γ−Z, as shown in Fig.1. In con-
trast, the |xy−〉 orbital hybridizes with the |p−

z 〉 orbital
from the 4t̃1 term in Eq.3, which is enabled by the in-
version symmetry of the system [8]. The band resulting
from this hybridization is the xy− band in Fig.1, pos-
sessing an odd parity. It is important to note that the
xy− band is primarily composed of the Fe(dxy) orbital,
due to the substantially higher energy level of the |xy−〉
orbital than that of the |p−

z 〉 orbital in Eq.3. The xy−

band acquires a band dispersion in kz from the 4t̃1 term.
We now isolate how the parameters in the quasipar-

ticle Hamiltonian, Eq.3, vary as the chemistry and the
structure of the compound modifies the strength of the
correlations. Here, the mass renormalization parame-
ters of the Fe(d) orbital, Zm, are the key parameters.
This renormalization is expressed by tmn,renormalized =√

Zmtmn

√
Zn. Zxy approaches to zero when the corre-

lation is enhanced with a larger Te ratio [20, 21]. It
can thus be concluded that the reduction of the t̃1 term,
Fe(dxy)-Se(pz) hopping, from the OSMT in FST leads to
a down shifted energy level of the xy− band, as well as a
decrease in the kz dependent dispersion of the xy− band.

t̃1 →
√

Zxy t̃1, t̃xy → Zxy t̃xy (4)

Eq. 4 demonstrates the renormalization of hopping el-
ements, t̃1 and t̃xy, due to the dynamical correlation of
the Fe(dxy) orbital. Through Eq. 3 and Eq. 4, it is ev-
ident that in the vicinity of the OSMP, the two Fe(dxy)
dominant bands, β and xy−, coalesce into a single flat
band due to the lack of hybridization with the |p−

z 〉 or-
bital. This implies that close to the OSMP, the Z2 topol-
ogy is trivial, with a removal of band inversion between
the α′ and xy− bands, which is consistent with the band
structure in Fig. 3. The effective Hamiltonian in Eq. 3
successfully captures the electronic structure in Fig. 3,
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Figure 4. The ZSe dependent phase diagram of the band in-
version condition for the non-trivial Z2 bulk topology and the
energy position of the Dirac surface band. (a) The ZSe depen-
dent variation of (i) the α/α′ bands top and bottom energy
positions (ǫα/α′ (Z) and ǫα/α′ (Γ)), and (ii) the xy− band top
and bottom energy positions (ǫxy−(Γ) and ǫxy−(Z)). The α/α′

bands degenerate along the Γ-Z momentum path in computa-
tions without SOC. Linear lines are for the interpolating from
the given data (dots) in the LDA. The range of the ZSe for
the band inversion are denoted, [1.38,1.61] Å. (b) Same as (a)
in the LQSGW with the ZSe interval of [1.41,1.52] Å for the
band inversion. (c) Same as (a) in the LQSGW+DMFT with
the ZSe interval of [1.42,1.51] Å for the band inversion. (d) A
schematic diagram for the band inversion condition and the
energy position for the emergence of the Dirac surface band
(ωDirac).

having a substantial Fe(s) orbital contribution in the p+
z

majority band (See SM [43] Section V).

In Fig. 4, we present the ZSe dependent top and bot-
tom energy positions of the α/α′ band and the xy−

band in Γ−Z from the LDA, the LQSGW, and the
LQSGW+DMFT frameworks. The condition for the
band inversion is that the top of the xy− band is above
the bottom of the α/α′ band (k = Γ), and the bot-
tom of the xy− band is below the top of the α/α′ band
(k = Z). The range of the ZSe for the band inversion
gives rise to the non-trivial Z2 topology is determined
to be [1.38,1.61] Å for the LDA, [1.41,1.52] Å for the
LQSGW, and [1.42,1.51] Å for the LQSGW+DMFT, re-
spectively. The electronic correlation renormalizes the
bandwidth of the xy− band, reducing the range of ZSe

for the non-trivial Z2 topology. It is also found that the
electronic correlation shifts down the α/α′ band with the
reduced bandwidth of the band. The electronic corre-
lation effects on the xy− band explains the removal of
the TPSC of FST upon enhancing Te or Se ratio which
changes the chalcogen heights [25]. Furthermore, in the
DFT framework, the substitution of Te for Se brings a
minor enhancement of the t̃1 term while substantially
enhances the t̃2 term, leading to the OSMP with van-
ishing t̃1 contribution (See SM [43] Section VI). These
results demonstrate the essential roles of the electronic
correlation for the observation of the TPSC in FST. As
the strength of the correlations is very sensitive to the
chalcogen height, we suggest that uniaxial strain can be
an ideal tool for controlling the region where non-trivial
topology is realized.

Conclusion. The new understanding of the dominant
orbital character of the topologically non-trivial band of
FST (i.e. the xy− band) from Fe(dxy) and its relation
to the OSMP in FST provides new insights into puzzling
observations in this compound and calls for further stud-
ies. The surface layers of FST are more correlated than
the bulk layers due to reduced screening and the missing
hopping matrix elements, which should result in a sur-
face OSMT at a larger Se concentration than in the bulk.
This provides a qualitative explanation for the puzzling
phase diagram of Refs. [10, 25] and calls for more quanti-
tative studies using inhomogeneous qsGW+DMFT [51],
to explore in more detail surface properties. Further-
more, the OSMP leads to the formation of surface local
moments which will be coupled to the itinerant states of
Fe(dxz/yz) from the double exchange, leading to possible
time reversal symmetry breaking states, accounting for
the recent experimental observations [10, 16].

The strong sensitivity of the parameters controlling the
topological band to the chalcogen height, suggests con-
trolled experiments where stress can be used to stabilize
the region of the phase diagram where TPSC with its
resulting Majorana zero modes are observed. This has
been shown in recent experiments on LiFeAs [52].

