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Abstract. We study the statistical properties of first-passage Brownian functionals

(FPBFs) of an Ornstein-Uhlenbeck (OU) process in the presence of stochastic resetting.

We consider a one dimensional set-up where the diffusing particle sets off from x0 and

resets to xR at a certain rate r. The particle diffuses in a harmonic potential (with

strength k) which is centered around the origin. The center also serves as an absorbing

boundary for the particle and we denote the first passage time of the particle to the

center as tf . In this set-up, we investigate the following functionals: (i) local time

Tloc =
´ tf
0
dτ δ(x−xR) i.e., the time a particle spends around xR until the first passage,

(ii) occupation or residence time Tres =
´ tf
0
dτ θ(x − xR) i.e., the time a particle

typically spends above xR until the first passage and (iii) the first passage time tf to

the origin. We employ the Feynman-Kac formalism for renewal process to derive the

analytical expression for the first moment of all the three FPBFs mentioned above. In

particular, we find that resetting can either prolong or shorten the mean residence and

first passage time depending on the system parameters. The transition between these

two behaviors or phases can be characterized precisely in terms of optimal resetting

rates, which interestingly undergo a continuous transition as we vary the trap stiffness

k. We characterize this transition and identify the critical -parameter & -coefficient for

both the cases. We also showcase other interesting interplay between the resetting rate

and potential strength on the statistics of these observables. Our analytical results are

in excellent agreement with the numerical simulations.

1. Introduction

Brownian functionals, in their various different forms, appear ubiquitously in many

different fields such as statistical physics [1–4], stochastic processes [5–7], chemistry [8,9],

finance [10], and computer science [1]. The Brownian functional over fixed time interval

[0, t] is defined as V =
´ t

0
U [x(τ)]dτ , where x(τ) is a Brownian path and U [x] is some

specified function of the path, which depends on the quantity one wants to calculate [1].

Often, we are also interested in an another class of Brownian functional namely the first

passage Brownian functional (FPBF), which is defined over random interval of time
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[0, tf ] so that

V =

ˆ tf

0

U [x(τ)]dτ , (1)

where tf is the first-passage time which is random and will be defined more precisely

later. In here, we consider an Ornstein-Uhlenbeck (OU) process i.e., a Brownian particle

in a harmonic potential 1
2
kx2, where k is the strength or stiffness of the potential. The

potential is centered at the origin. The equation of motion for the position x(τ) of the

particle can be written in terms of the overdamped Langevin equation

dx(τ)

dτ
= −kx+ ξ(τ), (2)

where ξ(τ) is the Gaussian white noise of zero mean and correlations 〈ξ(τ)ξ(τ ′)〉 =

2Dδ(τ−τ ′). Here, D is the diffusion constant and for simplicity, we have setD = 1 unless

specified otherwise. In addition, we will assume that there is an absorbing boundary at

the origin and the process ends as soon as the particle hits the origin, and so, tf encodes

the statistics of this time. Due to the absorption, naturally there is no equilibration for

the particle in this confining potential.

In literature, Brownian functionals appear in a wide variety of problems across

different disciplines. For instance, an important studied Brownian functional is the

local time which quantifies the amount of time spent by the Brownian particle in the

neighborhood of a desired location [1, 11–17]. Another important example of such

Brownian functional is occupation or residence time, which specifies the total time

spent by a diffusing particle in a certain domain. The celebrated Lévy arc-sine law is an

estimation of residence time for simple 1D diffusion process when considering the total

time spent above the origin [1,18,19]. Over the years, residence time statistics has been

computed for simple diffusion [8, 9] diffusion in random and porous landscape [16, 20],

heterogeneous medium [21] or in a potential [17], in confinements [22], in active particle

systems [23], in molecular biology [24] and in experiments [25]. The list is not exhaustive

but most of these Brownian functionals have been calculated for a fixed interval of time.

Another important class of functional is the first passage Brownian functionals

(FPBFs) which are measured upto a random interval of time tf , which keeps a record of

time when a process satisfies certain criterion e.g. a particle reaching a desired location

or marking turnover of an enzymatic reaction. The field of first passage time itself is

remarkably broad and there are a myriad of applications that span over many different

topics. We refer to [3,26–28] for an extensive read of the subject. The other important

FPBFs studied in the literature are area and extreme maximum which have applications

in statistical physics and queuing theory [29–31]. The FPBF has also been calculated in

the context of snowmelt dynamics [32], biopolymer translocation dynamics [33], DNA

breathing dynamics [34] and barrierless reactions [35]. There has been a renewed interest

for studying functionals in the presence of stochastic resetting. Brownian functionals

such as the simple first passage time [36–41]; local time [42] & occupation time [43, 44]
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till fixed interval, and the same along with the area functional till first passage event [45]

have been calculated in the presence of stochastic resetting.

In this work, we focus on various first passage functionals for OU process in the

presence of stochastic resetting. To the best of our knowledge, treatment for OU process

with resetting has been limited to non-equilibrium properties such as steady states

and relaxation [46–48], large deviations of time-additive functions [49], estimating work

fluctuations [50], and the first passage time [51], but a comprehensive study for the local

and occupation/residence time functionals appears to be missing. This work tries to

fill some of this void and while doing so, it also reveals an optimization and resetting

transition for the residence time similar to the first passage time. For completeness,

we mention a few works along this direction but in the absence of resetting. The first

passage time [7], area [52–54] and local time [55] have been calculated in the absence of

stochastic resetting. Such computation for OU functionals has been normally invoked

in biological systems particularly in the modeling of neuronal activity as mentioned in

the reference [7].

The central goal here is to study the statistical properties of FPBF-s for OU process

in presence of resetting. We consider that the particle is reset to a location xR > 0 at a

rate r. Under this assumption, motion of the particle in microscopic time step ∆t can

be updated in the following way

x(t+ ∆t) =

{
x(t)− kx(t)∆t+ ξ(t)∆t, with prob (1− r∆t),
xR, with prob r∆t.

(3)

We consider the following observables in this study:

(i) Local time: Local time Tloc refers to the amount of time spent by the particle in

the neighbourhood of some desired position (say x`) till the first passage time. For

this quantity, U(x) = δ(x− x`) and hence Tloc(x`) =
´ tf

0
dτ δ[x(τ)− x`]. The Tloc

has explicitly been calculated near the resetting position in which case x` = xR.

(ii) Residence time: The second functional is residence/occupation time, which

estimates the cumulative time spent by the Brownian particle in a certain domain

till the first passage time. In this case, U(x) = θ(x−xR), where θ(x) is the Heaviside

step function and the residence time takes the form Tres(xR) =
´ tf

0
dτ θ(x(τ)−xR).

(iii) First-passage time: Finally, we consider the Brownian functional of the first-

passage time itself. In this case U(x) = 1 and hence the relevant functional

V =
´ tf

0
1 dτ = tf is the first passage time.

