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Abstract We have recently seen tremendous progress
in diffusion advances for generating realistic human mo-
tions. Yet, they largely disregard the multi-human in-
teractions. In this paper, we present InterGen, an ef-
fective diffusion-based approach that enables layman
users to customize high-quality two-person interaction
motions, with only text guidance. We first contribute
a multimodal dataset, named InterHuman. It consists
of about 107M frames for diverse two-person interac-
tions, with accurate skeletal motions and 23,337 nat-
ural language descriptions. For the algorithm side, we
carefully tailor the motion diffusion model to our two-
person interaction setting. To handle the symmetry of
human identities during interactions, we propose two
cooperative transformer-based denoisers that explicitly
share weights, with a mutual attention mechanism to
further connect the two denoising processes. Then, we
propose a novel representation for motion input in our
interaction diffusion model, which explicitly formulates
the global relations between the two performers in the
world frame. We further introduce two novel regulariza-
tion terms to encode spatial relations, equipped with a
corresponding damping scheme during the training of
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our interaction diffusion model. Extensive experiments
validate the effectiveness of InterGeIﬂ Notably, it can
generate more diverse and compelling two-person mo-
tions than previous methods and enables various down-
stream applications for human interactions.

Keywords Motion synthesis - Multimodal generation -
Diffusion model - Text-driven generation

1 Introduction

Digital human motions should reflect how we humans
interact and communicate with each other, in order to
depict the diverse cultures and societies that make up
our physical world. A successful motion creation tool
will hence allow users to customize realistic human mo-
tions under interactions. The produced motions also
need to match specific themes, e.g., from as complicated
as the movie script, or as simple as textual descriptions
by novice users. Such human motion generation serves
as a core computer vision problem, with various appli-
cations in VR/AR, games, or films.

Recent years have witnessed impressive progress in
human motion generation under various user-specified
conditioning, such as action categories (Guo et al.,
2020; [Petrovich et all 2021), music pieces (Li et al.,
2022, [2021)), speeches (Habibie et al 2022; |Ao et al.|
2022), or natural text prompts (Petrovich et al., [2022;
Tevet et al.l 2022b)). The key idea is to learn a con-
ditional generative model for the complex multimodal
distribution of human motions, equipped with pow-
erful neural techniques, from variational autoencoders
(VAEs) (Kingma and Welling;, |2013]), generative adver-
sarial networks (GANs) (Goodfellow et al., [2020)), nor-
malization flows (Rezende and Mohamed, |2015)), to the

1 https://tr3e.github.io/intergen-page/
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latest Diffusion Models (Ho et all 2020} |Song et all
2020b). Only recently, the elaborate large-scale lan-
guage models (Kenton and Toutanova, 2019; Brown

et al., 2020) and diffusion methods (Ho et al., |2020;
You et al.|, 2020) have quickly found their way into this

field, due to their natural and convenient input controls
and the strong ability to model complex distributions.
These prompt-guided motion diffusion methods
let all, 2023} [Zhang et all, 2022} [Tevet et all [2022b}
|Chen et al.l [2023) significantly democratize the acces-
sible and high-quality generation of human motions for
novices.

However, most of the above motion diffusion models
are tailored for single-person setting, and hence over-
look one essential aspect of human motions — the rich
human-to-human interactions. The challenges are man-
ifold. First, existing datasets [Punnakkal et al.| (2021);
[Liu et al| (2019) fail to simultaneously provide accu-
rate captured results and natural prompt labels for di-
verse human interactions. The former usually relies on
expensive dome-like capturing devices while the latter
requires tedious and costly manual labeling. As a re-
sult, existing methods focus on generating the kine-
matic structure of a single human body, without ex-
ploring the diverse and complex spatial relationships
between various human identities during interactions.
The recent concurrent work [Shafir et al| (2023) fine-
tunes the single-person motion generator MDM
into two-person scenario. Yet, it still suf-
fers from unnatural interactions, inherently due to the
limited interaction patterns in the single-person train-
ing datasets. In a nutshell, the lack of both multimodal
datasets and corresponding explicit modeling schemes
constitute barriers in two-person text-guided motion
generation.

In this paper, we tackle the above challenges and
present InterGen — an effective diffusion-based ap-
proach that enables layman users to customize high-
quality two-person interaction motions with only text
guidance. Specifically, we first contribute a novel mul-
timodal human motion dataset, named InterHuman,
covering a wide range of two-person interactions, from
daily ones like hugging, to professional motions, i.e.,
boxing or Latin dancing. Speficically, we record dense
video sequences with 76 RGB cameras, resulting in
about 107 million video frames for 7779 motion se-
quences that last for 6.56 hours. We then recover the
ground-truth human skeletal motions under interac-
tions from such rich RGB image modalities using off-
the-shelf motion capture approach . Be-
sides, we provide natural language labels for the cap-
tured motions, with 23,337 unique descriptions com-
posed of 5656 distinct words. Note that our InterHuman
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Fig. 1 InterGen is capable of generating high-quality and di-
verse motions under complex interactions. It models the two-
person symmetry with cooperative diffusion denoisers sharing
the same motion manifold.

dataset is the first of its kind to open up the research
direction for prompt-guided two-person motion gener-
ation under interaction setting. Its multi-modality also
brings huge potential for future direction like multi-
modal human interaction and behavior analysis.

Based on our InterHuman dataset, the key idea of
our InterGen approach is to carefully bridge the general
diffusion pipeline (Song et al., |2020b) into the human
motion domain under two-person interactions. Specif-
ically, we observe the symmetrical fact that exchang-
ing the identities of performers during interactions does
not change the semantics of motions. Thus, in our in-
teraction diffusion model, we introduce two cooperative
transformer-style denoisers to correspondingly generate
the motions of two performers. These denoisers explic-
itly share weights, with the aid of a novel mutual atten-
tion mechanism to further connects the two denoising
processes at different feature levels. Such design encour-
ages the two denoisers to perform the same operations
and yield the same motion capacity, as illustrated as
Fig. [1l Thus, it effectively avoids severe mode collapse
when generating interaction motions, e.g., one person
can dance professionally while the other cannot.