Quantitatively, the successful application of the
LQSGW+DMFT+SOC method which enabled the the-
oretical estimations of the parameters of TPSC of FST
and their dependence on the structure and the chemistry
of the compound suggests that theoretically guided ma-
terial design is feasible in this area. It could be applied
to other iron pnictides and more generally to the nor-
mal state of other correlated topological materials which
become superconductors at low temperatures.
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I. ARPES VERSUS LQSGW+DMFT+SOC

A. In-plane Γ-M line

Fig. S1 presents existing quasiparticle dispersions of FST (x ≈ 0.5) from ARPES experiments [S8, S21, S22, S44,
S45] in the Γ-M k point line, as compared to quasiparticle dispersions obtained in the LDA+SOC, LQSGW+SOC, and
LQSGW+DMFT+SOC frameworks. We use the present structural model for FST for computations of quasiparticle
dispersions (See Section II.A). Fig. S1(c) shows an inconsistency in the energy scale of bandwidths between the
LDA+SOC and ARPES experiments; the latter is smaller by a factor of 4-5. This result strongly suggests that
electronic correlation-induced renormalization beyond the LDA is essential to accurately describe the experimental
bulk electronic structures in ARPES [S22, S44]. While the LQSGW+SOC in Fig. S1(d) improves upon the LDA+SOC
with a reduction in bandwidth by a factor of 0.5 and a shrinking of two hole pockets, α′ and α, these calculations are
still not in full agreement with ARPES experiments [S8, S21, S22, S44, S45].

Fig. S1(e and f) presents a comparison between the quasiparticle band structure obtained from
LQSGW+DMFT+SOC and ARPES data (along Γ-M) taken from Refs. [S22, S44]. The results demonstrate a good
agreement, implying the validity of the present structural model for FST and the importance of electronic correlations
for the description of bulk electronic structure. In particular, the SOC induced gap at Γ for the α and α′ bands is
consistent with the refined ARPES from Ref. [S44] as seen in Fig. S1(f), validating the implementation of SOC in the
main text and Table S1.

Fig. S1(e) shows good agreement between LQSGW+DMFT+SOC calculations and ARPES results from Ref. [S22]
for electron bands near the M point (δ/γ). In comparison, the β hole band exhibits a different Fermi momentum
and effective mass in the present LQSGW+DMFT+SOC results compared to experiments [S22, S44], as depicted in
Fig.S1(e and f). As discussed in the main text, the β band is primarily composed of xy orbitals and experiences the
orbital selective Mott transition in FST. Therefore, (i) its dispersion is sensitive to the chemical composition of the
FST alloy and (ii) the band has a small Fermi velocity. These factors give rise to the observed variation in its Fermi
momentum, as shown in Fig.S1(a and b) [S22, S44].

B. Out-of-plane Γ-Z line

In Figure S2, we present quasiparticle dispersions from ARPES experiments [S8, S44, S45] along the Γ-Z k point
line, compared to theoretical quasiparticle dispersions obtained in the LDA+SOC, the LQSGW+SOC, and the
LQSGW+DMFT+SOC frameworks. Even parity bands of α′, α, and β are noted. The odd parity band, xy−,
is also noted which arises from the hybridization of the xy and Se(pz) orbitals (see main text). Comparison of the
LQSGW+DMFT+SOC result to the LDA+SOC and LQSGW+SOC results illustrates the strong electronic correla-
tion driven renormalization of the xy− band, which is dominated by the xy orbital. As shown in the main text, this
xy orbital experiences an opening of the Mott gap in an orbital selective Mott transition. This correlated nature of
the xy− band in FST alloy is likely the cause of the experimental variation of the xy− band dispersion reported in
Refs.[S8, S44, S45], as seen in Fig.S2(a). We note that the present LQSGW+DMFT+SOC results for the xy− band
dispersion have an energy position at k = Z that lies between the ARPES experiments of Ref.[S8] and Refs.[S44, S45].
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II. COMPUTATIONAL DETAILS

A. Crystal structure

In FeSe0.5Te0.5, the isovalent substitutions Se and Te do not form an ordered array but a rather disordered alloy.
Furthermore, the Se and the Te chalcogen heights are very different. In this work, we replace this alloy by a periodic
crystal of FeSe with effective parameters in the spirit of the virtual crystal approximation. This has the advantage
of preserving the inversion symmetry, facilitating the analysis of the topological band. Here, we explain the choice of
parameters for this average crystalline structure.

The crystal structure of FeSe0.5Te0.5 taken from the experiment in Refs.[S41, S42], with lattice constant of [a=3.793
Å, c=5.955 Å] and Chalcogen height of Se, ZSe=1.48 Å, was employed in our LQSGW, LQSGW+DMFT, and DFT
computations. This structure is also found to be the optimum for the description of ARPES experiments as seen in
Figs.S10 and S11. Furthermore, the inversion symmetry of the unit cell is maintained for the Z2 topology resulting
from the parity inversion of bands in the presence of the time reversal symmetry, as indicated in Refs.[S8, S9, S14].

B. LQSGW calculation

LQSGW calculations are performed using Flapwmbpt [S28], which is based on full-potential linearized augmented
plane wave plus local orbital method. The following parameters for the basis are used: muffin-tin (MT) radii (RMT
) in Bohr radius are 2.26 for Fe and 2.15 for Se. Wave functions are expanded by spherical harmonics with l up to 4
for Fe and 4 for Se in the MT spheres, and by plane waves with the energy cutoff determined by RMTF e × Kmax
= 7.7 in the interstitial (IS) region. The Brillioun zone was sampled with 6 × 6 × 4 k-point grid. Product basis is
expanded by spherical harmonics with l up to lmax =6 in the MT spheres and RMTF e × Kmax = 12.0 in IS region.
All unoccupied states are taken into account for polarizability and self-energy calculation.

C. Wannier function constructions

34 Wannier functions are constructed by using Wannier90 package [S55] with a frozen energy window between -10
eV to 10 eV and with a disentanglement energy window of -10 eV to 50 eV: Fe-s, Fe-p, Fe-d, Se-p, Se-d orbitals. Initial
trial orbitals are constructed by using Muffin-tin orbitals in LAPW basis set with well-defined angular momentum
characters.