In this manuscript, we have illustrated, in detail, the effect of resetting and potential

strength on the first moment of the above-mentioned FPBFs for the OU process. We find

that the mean local time monotonically increases as a function of the resetting rate r.

Furthermore, the mean residence time and the first passage time display both monotonic

and non-monotonic behavior as a function of the resetting rate r. For non-monotonic

case, it is generically found that resetting renders these times minima. The optimal
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resetting rates are shown to undergo a continuous phase transition as a function of the

potential stiffness. We identify the critical strengths and characterize them using the

generic framework of first passage under resetting wherever applicable. The manuscript

is organized as follows. In section 2, we revisit Feynman-Kac formalism and derive

a backward differential equation for the moment generating function of an arbitrary

functional. Utilizing this backward differential equation, we investigate the statistics of

the local time in Sec. 3, residence time in Sec. 4, and the first passage time in Sec. 5.

We conclude our manuscript with a brief summary and future outlook in Sec. 6.

2. General formulation

This section will sketch out the essential steps to compute the first passage OU

functionals in the presence of stochastic resetting. To this end, we will follow the

Feynman-Kac formalism [1, 45]. Since we are focusing on the first passage functionals,

the first step will be to derive a backward master equation for the moment generating

function which is defined as

Q(p, x0) =

ˆ ∞
0

dV e−pV PR(V, x0) (4)

= 〈e−p
´ tf
0 U [x(τ)]dτ 〉, (5)

where the average 〈..〉 in Eq. 5 represents the averaging over all such paths which start

at some point x0 at time τ = 0 and terminate at the origin at time τ = tf in the presence

of repeated resetting to xR. There are three components of stochasticity in this problem

(i) intrinsic thermal noise in the OU process, (ii) temporal randomness due to resetting,

and (iii) randomness incurred to the final observation time τ = tf due to the absorbing

boundary. The moments of first passage Brownian functional V can be derived directly

from the moment generating function i.e.,

〈V m〉 = (−1)m
(
∂mQ(p, x0)

∂pm

) ∣∣∣∣
p→0

. (6)

To proceed further, consider one realization of a stochastic path {x(τ); 0 ≤ τ ≤ tf}
and split that into two parts: (i) the first interval [0,∆t] and (ii) the rest interval

[∆t, tf ] with ∆t→ 0. In the first part, the Brownian path propagates from x0 at τ = 0

to x′0 = x0 +∆x in time ∆t. In the rest interval, the process continues until the particle,

which is at x′0 at time ∆t, is absorbed at the origin at a later time tf , possibly undergoing

many resetting events. This path-decomposition leads us to break the integration in Eq.

(5) as
´ tf

0
=
´ ∆t

0
+
´ tf

∆t
and in the limit ∆t→ 0, we get

Q(p, x0) = 〈e−pU(x0)∆t e−p
´ tf
∆t U [x(τ)]dτ 〉,

= 〈e−pU(x0)∆tQ(p, x′0)〉. (7)

To evaluate x′0, note that the Brownian particle can reset to xR with probability r∆t

in an infinitesimal time ∆t or it can keep evolving according to Eq. (3). Putting these
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two contributions together, using the noise properties 〈ξ(0)〉 and 〈ξ2(0)〉, and keeping

only the leading order terms in ∆t, we obtain the following backward equation in the

presence of resetting

∂2Q(p, x0)

∂x2
0

− kx0
∂Q(p, x0)

∂x0

− pU(x0)Q(p, x0)− rQ(p, x0) + rQ(p, xR) = 0. (8)

Eq. (8), valid in the domain x0 ∈ [0,∞], is the key equation of this work. This is

moreover supplemented with the following boundary conditions

Q(p, x0 → 0+) = 1, (9)

Q(p, x0 →∞) <∞. (10)

The first boundary condition is obvious since the particle, starting close to the origin

i.e., x0 → 0, will immediately be absorbed yielding FPT tf → 0. Therefore, substituting

V =
´ tf

0
dτ U [x(τ)] → 0 in Eq. (5) results in the first boundary condition (9). The

second boundary condition can be explained in the following way. Consider a situation

when the particle had started from x0 →∞. Nonetheless, the next resetting move will

bring it back to xR in a finite time span. Therefore, the FPT tf should be generally

finite for any non-zero and finite value of the resetting rate r. Hence, the functional V

should remain finite for the fixed value of resetting position xR even when the initial

position x0 →∞. This leads to the second boundary condition (10).

Moving forward, the steps are as follows. Depending on the functional V [x(τ)]

of interest, one first solves the corresponding backward differential Eq. (8) with the

appropriate boundary conditions. This gives us the moment generating functionQ(p, x0)

which then leads to the moments of the functional using Eq. 6. We study each of the

aforementioned functionals in the subsequent sections.

3. Local time

The local time density that a particle spents at the position x` until the first-passage

time tf is given by

Tloc(x`) =

ˆ tf

0

dτ δ[x(τ)− x`] . (11)

In Eq. (12) the delta function is defined within the limiting sense as below:

Tloc(x`) = lim
ε→0

T2ε(x`)

2ε
, where T2ε(x`) =

ˆ tf

0

dτ [θ(x(τ)− x` − ε)− θ(x(τ)− x` + ε)].

(12)

Here, T2ε(x`) measure of the total time spent by the particle inside the box [x`−ε, x`+ε]
till the first passage event. Thus, the normalization condition can be understood as´∞

0
Tloc(x`)dx` = tf . Since we are interested in estimating the local time density near
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the resetting location xR, we substitute U(x) = δ(x− xR) into the backward Eq. (8) to

obtain

∂2Q(p, x0)

∂x2
0

− kx0
∂Q(p, x0)

∂x0

− p δ(x0 − xR)Q(p, x0)− rQ(p, x0) + rQ(p, xR) = 0. (13)

For x0 6= xR, the δ(x0 − xR) term is eliminated and Eq. (13) can be written as

∂2Q(p, x0)

∂x2
0

− kx0
∂Q(p, x0)

∂x0

− rQ(p, x0) + rQ(p, xR) = 0. (14)

The homogeneous part of the Eq. (14)

∂2Q(p, x0)

∂x2
0

− kx0
∂Q(p, x0)

∂x0

− rQ(p, x0) = 0 (15)

can be solved by changing the variable from Q(p, x0) to Q̃(p, x0) using the following

transformation

Q̃(p, x0) = exp

(
− 1

2

ˆ x0

kx′dx′
)
Q(p, x0) = exp

(
− kx2

0

4

)
Q(p, x0). (16)

Using (16) in (15), we obtain the following differential equation for Q̃(p, x0)

∂2Q̃(p, x0)

∂x2
0

+

(
− r +

k

2
− k2x2

4

)
Q̃(p, x0) = 0, (17)

which has a standard solution [56,57]

Q̃(p, x0) = AD− r
k
(
√
kx0) + BD r

k
−1(i
√
kx0), (18)

where Dλ(z) is a parabolic cylinder or Weber function and i =
√
−1 is the imaginary

number. Transforming back to the original variable, we have the following solutions

Q(p, x0) =

{
ekx

2
0/4[AD− r

k
(
√
kx0) + BD r

k
−1(i
√
kx0)] +Q(p, xR), for x0 < xR,

ekx
2
0/4[CD− r

k
(
√
kx0) +DD r

k
−1(i
√
kx0)] +Q(p, xR), for x0 > xR.