We further observe the widely adopted canonical
representation for single-person motion
12022a; Tevet et al., 2022b} |Zhang et all [2022)) discards
the precise spatial relations in our interaction scenarios.
Yet, naively adding the relative translation and rotation
into the representation will lead to motion drifting dur-
ing generation. We hence propose a non-canonical mo-
tion representation for our interaction diffusion model,
where the relations between two people are explicitly
encoded by global positions in the same world frame,
facilitating the networks to learn relative relations. Be-
sides, to generate more realistic two-person motions, we
introduce two novel regularization terms to model the
spatial relations during human-to-human interactions,
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including a masked joint distance map (DM) loss and
relative orientation (RO) loss. The former DM loss en-
codes the spatial interference between two people with
implicit physical constraints, while the latter RO loss
encodes the orientation information since we humans
pay more attention to our frontal orientation while in-
teracting. We further adapt a damping scheme for these
two losses during training, especially when the sam-
pled timestamp of the diffusion process reaches spe-
cific thresholds, achieving a more diverse generation.
Finally, we perform extensive experiments to demon-
strate that our approach can generate more compelling
two-person motions than previous methods, and show-
case its various downstream applications for human in-
teractions, i.e., trajectory control, interactive motion
inbetweening, and person-to-person generation.
To summarize, our main contributions include:

— We contribute a new human interaction dataset
with rich text/motion modalities, and present a
novel diffusion-based approach to generate realistic
two-person motions from only prompt inputs.

— In our interaction diffusion model, we introduce co-
operative denoisers with novel weights-sharing and
a mutual attention mechanism to significantly im-
prove the generation quality.

— We propose an effective motion representation, as
well as two additional regularization losses with a
damping schedule to model the complex spatial re-
lation under human-to-human interactions.

2 Related Work
2.1 Human Motion Generation

The field of Human Motion Generation is greatly facil-
itated by the integration of extensive multimodal data
inputs, including text (Petrovich et al.) 2022; Tevet|

et all [2022blJa} [Yuan et all, 2023 [Chen et all 2023;
Shafir et al. 2023; Guo et al., [2022a; Kim et al., 2023),

action (Guo et al., 2020; Petrovich et al., 2021), in-
complete motion sequences (Duan et al., [2021; [Harvey
et all [2020), control signals (Starke et al.| [2022; [Peng
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Fig. 2 Our motion capture studio (top) and our collected
InterHuman dataset illustration (bottom). The system com-
prises 76 calibrated multi-view cameras. InterHuman covers
a wide range of two- person interactions.

potential of text-based multimodal generation becomes
increasingly apparent. However, action-based human
motion generation is fundamentally a class-based gen-
eration approach, which can not enable high-level nat-
ural language and multimodal control. Consequently, it
is crucial to explore human motion generation based
on natural language input. Early approaches such as
employ a sequence-to-sequence model
to generate upper body motion. Subsequently,
land Morency| (2019) and |Ghosh et al| (2021) concen-
trate on developing a unified language and pose repre-
sentation to enable autoregressive synthesis of human
movements. Additionally, [Petrovich et al| (2022) and
\Guo et al.| (2022a)) both adopt Variational Autoencoder
(VAE) (Kingma and Welling} [2013)) based architectures
for motion generation. Athanasiou et al.| (2022) further
condition the VAE on past frames and autoregressively
generate an arbitrary sequence of motions given the re-
spective action descriptions. Multimodal pre-trained
models (Radford et al., [2021)) facilitate more seamless
integration between textual and motion spaces

et al 2021} [Starke et al.| [2019), music (Li et al., [2021
2022} [Lee et all [2019), speech (Habibie et all 2022

et al.L 202251).

Recent advancements in diffusion models (Ho et al.

Ao et al. 2022)), scene (Wang et al. 2021} 2022) and

images (Rempe et al., [2021} [Chen et al., [2022).
Currently, there exists a variety of works focused
on action label-based human motion generation
et al., |2020; Petrovich et al., 2021; Xu et al., |2023)). As
the emergence of large language models (LLMs) (Brown
et al) 2020; Touvron et al., 2023) paves the way for
LLM-based multimodal (OpenAl, 2023) models, the

[2020; |[Song et al., 2020b) have significantly propelled
text-driven motion generation. [Kim et al. (2023) in-
troduces a groundbreaking transformer-based architec-
ture that effectively manages motion data, which is cru-
cial for handling variable-length motions and attending
to free-form text. |Chen et al|(2023)) presents a Mo-
tion Latent-based Diffusion model (MLD) that gener-
ates plausible human motion sequences based on var-
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Two martial-art masters bow to each other and get ready to attack.

Two people lift something together and square up to fight.

Two people raise their hands in front of chests and raise the both fists, do martial-art squats.

Two people stand still and bend forward.

Two people stand face by face and bow to each other.

Two people stand looking at each other and lower their upper body.
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One runs to the other and shakes the fists right and left, the other tries to catch opponent’s arm.

One steps forward with a right fist followed by a left, and the other raises the left arm in defense.

One does a right uppercut next to a left uppercut, the other lowers the raised left arm.

Two people get closer and raises their right hand to shake hands.
Two people walk with right arms lifted and bump hands with stopped walking.

Two people walk towards each other and lift right fists then align their hands.
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One punches left jab, the other throws a hard left that dodged by another man.
One is raising his left arm, the other extends their right arm to catch another.

Two were bumping fists and one raises left arm, the other waves right hard and retracted the body.

‘\1[ T X k
Two people hug and separate.

Two persons stand close, one raises arms to grab the other and the other one pushes away.

One person falls into the other’s chest, the other lifts arms to another’s back.

Fig. 3 InterHuman dataset consists of diverse human professional and daily interactions with diverse natural language anno-
tations from different annotators. The figure showcases two examples of our dataset, martial arts, and social manners, with

thorough descriptions from different perspectives.

ious conditional inputs, such as action classes or tex-
tual descriptors. Tevet et al.| (2022b) proposes the Mo-
tion Diffusion Model (MDM), a meticulously adapted
classifier-free diffusion-based generative model for the
human motion domain. Building on this work,
integrates physical constraints into the
diffusion process to generate physically plausible hu-
man motions. Another research line is to employ au-
toregressive models equipped with motion quantization
(VQ-VAE). This category of methods first tokenizes the
continuous motion into discrete motion tokens and then
models the sequence using various autoregressive mod-
els (Guo et al.,|2022b; Zhang et al.l [2023a; Lucas et al.
2022), even the pre-trained LLMs (Kalakonda et al.
2023; [Zhang et al., [2023D} [Jiang et al., [2023).

The aforementioned motion generation techniques
primarily focus on single-person motion generation,
lacking the capability to generate and model dual or
multi-person human interaction motions. Recent work
by [Shafir et al| (2023) suggests that the gap in data
availability for motion generation can be addressed us-
ing a pre-trained diffusion-based model
as a generative prior and demonstrates the
prior’s effectiveness for fine-tuning in a few-shot man-
ner. However, this approach is limited to generat-
ing interactions observed during training, resulting in
constrained generalization and suboptimal generation
quality capabilities. A concurrent work RIG by [Tanakal
land Fujiwaral (2023) attempts to recover 3D interaction
motions from a noisy depth dataset (Liu et all 2019)

try of two-person interaction, the limited data quality
and quantity impede further exploration of the prob-
lem. It continues to face several challenges, including
drifts, foot-sliding, unnatural interactions, and limited
generalization to novel texts.