D. Double counting energy

The electron self-energy included in both ab initio LQSGW and DMFT is the local Hartree term and the local GW
term. They can be calculated as follows.

Σ̃DC,i,j(iωn) = 2
d-orbital∑

k,l=m′

l

G̃l,k(τ = 0−)Ũiklj(iν = 0) −
d-orbital∑

k,l

∫
dτG̃l,k(τ)W̃ikjl(τ)eiωnτ . (S1)

where i,j,k and l are orbital indices. G̃ is the local Green’s function. Ũ is constructed by using Slater’s integrals in
the constraint random phase approximation.

Ũi,j,k,l(iνn) =
∑

m′

1
m′

2
,m′

3
m′

4

Si,m1
Sj,m2

S−1
k,m3

S−1
l,m4

2l,even∑

k=0

4π

2k + 1
〈Y m′

1

l |Y q
k Y

m′

4

l 〉〈Y m′

2

l Y q
k |Y m′

3

l 〉F k(iνn).

(S2)

Here, we assume that the frequency-dependent interaction is of the form

Ũijkl(iνn) = Ũijkl + F 0(iνn)δilδjk, (S3)
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that is, only the dynamical screening of the Slater-Condon parameter F 0 is taken into account. The other Slater-
Condon parameters, which define Ũijkl, are frequency independent and approximated by their value at νn = ∞. W̃
is the local screened Coulomb interaction given by

W̃ikjl(iνn)=Ũikjl(iνn) +
d-orbital∑

mnpq

Ũimnl(iνn)P̃mpqn(iνn)W̃pkjq(iνn), (S4)

where P̃ is the local polarizability and it is calculated as

P̃mpqn(iνn) =
∫

dτG̃n,p(τ)G̃q,m(−τ)eiνnτ . (S5)

E. DMFT self-consistent equation

At each iteration of the fermionic DMFT self-consistent loop, the fermionic Weiss-field is constructed in the following
way.

G̃ =



(

1
Nk

∑

k

f †
k
G(k, iωn)fk

)−1

+ Σ̃imp




−1

(S6)

Here fk is the fermionic projection operator to correlation orbitals (five Fe-d orbitals) and given by fk = 〈r|Wik〉
where |Wik〉 = 1√

Nk

∑
R

|WiR〉eik·R. Σ̃imp is impurity self-energy from impurity solver.
Within ab initio LQSGW+DMFT, lattice Green’s function is calculated by embedding impurity self-energy into

the LQSGW Green’s function

G−1(k, iωn) = iωn − Hnl
QP (k) − fkΣ̃imp(iωn)f †

k
, (S7)

where Hnl
QP is non-local LQSGW Hamiltonian[S56], in which double-counting self-energy is compensated up to linear

order in frequency.

Hnl
QP (k) =

√
Z−1

DC(k)HQP

√
Z−1

DC(k) − fkΣ̃DC(ω = 0)f †
k
. (S8)

Here, HQP is Wannier interpolated LQSGW Hamiltonian into 15 × 15 × 10 k-grid. Z−1
DC(k) = 1 −

fk

(
∂Σ̃DC(ω = 0)/∂iωn

)
f †

k
.

ComDMFT necessitates the solution of an impurity model action. In ComDMFT, hybridization-expansion
continuous-time quantum Monte Carlo (CTQMC) is adopted. CTQMC is a stochastic approach to obtain numeri-
cally exact solutions of an impurity model. An impurity model consists of a small interacting system, the impurity,
immersed in a bath of non-interacting electrons. The action of the impurity model relevant for GW+DMFT reads

S = −
∫∫ β

0

∑

ij

c†
i (τ)G̃−1

ij (τ − τ ′)cj(τ ′)dτdτ ′

+
1
2

∫∫ β

0

∑

ijkl

c†
i (τ)c†

j(τ ′)Ũijkl(τ − τ ′)ck(τ ′)cl(τ)dτdτ ′ ,

(S9)

where c†
i creates an electron in the generalized orbital i (which includes both spin and orbital degrees of freedom), β

is the inverse temperature, G̃ij is the fermionic Weiss field in eq. (S6) and Ũijkl in eq. (S2).
We assume that the frequency-dependent interaction is of the form

Ũijkl(iνn) = Ũijkl + F 0(iνn)δilδjk, (S10)

that is, only the dynamical screening of the Slater-Condon parameter F 0 is taken into account, for the simplicity
in the numerical algorithm based on hybridization-expansion CTQMC. The other Slater-Condon parameters, which
define Ũijkl, are frequency independent and approximated by their value at νn = ∞. DMFT self-consistent equation
is solved at T=300K.
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Table S1. Parameters for the implementation of SOC in the LQSGW+DMFT+SOC. The extraction of the SOC parameter in
the DFT+SOC and the LQSGW+SOC is explained in Eq.S12, Fig.S3, and Fig.S4. The quasiparticle renormalization, Zimp of
Fe(d) orbital is taken from the LQSGW+DMFT result for xz/yz orbital (Zxz/yz). Zimp(λ1+∆λ1) (in meV) is the renormalized
quasiparticle SOC of Fe(d) chosen to fit ARPES experiments [S8, S21, S22, S44, S45] by considering the orbitally off-diagonal
self-energy and the dynamical self-energy. The Se/Te(p) averaged SOC constant applied in Se is λ2 (in meV). The extracted
SOC constant (in meV) from the DFT for Fe(d), Se(p), and Te(p) are λF e(d),DF T , λSe(p),DF T , and λT e(p),DF T , respectively. We
use the local density approximation (LDA) for the DFT. The extracted SOC constant (in meV) from the LQSGW for Fe(d),
Se(p), and Te(p) are λF e(d),LQSGW , λSe(p),LQSGW , and λT e(p),LQSGW , respectively.

Zimp

0.35

Zimp(λ1+∆λ1) λF e(d),DF T λF e(d),LQSGW

42 70 50

λ2 λSe(p),DF T and LQSGW λT e(p),DF T and LQSGW

450 200 700

F. LQSGW+DMFT quasiparticle Hamiltonian construction

By linearizing LQSGW+DMFT self-energy, we obtained LQSGW+DMFT quasiparticle Hamiltonian
(HLQSGW +DMF T (k)) in local-orbital basis in the following way.