(19)

There are four constants namely A, B, C and D in the equation above. To solve

them, four boundary conditions on Q(p, x0) need to be specified. Out of these, two

boundary conditions originate from the behaviour of Q(p, x0) as x0 → 0+ and x0 →∞
as mentioned in Eqs. (9) and (10) respectively. The other two conditions are essentially

matching conditions – one of them being the continuity of Q(p, x0) across the point

x0 = xR i.e.,

Q(p, x+
R) = Q(p, x−R). (20)
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Figure 1. Comparison of the first moment of Tloc(xR) for OU process with numerical

simulation for different values of (a) stiffness constant k and (b) resetting rate r. Here,

x0 = xR = 2.5. The lines and symbols are analytical and numerical results respectively.

The other one is a discontinuity condition in the derivative of Q(p, x0) across the point

x0 = xR which can be obtained by integrating Eq. (13) from x0 = xR− δ to x0 = xR + δ

and taking δ → 0+ so that(
∂Q

∂x0

)
x+
R

−
(
∂Q

∂x0

)
x−R

= pQ(p, xR). (21)

The constant D becomes zero owing to the boundary condition (10). Setting x0 = xR,

and after some manipulations, it can be seen from Eq. (19) that Q(p, xR) is completely

characterized by C which we find to be

C =

pQ(p, xR)e−kx
2
R/4[D− r

p
(0)D r

p
−1(i
√
kxR)−D r

p
−1(0)D− r

p
(
√
kxR)] + [1−Q(p, xR)]

× [i
√
kD− r

p
(
√
kxR)D r

p
(i
√
kxR)− r√

k
D−( r

p
+1)(
√
kxR)D r

p
−1(
√
kxR)]

D− r
p
(0)[i
√
kD− r

p
(
√
kxR)D r

p
(i
√
kxR)− r√

k
D−( r

p
+1)(
√
kxR)D r

p
−1(i
√
kxR)]

,

(22)

where we have used the following relations [56,57]

dn

dzn

[
ez

2/4Dν(z)

]
= (−1)n(−ν)ne

z2/4Dν−n(z) (23)

dn

dzn

[
e−z

2/4Dν(z)

]
= (−1)ne−z

2/4Dν+n(z) (24)
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Substituting Eq. (22) into the second line of Eq. (19) yields the complete solution for

the local time moment generating function

Q(p, xR) =

[
1 +

pe−kx
2
R/4[D− r

k
(0)D r

k
−1(i
√
kxR)−D r

k
−1(0)D− r

k
(
√
kxR)]

r√
k
D−( r

k
+1)(
√
kxR)D r

k
−1(i
√
kxR)− i

√
kD− r

k
(
√
kxR)D r

k
(i
√
kxR)

]−1

,

(25)

The first moment of Tloc can be calculated by inserting Q(p, xR) from the above into

Eq. (6). Skipping details, we find

〈Tloc(xR)〉 =
2−( 1

2
+ r

2k
)e−kx

2
R/4
√
πk[2

r
k Γ(1

2
+ r

2k
)D− r

k
(
√
kxR)−

√
2Γ(1− r

2k
)D r

k
−1(i
√
kxR)]

Γ(1− r
2k

)Γ(1
2

+ r
2k

)[ikD− r
k
(
√
kxR)D r

k
(i
√
kxR)− rD− r

k
−1(
√
kxR)D r

p
−1(i
√
kxR)]

,

(26)

where Γ(.) is the Euler gamma function. In the r = 0 limit, the above Eq. (26) takes

the following form

〈Tloc〉
∣∣
r=0

=
2−1/2e−kx

2
0/4
√
πk[Γ(1/2)D0(

√
kx0)− Γ(1)D−1(i

√
kx0)]

iΓ(1)Γ(1/2)kD0(
√
kx0)D0(i

√
kx0)

, (27)

which can be further simplified by noting D0(z) = e−z
2/4 and D−1(z) =

√
π
2
ez

2/4[1 −
erf(z/

√
2)] to find

〈Tloc〉
∣∣
r=0

=

√
π

2k
exp

[
− kx2

0

2

]
erfi

(√k

2
x0

)
, (28)

where erfi (·) is the imaginary error function defined by erfi (z) = −ierf(iz) [55]. In Fig.

1 (a), we have plotted the first moment of local time density 〈Tloc(xR)〉 as a function of

resetting r for different values of potential strength k. We found a monotonic increase in

the mean local time as the resetting rate is gradually increased. This is due to the fact

that the particle will spend more time in the vicinity of xR if the frequency of resetting

is higher. Fig. 1 (b) shows the monotonic decrease in 〈Tloc(xR)〉 with k. As k increases,

the particle will have more drift towards the minimum of the potential, which is also

the location of the absorbing boundary, and it gets absorbed more easily. As a result,

the particle will spend lesser time around the resetting location xR. At a sufficiently

large value of k, 〈Tloc(xR)〉 is almost in the same order for different r since the trap is so

strong that the particle is not able to diffuse much through the space and gets absorbed

almost momentarily despite a possible number of resetting events. For completeness,

we also verify the mean local time 〈Tloc〉
∣∣
r=0

in Fig. 2a. We compared our analytical

results with the numerical simulations and found an excellent agreement.

4. Residence time

In this section, we discuss the effect of resetting on the first moment of occupation or

residence time Tres =
´ tf

0
dτ θ(x(τ)− xR). As sketched in Sec. 2, we need to solve the
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Figure 2. Comparison of the theoretical expressions for the first moment of (a)

local time density 〈Tloc〉|r=0 and (b) residence time 〈Tres〉|r=0 as a function of stiffness

constant k in the absence of resetting with numerical simulation. The lines and symbols

are analytical and numerical simulations results respectively. We have set: x0 = 2.5.

backward differential equation (8) with U(x) = θ(x− xR) which gives

∂2Q(p, x0)

∂x2
0

− kx0
∂Q(p, x0)

∂x0

− pθ(x0 − xR)Q(p, x0)− rQ(p, x0) + rQ(p, xR) = 0. (29)

Solving this equation separately for two regions x0 ≥ xR and x0 < xR, we get

Q(p, x0) =

 ekx
2
0/4[C1D− r

k
(
√
kx0) + C2D r

k
−1(i
√
kx0)] +Q(p, xR), for x0 < xR,

ekx
2
0/4[C3D− (r+p)

k

(
√
kx0) + C4D (r+p)

k
−1

(i
√
kx0)] + r

r+p
Q(p, xR), for x0 > xR.