2.2 Human Motion Capture

Motion capture techniques have been well-developed in
the last decade. Marker-based techniques, such as
and those presented by [Vlasic et al| (2007),
have been successful in capturing high-quality human
motions for professional applications. However, these
methods are not suitable for daily use due to their
costly and laborious setup. To overcome this limita-
tion, markerless motion capture methods have been de-
veloped (Bregler and Malik, 1998; [De Aguiar et al.|
2008; [Theobalt et al. 2010). Advances in parametric
human models (Anguelov et al. 2005; Loper et all
2015; [Pavlakos et al., [2019; (Osman et al., [2020)) have
led to data-driven approaches for estimating 3D human
pose and shape using optimization (Huang et al., [2017}
[Cassner et al.l 2017; [Bogo et al. [2016]; [Kolotouros et al.
2019) or direct regression (Kanazawa et all [2019;
cabas et all 2020} [Zanfir et al., 2021) of human model
parameters. Template-based methods, utilizing specific
template meshes as priors, have been proposed for both
multi-view (Gall et al.[2010}[Stoll et al.,2011; Liu et al.}

2013} [Robertini et all, 2016} [Paviakos et all 2017}

and translates the motion labels into sentences. How-
ever, this approach yields motion data that is often un-
realistic and text annotations with poor matching qual-
ity. Although It also coincidentally models the symme-

mon et al., [2017; Xu et al [2018a) and monocular
let al), [2018b} [Habermann et al., 2019; [Xu et al., [2020}

Habermann et al., [2020)) setups. Another research line
is inertial measurement units (IMUs). Commercially
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Table 1 Dataset comparisons. We compare our InterHuman dataset with existing human motion datasets. Motions refers
to the total number of motion clips. Vocab. shows the number of distinct words used in the annotations, while Descriptions

summarizes the total number of textual descriptions.

Dataset Natural Language Interactive Motions Vocab. Descriptions Duration
KIT (]Plappert et al.|[2016) v 3911 1623 6278 11.23h
HumanML3D (Guo et al.||2022a v - 14,616 5371 44,970 28.59h
BABEL (Punnakkal et al.||2021 - - 13,220 - - 43.5h
ExPI (Guo et al.||2022¢ - v 115 - - 0.28h
NTU RGB+D 120 (Liu et al. 2019b - v 20,579 - - 18.6h
UMPM (]Van der Aa et al.]|2011) - v 36 - - 2.22h
You2Me (Ng et al.||2020) - v 42 - - 1.4h
InterHuman(Ours) v v 7779 5656 23,337 6.56h

available systems, such as Xsens MVN (Movella) [2022)),

have employed large numbers of sensors, but the intru-
sive nature of these systems has prompted research into
sparser sensor setups. [Von Marcard et al.| (2017) pre-
sented a pioneering exploration called SIP, which em-
ploys only six IMUs. However, the traditional optimiza-
tion framework used in SIP hampers real-time applica-
tion. Data-driven approaches (Huang et al., 2018;
et al., [2021} 2022) utilizing sparse sensors have shown
significant improvements in accuracy and efficiency, but
substantial drift remains an issue for challenging mo-
tions. Previous sensor-aided solutions have combined
IMUs with videos (Gilbert et al., 2019 Henschel et al.,
12020; Malleson et al., 2019, [2017}; Liang et al., [2023)),
RGB-D cameras (Helten et all [2013} Zheng et al.

motion generation research (Chen et al. 2023} Tevet|
let al., 2022b} [Petrovich et al. [2022)). However, these
datasets only consist of single-person motions and an-
notations, making it difficult to apply and generalize to
the generation of interactive motions involving two or
more individuals.

Various multi-person motion datasets have been de-
veloped, including 3DPW (Von Marcard et al., 2018),
You2Me (Ng et al,, [2020), and UMPM (Van der Aa
@D. However, while these datasets contain two-
person and multi-person motion data, they are limited
in size and annotations. In particular, there is a lack of
textual or other modal annotations in these datasets.
Efforts to annotate existing datasets with text, as
demonstrated in the annotation of 3DPW (Von Mar-|

2018)), optical markers (Andrews et all [2016)), or even
LiDAR @ to address the scene-occlusion
problem and effectively correct drift. These methods
achieve highly accurate capture of human motions given
various modalities of signals, however, the high-level
control of synthesizing captured motion and even non-
seen motions with more modalities of input remains
challenges.

2.3 Human Motion Dataset

In recent times, the accessibility of extensive motion
datasets has played a crucial role in propelling mo-
tion generation research forward. Action label datasets
such as BABEL (Punnakkal et al. 2021) and NTU
RGB+D 120 (Liu et al.2019)), although having labeled
annotations, differ significantly from natural language
when composed of verb or verb-object structures, and
furthermore, the action labels only enable direct clas-
sification of actions, making it impossible to support
text-based human motion generation. Datasets such as
KIT (Plappert et al. [2016)), and HumanML3D
et al.,|2022a)), which feature text annotations, have been
especially valuable for the progression of text-driven

ccard et al) [2018) in ComMDM (Shafir et al., [2023),
establish a foundation for future advancements in
text-guided multi-person motion generation. However,
since it only contains 27 two-person motion sequences,
the issue of limited availability of two-person interac-
tion datasets still persists. Our proposed InterHuman
dataset is currently the largest interaction-language
dataset, addressing the lack of suitable datasets in text-
based human-to-human interactive motion generation
research.

3 InterHuman Dataset

InterHumarEl is a comprehensive, large-scale 3D hu-
man interactive motion dataset encompassing a diverse
range of 3D motions of two interactive people, each
accompanied by natural language annotations. To the
best of our knowledge, it is the most extensive 3D
human-to-human interaction dataset available. Unlike
some previous datasets that focus only on single-person

motion or particular actions, such as dancing (Li et al.

2 The captured skeletal motions and text annotations are
available at https://tr3e.github.io/intergen-page/.
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2021). Our dataset comprises various interaction mo-
tions, broadly classified into two categories: daily mo-
tion, which encompasses everyday routines involving
two people (e.g., passing objects, greeting, communi-
cating, etc.), and professional motions, which include
typical human-to-human interactions (e.g., Taekwondo,
Latin dance, boxing, etc.).

3.1 Data collection

We utilized a motion capture system with 76 calibrated
Z-CAM (Z-cam, 2022) RGB cameras to capture human
interaction motions, the Fig. [2] shows our system and
captured motion data.

