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Abstract

Nowadays, the deployment of deep learning-based appli-
cations is an essential task owing to the increasing demands
on intelligent services. In this paper, we investigate latency
attacks on deep learning applications. Unlike common ad-
versarial attacks for misclassification, the goal of latency
attacks is to increase the inference time, which may stop
applications from responding to the requests within a rea-
sonable time. This kind of attack is ubiquitous for various
applications, and we use object detection to demonstrate
how such kind of attacks work. We also design a framework
named Overload to generate latency attacks at scale. Our
method is based on a newly formulated optimization prob-
lem and a novel technique, called spatial attention. This
attack serves to escalate the required computing costs dur-
ing the inference time, consequently leading to an extended
inference time for object detection. It presents a signifi-
cant threat, especially to systems with limited computing re-
sources. We conducted experiments using YOLOv5 models
on Nvidia NX. Compared to existing methods, our method is
simpler and more effective. The experimental results show
that with latency attacks, the inference time of a single im-
age can be increased ten times longer in reference to the
normal setting. Moreover, our findings pose a potential new
threat to all object detection tasks requiring non-maximum
suppression (NMS), as our attack is NMS-agnostic.

1. Introduction

Deep neural networks (DNN) have accomplished many
achievements in various fields [1, 2, 12, 17, 37]. However,
those models are usually large and demand a huge amount
of computing resources, even for model inference. One so-
lution is to utilize the computing power in cloud platforms,
but the communication cost between the data center and the
edge nodes can be high and the latency may not be accept-
able for many real-time applications [10, 24].

*The primary research and contribution for this work were conducted
during a visit to IBM Research.

In this paper, we investigate a new type of attacks, called
latency attacks, whose purpose is to increase the execu-
tion time of the victim application. This kind of attacks
poses critical threats to real-time applications, such as pur-
chase behavior recognition system for unmanned store or
autonomous cars systems, which are required to detect tar-
get objects and determine proper actions within stringent
time constraints [23, 34]. Any mistake or delayed response
due to elongated latency could cause severe failures. More-
over, the latency attacks not only increase the execution
time but also cause improper predictions made by the model
indirectly.

The task we focus on is object detection, which has been
widely used in numerous applications [11, 39, 41]. Its
purpose is to identify all objects in an image and to label
them with corresponding classes and locations. Many deep
learning-based models, such as SSD [13] and YOLO se-
ries [22], often use Non-Maximum Suppression (NMS) as
a post-processing operation to eliminate duplicated objects
predicted by the detectors. The execution time of NMS de-
pends on the number of objects fed into NMS. This prop-
erty implies that object detection tasks may suffer from se-
vere latency if numerous objects are predicted by the target
model.

In this paper, we analyze the time complexity of NMS
and find that the execution time is dominated by the total
number of objects. The influence of the number of survival
bounding boxes can be ignored. Based on the observation,
we propose a Latency Attack on Object Detection (we name
this attack framework “Overload”), whose objective is to
craft adversarial images with abundant objects from the vic-
tim model. To further improve the effectiveness of the ad-
versarial image, we introduce a technique, called spatial at-
tention, which can be used to manipulate the fake object
generation in particular regions. This attack serves to esca-
late the required computing costs during the inference time,
consequently leading to an extended inference time for ob-
ject detection. It presents a significant threat, especially to
systems with limited computing resources.

Our main contributions are outlined as follows:
• We systematically explore potential objectives for latency
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attacks, identifying the number of objects fed into NMS
as a crucial factor for success, both theoretically and prac-
tically.

• Leveraging this insight, we simplify the objective de-
sign. In comparison to existing works like [35, 38], Over-
load achieves superior attack performance while utilizing
fewer computational costs and less memory.

• Experiments on Nvidia Jetson NX demonstrate that the
inference time of our crafted images is approximately 10
times longer than that of the original images.

• We establish the NMS-agnostic nature of our proposed
attack, underscoring its potential to pose a universal threat
to all object detection systems reliant on NMS.
The rest of this paper is organized as follows. Section 2

introduces the background on object detection and adver-
sarial attack. Section 3 presents the theoretical analysis of
NMS and the proposed methods to craft the adversarial im-
ages. Section 4 shows the experimental results, and discus-
sions on the impact of latency attacks for real-time applica-
tions. The last section is our conclusion. Analytical details
of NMS and ablation studies are listed in the Appendix.

2. Background
2.1. Object Detection

Object detection is one of the challenging tasks in computer
vision. In contrast to image classification, which receives
an image and predicts its class, the goal of object detection
is to recognize multiple objects and label their locations. To
accomplish this, various deep learning-based detectors have
been introduced. Some models approach this task by pro-
cessing object locations and their probabilities in two dis-
tinct stages [14, 18]. Conversely, one-stage detectors tackle
both classification and object localization within a single
neural network [22].

To deploy those models onto edge devices, model size
and inference time should be improved to meet the resource
and timing constraints. Model compression is a commonly
used strategy [31]. The YOLO family utilizes model scal-
ing techniques to make the model fit different computing
devices. Different scaling factors, such as resolution (size
of the input image), depth (number of layers), width (num-
ber of channels), and stage (number of feature pyramids) are
considered. For example, YOLO 5 has five different scales
of models that use the same architecture but different width
and depth configurations.

2.2. Non-maximum Suppression

Non-maximum suppression (NMS) is a prevalent compo-
nent in modern object detection tasks [14, 22]. As shown
in Figure 1, an object detection model predicts numerous
objects. Each object has its own information about height,
width, position, objectness confidence, and probabilities of

all classes. The objects with similar position information
should be clustered as the same object. The main purpose
of NMS is to eliminate redundant objects in each cluster
and return survival objects as final bounding boxes. Several
NMS implementations have been proposed, such as DIoU
[43] and CIoU [43].