(30)

As before, the four constants C1, C2, C3 and C4 (which are functions of xR and p, but

are independent of x0) can be evaluated using the boundary conditions mentioned in

Eqs. (9) and (10) along with the continuity conditions for Q(p, x0) and its derivative

across x0 = xR namely

Q(p, x+
R) = Q(p, x−R), (31)(

∂Q

∂x0

)
x+
R

=

(
∂Q

∂x0

)
x−R

. (32)

With these conditions, all the four constants can be calculated directly from Eq. (30).

As we are interested in x0 = xR, we need only C3 and C4. However, the boundary

condition (10) demands C4 = 0 and we are left with

C3 =

[1−Q(p, xR)][rD−( r
k

+1)(
√
kxR)D( r

k
−1)(i
√
kxR)− ikD− r

k
(
√
kxR)D r

k
(i
√
kxR)]

+ p
r+p

e−kx
2
R/4Q(p, xR)[ikD− r

k
(0)D r

k
(i
√
kxR)− rD r

k
−1(0)D−( r

k
+1)(
√
kxR)]

(r + p)D−( r+p
k

+1)(
√
kxR)[D− r

k
(0)D r

k
−1(i
√
kxR)−D r

k
−1(0)D− r

k
(
√
kxR)]

+D− r+p
k

(
√
kxR)[ikD r

k
(i
√
kxR)D− r

k
(0)− rD r

k
−1(0)D−( r

k
+1)(
√
kxR)]

.

(33)
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Figure 3. Comparison of the first moment of residence time 〈Tres(xR)〉 for OU process

with numerical simulation as a function of (a) stiffness constant k for different values

of r and, (b) resetting rate r for different values of k. The lines and symbols are

analytical and numerical simulations results respectively. (c) Continuous transition

of optimal resetting rate rc, which from a finite value transits to zero at the critical

point kc = 0.22624. The locus of rc (solid line) is obtained by numerically minimizing

〈Tres(xR)〉 for different values of k. In particular, the diamond and square markers

depict rc > 0 and rc = 0 respectively obtained by minimizing 〈Tres(xR)〉 from 3(b)

for two different values of k. Inset: rc near the critical point kc shows a power law

behavior. In the simulation, we have set: x0 = xR = 2.5 and D = 1.

On substituting (33) in the second line of Eq. (30), we finally arrive at the following

expression for the moment generating function of the residence time

Q(p, xR) =

[
1 +

pe−kx
2
R/4D− r+p

k
−1(
√
kxR)[D− r

k
(0)D r

k
−1(i
√
kxR)−D r

k
−1(0)D− r

k
(
√
kxR)]

D− r+p
k

(
√
kxR)[rD− r

k
−1(
√
kxR)D r

k
−1(i
√
kxR)− ikD− r

k
(
√
kxR)D r

k
(i
√
kxR)]

]−1

.

(34)

The mean residence time can be calculated using Eq. (6) and reads

〈Tres(xR)〉 =
i
√
π2−1− r

2k e−kx
2
R/4D− r

k
−1(
√
kxR)[2Γ(1− r

2k
)D r

k
−1(i
√
kxR)− 2

1
2

+ r
k Γ(1

2
+ r

2k
)D− r

k
(
√
kxR)]

Γ(1− r
2k

)Γ(1
2

+ r
2k

)D− r
k
(
√
kxR)[kD− r

k
(
√
kxR)D r

k
(i
√
kxR) + irD− r

k
−1(
√
kxR)D r

k
−1(i
√
kxR)]

.

(35)

The above Eq. (35) takes the following form in the absence of resetting

〈Tres〉
∣∣
r=0

=
π

2k

[
1− erf

(√
k

2
x0

)]
erfi

(√
k

2
x0

)
. (36)

Fig. 3 (a) shows the monotonic decrease of 〈Tres(xR)〉 as a response to the strength of

potential k. This is attributed to the fact that the Brownian particle can easily reach

the target with an increase in k. For sufficiently larger values of k, 〈Tres(xR)〉 saturates

for different resetting rates. We have compared our analytical results (both for r = 0

and r > 0 case) with the numerical simulations and found an excellent agreement.
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Fig. 3 (b) showcases various interesting features of the mean residence time as

a function of resetting rate. For large values of k, the mean residence time increases

monotonically as a function of resetting rate since the potential is strong enough to bring

the particle to the origin faster and thus with an increasing resetting rate the completion

can only be delayed. As we keep decreasing the stiffness, an interesting regime appears

where we see a a non-monotonic behaviour of 〈Tres(xR)〉 with resetting rate r. We find

that resetting first reduces 〈Tres(xR)〉 and there is an optimal rate rc when 〈Tres(xR)〉
is minimum. Following that, the mean residence time keeps increasing monotonically.

A qualitative way of understanding this behavior is as follows: For the low values of k,

the particle can easily diffuse through space and can easily spend more time above xR.

With resetting, the particle is brought back to xR and consequently it spends less time

above xR and 〈Tres(xR)〉 starts to decrease up to a critical resetting rate. However, as r

is further increased, the particle is brought back to xR more frequently which increases

the first passage time of the process, and in turn, the particle also gets to spend more

time above xR.

It is evident from the above discussion that there is a critical strength kc above (and

below) of which resetting has different impact on 〈Tres(xR)〉. To capture this behavior,

we have looked into the optimal rate rc as a function of k. For the large values of

k, the mean residence time increases monotonically. Thus, the optimal resetting rate

rc determined from d〈Tres(xR)〉
dr

|r=rc = 0 is always at zero in this case. However, as we

decrease k, a non-monotonic behavior emerges and we start observing a finite optimal

rate rc > 0. Henceforth, there exists a critical potential strength kc where this transition

occurs. In Fig. 3 (c), we have shown the phase diagram in (k, rc) plane from which

one can easily extract the value of critical strength kc. For fixed values of x0 = 2.5 and

D = 1, we find kc ≈ 0.22624. The optimal rate rc seems to exhibit a continuous phase

transition alike behavior from rc > 0 to rc = 0. Any non-zero value of k < kc always

renders in rc > 0 which essentially states that resetting will always minimize the mean

residence time. However, for k > kc, no benefits can be gained by the introduction

of resetting. In other words, 〈Tres(xR)〉 will increase monotonically as a function of

resetting rate. At the proximity of the critical point kc, one would expect a power law

behavior rc ∼ |k − kc|β similar to the thermodynamical second order phase transition.