Our dataset was amassed through two distinct ses-
sions: daily motion and professional motion. The former
encompasses a spectrum of high-frequency interactions
encountered in everyday life, while the latter is tailored
to capture professional interaction performances, con-
sisting of 10 specific categories of expert skills shown
in Fig. 4l This bifurcated approach to data collection
was meticulously designed to cover the motion distri-
bution of real-world interactions as comprehensively as
possible. In the realm of daily motion, we first in-
volved 15 adept scriptwriters without communication
with each other, each charged with the task of crafting
textual scripts that vividly depict a wide array of two-
person interaction scenarios, thereby ensuring maximal
diversity. Subsequently, we engaged 18 pairs of drama
actors, each pair possessing a rapport, to bring these
text-scripted interactions to real motions through their
performances. In the realm of professional motion,
we engaged 12 pairs of performers, each hailing from di-
verse disciplines and possessing unique skill sets, such
as dance and martial arts. This included two pairs spe-
cializing in Latin dance and two pairs in taekwondo,
with one pair representing each of the remaining cate-
gories. To ensure motion diversity, the performers, al-
ready well-acquainted with their respective partners,
were encouraged to exhibit a broad spectrum of inter-
actions based on their own collaborative experiences
during their performances.

After that, we adopted a data processing pipeline
analogous to the one described by |Li et al.| (2021)) to
extract SMPL parameters (Loper et al., 2015) from the
captured multi-view videos. Subsequently, we initiated
a textual annotation endeavor utilizing Amazon Me-
chanical Turk (AMT). During this phase, we instructed
annotators to segment the videos into the most reason-
able discrete clips to maximally preserve the semantic
meaning of each interaction, each with a maximum du-
ration of 10 seconds. We then obtained three distinct

Boxing, 5% Fencing, 2%

Hiphop, 5%

Waltz, 5%

Bagua, 5% Daily Motion, 39%

‘*‘

Xingyi, 5%
Taichi, 6%

Shaolin, 6%
Latin, 11% Taekwondo, 11%

Fig. 4 InterHuman dataset covers a wide range of two- per-
son interactions, from the daily ones like hugging, handshake,
and argument to the professional motions ranging from dance
to martial arts.

textual descriptions for every clip from separate anno-
tators. Illustrative examples of these annotations are
depicted in Fig. [3] where the detailed interactions be-
tween the two people are described from different per-
spectives.

3.2 Dataset comparison

Our InterHuman dataset was captured using a system
with 76 cameras, and all motions have been meticu-
lously annotated, consisting of 7779 motions derived
from various categories of human actions, labeled with
23,337 unique descriptions composed of 5656 distinct
words, with a total duration of 6.56 hours, which makes
it the largest and most diverse known scripted dataset
of human-to-human interactions. For specific durations
of each motion category, please refer to Fig. [d} Tab.
provides a comprehensive comparison of our dataset
with several existing human datasets from various per-
spectives, highlighting that our dataset is currently the
most suitable for tasks involving human interactions.

4 InterGen Approach

Our goal is to generate diverse and high-quality hu-
man interaction motions conditioning on text prompts,
within a diffusion-based framework. To this end, as
illustrated in Fig. 5} our approach consists of three
key technical designs. The first is an effective mo-
tion representation (Sec. that preserves the spatial
relations of interacting people in the common world
frame. Then, we adopt a novel denoising architecture
that involves two cooperative networks (Sec. with
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Fig. 5 The overview of our InterGen. We contribute three primary technical designs. First, we propose an efficient two-
person interaction motion representation. Second, we introduce two cooperative transformer-style weights-sharing networks
with mutual attention to interactively perform denoising. Lastly, we introduce an effective loss function that significantly

improves the quality of two-person interaction generation.

sharing-weights and mutual attention to connect the
two branches at hierarchical feature levels, so as to bal-
ance the motion capacity of two interacting performers.
To train such interaction diffusion model, we further
propose additional regularization terms (Sec. , con-
sisting of a joint distance map (DM) loss and a relative
orientation (RO) loss to enforce the networks to de-
pend on each others, especially under continuous and
close interactions. In addition, we propose a novel loss
damping schedule during training to improvive the gen-
eration results.

4.1 Human Interaction Representation

We model a two-person interaction x as a collection
of two single-person motion sequences xj, i.e.,
{x4,%p}, where x;, = {2'}L | is a fixed-framerate se-
quence of motion states x’. Thus these two sequences
are naturally synchronized. The core problem is to en-
code the spatial relationships between them.

Canonical representation. HumanML3D
proposed a human motion representa-
tion for single-person scenarios that incorporate ground
contact information and motion features. This repre-
sentation is over-parameterized, expressive, and neu-
ral network friendly, and has been adopted by several
recent works. However, this representation cannot be
directly applied to multi-person scenarios because it
canonicalizes joint positions and velocities to the root

X =

frame, which loses global spatial information. Com-
MDM (Shafir et al., [2023) tries to mitigate this issue
by predicting the initial relative rotation and transla-
tion between two people. In contrast, we extend this
representation by introducing global relative rotation
r" € R? along Y-axis and translation t" € R? on XZ-
plane over other humans.

:1;'1’ = [Tzaﬁ’f’a‘,"T.‘Z7ry7jlp3j’lu7jr7cf7rh3th]’ (1)

where the i-th motion state 2° is defined as a collection
of root angular velocity 7* € R along the Y-axis, root
linear velocities 7%, 7"* € R on the XZ-plane, root height
r¥ € R, local joint positions j7 € R3Mi, local velocities
ji € R3Ni rotations j© € R%7 in root space, and binary
foot-ground contact features ¢/ € R* by thresholding
the heel and toe joint velocities, where N; denotes the
joint number.

Non-canonical representation. Nevertheless, the
global absolute trajectories derived from canonical rep-
resentation suffer from drifts, owing to the compulsory
cumulative integration of noisy local velocities. This de-
ficiency precipitates an accumulation of errors, culmi-
nating in unbounded exponential drifts over time, as
delineated by [Von Marcard et al.| (2017)). This absolute
trajectory error can be ignored for tasks such as single-
person short-sequence motion synthesis, which focuses
on the plausibility of local motion and does not care
much about the absolute trajectory. Whereas it is fatal
for tasks such as multi-person motion synthesis, which
require person-to-person precise spatial relations.
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To this end, we propose a non-canonical representa-
tion for multi-person interaction motion. Our key idea
is to incorporate the absolute trajectories of both indi-
viduals within the same world frame directly into the
motion representation, thereby bypassing the cumula-
tive integration process. Instead of transforming joint
positions and velocities to the root frame, we keep them
in the world frame, which allows us to directly access
the global translation and rotation from the root posi-
tion and inverse kinematics (IK), respectively, to avoid
drift effectively. The representation is formulated as:

vt = [ih.dg. 3" ¢'], (2)

where the i-th motion state 2° is defined as a collection
of global joint positions jy € R3Yi | velocities g € R3N;
in the world frame, 6D representation of local rotations
j” € R%Yi in the root frame, and binary foot-ground
contact features ¢/ € R%.