HLQSGW +DMF T (k)

=
√

Zimp

(
Hnl

QP (k) + fF e-dΣimp(ω = 0)f †
F e-d

)√
Zimp, (S11)

where Zimp =
(

1 − fF e-d
∂Σimp(ω)

∂ω |ω=0f †
F e-d

)−1

G. Spin-orbit coupling for LQSGW+DMFT+SOC

In Table S1, we present the parameters for the implementation of spin-orbit coupling (SOC) in the
LQSGW+DMFT+SOC Hamiltonian (HLQSGW +DMF T +SOC(k)) described in the main text. We have extracted
the SOC parameter in the DFT+SOC and the LQSGW+SOC as shown in Eq.S12, Fig.S3, and Fig.S4. The λ1 + ∆λ1

term denotes the correlation-enhanced spin-orbit coupling of Fe(d) from the orbitally off-diagonal self-energy (∆λ1

term). Furthermore, the quasiparticle residue of Fe(d), Zimp, is taken into account. We chose the corresponding
Zimp(λ1 + ∆λ1) value of 42 meV (λ1 + ∆λ1 = 120 meV) to fit ARPES experiments [S8, S21, S22, S44, S45] (See
Fig.S1 and Fig.S2). Compared to the DFT and LQSGW results on the SOC of Fe(d) in Table S1, the present value
of Zimp(λ1 + ∆λ1) is consistent with previous results for other Hund metals, LiFeAs and Sr2RuO4[S47–S49]. Esti-
mating ∆λ1 from DMFT computations is challenging due to (i) the large size of the quantum impurity Hilbert space
constructed from 10 spin-orbitals, and (ii) the sign problem in the continuous time quantum Monte Carlo (CTQMC)
impurity solver arising from the orbital off-diagonal hybridization function[S57].

H. Extraction of the spin-orbit coupling constant from the DFT and the LQSGW

In this work, we extract the spin-orbit coupling constant in the DFT+SOC and the LQSGW+SOC by constructing
HDF T (k) and HLQSGW (k) (in Eq.S12) from the DFT and the LQSGW in the local orbital basis includes Fe(d) and
Se,Te (p), respectively, using the maximally localized Wannier function method. For the DFT+SOC computations in
Fig.S3, crystal structures of FeTe and FeSe are adopted from Refs.[S58, S59]. For the LQSGW+SOC computations in
Fig.S4, the lattice constant of FeSe0.5Te0.5 and the Se and Te heights in FeSe0.5Te0.5 are adopted from Refs.[S41, S42].
We then assume the local spin-orbit coupling for Fe(d) and Se,Te (p), and compare the band structure of HDF T +λ(k)
and HLQSGW +λ(k) to the band structure of the DFT+SOC and the LQSGW+SOC, respectively, with variation of
the λ variables. We found that in the LDA, the local λ variables 0.07 eV (Fe(d)), 0.20 eV (Se(p)), and 0.70 eV (Te(p))
are good approximations for the SOC effects on the band structure, as shown in FigureS3. In the LQSGW, the local
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λ variables 0.05 eV (Fe(d)), 0.20 eV (Se(p)), and 0.70 eV (Te(p)) are good approximations for the SOC effects on the
band structure, as shown in FigureS4.

HDF T +λ or LQSGW +λ(k) =

HDF T or LQSGW (k)

+fF e-dλF e(d),DF T or LQSGW (L · S)f †
F e-d

+fSe-p or T e-pλSe(p) or T e(p),DF T or LQSGW (L · S)f †
Se-p or T e-p (S12)

I. Surface electronic structure

The electronic structure of the (001) surface of the LQSGW+DMFT+SOC was computed by converting
the HLQSGW +DMF T +SOC(k) bulk Hamiltonian to real space via Fourier transformation, resulting in a Hamil-
tonian with finite hopping range of |Ri| < 5 (where i=x, y, z). The Hamiltonian was then converted to
HLQSGW +DMF T +SOC(kx, ky, Rz) using Fourier transformation in z, using 99 layers for the slab. Hopping elements
between the bottom and top of the slab in Rz were set to zero, forming the slab Hamiltonian. Comparison of the
density of states for both the bulk and surface of FeSe0.5Te0.5 in the LQSGW+DMFT+SOC (as shown in Figure S5)
implies that the slab Hamiltonian was constructed properly from the bulk Hamiltonian.

III. SPIN-ORBIT COUPLING ENHANCEMENT AND CHALCOGEN HEIGHT

Figure S6, S7, S8, S9, S10, and S11 illustrate the spin-orbit coupling (Fe(d)) and Chalcogen height ZSe dependent
electronic structure of FST. It is shown that the agreement with the ARPES experiments [S22, S44, S45] is made for
the condition of λ1+∆λ1=120 meV, ZSe=1.48 Å, from the present LQSGW+DMFT+SOC method. We note that this
λ1+∆λ1 value of 120 meV is larger than the spin-orbit coupling constant of Fe(d) from LDA+SOC and LQSGW+SOC
(TableS1). This enhancement of the spin-orbit coupling realized in ARPES experiments [S22, S44, S45] demonstrates
the importance of the orbitally off-diagonal self-energy (∆λ1) in the realistic description of the electronic structure of
FeSe0.5Te0.5. This factor is further verified from the band energy levels of α, α′, and β from xz/yz and xy orbitals
at k = Γ, as shown in Table.S2. We consider the effective Hamiltonian at Γ for the three orbital model as shown in
Eq.S13.

H = λeff (l · s)t2g
+

1
2

εt,eff (c†
xy,↑cxy,↑ + c†

xy,↓cxy,↓ − c†
xz,↑cxz,↑ − c†

xz,↓cxz,↓ − c†
yz,↑cyz,↑ − c†

yz,↓cyz,↓) (S13)

εt,eff is the effective tetragonal splitting between xz/yz and xy, and λeff is the effective spin-orbit coupling of the
three orbital model. The λeff (l · s)t2g

of Eq.S13 is given by Eq.S14, in the order of xz, ↑, yz, ↑, xy, ↑, xz, ↓, yz, ↓, and
xy, ↓ states.