While NMS is essential to most deep-learning-based
models, there has been limited investigation into the elapsed
time of NMS. This is primarily due to the fact that bench-
marking datasets are typically clean and uncontaminated,
and model performance is evaluated on high-end GPUs,
where the time taken by NMS is negligible. Previous stud-
ies have mostly focused on optimizing performance through
architecture refinements [22]. However, when deploying
models on edge devices, the computational cost of NMS be-
comes a critical consideration. Moreover, in this paper, we
demonstrate that NMS can be exploited to launch latency
attacks on object detection systems for edge devices.

2.3. Adversarial Attack

Adversarial attacks have demonstrated that state-of-the-art
models can be deceived by an adversarial example, which
is the original input with an indistinguishable perturbation
[5, 15, 16]. Adversarial attacks can be classified as white-
box attacks [6, 7] or black-box attacks [8, 9]. In the white-
box scenario, adversarial examples can be found along the
gradient of a loss function. In the black-box scenario, the
victim model is unaccessible. The gradient is often esti-
mated by the finite differences method with multiple queries
with stochastic perturbations.

Unlike the adversarial attack for image classification,
whose goal is to degrade the model accuracy, the objec-
tives of adversarial attacks for object detection are diverse.
There are at least four objectives in current literature: ap-
pearing attack, hiding attack, mis-classifying attack, and
mis-locating attack. Appearing attacks generate a perturba-
tion such that the detector marks non-existent objects [42].
Hiding attacks make particular objects invisible [40]. Mis-
classifying attacks do not modify the information about the
location but the predicted class [3]. Mis-locating attacks fo-
cus on applications that require the locations of predicted
bounding boxes to be highly precise. Tiny location changes
can cause catastrophe failures [21].

2.4. Latency Attack

Latency attacks are a variant of adversarial attacks, with
their primary objective being to maximize the processing
time of the target model when presented with inputs. The
Sponge attack, for instance, showcased the feasibility of la-
tency attacks against deep learning-based translators oper-
ating on fixed-length sequences. In some dynamic vision
models, predictions can be obtained from earlier stage if
specific criteria are met [25]. This behavior introduces a



Figure 1. The processing flow of object detection. NMS stands for non-maximum suppression.

Figure 2. Elapsed time of NMS on NVIDIA Jetson NX.

security concern regarding latency attacks [19].
The vulnerability of NMS was addressed by Daedalus at-

tack [38], which aims to produce numerous bounding boxes
and to reduce the mean average precision (mAP), a com-
monly used metric for object detection tasks. Another work
is Phantom Sponge [35], which demonstrates that increas-
ing of the total number of objects fed into NMS can cause
a longer execution time. It also tries to keep the recall of
the modified image the same as that of the original im-
age. Nonetheless, these approaches incur high computa-
tional costs due to the necessity of evaluating the gradients
of all IoU pairs. Moreover, there is a lack of a comprehen-
sive investigation into the impact of these attacks on edge
devices.

3. Overload: A Framework of Latency Attacks

In this section, we first present the formal definition of la-
tency attacks on object detection tasks and our motivations.
We further provide theoretical explanations of how the ad-
versarial examples are produced with minimal computa-
tional cost. Lastly, we propose an algorithm to generate
adversarial images for latency attacks.

3.1. Problem Definition and Motivation

We assess potential vulnerabilities in object detectors within
the white-box scenario, where the attackers have complete
knowledge of the model architecture and can directly re-
trieve intermediate information from the victim model. Al-
though this setting seems impractical in the real-world, it
can serve as motivation to refine more robust model designs.

The main goal of the latency attack is to find a pertur-
bation joined to the input such that expected values of the

elapsed time of every single request are maximized, which
can be formulated as the following optimization problem:

E
x∼X

max
δ≤ϵ

Ttotal(x+ δ), (1)

where X is a set of requests to be processed and the pertur-
bation δ is within the ϵ-ball. Specifically, the elapsed time
can be expressed as

Ttotal(x+ δ) = Tinfer(x+ δ) + Twait(X ), (2)

where Tinfer(x + δ) is the inference time and Twait is the
waiting time, which depends on the availability of the de-
sired resources and all requests X . We assume there is a
queue for the requests. When the desired computing re-
sources are fully occupied, requests will be stored in the
queue. Therefore, the goal defined in Equation (1) is equiv-
alent to finding adversarial examples that could exhaust the
desired resources so that the rest of the requests in the queue
cannot be processed until the malicious requests are termi-
nated.

However, directly incorporating the function T into the
formulation for generating adversarial attacks poses a chal-
lenge, because T is a complex function that can be influ-
enced by several external factors, such as scheduling or
cache missing. In the case of white-box attacks, comput-
ing the derivative directly through the computational graph
is not feasible. Moreover, for black-box attacks, discerning
whether the increase in processing time stems from changes
in machine status or the introduction of an adversarial ex-
ample is non-trivial. In this paper, we seek to address the
following two critical questions:
• How can we parameterize the elapsed time and the out-

puts generated by the target model, allowing us to formu-
late an objective that can be exploited to launch latency
attacks on object detection?

• How can we maximize the elapsed time of the victim
model in processing the given image, all while minimiz-
ing computational costs and memory usage in the produc-
tion of adversarial examples?

3.2. Theoretical Analysis of NMS Time Complexity

A fundamental requirement for a successful latency attack
is the existence of an operation whose processing time is
contingent on the input. In the case of object detection



tasks, NMS emerges as the pivotal factor. To delve into the
vulnerability of NMS in object detection to latency attacks,
we first analyze the time complexity of NMS based on the
commonly used deep learning frameworks on GPU, as sug-
gested in [33]. Let C be the set of objects fed into NMS.
The steps of NMS can be divided into four major tasks. We
leave the detailed analysis in Appendix A and summarize
their time complexity below:.
1. Filtering low-confidence objects: O(|C|);
2. Sorting candidates by probabilities: O(|C| log |C|);
3. Calculating pairwise IoU scores: O(|C|2);
4. Pruning inactive objects: O(|C|2).
As evident, the time complexity appears to be quadratic.
However, in practice, the time is dominated by unavoidable
overheads when |C| is relatively small . Hence, the elapsed
time can be approximated as

Ttotal ≈
{

α|C|2, if |C| > N
Tbase, otherwise, (3)

where α is the calibrated coefficient depending on box dis-
tributions, Tbase, and N are constants related to the compu-
tational capacity of used GPU.