4.2 Human Interaction Diffusion

Diffusion models. We sometimes omit the explicit
dependence on condition ¢ for simplicity of notation.
Note that we can always train diffusion models with
some condition c¢; even for the unconditional case, we
can condition the model on a universal null token §.

Let po(x) denote the human interactive motion data
distribution, diffusion models [Ho et al.| (2020)) injects
time-dependent i.i.d Gaussian noise to the samples
from pg, giving a diffusion process {p;(x)}L, with a
continuous variable ¢ € [0, T]. Then a generative model
can be obtained by reversing the process, starting from
samples x(T) ~ pr that is a standard Gaussian dis-
tribution, and then solving the following reverse-time
SDE fromt =T tot =0:

dx = [f(x,t) — 02Vxlogp:(x)]dt + o;dw, (3)

where f(-,t) is a deterministic drift function, o is the
diffusion coefficient that is increasing over time to con-
trol the noise level, dt is infinitesimal negative timestep,
dw is infinitesimal noise, and Vylogp;(x) is the score
function that is the only intractable term. Note that it
can be obtained from the expectation of x given x(*):

Vywlogp(x1) = (Ex[x"] - xV)/o?. (4)

When we drop the noise term at Eq. (3), an ordi-
nary differential equation (ODE) is obtained, which is
a corresponding deterministic process sharing the same
marginal distribution {p;(x)}7_, and is referred to as
probability flow ODE, which can accelerate sampling
process by performing a linear interpolation between
x® and the predicted E[x|x*)] (Song et al., [2020a).

Interaction Diffusion. Our approach is based on
a fundamental assumption, commutative property,
which means that two-person interactions {x,,x,} and
{xp,X,} are equivalent, i.e., the order of every single
motion does not change the semantics of the interac-
tion itself. In other words, the distribution of interac-
tion data satisfies the following property:

P(Xa, Xp) = P(Xp,Xa)- ()

Under this assumption, the two people share the same
single-person motion marginal distribution. Since noise
e ~ N(0,I) is independent of data distribution, we
have:

pt(xg), xl()t)) = pt(xl(f)7 Xg’)). (6)

Thus based on the above conclusion the score function
can be reformulated as:

Vo logpe (x ™)
= [V, logp: (xa', x,1"), Vi logp(xa, x,\")]
= [V, logp (xa, %, ), ngt)lo.gpt(xb(t)a x.N], (7)

where the two parts for x, and x; are the same func-
tion V,logpi(a,b), which can be approximated by em-
ploying the same network with the following denoising
autoencoder objective:

ﬁsimple - ]Ex,t,eP\tHXa - DO(Xa + Ot€q, Xp + Ot€p, t, C)H%
+A¢|[x6 — Do (xp + 0t€b, Xq + 0t€qs L, 0)[3],

(®)

where Dy is the denoisers sharing the common network
weights, whose input consists of its own noisy motion
to denoise, the cooperator’s noisy motion, the time ¢,
and the condition ¢, noise € ~ N(0,I), and A; is the
loss weighting factor.
Cooperative denoisers. Based on the aforemen-
tioned conclusions, we adopt interactively cooperative
transformer-style networks sharing the common weights
to model Dy, as demonstrated in Fig. [5] The networks
are fed their own noisy motions, x((zt) and xl()t), as in-
puts for denoising and subsequently output the corre-
sponding denoised versions of the motions, x, and xp.
This prediction process is conditioned on the diffusion
timestep ¢, control condition ¢, and the hidden states
h® of the counterpart network.

Specifically, the noisy motion is first embedded into
a common latent space and positionally encoded into an
internal representation often referred to as the hidden
states h(®. Then, it is processed by N attention-based
blocks to obtain denoised hidden states h™). Finally, a
common inverse embedding layer is applied to output
the denoised motion.
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Each block consists of two multi-head attention lay-
ers (Attn) followed by one feed-forward network (F'F).
The first attention layer is a self-attention layer, which
embeds the current hidden states h into a context
vector ¢(¥. The computation of ct(f) part is formulated
as the following:

cl) = Atin(Q, K, V) = softmax(QiKT)V
a 9 9 \/5 ]

Q=h"W? K =hW¥X v=hnl"wW!, (9)

where C is the number of channels in the attention layer
and Wy are trainable weights, and cl()z) is calculated
with shared weights Wy in the same way.

The second attention layer is a mutual attention
layer, where the key K value V pair is provided by the
hidden states h® of the counterpart block. Here the
computation process of the next hidden states hO+Y ig
formulated as:

() = FE(Atn(Q,, Ky, Vi),
h{"™ = FF(Attn(Q,, Ka, Va)),
Q, =c"W% K, =h"WE v, = h"W/"

a m?

Q, ='W K, =h{"WE v, =n"W" (10

where W, are trainable weights shared by the two
branches.

In addition, the adaptive layer normalization is em-
ployed before all attention layers and the feed-forward
network to condition on the control condition ¢ and
timestep t.

4.3 Additional Regularization Losses

Geometric losses. We adopt the common geometric
losses in the field of human motion, such as foot contact
loss L0 and joint velocity loss L, to regularize the
generative models and enforce physical plausibility and
coherence for each single-person motion. For more de-
tails, we refer the reader to MDM (Tevet et al., [2022b)).
In addition, for our non-canonical representation, we
introduce bone length loss Lpy, to constrain the global
joint positions of each person to satisfy skeleton consis-
tency, which implicitly encodes the human body’s kine-
matic structure. We formulate the bone length loss as
follows:

Lpr =||B(%a) — B(xa)|3 +[|B() — B(xp)l[3, (11)

where B represents the bone lengths in a pre-defined
human body kinematic tree, derived from the global
joint positions in x.

{;

Fig. 6 (Left) visualize our proposed interactive losses, where
the relative orientation loss is the angular separation between
the frontal orientations of the two people. And the partial
joint distance map of the heel joint is truncated with the
region of the cylinder, which is shown in (right), where the
highlighted row encodes the spatial relations between the heel
and the other person.