λeff (l · s)t2g
=




0 −i
λeff

2 0 0 0 i
λeff

2

i
λeff

2 0 0 0 0 − λeff

2

0 0 0 −i
λeff

2
λeff

2 0
0 0 i

λeff

2 0 i
λeff

2 0
0 0 λeff

2 −i
λeff

2 0 0
−i

λeff

2 − λeff

2 0 0 0 0




(S14)

The eigenvalue of three Kramer’s doublets, A, B, and C for the Hamiltonian of Eq.S13 are presented in Eq.S15.

ǫA =
1
4

(
√

4ε2
t,eff − 4εt,effλeff + 9λ2

eff + 2εt,eff + λeff )

ǫB =
1
4

(−
√

4ε2
t,eff − 4εt,eff λeff + 9λ2

eff + 2εt,eff + λeff )

ǫC = −1
2

λeff (S15)
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In the LQSGW+DMFT+SOC study of FeSe0.5Te0.5, there are three Kramer’s doublets at k = Γ from the present
structural model. The effective Hamiltonian at Γ for the three orbital model is in Eq.S13 and Eq.S14. Three Kramer’s
doublets, A, B, and C in Eq.S15, the solution of Eq.S13, are identified as β, α, and α′ bands respectively. The model
Hamiltonian of Eq.S13 have a validity when those three bands are separated from other bands in energy with respect
to the energy scale of spin-orbit coupling, which is the case for the present LQSGW+DMFT+SOC result on FST
(k=Γ). The splitting energy of the α and α′ bands, as shown in Table.S2, is in good agreement with experimental
values from Refs.[S44, S45]. With the relation of λeff =Zimp(λ1 + ∆λ1), the consistency in TableS2 implies the
existence of the enhancement of the spin-orbit coupling from the orbitally off-diagonal self-energy (∆λ1). Notably,
the same energy scale of λeff and εt,eff in FeSe0.5Te0.5 indicates a sizable contribution of the xy orbital. This is in
contrast to the case of LiFeAs, where the energy scale of λeff is in the perturbative regime with respect to εt,eff ,
thus having a small effect of the xy orbital to the splitting energy of α and α′ bands.

Table S2. The effective spin-orbit coupling λeff and tetragonal field εt,eff in the LQSGW+DMFT+SOC. The difference in
eigenvalues, ǫB −ǫC , for the splitting energy of α and α′ bands the LQSGW+DMFT+SOC at k = Γ (from Eq.S15) is compared
with experimental values from ARPES[S44, S45]. (All quantities in meV unit)

λeff (LQSGW+DMFT+SOC)=Zimp(λ1 + ∆λ1) εt,eff (LQSGW+DMFT) ǫB − ǫC=ǫα − ǫα′ ǫα − ǫα′ (ARPES)[S44, S45]
42 42 21 17-30

IV. DETAILED DISCUSSION ON THE Z2 BULK TOPOLOGY AND THE ORBITAL SELECTIVE MOTT

PHASE

Fig.S12 illustrates the relationship between the orbital selective Mott phase and Z2 bulk topology in FST. As
demonstrated in Ref.[S21], an increase in the Te ratio in FST leads to an orbital selective Mott transition, resulting
in the emergence of a new Fermi surface sheet at the X point, with a hybridized orbital character of xz/yz and z2.
Our calculations of the electronic structure in the orbital selective Mott phase corroborate the results of Ref.[S21],
showing that the switching of the parity in Γ-X and Z-R momentum paths corresponds to the emergence of the new
Fermi surface sheet. This transition results in a trivial Z2 topology.

Fig.S12(a and b) present the electronic structure of FST obtained from the LQSGW+DMFT framework in the
Γ-X and Z-R momentum paths. Consistent with Ref.[S60], five Fe(d) dominant bands are characterized as three
E(X,R)g

bands and two E(X,R)u
bands at k=X and R. Ref.[S60] further revealed that the three E(X,R)g

bands at
k=X and R have a hybridized orbital character of xy, xz/yz, and z2, which suggests that band characterization from
the orbital character is problematic at these momentums. Additionally, the even parity β band is connected to the
topmost occupied even parity E(X)g

band at X point, while the odd parity xy− band is connected to the lowermost
unoccupied odd parity E(X)g

band at X point.
Fig. S12(c and d) present the electronic structure of FST in the orbital selective Mott phase, wherein Zxy (the

quasiparticle residue of the xy orbital) is set to zero. As a result of this transition, the β and the xy− bands become
incoherent and isolated, leading to the removal of one of the E(X,R)g

bands. Furthermore, the topmost occupied odd
parity E(X,R)g

band merges with the lowermost unoccupied even parity E(X,R)g
band at X and R points, thereby

preserving the inversion symmetry driven degeneracy of parity and isolating the xy driven bands. This switch in
parity is the cause of the new Fermi surface sheet at k=X observed in Ref. [S21]. The xz/yz and the z2 hybridized
orbital character of this band is consistent with the space group analysis in Ref. [S60].

The parity of band at the time reversal invariant momentum is shown in Fig.S12(e and f) for the FST (x ≈ 0.5) and
the orbital selective Mott phase, respectively. As discussed in the main text, the FST (x ≈ 0.5) exhibits a non-trivial
Z2 invariant of bulk, due to the band inversion in the Γ-Z momentum path (Fig.S12(e)). With the orbital selective
Mott transition, the band inversion in the Γ-Z momentum path is removed and the parity at X and R point is odd
(Fig.S12(c and d)). However, due to the tetragonal symmetry, the bulk Z2 invariant of this system in the orbital
selective Mott phase is trivial (Fig.S12(f)).