To ascertain whether the time complexity is affected by
the number of output boxes, we conducted experiments to
measure the elapsed time of NMS using synthetic data un-
der three distinct scenarios: worst, best, and random. The
worst case is simulated by setting TIoU to 1.0 so that no ob-
ject can be filtered out after NMS. On the other hand, the
best scenario is making all elements in set C share the iden-
tical box information, so that NMS can mark all objects in
the first iteration. The random scenario just randomly sets
the box configurations.

The experimental results are illustrated in Figure 2, and
two key observations can be drawn from the findings. First,
as anticipated, the processing time in all three cases dis-
plays a quadratic growth pattern as the size of |C| increases.
Second, the impact of the number of output boxes can be
represented by the ratio of the worst-case scenario to the
best-case scenario, which remains a constant, regardless of
the number of objects (|C|). Therefore, we can formulate
the elapsed time of NMS as

Ttotal = s(1 +
|B|
|C|

)|C|2 = s(|C|2 + |B||C|), (4)

where s is the calibrated coefficient and B is the set of boxes
output by NMS.

3.3. Exploring Objectives for Adversarial Example
Generation

Our primary objective is to maximize the elapsed time of
the victim model when processing a given image, all while
minimizing computational costs and memory usage when

creating adversarial examples. Equation (4) implies that la-
tency can be increased by generating more objects or boxes,
but the associated cost of producing adversarial examples
remains unclear.

In pursuit of our goal, we aim to explore all potential
objectives for generating adversarial examples. Previous
works [35, 38] suggested that the latency attack can be
achieved by a composite objective that involves three com-
ponents: maximizing the confidence of objects, minimizing
the pairwise IoU scores, and minimizing the areas of ob-
jects. The first terms can prevent the objects from being
filtered at the first step of NMS. The second term drifts the
centers of objects and the third term adjusts the areas of
boxes to avoid the removal of objects in the pruning pro-
cess.

However, the objective proposed in previous works over-
looks the influence of the number of boxes. The observa-
tions in Figure 2 indicate that the elapsed time can be in-
creased by up to 20 times when generating numerous ob-
jects. On the other hand, the time increment is approxi-
mately 2 times when the number of boxes is increased with
a fixed |C|.

Moreover, while the IoU computation is differentiable,
tracking all pairwise comparisons consumes considerable
memory and time for crafting adversarial examples. Fur-
thermore, the performance improvement cannot be easily
quantified, as the execution order influences the final re-
sults. For example, a modified box can evade the discarding
of objects but it may cause some nearby boxes to be marked
duplicated in the rest pruning rounds.

This insight reinforces our emphasis on prioritizing max-
imum object confidence as crucial for optimizing latency
while minimizing computational costs and memory usage.
We contend that including the last two terms in the objective
not only fails to improve performance but also increases the
time and memory required for generating adversarial exam-
ples, adding unnecessary complexity to the design.

3.4. Proposed Method for Latency Attacks on Ob-
ject Detection

We propose that latency attacks on object detection can be
formulated as an optimization problem,

max
x

n∑
i=0

Fl(Fconf(M(x)i)), (5)

where M(x) is the predicted results; n is the total number
of objects output by the given model, Fl(·) is a monotonic
increasing function; and Fconf(·) retrieves each object’s cor-
responding confidence. Specifically,

Fconf(·) =

{
c, if cpi > Tconf

cpi, otherwise,
(6)
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Figure 3. The execution flow of spatial attention.

where c is the objectness confidence predicted by the model
and pi is the probability of the i-th class. Equation (6) max-
imizes the probability of each class by increasing the ob-
jectness confidence while the probabilities for less possible
classes are raising as well to accelerate search speed since
multiple labels for an object are allowed in an object detec-
tion task. As a result, the total objects fed into NMS can be
increased.

We introduce a novel approach, called spatial attention,
to enhance the efficacy of latency attacks. The purpose of
spatial attention is to force the attacking processing to pay
more attention to the low-density regions rather than the re-
gions that already have objects. The flow of spatial atten-
tion is visualized in Figure 3. Throughout each iteration for
crafting adversarial examples, the weight assigned to the
central area is minimized as it contains two objects. Con-
versely, boundaries, which are either empty or overlaid with
objects, have their corresponding weights adjusted accord-
ingly.

We summarize the steps of our method below. First, the
image is divided into an m × m grid. Second, the weight
of each grid cell, denoted as Wi,j , is adjusted based on the
number of objects obtained from M(x). The weight of the
particular grid cell is decreased if adversarial attacks cannot
produce more objects in the area or if it is dense enough.
Finally, the adversarial image is updated using the following
equation:

xadv
i,j = xorg

i,j + ηWi,j∆xi,j (7)

where i and j are grid indices; xadv is the adversarial image;
xorg is the original image; η is step size, and ∆x is the mod-
ification of the image. Here ∆x = ∇xL, the gradient for
the loss function specified in Equation (5), where

L =

n∑
i=0

Fl(Fconf(M(x)i)).

4. Experiments

4.1. Setup

To demonstrate the potential impacts of latency attacks on
systems with limited computing resources, we conducted
experiments on Nvidia Jetson NX, a popular edge device
for real-time object detection applications [27, 34], and the
used models are YOLOv5s and YOLOv5n due to their low
computational requirements. To further accelerate the run-
ning speed, the inference models are compiled into the Ten-
sorRT format [20]. We randomly selected 1,000 images
from the validation set of MS COCO 2017 dataset [28].
Meanwhile, the batch size is 1 and the images’ dimension
is (640, 640). The results are sorted by the elapsed time
and presented in the selected percentile. Additionally, we
have included ablation studies in the Appendix, which cov-
ers various aspects such as the selection of the loss function,
evaluation of spatial attention, transfer attack analysis, and
the performance impact on different models. The results
obtained indicate that the total number of objects generated
by our proposed attack closely aligns with the theoretical
maximum that victim models can output, demonstrating the
effectiveness of our approach. Furthermore, our method
allows the encoding of information from multiple models
within a single image, showcasing the feasibility of an en-
semble attack to deceive various object detection models.