Interactive losses. To handle the complexity of spa-
tial relations in multi-person interactions, we further
introduce interactive losses, comprising masked joint
distance map (DM) loss and relative orientation (RO)
loss, as illustrated in Fig. [} The DM loss measures the
N; x Nj joint distance map of two people and matches it
with the ground truth, where N; is the number of joints
per person. Thus we design the DM loss as follows:

Lpm
= [|(M (Xa,%Xp) — M (Xq,%p)) © I(Myz(Xa,%p) < M)H%v
(12)

where M denotes the joint distance map of two people,
obtained from the global joint positions in their mo-
tions, I(+) is the indicator function that masks the loss
by applying a 2D distance threshold on the XZ-plane,
which activates this loss only when the horizontal dis-
tance between the two people is small enough, M., rep-
resents the distance map projected onto the XZ-plane,
M is the distance threshold, and ® indicates Hadamard
product.

The RO loss estimates the relative orientation of
two people and aligns it with the ground truth. The
RO loss is formulated as:

Lro = [[O(IK (Xa), T K (%)) = O(IK(Xa)JK(xb))y%a)
13

where T K (-) represents the inverse kinematics process,
which outputs the joint rotations, and O indicates the
2D relative orientation between the two people around
the Y-axis obtained from rotations. These losses con-
strain the positional spatial relations and the relative
frontal orientation of the two people to be consistent
with the nature of human interactions.
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Fig. 7 Qualitative results generated by our InterGen model. We showcase two different samples per text prompt, which
demonstrate the high quality and diversity of our interaction generation.
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Table 2 Quantitative comparisons on the InterHuman test set. We run all the evaluations 20 times except MModality
runs 5 times. + indicates the 95% confidence interval. Bold indicates best result. ComMDM* indicates the ComMDM model
fine-tuned in the original few-shot setting with 10 training samples and ComMDM (without *) indicates fine-tuned on our
entire InterHuman training set. All the models employ the same non-canonical representation.

R Precisiont

Methods FID | MM Dist|{  Diversity— MModality
Top 1 Top 2 Top 3

Real 0.452%+:008  (610£-009  (,701%:008  (273%.007 3 755%.008 7 gq8+.064 -
TEMOS (Petrovich et al.|[2022) 0.224+:010 (0 316+-013  (.450+-018 17375043 §.342%.015 6 939+.071 0.535%-014
T2M (Guo et al.|[2022a) 0.238%:012 (. 325%-010 (g 464F-014  13769%-072  5731%.013 7 (g6E-022 1.387%-076
MDM (Tevet et al.][2022b) 0.153%:012 0 260+-009  (,339+:012 9 167+.056  7125%.018  7,g02+:045 2 355+.080
ComMDM* (Shafir et al.|[2023) 0.067+:013 (0125018 (.184+-015 38 .643+:098  14.211+-013  3590+.058  (.217+.018
ComMDM (Shafir et al.|[[2023) 0.223%:009  (0,334%-008  (.466+010 7069054  §.212+.021  7.244+.038 1.822%:052
RIG (Tanaka and Fujiwara| [2023)  0.285%:010  (.409%-014  (,521%.013 g 775+.069  5g876+.018 7 371+.043 2.096%-065
InterGen (ours) 0.371+:010  ,515+012  ,624+:010 5.918+079 5,108+ 014  7.387+.029 2.141%-063

Here, we summarize our additional regularization
loss as follows:

£reg :)\vel['vel + )\foot‘cfoot + )\BL‘CBL
+ApmLpm + AroLRo, (14)

where the hyper-parameters Ayer, A foots ABL; ADM, ARO
are meticulously calibrated to regulate the magnitude
orders of their corresponding terms. This calibration is
effective in addressing the existing disparities in mag-
nitude orders among various loss terms. This harmo-
nizes distinct loss terms into the same magnitude or-
der, thereby ensuring a balanced contribution from each
term.

Regularization loss schedule. Physdiff (Yuan et al.,
2023) informed that the network-predicted denoised
motion is increasingly implausible as the diffusion
timestep t is larger (noise level is higher). Since denois-
ers estimate the expectation E[x|x®], i.e., the mean
motion x given x), and empirically they tend to out-
put average poses with some root translations and ro-
tations when the noise level is high. This results in not
only severe physical implausible motions but also un-
realistic interactions between two people in our two-
person scenario. If we apply the above regularization
losses when t is large, the network output will become
the minimum mean squared error (MMSE) estimation
of biased losses, deviating from E[x|x(®)].

Inspired by that, we devise a novel diffusion training
scheme. We truncate diffusion timesteps with a thresh-
old ¢ and only apply regularization loss to the network
when the sampled timestep ¢ is below the threshold.
Thus the total loss is formulated as:

L= Esimple + )\Teg]Et [I(t < E) : Cg?g}» (15)

where I(¢ < t) is an indicator function, which drops the
regularization term when ¢ > t.

5 Experiments

Here, we demonstrate the capability of our approach in
a variety of scenarios. We first introduce the evaluation
dataset and metrics and then showcase a gallery of our
generation results for two-person interactions in Fig. [
We then provide the comparison with previous methods
as well as the evaluation of our technical components,
both qualitatively and quantitatively, followed by the
analysis of various downstream applications.
Evaluation dataset. The existing available human
motion datasets lack sufficient categories of human
interactions and corresponding text descriptions. We
hence contribute a new dataset, InterHuman, to evalu-
ate our approach. It provides accurate skeletal human
motions and rich natural language descriptions, cover-
ing diverse two-person interaction scenarios (see Sec.
for more details). We also augment our data following
the HumanML3D (Guo et al., 2022a), which involves
mirroring all motions and replacing relevant keywords
in the descriptions, and swapping the order of two peo-
ple in all interactions. We then split the data into train-
ing, validation, and test sets using the same protocol.
Evaluation metrics. Following single-person text-to-
motion generation, we adopt the same evaluation met-
rics as |Guo et al.| (2022a)), which are listed as follows:

1. R-Precision. To measure the text-motion consis-
tency, we rank the Euclidean distances between the
motion and text embeddings. Top-1, Top-2, and
Top-3 accuracy of motion-to-text retrieval are re-
ported.

2. Frechet Inception Distance (FID). To measure the
similarity between synthesized and real interactive
motions, we calculate the latent embedding distri-
bution distance between the generated and real in-
teractive motions using FID (Heusel et al. |2017)) on
the extracted motion features.



12 Han Liang! et al.

“With fiery passion two dancers entwine in Latin dance sublime.”

TEMOS

T2M

MDM

ComMDM

RIG

Ours

TEMOS

2M

MDM

ComMDM

RIG

Ours

time —

Fig. 8 Qualitative comparison with previous state-of-the-art works. The inputs to the model are listed at the top and
middle, while the outputs of different models (Petrovich et al.,|2022; |Guo et al.,|2022a} |Tevet et al., |2022b; [Shafir et al.l |2023])
are listed below. Intersecting portions of the motions are highlighted with red dashed circles.
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Table 3 Quantitative evaluation of our key designs. The performance drop-off highlights our technical contributions.