V. ELECTRONS QUASIPARTICLE EFFECTIVE HAMILTONIAN

Fig. S13 compares the electronic structure obtained from the LQSGW+DMFT framework to that derived from
a four-band quasiparticle effective Hamiltonian (see main text), which has dominant Fe(dxy) and Se(pz) orbital
character. The comparison implies that the model captures both the essential electronic structure of the Fe(dxy)
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and Se(pz) bands, as well as the topological transition from the non-trivial to trivial Z2 phase in the orbital selective
Mott phase by forcing Zxy to zero. It is important to note that the tight-binding parameters used in the effective
Hamiltonian in Table S3 differ from those in Fig. S16, owing to contributions from longer range hopping and the
hybridization with other dispersive orbitals.

Table S3. The tight-binding parameters of the electrons quasiparticle effective Hamiltonian in the main text and the Fig.S13
(All quantities in eV unit).

ǫ̃xy ǫ̃pz t̃pz t̃xy t̃1 t̃2

-0.204 -4.282 0.295 0.064 0.300 0.223

VI. CRYSTAL STRUCTURE DEPENDENT ELECTRONIC STRUCTURES AND TIGHT-BINDING

PARAMETERS

A. Crystal structure model dependency in the DFT

Fig.S14 depicts a comparison of the local density approximation (LDA) electronic structures of the FeTe and FeSe
chemical formulas in the lattice constant of FeSe0.5Te0.5 with varying chalcogen heights from 1.48 Å to 1.72 Å, the
chalcogen heights range observed in FeSe0.5Te0.5.[S41, S42]. It was observed that with the enhancement of chalcogen
heights, the xy− band in the Γ-Z momentum path was shifted down for both FeTe and FeSe chemical formulas. In
addition, the bottom energies of the xy− band at Z were similar in value for both FeTe and FeSe chemical formulas
with the same chalcogen height. However, the top energy of the xy− band at Γ was found to be higher in FeTe than
in FeSe in the same chalcogen height, thereby indicating that the substitution of Te for Se increases the xy− band
dispersion in the Γ-Z momentum path.

Fig.S15 presents the chalcogen heights dependence of (i) the nearest neighboring hopping between xy and pz, and
(ii) the nearest out-of-plane hopping between chalcogen pz orbitals, and (iii) the difference of xz/yz and xy orbital
energy level, for the FeSe and FeTe chemical formula model with the lattice constant of FeSe0.5Te0.5 [S41, S42]. It
is revealed that the strong xy-pz hopping from the reduction of the chalcogen heights gives rise to the upshift of the
center of the dispersive xy− band in Γ - Z from Ref.[S8], as shown in Fig.S14. The substitution of Se for Te leads
to the reduction of the out-of-plane hopping of the chalcogen pz orbital and the corresponding reduction of the xy−

band dispersion in Γ-Z, as shown in Fig.S14. We emphasize that this substitution brings a minor variation in the
xy-pz hopping.

We also show that the enhancement of the chalcogen heights from 1.48 (Å) to 1.72 (Å) gives rise to a slight reduction
of the difference in energy levels of the axial orbital-xz/yz and planar orbital-xy, around 63 meV for the FeTe model
and 83 meV for the FeSe model. The scale of the difference in energy levels is approximately 100 meV, which is
comparable to the energy scale of the spin-orbit coupling in the LDA level, 70 meV. This comparable energy scale
implies that in the LDA, xz/yz and xy orbitals should be considered together when including the spin-orbit coupling.

B. Chalcogen height dependency in the LQSGW+DMFT

Fig. S16 (a, b, and c) present the chalcogen height (ZSe) dependent elements of Hamiltonian in the maximally
localized Wannier function (MLWF) from the LQSGW and LQSGW+DMFT frameworks, starting from the average
structure for FST. It is shown that the dynamical correlation in the LQSGW+DMFT substantially renormalizes
the t1 term in comparison to the LQSGW. Additionally, three major ZSe dependent variations of the tight-binding
parameter are recognized for the LQSGW+DMFT result: (i) a reduction of the t1 term, (ii) an enhancement of the t2

term, and (iii) an enhancement of the tpz
term due to the enhancement of ZSe. Fig. S16 (d, e, and f) present the ZSe

dependent band structure in the LQSGW+DMFT; due to the large ǫxy − ǫpz
value in Fig. S16 (c), the major feature

for the ZSe dependence of the xy− band is explained from the variation of the t1 term. This reduction of the t1 term
results in (i) a down shifted energy level of the xy− band and (ii) a less dispersive xy− band in Γ−Z, as shown in Fig.
S16 (d, e, and f). Furthermore, Fig. S16 (g, h, and i) presents the band dispersion in the LQSGW+DMFT+SOC in
the present structure of FST (ZSe=1.48 (Å)), with orbital weights for xy, xz/yz, and pz. It is demonstrated that the
pz orbital has a minor contribution to the xy− band. We note that the tight-binding parameter (t,ǫ) in Fig. S16 (a,
b, and c) is different from the effective parameter (t̃,ǫ̃) in Table S3, due to the factor that the effective parameter in
Table S3 absorbs longer range hopping and other dispersive orbitals contribution.
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Figure S1. (a) Experimental quasiparticle dispersions in the Γ-M k point line, adapted from H. Miao et al.(ARPES4 from
Ref.[S22]), J. Huang et al.(ARPES5 from Ref.[S21]), and P. D. Johnson et al.(ARPES1 for the Fermi momentum (FS) of
β from Ref.[S44]). (b) Refined experimental quasiparticle dispersions near Γ in the Γ-M k point line, adapted from P. D.
Johnson et al.(ARPES1 from Ref.[S44]), H. Lohani et al.(ARPES2 from Ref.[S45]), and Z. Wang et al.(ARPES3 from Ref.[S8]).
(c), (d), and (e) Theoretical quasiparticle dispersions in the Γ-M k point line are compared to the experiment of ARPES4
from Ref.[S22], (c) LDA+SOC, (d) LQSGW+SOC, and (e) LQSGW+DMFT+SOC theoretical frameworks, respectively. (f)
Theoretical quasiparticle dispersions in the Γ-M k point line from the LQSGW+DMFT+SOC is compared to the experiment
of ARPES1 from Ref.[S44]. Band indices for hole bands (α′, α, and β) and electron bands (γ and δ) are denoted.
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Figure S2. (a) Experimental quasiparticle dispersions in the Γ-Z k point line, adapted from P. D. Johnson et al.(ARPES1 from
Ref.[S44]), H. Lohani et al.(ARPES2 from Ref.[S45]), and Z. Wang et al.(ARPES3 from Ref.[S8]). (b), (c), and (d) Theoretical
quasiparticle dispersions in the Γ-Z k point line are compared to ARPES experiments, (b) LDA+SOC, (c) LQSGW+SOC, and
(d) LQSGW+DMFT+SOC theoretical frameworks, respectively. The parity eigenvalue for each band is denoted in (d), as α′