4.2. Latency Evaluation

Table 1 presents the experimental results of YOLOv5s and
YOLOv5n on Nvidia Jetson NX, where objects mean the
total number of objects fed into NMS; boxes mean the total
number of bounding boxes output by NMS, and time is the
elapsed time in millisecond, including model inference and
NMS.

The elapsed times of the original examples with
YOLOv5s and YOLOv5n are about 16.4 ms and 11.5 ms
respectively for 50% percentile. Conversely, the average
elapsed times of adversarial examples are about 13.0×
and 11.0× longer than that of the original examples with
YOLOv5s and YOLOv5n respectively. Under our experi-
mental configuration, the maximum number of objects pre-
dicted by the YOLO model is 25,200. Results also demon-
strate that our attacks can generate over 20,000 ghost ob-
jects for most images: over 90% of images for YOLOv5s
and over 60% of images for YOLOv5n.

To evaluate the impact of the latency attack on real-world
applications, we measured the elapsed time of 1,000 images
processed by a pipeline. Table 2 shows the average execu-
tion time of each image in milliseconds, where the Ratio
column represents the proportion of adversarial images in
the test dataset, and FPS is the abbreviation for ”Frame Per
Second”. As the proportion of adversarial images grows,
the elapsed time rises rapidly and the inference time in-



Percentile
YOLOv5s YOLOv5n

Adversarial Examples Original Examples Adversarial Examples Original Examples
objects boxes time objects boxes time objects boxes time objects boxes time

min 4098 1587 18.7 0 0 14.1 5893 1131 14.7 0 0 9.3
0.10 23112 2034 122.2 40 3 16.4 11925 1421 22.6 0 0 10.7
0.25 24248 4653 179.6 47 4 16.4 16405 2303 39.8 6 1 11.5
0.50 24000 2250 217.8 28 3 16.4 22363 2315 128.9 22 4 11.5
0.75 24335 4514 264.2 3 1 16.6 20923 2372 208.3 97 8 11.5
0.90 24778 2340 278.4 234 21 16.7 21947 2659 226.7 6 2 11.6
max 24859 2363 293.8 212 21 16.9 23396 2502 258.7 25 2 12.0

Table 1. Results of latency evaluation on NVIDIA Jetson NX

Ratio YOLOv5s YOLOv5n
time [ms] FPS time [ms] FPS

0.00 23 43.5 20 50.0
0.25 81 12.3 56 17.8
0.50 136 7.3 92 10.8
0.75 180 5.5 114 8.8
1.00 230 4.3 135 7.4

Table 2. Pipeline simulator on NVIDIA Jetson NX

GPU model Torg [ms] Tatk [ms]

Nvidia A100 16 54
Nvidia A10 14 52

Nvidia 1080 Ti 11 62
Nvidia Jetson 23 230

Table 3. Latency evaluation across various GPUs

creases tenfold in the worst case. The results suggest that
our proposed latency attack poses a potential warning in
real-world applications.

We conducted the same pipeline experiment with
YOLOv5s across various GPUs. Table 3 presents the ex-
perimental results, where Torg is measured without the in-
volvement of adversarial examples; Tatk refers to the sce-
nario where all inputs are adversarial examples. As can be
seen, the ratio of the elapsed time of Tatk to Torg is about
3-6 (excluding Nvidia Jetson). These findings suggest that
the attack can be generalized across different GPUs, but the
strength of the proposed attack depends on hardware con-
figurations.

4.3. IoU-invariant Verification

This experiment investigates how the number of surviv-
ing objects influences execution time. The results are pre-
sented in Table 4, where TIoU represents the IoU threshold.
TIoU = 1.0 and TIoU = 0.0 simulate the worst and best

cases, respectively. TIoU = 0.45 represents the default con-
figuration, and TIoU = 0.80 is an intermediate case.

As indicated in Table 4, our attack produces approxi-
mately 550 and 600 non-overlapping boxes for YOLOv5s
and YOLOv5n, respectively, at the 50% percentile. Al-
though the best cases reduce over 95% of objects, the cor-
responding elapsed times are quite similar to those of the
other cases. When compared to the results obtained from
synthetic data, as illustrated in Figure 2 the latency incre-
ments for real-world data are marginal, owing to the vari-
ability in the strength of adversarial examples. Producing
more survival boxes to increase execution time is only rec-
ommended for black-box scenarios or situations where the
number of objects is saturated.

4.4. Comparison to Known Attacks

Phantom Sponge [35] and Daedalus [38] generate numer-
ous objects by reducing the bounding box sizes, implicitly
minimizing pairwise IoU scores. This operation is equiva-
lent to maximizing the term |B| in Equation (4). However,
they necessitate tracking the gradient of IoU computations,
leading to high memory usage and longer processing times
without inducing performance gains. In contrast, the pro-
posed method simplifies the objective, conserving compu-
tational time.

Table 5 compares Overload to existing works, where ϵ
is the maximum size of the perturbation; Objects represent
the total number of objects; Recall measures the similar-
ity of predictions between clean and adversarial images;
mAP@50 is the mean average precision calculated at IoU
threshold 0.5; and ”-” refers to metrics that are not applica-
ble. For the L2-norm attack, Daedalus produces fewer ob-
jects than other competitors. Meanwhile, Phantom Sponge
generates about 19,000 objects within a perturbation size
ϵ = 70.0, but our attack produces more objects and higher
recall within ϵ = 15.0. These comparison results should not
be over-interpreted, as the goals and constraints on pertur-
bations for Phantom Sponge and Daedalus differ from ours.