R Precision?

Methods FID | MM Dist| Diversity—  MModality 1
Top 1 Top 2 Top 3

Real 0.452%:008  0,610%:009  (.701%:008  (.273+.007  3755+.017  7.g48+.008 -
canonical rep 0.134%-011  (9233+.013  (315+.013 1] 329+.055 7865015 g 534+.028 9 gg3+-068
concat-conditioning 0.303%-010 (g 451%:010 (o 575+.012  973+.080 5 579+.012 7 193+.035 1.790%-052
w/o weights sharing 0.153%:015  257+.013  ( 337+.012 g (59+.077  7949%+.010 7 50g+.026 9 9gg+.076
w/o DM loss 0.293%:012  (.437%:010 (533016 6535064 5934+.011  7.398E.033 9 181+.055
w/o RO loss 0.310%:013 0466009  (587+010  §.311+.052 55154012 7 309+.050 2.019%-053
InterGen (LLaMA-7B) 0.345%:012  0.493+:012 (605014  5.865+:086  5319+.017  7459+.036 9 979£.075
InterGen (CLIP-ViT-L/14) 0.371%:010  0.515+:012  0.624+ 010  5918+.079 5108+ 014  7387+.029 2.141%.063

Table 4 Quantitative evaluation of our regularization loss schedule training scheme. The strategy of different treatments for

different noise levels improves the performance significantly.

R Precision?

RegLoss schedule FID | MM Dist Diversity—  MModality 1
Top 1 Top 2 Top 3

Real motion 0.452%-008  610+-009  701+-008 (9 273+.066 3 755+.015 7 gqg+.008 -
None 0.201%-010  .315+-014  (406+-009  7.862E-074  919+-011  7.3091+.044 9 1gR* 042
t<0.1T 0.285E-013  (0443+-010 (0 544+-014 556065 5 890+.013 7 375+.032 2.156%-055
t<0.2T 0.310-013  0.464%-010 (. 51E-014  §178+-086 5 443+.012  7.349+.037 2.122%+-078
t<0.3T 0.338%:010 (. 483+-014 (0 589+-011  §(34F-069  5461+-009  7.393+.040 2.114%-039
t < 04T 0.353%-010 (0 .496%+-014 (. 598+-012  5945+.078 5 963+.013 7 .3093+.035 2.095%-061
t < 0.5T 0.362%-011  0506E-013  .610%-014  5938+-052 5 175+.016  7.378+.041 2.129+-046
t<0.6T 0.367%-013  (0.513%-009  (619+-010 5 887064 5 909+.012 7 355+.022 2.133%-067
t<0.7T 0.371%+:010  ,515+-012  (,624F 010  5918+.079  5.108+-014 7.387+-029 9 147+.063
t<0.8T 0.299%-012 (0 453+.011 (g 555+.014 g 591+.070 5 745+.012 7 .344+.024 2.177%-062
t<0.9T 0.278+-010 (432009 (0 539+.013  §664E-062 g 42+-012  7.374+.039 2.103%-072
t<T 0.232%-012  (.365+-011 (0 468+-010  7037+.053  §g20+-010  7.989+.028 2.135%-080

3. Multimodal Distance (MM Dist). To measure the
similarity between each text and the correspond-
ing motion, the average Euclidean distance between
each text embedding and the generated motion em-
bedding from this text is reported.

4. Diversity. We randomly sample 300 pairs of motions
and calculate the average Euclidean distances of the
pairs in latent space to measure motion diversity in
the generated motion dataset.

5. Multimodality (MModality). Similar to Diversity, we
sample 20 motions within one text prompt to form
10 pairs, and measure the average latent Euclidean
distances of the pairs. The average over all the text
descriptions is reported.

To calculate these metrics, we train an interaction
motion feature extractor and a text feature extractor
using contrastive loss following Radford et al.| (2021)),
which encourages matched text-interaction pairs to
have geometrically close feature vectors.

5.1 Implementation Details

We implement our InterGen with N = 8 blocks whose
latent dimension is set to 1024 and each attention layer
consists of 8 heads, as same as the re-implemented
MDM and ComMDM. We employ a frozen CLIP-ViT-
L/14 model as the text encoder. The number of diffu-
sion timesteps is set to 1,000 during training and we
apply the DDIM (Song et al., 2020a)) sampling strat-
egy with 50 timesteps and n = 0. We adopt the co-
sine noise level schedule (Nichol and Dhariwal, 2021))
and classifier-free guidance (Ho and Salimans, [2021)
where the 10% random CLIP embeddings are set to
zero during training and the guidance coefficient is set
to 3.5 during sampling. All the models are trained with
AdamW (Loshchilov and Hutter, |2018)) optimizer with
betas of (0.9, 0.999), a weight decay of 2x 107°, a max-
imum learning rate of 107%, and a cosine LR sched-
ule with 10 linear warm-up epochs. To address the
disparity among several loss terms in magnitude or-
ders present in Eqn. we reweight them using mul-
tiple hyper-parameters, which harmonize these terms
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“Two people walk forward and attack each other with their legs. ”
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Fig. 9 Qualitative results of ablation study. The top of the figure displays text prompts, while the lower illustrates the results
of different ablation experiments and our best result. For quantitative comparisons of experimental results, please refer to

Tab.

into a similar magnitude order, thereby ensuring a bal-
anced contribution from each term. Specifically, we set
/\vel = 30, Afoot = 30, )\BL = 10, )\DM = 3, and
Aro = 0.01. For Eqn. [T5 we set A,y = 1 in all the
experiments. We train our diffusion denoisers with a
batch size of 64 for 2,000 epochs on two Nvidia Tesla
V100 GPUs, which takes over 70 hours. We run the in-
ference on a PC with an Intel Core i7-10700K CPU and
an Nvidia RTX 3080ti GPU, which takes an average of
8s to generate a motion sequence of 300 frames with a
frame rate of 30.

5.2 Comparisons

We compare our InterGen with various representa-
tive text-to-motion methods in two-person interactive
scenarios. Specifically, we apply single-person meth-
ods VAE-based TEMOS (Petrovich et al. [2022)) and
T2M (Guo et al [2022a)), diffusion-based MDM (Tevet]
et al) |2022Db), and recent two-person method Com-
MDM (Shafir et al., |2023) and RIG (Tanaka and Fu-|
jiwara), 2023)). To thoroughly evaluate our method and

conduct fair comparisons, we retrain the above meth-
ods with the same InterHuman training set and test on
the test set. Note that for extending the above single-
person motion synthesis models to handle two-person
interaction, we modify the input and output dimensions
of their networks to accommodate our non-canonical
representation of two-person interaction. For fair com-
parisons, we report the results of ComMDM pre-trained
and fine-tuned in the original few-shot setting with 10
training samples (with *) and retrained on the same In-
terHuman training set (without *) with the same data
representation. Note that the source code and training
data of ComMDM are not publicly available yet and we
re-implement it with the same setting on our dataset.