(+), α (+), β (+), and xy− (−).
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Figure S4. (a) Band structure in the LQSGW+SOC of FeSe is compared with the band structure in the LQSGW+λ method
in Eq.S12 with λF e(d),LQSGW =0.05 eV, and λSe(p),LQSGW =0.20 eV, in the Γ-M momentum path. (b) Same as (a) in the Γ-Z
momentum path. (c) Band structure in the LQSGW+SOC of FeTe is compared with the band structure in the LQSGW+λ
method in Eq.S12 with λF e(d),LQSGW =0.05 eV, and λT e(p),LQSGW =0.70 eV, in the Γ-M momentum path. (d) Same as (c) in
the Γ-Z momentum path.
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Figure S5. Density of states of FST for the bulk and the surface electronic structures in the LQSGW+DMFT+SOC.
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compared with ARPES of Ref.[S22] (c) Electronic structure in the LQSGW+DMFT+SOC with forcing ZSe=1.38 (Å) and
(λ + ∆λ)F e(d)=(λ1 + ∆λ1)=120 meV compared with ARPES of Ref.[S22] (d) Electronic structure in the LQSGW+DMFT
with forcing ZSe=1.38 (Å) compared with ARPES of Ref.[S44] (e) Electronic structure in the LQSGW+DMFT+SOC with
forcing ZSe=1.38 (Å) and (λ + ∆λ)F e(d)=(λ1 + ∆λ1)=60 meV compared with ARPES of Ref.[S44] (f) Electronic structure in
the LQSGW+DMFT+SOC with forcing ZSe=1.38 (Å) and (λ + ∆λ)F e(d)=(λ1 + ∆λ1)=120 meV compared with ARPES of
Ref.[S44]
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Figure S8. (a) Electronic structure in the LQSGW+DMFT with forcing ZSe=1.43 (Å) compared with ARPES of Ref.[S22]
(b) Electronic structure in the LQSGW+DMFT+SOC with forcing ZSe=1.43 (Å) and (λ + ∆λ)F e(d)=(λ1 + ∆λ1)=60 meV
compared with ARPES of Ref.[S22] (c) Electronic structure in the LQSGW+DMFT+SOC with forcing ZSe=1.43 (Å) and
(λ + ∆λ)F e(d)=(λ1 + ∆λ1)=120 meV compared with ARPES of Ref.[S22] (d) Electronic structure in the LQSGW+DMFT
with forcing ZSe=1.43 (Å) compared with ARPES of Ref.[S44] (e) Electronic structure in the LQSGW+DMFT+SOC with
forcing ZSe=1.43 (Å) and (λ + ∆λ)F e(d)=(λ1 + ∆λ1)=60 meV compared with ARPES of Ref.[S44] (f) Electronic structure in
the LQSGW+DMFT+SOC with forcing ZSe=1.43 (Å) and (λ + ∆λ)F e(d)=(λ1 + ∆λ1)=120 meV compared with ARPES of
Ref.[S44]
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Figure S9. (a) Electronic structure in the LQSGW+DMFT with forcing ZSe=1.43 (Å) compared with ARPES of Ref.[S45]
(b) Electronic structure in the LQSGW+DMFT+SOC with forcing ZSe=1.43 (Å) and (λ + ∆λ)F e(d)=(λ1 + ∆λ1)=60 meV
compared with ARPES of Ref.[S45] (c) Electronic structure in the LQSGW+DMFT+SOC with forcing ZSe=1.43 (Å) and
(λ + ∆λ)F e(d)=(λ1 + ∆λ1)=120 meV compared with ARPES of Ref.[S45]

Figure S10. (a) Electronic structure in the LQSGW+DMFT with the crystal structure in the main text (ZSe=1.48 (Å))
compared with ARPES of Ref.[S22] (b) Electronic structure in the LQSGW+DMFT+SOC with the crystal structure in the
main text (ZSe=1.48 (Å)) and (λ + ∆λ)F e(d)=(λ1 + ∆λ1)=60 meV compared with ARPES of Ref.[S22] (c) Electronic structure
in the LQSGW+DMFT+SOC with the crystal structure in the main text (ZSe=1.48 (Å)) and (λ + ∆λ)F e(d)=(λ1 + ∆λ1)=120
meV compared with ARPES of Ref.[S22] (d) Electronic structure in the LQSGW+DMFT with the crystal structure in the
main text (ZSe=1.48 (Å)) compared with ARPES of Ref.[S44] (e) Electronic structure in the LQSGW+DMFT+SOC with
the crystal structure in the main text (ZSe=1.48 (Å)) and (λ + ∆λ)F e(d)=(λ1 + ∆λ1)=60 meV compared with ARPES of
Ref.[S44] (f) Electronic structure in the LQSGW+DMFT+SOC with the crystal structure in the main text (ZSe=1.48 (Å))
and (λ + ∆λ)F e(d)=(λ1 + ∆λ1)=120 meV compared with ARPES of Ref.[S44]
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Figure S11. (a) Electronic structure in the LQSGW+DMFT with the crystal structure in the main text (ZSe=1.48 (Å))
compared with ARPES of Ref.[S45] (b) Electronic structure in the LQSGW+DMFT+SOC with the crystal structure in the
main text (ZSe=1.48 (Å)) and (λ + ∆λ)F e(d)=(λ1 + ∆λ1)=60 meV compared with ARPES of Ref.[S45] (c) Electronic structure
in the LQSGW+DMFT+SOC with the crystal structure in the main text (ZSe=1.48 (Å)) and (λ + ∆λ)F e(d)=(λ1 + ∆λ1)=120
meV compared with ARPES of Ref.[S45]