We conducted experiments on Nvidia V100 (32GB) to



Percentile
YOLOv5s

TIoU=0.00 TIoU=0.45 TIoU=0.80 TIoU=1.00
objects boxes time objects boxes time objects boxes time objects boxes time

min 4098 403 17.3 4098 1587 18.7 4098 2198 17.9 4098 4098 19.3
0.10 23635 623 64.8 23112 2034 122.2 20157 6352 156.9 20328 20328 125.7
0.25 24027 745 120.2 24248 4653 179.6 23345 7756 211.5 23476 23476 215.8
0.50 20579 550 200.0 24000 2250 217.8 24345 12504 234.7 24381 24381 245.4
0.75 24264 692 265.6 24335 4514 264.2 24667 7544 248.0 24138 24138 275.5
0.90 24268 677 274.5 24778 2340 278.4 24338 11593 260.4 23356 23356 280.2
max 24810 476 289.2 24859 2363 293.8 24859 8039 269.7 24905 24905 285.5

Percentile
YOLOv5n

TIoU=0.00 TIoU=0.45 TIoU=0.80 TIoU=1.00
objects boxes time objects boxes time objects boxes time objects boxes time

min 5893 393 14.3 5893 1131 14.7 5893 2429 15.2 5893 5893 15.3
0.10 11660 533 21.9 11925 1421 22.6 11904 4580 24.1 11961 11961 25.4
0.25 16858 529 31.3 16405 2303 39.8 16680 5008 44.4 14789 14789 48.3
0.50 21423 660 52.1 22363 2315 128.9 21440 10020 60.5 19231 19231 139.2
0.75 22905 540 62.6 20923 2372 208.3 21876 11360 152.4 21748 21748 210.8
0.90 21536 562 163.2 21947 2659 226.7 22279 10305 223.7 21796 21796 225.9
max 22897 538 234.7 23396 2502 258.7 22959 9505 241.1 23396 23396 256.2

Table 4. The elapsed time with different IoU threshold on NVIDIA Jetson NX

Paper ϵ Objects Recall mAP@50

Phantom Sponge 70 19000 18 -
Phantom Sponge 30 9000 77 -

Overload 15 20000 44 <0.001
Daedalus - 1500 - <0.001

Table 5. Performance comparison with existing works

Method BatchSize Memory (GB) Time (s)

Overload 16 7.5 180
Overload + LIoU 16 - -
Overload + Larea 16 7.9 240

Table 6. Resource Consumption Comparison for Overload with
Different Losses

quantify memory usage and the total time required to craft
adversarial examples. The gradients of tracking IoU cal-
culation for all objects require more memory than is avail-
able in Nvidia V100. Consequently, Daedalus tracks partial
objects to mitigate memory usage. Crafting 10 adversarial
examples sequentially with Daedalus takes approximately
145 minutes, with a peak memory usage of around 8.5GB.
In contrast, our method can process 16 images in a batch
in about 3 minutes, with a peak memory usage of 7.5GB.
Phantom Sponge limits the number of objects used to com-
pute the IoU score to less than 100, resulting in slightly

higher resource usage than our method under the same con-
ditions. However, Phantom Sponge needs to execute NMS
several times in the attacking processing, making a longer
execution time when the total objects grow.

Table 6 represents the evaluation of Overload integrated
with an additional loss, where ”Overload + LIoU” refers
to the objective involving minimizing pairwise IoU scores,
and ”Overload + Larea” refers to the objective involving
minimizing the areas of objects. ”Overload + LIoU” failed
to execute due to out-of-memory issues. The resource re-
quirements for ”Overload + Larea” are higher than native
Overload. We attempted various function formulations for
minimizing areas and coefficients to amplify their influ-
ence. However, we obtained the same performance as those
presented in IoU-invariant verification. Therefore, we be-
lieve that Overload outperforms these works in terms of the
number of objects without needing a hyperparameter for
confidence-IoU balance, while using fewer computing re-
sources and simplifying the objective design.

4.5. Discussion

In spirit, our proposed latency attack can be viewed as a
variant of the appearing attack, but these two attacks have
fundamentally different purposes. The original appearing
attack [42] creates a specific type of object such that the de-
tector makes an unexpected decision. On the contrary, the
latency attack produces numerous objects and the detector
cannot process those objects within the strict time restric-



tion. Nevertheless, it is important to acknowledge certain
limitations and potential impacts associated with our work,
which are addressed below.

NMS-agnosticity We argue that our attack is a generic
attack against NMS. The objective of the latency attack is to
maximize the confidence of individual object without any
information about locations. DIoU [43], CIoU [43], and
others implementations refine the pruning criterion or scor-
ing function. Those modifications do not affect the time
complexity. Hence, any object detection task that requires
NMS as post-processing is a potential victim of our latency
attack.

Attack scenarios This kind of adversarial image re-
quires more computing resources than normal images dur-
ing the inference time. This implies it can be leveraged as
a Denial-of-Service (DoS) attack and resources may be ex-
hausted in shared-resource environments. Furthermore, de-
vices with limited computing resources are potential attack
candidates. Although some models implement a timeout
mechanism, once the execution time is exhausted after pro-
cessing any example in the batch, the rest of the examples in
the batch are skipped. Additionally, issuing the next batch
is delayed until the previous processing is complete. This
property could be exploited maliciously.

The ghost objects generated by our latency attack could
increase processing time or have unforeseen consequences
for downstream tasks. For instance, the collision avoidance
system identifies risky objects and predicts the trajectories
of those objects [26]. The execution time worsens if the
predictions of an adversarial image are fed into the collision
avoidance system.

Limitation Our evaluation of this attack is under white-
box settings. We acknowledge that conducting adversarial
attacks in this setting may seem impractical. However, they
can serve as motivation to refine more robust model designs.
Generating a physically universal patch that can increase
inference time under black-box settings represents a critical
area of investigation. Nonetheless, evaluating practicality
falls beyond the scope of this work.