In the inset of Fig. 3 (c), we fit the numerical data with this ansatz to find the following

critical coefficient β = 1. This scaling behavior is similar to the one that we have found

also for the MFPT 〈tf (r)〉 as will be shown in the next section.

5. First passage time

In this section, we investigate the first moment of the first passage time tf of an OU

particle, starting from x0, to an absorbing target placed at the origin in the presence of

stochastic resetting at xR > 0. To this end, we simply substitute U(x) = 1 in Eq. (8)
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to find

∂2Q(p, x0)

∂x2
0

− kx0
∂Q(p, x0)

∂x0

− (p+ r)Q(p, x0) + rQ(p, xR) = 0, (37)

with the boundary conditions 9 and 10. The solution of above Eq. 37 is

Q(p, x0) = ekx
2
0/4[AD− p+r

k
(
√
kx0) + BD p+r

k
−1(i
√
kx0)] +

r

r + p
Q(p, xR). (38)

Using boundary conditions 9 and 10 in Eq. 38, we obtain B = 0 and

A =
1− r

(r+p)
Q(p, xR)

D− p+r
k

(0)
. (39)

Substituting the A and B in 38 and setting x0 = xR, we finally obtain

Q(p, xR) =
(r + p)ekx

2
R/4D− r+p

k
(
√
kxR)

D− r+p
k

(0)p+ rekx
2
R/4D− r+p

k
(
√
kxR)

. (40)

Inserting Q(p, xR) from Eq. (40) into Eq. (6), we arrive at the following expression for

the mean first passage time

〈tf (r)〉 =

√
π2−

r
2k e−kx

2
R/4

rΓ( r+k
2k

)D− r
k
(
√
kxR)

− 1

r
, (41)

which was also obtained in [51]. In the limit k → 0, one can use the following

identity [56,57]

Dν(z) = 2ν/2
√
πe−z

2/4

[
1

Γ(1−ν
2

)
F

(
− ν

2
,
1

2
;
z2

2

)
−
√

2z

Γ(−ν
2
)
F

(
1− ν

2
,
3

2
;
z2

2

)]
, (42)

where F (α, γ; z) =
∑∞

n=0
(α)n
(γ)n

zn

n!
is the Kummer function with (δ)n = β(β+1)....(β+n−1)

in (41), to find

〈tf (r)〉k→0 =
1

r
(e
√
rxR − 1), (43)

which was first obtained by Evans and Majumdar in the case of simple diffusion [36].

In Figs. 4 (a) and (b), we have plotted 〈tf (r)〉 as a function of the strength of

potential k for different values of resetting rates r and as a function of r for different

values of k respectively. The solid/dashed lines represent the analytical results while

the markers are the points from numerical simulations. An excellent agreement between

them is found. The qualitative behaviour of 〈tf (r)〉 is similar as 〈Tres(xR)〉. At low

values of k, 〈tf (r)〉 increases with an increase in r and becomes almost independent of

the resetting rates when the potential is much steeper with higher k [see Fig. 4 (a)]. On

the other hand, Fig 4 (b) shows that at low values of k, where the drift is not sufficiently

strong, 〈tf (r)〉 decreases with an increase in r and reaches some minimum value at the
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Figure 4. Comparison of the MFPT 〈tf (r)〉 for OU process with numerical simulations

for different values of (a) resetting rate r and (b) spring constant k. The lines and

symbols are analytical and numerical simulation results respectively. (c) Second order

like phase transition of the optimal resetting rate r∗ which continuously reaches to

zero from a finite value at the critical point k∗ = 0.1749. The locus of r∗ (solid line)

is obtained by numerically minimizing 〈tf (r)〉 for different values of k. In particular,

the diamond and square markers depict r∗ > 0 and r∗ = 0 respectively obtained by

minimizing 〈tf (r)〉 from 4(b) for two different values of k. Inset: Optimal resetting rate

r∗ close to the critical point k∗ shows a power law behavior r∗ ∼ |k− k∗|α with α = 1.

(d) Phase diagram for resetting transition and verification of the critical point k∗ from

the CV > 1 criterion. The CV as a function of k intersects unity (dashed horizontal

line) exactly at the value k∗ = 0.174895. For k > k∗ i.e., when CV < 1, resetting is

detrimental while for k < k∗ i.e., when CV > 1, resetting always remains beneficial.

This is in accordance with Fig. 4(c). In the simulation, we have set: x0 = xR = 2.5

and D = 1.

optimal resetting rate r∗ > 0 and then increases again. For sufficiently larger values of

k, resetting always delays the completion rendering in r∗ = 0. Henceforth, there exists



14

a critical value of potential strength namely k∗ below (above) which resetting is helpful

(detrimental). To better understand this behavior, we have made a phase diagram, as

done in the case of residence time, in the (k, r∗) plane – see Fig. 4 (c) for fixed values

of D = 1 and x0 = xR = 2.5. For this configuration, the optimal resetting rate r∗

undergoes a continuous transition from the r∗ > 0 to r∗ = 0 phase and there is a sharp

critical point in the potential strength at k∗ = 0.1749 where this behavioral transition

occurs [see also [51] where this transition was analyzed numerically]. In a nutshell, we

have

r∗


= 0 if k > k∗

> 0 if k < k∗ .

(44)

The continuous transition of the optimal resetting rate compels us to believe that at

the close proximity of the critical point k∗, the optimal resetting rate has a power law

behavior r∗ ∼ |k − k∗|α, where α is the critical coefficient. Fitting with the numerical

data, we find α = 1 – see inset of Fig. 4(c) and also in [51]. This is in accordance

with the Landau theory of resetting transition where one can show that indeed α = 1

is a universal critical coefficient [61] in a very general scenario. This is quite striking

since the power law behavior is reminiscent of the same observed, e.g., in liquid-gas or

ferromagnetic systems where the critical coefficient α is found to be universal.

Eq. (44) can also be understood from a more general viewpoint laid out by the

framework of first passage under resetting [58, 59] and a Landau like phase transition

theory in stochastic resetting [61]. To see this, one can express the MFPT 〈tf (r)〉
as a power series in terms of the restart rate r near the transition and show how by

utilizing the relations between the coefficients, it is possible to predict the emergence of

second-order like continuous transitions [51,61]. Expanding 〈tf (r)〉 around r = 0 results

in

〈tf (r)〉 = b0 + b1r + b2r
2 + · · · (45)

where bi−s are the expansion coefficients. To identify the coefficients, we make use of

the generic expression for MFPT under stochastic resetting for an arbitrary stochastic

process given by [58,59]

〈tf (r)〉 =
1− t̃f (r)
rt̃f (r)

, (46)

where t̃f (r) = 〈e−rtf 〉 is the moment generating function for the FPT tf . Doing a

Taylor series expansion of 〈tf (r)〉 and comparing term by term with Eq. (45), we can

easily find the structure of the coefficients namely b0 = 〈tf〉|r=0, b1 = [− 〈t
2
f 〉
2

+ 〈tf〉2]
∣∣
r=0

,

b2 = [
〈t3f 〉

6
+ 〈tf〉3 − 〈tf〉〈t2f〉]

∣∣
r=0

and so on, notably 〈tnf 〉|r=0 is the n-th moment of FPT

distribution for the resetting free process. For resetting to be beneficial in the small r
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limit, one should have b1 < 0 which after some rearrangement leads to the following

universal criterion [58–61]

CV =
σ(tf )

〈tf〉

∣∣∣∣
r=0

> 1, (47)

where σ(tf ) stands for the standard deviation of tf and CV is called the coefficient of

variation. The CV condition provides a phase diagram which allows us to scan the

parameter space and identify the desired regions where in resetting can be beneficial.