Figure S12. (a) and (b) Band structure of FST from the LQSGW+DMFT framework in the Γ-X and the Z-R momentum
paths, respectively. The band characterization from the symmetry, Ekg and Eku , is denoted at k=X and R. At X and R, each
of these bands has a degeneracy of even and odd parities. Consistent with Ref.[S60], E(X,R)g

bands have Fe(d) orbital character
of xy, xz/yz, and z2. The β (even parity) and xy− (odd parity) bands are denoted. (c) and (d) Band structure in the orbital
selective Mott phase (OSMP) (by forcing Zxy = 0 in the LQSGW+DMFT results) in the Γ-X and the Z-R momentum paths,
respectively. We removed isolated xy orbital driven bands, β and xy−, merged to the flat band at the chemical potential. The
band characterization from the symmetry, Ekg and Eku , is denoted at k=X and R. At X and R, each of these bands has a
degeneracy of even and odd parities. From the orbital selective Mott phase, E(X,R)g

bands have Fe(d) orbital character of
xz/yz and z2 without xy component. The odd parity band with the emergence of the new Fermi surface (denoted as (-)) at X
point gives rise to the switching of the parity in Γ-X and Z-R momentum paths, respectively. (e) and (f) Parity at the time
reversal invariant momentum and the Z2 invariant for (i) the FST in the LQSGW+DMFT+SOC and (ii) the orbital selective
Mott phase, respectively.
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Figure S13. (a) Electronic structures in the LQSGW+DMFT framework , with the narrow energy range near the Fermi level.
The size of red, green, and blue circles indicates Fe(dxy), Fe(dxz/yz), and Se(pz) orbitals contributions. The size of blue circles
for the Se(pz) orbital is multiplied by the factor of 1.6. (b) Electronic structures in the LQSGW+DMFT framework , with
the wide energy range. The size of red, blue, and orange circles indicates Fe(dxy), Se(pz), and Fe(s) orbitals contributions. (c)
Electronic structures in the orbital selective Mott phase (by forcing Zxy to zero for the LQSGW+DMFT Hamiltonian) , with
the narrow energy range near the Fermi level. The size of red, green, and blue circles indicates Fe(dxy), Fe(dxz/yz), and Se(pz)
orbitals contributions. The size of blue circles for the Se(pz) orbital is multiplied by factor of 1.6. (d) Electronic structures in
the orbital selective Mott phase (by forcing Zxy to zero for the LQSGW+DMFT Hamiltonian) , with the wide energy range.
The size of red, blue, and orange circles indicates Fe(dxy), Se(pz), and Fe(s) orbitals contributions. (e) Electronic structures
from the effective quasiparticle Hamiltonian in the main text with parameters in Table S3 , with the narrow energy range near
the Fermi level. (f) Electronic structures from the effective quasiparticle Hamiltonian in the main text with parameters in
Table S3 , with the wide energy range. (g) Electronic structures from the effective quasiparticle Hamiltonian forcing Zxy = 0 in
the main text with parameters in Table S3 , with the narrow energy range near the Fermi level. (h) Electronic structures from
the effective quasiparticle Hamiltonian forcing Zxy = 0 in the main text with parameters in Table S3 , with the wide energy
range.
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Figure S14. Comparison of LDA band structures along the Z-Γ-M point line using the fixed lattice parameters (taken from the
experiment) of FST. We vary the chalcogen type (Se or Te) and its height. The center of the xy− band strongly varies with
the chalcogen height. The type of chalcogen modifies the xy− bandwidth. (a), (b), (c), and (d) are FeSe chemical formula with
the lattice constant of FeSe0.5Te0.5 [S41, S42], (a) ZSe=1.48 Å, (b) ZSe=1.52 Å, (c) ZSe=1.62 Å, and (d) ZSe=1.72 Å. (e), (f),
(g), and (h) are FeTe chemical formula with the lattice constant of FeSe0.5Te0.5 [S41, S42], (e) ZT e=1.48 Å, (f) ZT e=1.52 Å,
(g) ZT e=1.62 Å, and (h) ZT e=1.72 Å. Red and blue circles indicate the top of the xy− band at k=Γ and the bottom of the
xy− band at k=Z, respectively.
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Figure S15. (a) The Te/Se heights versus the nearest neighboring hopping between xy and pz from maximally localized
Wannier orbitals in the LDA level. (b) The Te/Se heights versus the nearest out-of-plane hopping of chalcogen pz orbitals,
from maximally localized Wannier orbitals in the LDA level. (c) The Te/Se heights versus the difference in energy levels of
xz/yz and xy maximally localized Wannier orbitals in the LDA level. The energy of the spin-orbit coupling in the Fe(d) orbital
for the LDA+SOC is compared. We use the FeSe and FeTe chemical formulas with the lattice constant of FeSe0.5Te0.5[S41, S42].
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Figure S16. (a), (b), and (c) Elements of Hamiltonian from the maximally localized Wannier function in the LQSGW (LQSGW)
and LQSGW+DMFT (DMFT). (d), (e), and (f) Se height (ZSe) dependent quasiparticle dispersions in the Γ-Z k point line
from the LQSGW+DMFT, (d) ZSe=1.38 (Å), (e) ZSe=1.43 (Å), and (f) ZSe=1.48 (Å), respectively. The color scale from
green to red indicates the xy orbital contribution to each band from 0 to 1. (g), (h), and (i) Quasiparticle dispersion in the
Γ-Z k point line from the LQSGW+DMFT+SOC at ZSe=1.48 (Å) for (g) xy orbital, (h) xz/yz orbitals, and (i) Se(p) orbitals
contributions in the color scale, respectively.