While our attack cannot be directly applied to NMS-free
models like DETR [4] and CenterNet [44], it’s vital not to
disregard the potential impact on these models. However, a
recent benchmark [30] evaluated popular underwater object
detection models on edge devices, revealing that 11 out of
12 models still rely on NMS. Therefore, our work is impor-
tant in drawing attention to the potential risks in object de-
tection and inspiring researchers to explore mitigation tech-
niques applicable across various applications.

Defenses There are three probable defenses. The first
one limits the maximum execution time. However, the pre-
defined threshold should be reconfigured when the model is
deployed on different hardware. Besides, the previous dis-
cussion has shown the risks of timeouts. The second one

limits the total number of objects fed into NMS. The choice
of the appropriate value depends on the used model and the
specific dataset. A strict limitation can mitigate the latency
issue but it may cause some objects to be ignored by the
model. The last one directly strengthens the reliability of
models with adversarial training and other defensive strate-
gies.

5. Conclusion
In this paper, we proposed a novel latency attack, called
Overload, by targeting the NMS module in object detec-
tion tasks. To fully exploit the vulnerabilities, we have
analyzed the time complexity of NMS on GPUs, and ob-
served that the execution time is dominated by the number
of objects fed into NMS. Based on the analysis, we pro-
posed a new formulation to craft adversarial images for la-
tency attacks, and a new technique, called spatial attention,
to activate more objects in particular areas to improve at-
tack efficiency. Compared with existing works, Overload
achieves superior attack performance but with smaller com-
putational costs and memory usage. With the attack, the ex-
ecution time of a single adversarial image is about ten times
longer than that of a normal image on Nvidia Jetson NX. It
poses a significant threat to systems with limited comput-
ing resources. Furthermore, we establish the NMS-agnostic
nature of our proposed attack, highlighting its potential to
become a common vulnerability to all object detection sys-
tems that rely on NMS.

There are many future directions to explore. First, the
black-box latency attacks have not been studied yet. Spatial
attention is a gradient-free procedure, so it may be a useful
tool for black-box attacks. Second, the performance im-
pact of the latency attack for downstream tasks needs more
investigation. Lastly, developing defense strategies against
latency attacks is an important topic but beyond the scope
of this paper. We acknowledge that our findings might be
used as exploits. However we believe our disclosure of vul-
nerability analysis is necessary to accelerate the design of
more resilient and safe edge devices against latency attacks.
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As described in earlier section, the steps of NMS can be
divided into four major tasks:
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2. Sorting candidates by probabilities;
3. Calculating pairwise IoU scores;
4. Pruning inactive objects.

Let C be the set of objects fed into NMS. In this first
step, the filtering step scans all objects in the set and deletes
low-confidence objects, resulting in linear time complexity
O(|C|. In the second step, the time complexity of sorting
is well known as O(|C| log(|C|)). In the third step, NMS
constructs a |C|× |C|matrix which stores the pairwise com-
parison results. IoU score computes the area of overlap be-
tween a pair of selected objects requiring a constant num-
ber of float operations. Therefore, the time complexity is
O(|C| × |C|). In the last step, the major goal is to prune
unqualified objects based on the IoU scores. The details
are listed in Algorithm 1, where S|C|×|C| stores IoU scores.
An object is marked duplicated if the IoU score S[i][j] is
greater than the NMS threshold Nt. r is a utility array tack-
ing whether the objects are marked. To obtain the worst
case, we assume that no objects are duplicated, making the
condition in line 5 always satisfied. As a result, the algo-
rithm can be simplified to a two-layer loop that traverses
half elements in the matrix S. Therefore, the overall time
complexity is independent of the rate of survival objects or
the properties of boxes although some elements are marked
removable during the pruning procedure.
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Percentile
YOLOv5s

F = log(x) F = tanh(x) F = x2/2 F = − log(1− x)
objects boxes time objects boxes time objects boxes time objects boxes time

min 3228 392 52.8 9269 1081 25.0 3035 228 17.8 4556 511 19.3
0.10 18900 1570 52.8 19546 1829 45.9 5708 357 19.6 9553 555 23.9
0.25 23494 2817 91.8 17140 1471 148.3 6644 427 20.4 10079 647 25.0
0.50 22273 2617 167.4 19677 1961 192.1 6934 413 21.4 10955 579 26.6
0.75 22660 1630 208.5 21559 1448 227.1 8681 502 23.0 11529 644 27.9
0.90 22951 3162 241.2 22231 2585 241.6 10617 548 26.0 12422 790 29.1
max 23922 1386 241.2 22944 1382 253.0 13104 824 30.2 12632 813 39.7

Percentile
YOLOv5n

F = log(x) F = tanh(x) F = x2/2 F = − log(1− x)
objects boxes time objects boxes time objects boxes time objects boxes time

min 2890 763 13.3 4134 579 14.3 3435 210 13.0 3060 294 12.9
0.10 9012 1145 19.5 11950 1103 23.9 5295 339 14.3 8009 573 17.2
0.25 12985 1474 26.0 14064 1194 27.6 6074 355 15.0 8751 600 18.2
0.50 16755 1737 34.3 16128 1319 32.0 6920 444 15.8 9631 697 19.5
0.75 18910 1766 69.7 18276 1206 37.2 8079 448 17.1 10909 656 21.2
0.90 20901 1649 135.5 17507 1460 117.9 9361 612 18.7 11746 684 22.6
max 22303 1472 231.6 20902 1238 206.7 9946 585 25.3 15479 983 30.4

Table 7. The total elapsed time using different objective function on NVIDIA Jetson NX

B. Ablation Study

B.1. Impact of Different Objective Functions

In Section 3.4, we mentioned that any monotonic increas-
ing function can be used as the loss function. In this experi-
ment, we evaluated the performance of four qualified func-
tions: log(x), tanh(x), x2/2, and − log(1 − x). log(x).
The derivative of tanh(x) is 1 at x = 0 and smoothly de-
creases as x increases. x2/2 is a convex function with its
minimum point at x = 0, and its derivative gradually in-
creases. The limit of − log(1 − x) as x approaches 1 from
the left is positive infinity.