Within our set-up, we find

b0 =

exp
(
− kx2

R

4

)(
2D

(1,0)
0 (
√
kxR)− log(2)D0(

√
kxR)−D0(

√
kxR)ψ(0)(1/2)

)
2k[D0(

√
kxR)]2

, (48)

and

b1 =

exp
(
− kx2

R

4

)[
[D0(
√
kxR)]2

(
2[log(2)]2 + 4log(2)ψ(0)(1/2) + 2[ψ(0)(1/2)]2 − π2

)
− 8D0(

√
kxR)D

(1,0)
0 (
√
kxR)

(
log(2) + ψ0(1/2)

)
+ 16[D

(1,0)
0 (
√
kxR)]2 − 8D0(

√
kxR)D

(2,0)
0 (
√
kxR)

]
16k2[D0(

√
kxR)]3

,

(49)

where Dn,0(ν, z) is the nth partial derivative of parabolic cylinder function with respect

to ν and ψ0(z) is the digamma function defined in terms of the gamma function Γ(z)

as ψ(0)(z) = Γ′(z)
Γ(z)

[56, 57]. Now substituting b0 and b1 from Eq. (48) and (49) into

CV =
√

1− 2b1
b20

allows us to examine the span of the parameters e.g., the potential

strength in our case by setting the condition CV > 1. In Fig. 4 (d), we do this task

by plotting CV as a function of k for fixed xR. From the intersection of CV with unity,

we can immediately identify the critical strength k∗ = 0.174895. This is in perfect

synchrony with the same obtained from the analysis of the optimization of 〈tf (r)〉 as

done around Eq. (44). It is also evident that for k > k∗, CV becomes lesser than unity

and thus resetting is only detrimental. On the other hand, CV is greater than unity

for k < k∗, and thus resetting remains beneficial. Thus, in contrast to simple diffusion,

where resetting always turns out to be a useful strategy [36], a trade-off exists in the

case of OU process [51]. The discussion made above exactly pinpoints how the potential

strength k plays a key role in this interplay.

6. Conclusion

In recent times, study of stochastic processes that are further subject to resetting has

gained immense interest in statistical physics [39]. Resetting is a natural way to break

detailed balance and thus resetting induced dynamics showcases a plethora of exciting

non-equilibrium phenomena [36, 46, 62–69]. In the context of search or completion of a
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process, resetting has been instrumental to curtail long waiting times and improve the

efficiency [36,39,58,60]. In this paper, we have analyzed various first passage functionals

for an OU process subjected to stochastic resetting. Employing the celebrated Feynman-

Kac formalism, we have computed the analytical forms for first moments of local time

Tloc, residence time Tres and first passage time tf . While mean local time behaves

monotonically as a function of the resetting rate, an intriguing feature is observed for

the residence time. We have found that resetting can either shorten or lengthen the

mean residence time and there exists an optimal resetting rate for which mean residence

time can further be minimized. Furthermore, we can quantify the transition in terms

of the optimal resetting rate which can be interpreted as an order parameter in this

problem. We show that the optimal resetting rate for the residence time undergoes

a continuous transition as a function of the critical stiffness which we could exactly

quantify. Moreover, we extracted the critical coefficient from the numerical analysis.

Finally, we study the mean first passage time of the OU process under resetting.

Here too, resetting can either accelerate or hinder the completion of the first passage

process. The transition between these two states or phases is characterized by the

behavioral change in the order parameter of the system namely the optimal restart rate

which undergoes a second-order like continuous transition depending on the details of

the system parameters. We quantify this transition via direct optimization of the mean

first passage time and then provide a cross-verification of the same using the restart

transition theory of optimal resetting rate [61]. Such resetting transition has been

observed in various other systems such as diffusion in confinement [70] or channel [71],

diffusion in potential [51, 72–78], random walks [79, 80] and the universal applicability

of the general condition [58,60] that dictates such transition is quite remarkable.

Concluding, we have shown resetting induced optimization of the mean residence

time and the mean first passage time in OU process that depends crucially on the

potential strength. Various other intricate interplay between the potential strength and

resetting has been showcased. It will be interesting to measure these observables using

widely applicable optical trap experiments [81, 82], calibrated with harmonic potential.

Another interesting direction would be to understand the effect of various other non-

exponential resetting protocols [40,58,83,84] on these observable statistics. In particular,

resetting at a fixed interval of time or sharp resetting has turned out to be quite useful

in global optimization of mean first passage time among all the strategies [58, 85] with

intriguing applications to operation research [86], and nonlinear dynamics [87]. These

frontiers remain open as a prospective future direction.
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Appendix A. Details of numerical simulations

The statistical properties of FPBFs studied here in this work can be numerically

computed by integrating the overdamped Langevin equation in presence of resetting.

The numerical scheme is as follows. Starting from an initial location x0, position of the

Brownian particle is updated using the following simple rules

x(t+ ∆t) =

{
x(t)− kx(t)∆t+ Γ0, with prob (1− r∆t),
xR, with prob r∆t.

(A.1)

Where, Γ0 is a random number sampled from a Gaussian distribution with zero mean

and width is given by 〈Γ2
0〉 = 2Dt (here, D = 1). The protocol (A.1) continues till the

particle reaches very close to the origin within a prescribed tolerance level. We consider

that to be a first passage event of the process. Computation of the three quantities

discussed in the Sec. 1 is done as follows:

(i) Local time: Since we are interested in the local time in the vicinity of initial (or

resetting) location xR, we compute the time T2ε(xR) spent by the particle inside

the box of length [xR − ε, xR + ε]. This process is observed till the particle reaches

the origin and gets absorbed. We have chosen ε = 0.1. Finally, to compute the

Local time density we devide the time T2ε(xR) by the box length as defined in the

Eq. (12).

(ii) Residence time: We numerically evaluate the total time Tres(xR) spent by the

Brownian particle in the region x > xR till the first passage event.