Table 7 shows that x2/2 and− log(1−x) result in signif-
icantly fewer total objects compared to the other functions.
To explain this phenomenon, we divide the objects pre-
dicted by the model into two sets: S+ and S−, where S+ =
{x|conf(M(x)i) > T IoU} and S− = {x|conf(M(x)i) ≤
T IoU}. The original objective of the loss function is to
maximize the confidence of individual boxes in set S−, in-
creasing the total number of objects fed into NMS. How-
ever,− log(1−x) tends to increase the confidence of boxes
in set S− due to the rapid growth of its derivative when x
is close to 1.0. As a result, although PGD maximizes the
objective function defined in (5), − log(1 − x) yields the
worst performance. The behavior of x2/2 is similar, as its
derivative increases gradually. Therefore, an effective ob-
jective function should not only be a monotonic increasing
function but also have a monotonically decreasing deriva-

tive.

B.2. Spatial Attention Evaluation

This experiment evaluates the influence of spatial attention.
Table 8 shows the experimental results on Nvidia Jetson
NX, where SA means the adversarial attack with the spa-
tial attention and PGD means the native implementation
of PGD. As can be seen, one can find that the spatial at-
tention method can generate approximately 2,000 or more
objects for the YOLOv5s and YOLOv5n models. This in-
crease in object count is due to the iterative generation of
objects from regions with fewer objects, facilitated by the
proposed spatial attention technique.

Table 9 offers a performance comparison with different
grid sizes, where Grid signifies that the image is tiled into
k× k grids. In the case of 1× 1 tiling, the configuration re-
verts to the original PGD attack, where all pixels are part of
the same grid, sharing identical weights. Upon introducing
spatial attention, specific areas can be highlighted, result-
ing in a performance gain. However, when the image is di-
vided into a 20× 20 grid, some tiles remain unhighlighted,
hindering effective attacks on those tiles. The experimen-
tal findings suggest that an optimal configuration for spatial
attention is around 5× 5.

These results demonstrate the effectiveness of the spa-
tial attention technique in generating a larger number of ob-
jects. The comparison between SA and PGD sheds light on
the potential vulnerabilities and limitations of the YOLOv5



models when exposed to adversarial attacks with spatial at-
tention.

C. Latency Attacks on Various Models
This experiment aims to comprehensively evaluate the per-
formance of the proposed latency attack on various mod-
els. To extend our analysis, we conducted additional exper-
iments on YOLOv3 model and two latest YOLO models,
namely YOLOv7 and YOLOv8. Tables 10 presents the re-
sults obtained from these models, where the elapsed time
was not measured as these models are not fully optimized
for edge devices.

The obtained results reveal the effectiveness of our at-
tack. At the 50th percentile, our attack generates 20,578
objects for YOLOv7 and 23,163 objects for YOLOv7-tiny.
Similarly, for YOLOv8, our attack generates 8,313 objects
at the 50th percentile. These numbers are in comparison
to the maximum number of objects predicted by YOLOv7
(25,200 objects) and YOLOv8 (8,400 objects). The sig-
nificant number of objects generated by our attack demon-
strates its potency. Consequently, our findings indicate that
both YOLOv7 and YOLOv8 models are susceptible to la-
tency attacks. It is worth mentioning that as the total num-
ber of objects increases, the elapsed time during the attack
is expected to rise.

We argue that object detection models with different ar-
chitectures are also vulnerable to latency attacks. How-
ever, it is important to note that the proposed objective in
(5) is specifically designed for YOLO series and may not
be the optimal objective for other architectures. To investi-
gate this further, we conducted a small experiment using the
SSD model [32]. Our observations revealed that the number
of objects generated using our attack ranged from approx-
imately 300 to 1,000. Since SSD normalizes the probabil-
ities using the softmax function, ensuring that the sum of
probabilities for all classes is 1.0, the attack’s performance
is highly influenced by the image’s characteristics and the
target class. These findings suggest that SSD models are
indeed vulnerable to latency attacks, but further improve-
ments can be made.

We would like to emphasize that the proposed loss func-
tion defined in (4) is tailored specifically for the YOLO se-
ries. As detailed in the background section, each model em-
ploys its own unique algorithm to process the locations and
probabilities of the output objects. For instance, two-stage
detectors divide the task into two phases, resulting in the in-
ability to directly estimate the gradient. Some detectors cal-
ibrate the locations based on predefined anchors. Neverthe-
less, there could be significant benefits in adjusting spatial
importance. Fig. 4 and 5 illustrate the outputs of adversar-
ial examples generated by Retinanet [29] and FCOS [36],
respectively. As can be seen, the predictions of adversar-
ial examples produced by the standard PGD attack tend to

(a) (b)

Figure 4. The outputs of the adversarial examples by Retinanet.
4a and 4b are generated by the normal PGD attack and Overload
attack, respectively.

(a) (b)

Figure 5. The outputs of the adversarial examples by FCOS. 5a
and 5b are generated by the normal PGD attack and Overload at-
tack, respectively.

cluster within a small region while the proposed attack en-
sures a more widespread distribution of objects in the spatial
domain. We believe the spirit of Overload is applicable to
most detectors integrated with NMS, but the implementa-
tion details should be further studied.

D. Transfer Attack Evaluation
The transferability of adversarial attacks, where an attack
crafted for one model can be successfully applied to a
different victim model, is a common phenomenon in im-
age classification tasks. However, when testing the trans-
ferability among different models in the YOLOv5 family
for the latency attack, we did not observe this property.
One possible reason is that the object detection network
utilizes the Feature Pyramid Network (FPN), which com-
bines features extracted from both low-resolution and high-
resolution sources. This integration of features from differ-
ent networks may lead to divergence and hinder the trans-
ferability of the attack.