(iii) First passage time (FPT): To compute the FPT, we let the position evolve according

to (A.1). As soon as the particle is close to the origin within a tolerance level, we

stop the process and record the total time spent so far as the FPT.

For averaging purpose, we repeat the same process for 105 number of realizations.
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[18] Lévy, P. and Loéve, M., 1965. Processus stochastiques et mouvement brownien (pp. 299-304).

Paris: Gauthier-Villars.

[19] Louchard, G., 1984. Kac’s formula, Levy’s local time and Brownian excursion. Journal of Applied

Probability, 21(3), pp.479-499.

[20] Nguyen, B.T. and Grebenkov, D.S., 2010. A spectral approach to survival probabilities in porous

media. Journal of Statistical Physics, 141(3), pp.532-554.

[21] Singh, P., 2022. Extreme value statistics and arcsine laws for heterogeneous diffusion processes.

Physical Review E, 105(2), p.024113.

[22] Grebenkov, D.S., 2007. Residence times and other functionals of reflected Brownian motion.

Physical Review E, 76(4), p.041139.

[23] Singh, P., and Kundu, A., 2019, Generalised ‘Arcsine’ laws for run-and-tumble particle in one

dimension, J.Stat.Mech, 083205.

[24] Agmon, N., 2011, Single molecule diffusion and the solution of the spherically symmetric residence

time equation. J. Phys. Chem. 115, 5838-5846.

[25] Dey, R., Kundu, A., Das, B. and Banerjee, A., 2022. Experimental verification of arcsine laws in

mesoscopic nonequilibrium systems. Physical Review E, 106(5), p.054113.

[26] Bray, A.J., Majumdar, S.N. and Schehr, G., 2013. Persistence and first-passage properties in

nonequilibrium systems. Advances in Physics, 62(3), pp.225-361.

[27] Masoliver, J., 2018. Random processes: first-passage and escape.

[28] Metzler, R., Redner, S. and Oshanin, G. eds., 2014. First-passage phenomena and their applications

(Vol. 35). World Scientific.

[29] Kearney, M.J., and Majumdar, S.N., 2005. On the area under a continuous time Brownian motion

till its first-passage time. Journal of Physics A: Mathematical and General, 38(19), p.4097.

[30] Kearney, M.. Majumdar, S.N., and Martin, R.J., 2007. The first-passage area for drifted Brownian

motion and the moments of the Airy distribution. Journal of Physics A: Mathematical and

Theoretical, 40(36), p.F863.

[31] Kearney, M.J. and Majumdar, S.N., 2014. Statistics of the first passage time of Brownian motion

conditioned by maximum value or area. Journal of Physics A: Mathematical and Theoretical,

47(46) p.465001.

[32] Dubey, A., Bandyopadhyay, M. Study of Brownian functionals for a Brownian process model of

snow melt dynamics with purely time dependent drift and diffusion. European Physical Journal

B, 91, 276 (2018).

[33] Dubey, A., Bandyopadhyay, M. Polymer translocation across an oscillating nanopore: study of



19

several distribution functions of relevant Brownian functionals. Eur. Phys. J. B 92, 251 (2019).

[34] Dubey, A., Bandyopadhyay, M., DNA breathing dynamics under periodic forcing: Study of several

distribution functions of relevant Brownian functionals. Physical Review E, 100, 052107 (2019).

[35] Dubey, A., Bandyopadhyay, M., Barrierless reaction kinetics : Different distribution functions of

relevant Brownian functionals. Physica A: Statistical Mechanics and its Applications, 549, 124343

(2020).

[36] Evans, M.R. and Majumdar, S.N., 2011. Diffusion with stochastic resetting. Physical review letters,

106(16), p.160601.

[37] Evans, M.R. and Majumdar, S.N., 2011. Diffusion with optimal resetting. Journal of Physics A:

Mathematical and Theoretical, 44(43), p.435001.

[38] Evans, M.R. and Majumdar, S.N., 2014. Diffusion with resetting in arbitrary spatial dimension.

Journal of Physics A: Mathematical and Theoretical, 47(28), p.285001.

[39] Evans M R, Majumdar S N and Schehr G 2020 J. Phys. A: Math. Theor. 53 193001

[40] Pal, A., Kundu, A. and Evans, M.R., 2016. Diffusion under time-dependent resetting. Journal of

Physics A: Mathematical and Theoretical, 49(22), p.225001.

[41] De Bruyne, B., Majumdar, S.N. and Schehr, G., 2022. Optimal Resetting Brownian Bridges via

Enhanced Fluctuations. Physical Review Letters, 128(20), p.200603.

[42] Pal, A., Chatterjee, R., Reuveni, S. and Kundu, A., 2019. Local time of diffusion with stochastic

resetting. Journal of Physics A: Mathematical and Theoretical, 52(26), p.264002.

[43] Den Hollander, F., Majumdar, S.N., Meylahn, J.M. and Touchette, H., 2019. Properties of

additive functionals of Brownian motion with resetting. Journal of Physics A: Mathematical

and Theoretical, 52(17), p.175001.

[44] Bressloff, P.C., 2020. Occupation time of a run-and-tumble particle with resetting. Physical Review

E, 102(4), p.042135.

[45] Singh, P. and Pal, A., 2022. First-passage Brownian functionals with stochastic resetting. Journal

of Physics A: Mathematical and Theoretical, 55(23), p.234001.

[46] Pal, A., 2015. Diffusion in a potential landscape with stochastic resetting. Physical Review E,

91(1), p.012113.

[47] Trajanovski, P., Jolakoski, P., Zelenkovski, K., Iomin, A., Kocarev, L. and Sandev, T., 2023.

Ornstein-Uhlenbeck process and generalizations: particle’s dynamics under comb constraints and

stochastic resetting. arXiv preprint arXiv:2301.12304.

[48] Gupta, D., Plata, C.A., Kundu, A. and Pal, A., 2020. Stochastic resetting with stochastic returns

using external trap. Journal of Physics A: Mathematical and Theoretical, 54(2), p.025003.

[49] Meylahn, J.M., Sabhapandit, S. and Touchette, H., 2015. Large deviations for Markov processes

with resetting. Physical Review E, 92(6), p.062148.

[50] Gupta, D., Plata, C.A. and Pal, A., 2020. Work fluctuations and Jarzynski equality in stochastic

resetting. Physical review letters, 124(11), p.110608.

[51] Ahmad, S., Nayak, I., Bansal, A., Nandi, A. and Das, D., 2019. First passage of a particle in a

potential under stochastic resetting: A vanishing transition of optimal resetting rate. Physical

Review E, 99(2), p.022130.

[52] Ricciardi, L. M and Sato, S., 1988. First-passage-time density and moments of the Ornstein-

Uhlenbeck process. Journal of Applied Probability, 25(1), p.43-57.

[53] Kearney, M. J. and Martin, R. J., 2021. Statistics of the first passage area functional for

an Ornstein–Uhlenbeck process. Journal of Physics A: Mathematical and Theoretical, 54(5),

p.055002.

[54] Abundo, M., 2021. The first-passage area of Ornstein-Uhlenbeck process revisited. Stochastic

Analysis and Applications, pp.1-19.

[55] Kishore, G. and Kundu, A., 2021. Local time of an Ornstein–Uhlenbeck particle. Journal of

Statistical Mechanics: Theory and Experiment, 2021(3), p.033218.

[56] NIST Digital Library of Mathematical Functions, F. W. J. Olver, A. B. Olde Daalhuis, D. W.

Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl,

http://arxiv.org/abs/2301.12304


20

and M. A. McClain

[57] Abramowitz, M., Stegun, I. A. (1965). Handbook of Mathematical Functions: With Formulas,

Graphs, and Mathematical Tables. New York: Dover.

[58] Pal, A. and Reuveni, S., 2017. First passage under restart. Physical review letters, 118(3), p.030603.

[59] Reuveni, S., 2016. Optimal stochastic restart renders fluctuations in first passage times universal.

Physical review letters, 116(17), p.170601.

[60] Pal, A., Kostinski, S. and Reuveni, S., 2022. The inspection paradox in stochastic resetting. Journal

of Physics A: Mathematical and Theoretical, 55(2), p.021001.

[61] Pal, A. and Prasad, V.V., 2019. Landau-like expansion for phase transitions in stochastic resetting.

Physical Review Research, 1(3), p.032001.

[62] Majumdar, S.N., Sabhapandit, S. and Schehr, G., 2015. Dynamical transition in the temporal

relaxation of stochastic processes under resetting. Physical Review E, 91(5), p.052131.

[63] Stojkoski, V., Sandev, T., Kocarev, L. and Pal, A., 2021. Geometric Brownian Motion under

Stochastic Resetting: A Stationary yet Non-ergodic Process. Phys. Rev. E 104(1), 014121 (2021).

[64] Méndez, V. and Campos, D., 2016. Characterization of stationary states in random walks with

stochastic resetting. Physical Review E, 93(2), p.022106.

[65] Evans, M.R., Majumdar, S.N. and Mallick, K., 2013. Optimal diffusive search: nonequilibrium

resetting versus equilibrium dynamics. Journal of Physics A: Mathematical and Theoretical,

46(18), p.185001.

[66] Pal, A. and Rahav, S., 2017. Integral fluctuation theorems for stochastic resetting systems. Physical

Review E, 96(6), p.062135.

[67] Eule, S. and Metzger, J.J., 2016. Non-equilibrium steady states of stochastic processes with

intermittent resetting. New Journal of Physics, 18(3), p.033006.

[68] Riascos, A.P., Boyer, D., Herringer, P. and Mateos, J.L., 2020. Random walks on networks with

stochastic resetting. Physical Review E, 101(6), p.062147.

[69] Ye, Y. and Chen, H., 2022. Random walks on complex networks under node-dependent stochastic

resetting. Journal of Statistical Mechanics: Theory and Experiment, 2022(5), p.053201.

[70] Pal, A. and Prasad, V.V., 2019. First passage under stochastic resetting in an interval. Physical

Review E, 99(3), p.032123.

[71] Jain, S., Boyer, D., Pal, A. and Dagdug, L., 2023. Fick–Jacobs description and first passage

dynamics for diffusion in a channel under stochastic resetting. The Journal of Chemical Physics,

158(5), p.054113.

[72] Ray, S., Mondal, D. and Reuveni, S., 2019. Peclet number governs transition to acceleratory restart

in drift-diffusion. Journal of Physics A: Mathematical and Theoretical, 52(25), p.255002.

[73] Ahmad, S., Rijal, K. and Das, D., 2022. First passage in the presence of stochastic resetting and

a potential barrier. Physical Review E, 105(4), p.044134.

[74] Ahmad, S. and Das, D., 2020. Role of dimensions in first passage of a diffusing particle under

stochastic resetting and attractive bias. Physical Review E, 102(3), p.032145.

[75] Ray, S. and Reuveni, S., 2020. Diffusion with resetting in a logarithmic potential. The Journal of

chemical physics, 152(23), p.234110.

[76] Ray, S. and Reuveni, S., 2021. Resetting transition is governed by an interplay between thermal

and potential energy. The Journal of Chemical Physics, 154(17), p.171103.

[77] Ray, S., 2020. Space-dependent diffusion with stochastic resetting: A first-passage study. The

Journal of Chemical Physics, 153(23), p.234904.

[78] Singh, R.K., Metzler, R. and Sandev, T., 2020. Resetting dynamics in a confining potential. Journal

of Physics A: Mathematical and Theoretical, 53(50), p.505003.

[79] Bonomo, O.L. and Pal, A., 2021. First passage under restart for discrete space and time:

application to one-dimensional confined lattice random walks. Physical Review E, 103(5),

p.052129.

[80] Kumar, A. and Pal, A., 2022. Universal framework for record ages under restart. arXiv preprint

arXiv:2208.10877. To appear in Phys. Rev. Lett.

http://arxiv.org/abs/2208.10877


21

[81] Tal-Friedman, O., Pal, A., Sekhon, A., Reuveni, S. and Roichman, Y., 2020. Experimental

realization of diffusion with stochastic resetting. J. Phys. Chem. Lett. 2020, 11, 17, 7350–7355

[82] Besga, B., Bovon, A., Petrosyan, A., Majumdar, S.N. and Ciliberto, S., 2020. Optimal mean first-

passage time for a Brownian searcher subjected to resetting: experimental and theoretical results.

Physical Review Research, 2(3), p.032029.

[83] Chechkin, A. and Sokolov, I., 2018. Random search with resetting: a unified renewal approach.

Physical review letters, 121(5), p.050601.

[84] Nagar, A. and Gupta, S., 2016. Diffusion with stochastic resetting at power-law times. Physical

Review E, 93(6), p.060102.

[85] Bhat, U., De Bacco, C. and Redner, S., 2016. Stochastic search with Poisson and deterministic

resetting. Journal of Statistical Mechanics: Theory and Experiment, 2016(8), p.083401.

[86] Bonomo, O.L., Pal, A. and Reuveni, S., 2022. Mitigating long queues and waiting times with

service resetting. PNAS Nexus, 1(3), p.pgac070.

[87] Ray, A., Pal, A., Ghosh, D., Dana, S.K. and Hens, C., 2021. Mitigating long transient time in

deterministic systems by resetting. Chaos: An Interdisciplinary Journal of Nonlinear Science,

31(1), p.011103.


	1 Introduction
	2 General formulation
	3 Local time
	4 Residence time
	5 First passage time
	6 Conclusion
	7 Acknowledgment
	Appendix A Details of numerical simulations