Nevertheless, we explored an alternative approach
known as ensemble training to craft adversarial examples
that can deceive multiple models. In the ensemble attack,
gradients are obtained from either one candidate model or



Percentile
YOLOv5s YOLOv5n

SA PGD SA PGD
objects boxes time objects boxes time objects boxes time objects boxes time

min 4098 1587 18.7 3228 392 18.3 5893 1131 14.7 2890 763 14.8
0.10 23112 2034 122.2 18900 1570 117.8 11925 1421 22.6 9012 1145 27.1
0.25 24248 4653 179.6 23494 2817 161.9 16405 2303 39.8 12985 1474 35.9
0.50 24000 2250 217.8 22273 2617 209.6 22363 2315 128.9 16755 1737 59.3
0.75 24335 4514 264.2 22660 1630 232.2 20923 2372 208.3 18910 1766 175.2
0.90 24778 2340 278.4 22951 3162 246.2 21947 2659 226.7 20901 1649 210.8
max 24859 2363 293.8 23922 1386 270.5 23396 2502 258.7 22303 1472 244.6

Table 8. Results of spatial attention evaluation

Percentile
YOLOv5s YOLOv5n

Grid=1× 1 Grid=5× 5 Grid=20× 20 Grid=1× 1 Grid=5× 5 Grid=20× 20
objects boxes objects boxes objects boxes objects boxes objects boxes objects boxes

min 3421 507 7465 1235 6220 1062 3421 507 7465 1235 6220 1062
0.10 6359 983 10739 1405 8193 1412 6359 983 10739 1405 8193 1412
0.25 10696 1203 11197 1535 9706 1595 10596 1203 11197 1535 9706 1595
0.50 12557 1485 16769 1770 21520 1827 12557 1485 16768 1770 21520 1827
0.75 17671 1848 17461 2110 19781 2117 17671 1848 17461 2110 19781 2117
0.90 20647 2155 17551 2305 18491 2315 20647 2155 17551 2305 18491 2315
max 21515 2723 20202 2688 19949 2638 21514 2723 20202 2688 19949 2638

Table 9. Performance comparison with different grid size.

(a) Original image (b) Adversarial image

(c) The output of the original im-
age

(d) The output of the adversarial
image

Figure 6. An example of Overload attack for object detection.

(a) Original image (b) Adversarial image of the en-
semble attack

(c) The output of YOLOv3 (d) The output of YOLOv5s

Figure 7. An example of ensemble attack for object detection.



Percentile
YOLOv7 YOLOv7-tiny

Adversarial Examples Original Examples Adversarial Examples Original Examples
objects boxes objects boxes objects boxes objects boxes

min 18310 3139 0 0 18884 2398 0 0
0.10 19897 3765 6 1 23018 3259 97 9
0.25 20119 4069 18 2 23068 3390 32 3
0.50 20578 3681 30 3 23163 3313 12 1
0.75 21310 4991 10 2 23083 3519 28 3
0.90 20359 3912 27 3 23007 3708 74 9
max 22072 4243 12 1 22971 3399 36 2

Percentile
YOLOv8s YOLOv8n

Adversarial Examples Original Examples Adversarial Examples Original Examples
objects boxes objects boxes objects boxes objects boxes

min 8244 1188 0 0 7881 1652 0 0
0.10 8273 1273 46 6 8044 1747 56 9
0.25 8250 1098 28 4 7839 1530 10 1
0.50 8313 1212 76 14 7759 1884 7 1
0.75 8333 1326 133 21 7886 1918 1 1
0.90 8333 1141 51 5 8017 1658 121 23
max 8347 1268 37 5 7968 1836 85 16

Percentile
YOLOv3 YOLOv3-tiny

Adversarial Examples Original Examples Adversarial Examples Original Examples
objects boxes objects boxes objects boxes objects boxes

min 11879 2107 0 0 5760 1554 0 0
0.10 13198 2558 76 7 5873 1674 0 0
0.25 13401 2565 62 6 5884 1619 56 6
0.50 14015 2562 134 9 5940 2061 30 3
0.75 14109 2707 205 17 5867 2380 125 24
0.90 14365 2839 84 7 5981 2528 16 4
max 14172 2651 39 3 5870 1543 21 2

Table 10. Latency Attacks on YOLOv7, YOLOv8, and YOLOv3 models

Percentile
YOLOv5s YOLOv3

Adversarial Examples Original Examples Adversarial Examples Original Examples
objects boxes time objects boxes time objects boxes objects boxes

min 10778 1541 11.1 0 0 14.1 8443 1107 0 0
0.10 15771 1897 43.8 40 3 16.4 13138 1518 27 4
0.25 18167 2124 96.2 47 4 16.4 14091 1563 220 18
0.50 22755 2392 132.7 28 3 16.4 14796 1629 49 5
0.75 20338 1844 170.4 3 1 16.6 15418 1661 44 3
0.90 22384 2795 248.3 234 21 16.7 16027 1656 63 3
max 23579 1580 252.9 212 21 16.9 17684 1785 12 1

Table 11. Results of the ensemble attack

averaged across all candidate models in each attack step.
We evaluated the performance of the ensemble attack using
a combination of YOLOv3 and YOLOv5s models. Table

11 presents the results of the ensemble attack, omitting the
execution times for YOLOv3 due to a technical issue with
compiling the model to TensorRT format.



As observed, the ensemble attack successfully gener-
ates a significant number of objects for both YOLOv3 and
YOLOv5s simultaneously. However, comparing these re-
sults with those in Table 1, it appears that the strength of
the ensemble attack is slightly weaker than that of the na-
tive attack. To provide visual context, Figure 6 and Figure
7 illustrate the original image, the corresponding adversar-
ial image, and the results obtained from Overload and the
ensemble attack, respectively.

These findings suggest that information from multiple
models can be encoded within a single image, enabling the
ensemble attack to deceive different object detection mod-
els. However, further investigation is needed to enhance
the effectiveness and transferability of the ensemble attack
against the latency-based defense.
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