Tab. 2] summarizes the quantitative comparison
results. Specifically, our approach outperforms other
baselines in terms of FID, R precision, and MM Dist.
Note that these metrics numbers are calculated using
the whole test sets, which indicates that our InterGen
achieves more compelling interaction motion generation
with more accurate text/motion matching. The corre-
sponding representative qualitative results are provided
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Fig. 10 Person-to-person generation. The above five motions are generated with the premise of freezing the motion of
one person (represented by a semi-transparent SMPL model) while generating the motion of the other person (represented by

an opaque SMPL model).

in Fig. [8, which demonstrates that our approach en-
sures the diversity and plausibility of the generated two-
person interaction motions. Note that our approach can
generate more natural interaction states, more diverse
motions, and more accurate alignment of the global rel-
ative orientations and translations between the two per-
formers.

5.3 Evaluations

Here, we provide ablation analysis for the key technical
designs in our InterGen approach.

Interaction motion representation. We first com-
pare our non-canonical representation with the canon-
ical representation, as shown in canonical rep row in
Tab. We replace the motion representation using
canonical representation and retrain our model in the
same setting. The R precision and FID drop off signifi-
cantly, which indicates the lower quality of motions and
text prompt matching. The qualitative result is shown
in the first row of Fig. [0} As time flows, the cumula-
tive integration errors of the trajectories exponentially
expand, which leads to two people performing their
own motions without any spatial relation to each other,
making interactions become unrealistic. This demon-
strates the superiority of our two-person non-canonical
motion representation in the common frame, which ex-
plicitly preserves the spatial relations of two people in

the same space. It avoids the harmful cumulative in-
tegration process and facilitates the model to directly
learn the spatial relations in the same frame without
complex frame transformations.

Cooperative networks. Next, we evaluate the effec-
tiveness of our cooperative networks. We first replace
the mutual attention conditioning mechanism with con-
catenation, where each network concatenates its own
noisy motion with the counterpart noisy motion as
the input and drop the mutual attention layers in its
blocks and retrain the model. The quantitative result is
shown in the concat—conditioning row in Tab.[3] which
shows a decline in performance. The qualitative result
is shown in the second row of Fig. [9] where the plausi-
bility of the interaction and alignment of the motions
are significantly reduced compared to ours.

We then ablate the weights sharing mechanism and
train two networks without explicitly enforcing them
to be the same. The quantitative result is presented in
the w/o-weights_sharing row in Tab. [3| where R preci-
sion and FID are significantly worse than ours, as also
illustrated in the third row of Fig. [0] where two peo-
ple do not show similar activation and motion capac-
ity during the interaction. These indicate that our co-
operative networks with mutual attention and weights
sharing mechanisms can effectively handle not only the
complexity of interaction but also the balance of motion
capacity between two people.
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“Two dancers, Latin steps they traced, arms softly swaying, interlaced.”
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“Two people, in joy, their arms held high.”

“Two taekwondo masters train in offense and defense. ”

Fig. 11 Trajectory control. The curve beneath the peoples’ feet represents their motion trajectories. The skeleton repre-
sentation displays the position and motion of each frame over time, with the SMPL model (Loper et al) [2015)) indicating a
specific frame of motion. The text input for each motion is provided above the respective persons.

Interaction losses. We also apply ablation experi-
ments on our two interactive losses and a regularization
loss schedule. As shown in the w/o_DM loss row of
Tab. 3] we drop the DM loss and retrain our model, the
interaction generation performance drops off, as shown
in the fourth row of Fig. [0 qualitatively, the two people
perform a weird interaction that they pass through each
other’s body since the absence of distance constraints.

And we drop the RO loss and apply the same pro-
cess, as shown in the w/0-RO_loss row of Tab. |3 get-
ting a worse performance too. The qualitative result in
the fifth row of Fig. [0] demonstrates that the two peo-
ple perform an unrealistic interaction where the relative
orientation between them does not match the motions
they perform. These qualitative and quantitative re-
sults demonstrate the effectiveness and necessity of our
interactive losses.

Tab. @ demonstrates the effect of the choice of diffu-
sion timesteps to apply regularization loss. We choose
the model with the best performance occurring on t <
0.7T with a cosine diffusion noise level schedule
land Dhariwal, 2021) as our final model, which outper-
forms the naively applying to all timesteps (t < T') and
not applying such a regularization loss (None). This
indicates the effectiveness of our loss schedule training
scheme.

Pre-trained text encoders. We additionally explore
the effect of pre-trained text encoders for the hu-
man interaction generation task. We choose the widely

employed CLIP (Radford et al., 2021) model in mo-
tion generation (Tevet et all [2022alb} [Shafir et al.

[2023; |Zhang et al) [2023a) and recent open-source
large language model LLaMA (Touvron et all [2023)
equipped with the powerful generative pre-training
technique (Brown et al., 2020)). Specifically, we replace
the CLIP-ViT-L/14 text encoder with the LLaMA-7B
language model, where we also freeze its parameters
and extract the text embeddings from its penultimate
layer. The results are shown in Tab. |3, we observe that
simply replacing the text encoder with LLM leads to
worse R-precision and MM Dist that indicate a dam-
aged text-motion consistency, although it improves the
FID slightly.

5.4 Applications

Once trained, our InterGen model can be easily cus-
tomized and employed in various human interaction-
related tasks. Here, we showcase a series of downstream
applications using our InterGen, i.e., human-to-human
motion generation, additional trajectory control on top
of text-prompt, and generating diverse motion inbe-
tweening for interaction scenes.

Person-to-person generation. Here we fine-tune the
original InterGen to enable the generation of human-to-
human motions by simply taking a single-person motion
sequence as input. Our method works by masking the
noise applied to the motions that we wish to freeze dur-
ing the forward pass of the diffusion process. The frozen
motion serves as ground truth that propagates into the
model and hence the model learns to rely on these mo-
tions when attempting to reconstruct the counterpart
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Fig. 12 Interaction inbetweening. The first row depicts the outcome of motion freezing the starting and ending motions,
without the use of any text prompts. Subsequently, the output generated in the second row is used as the input for text
prompts, resulting in the in-betweening results presented in the next row. By iterating this process, the motion sequence is
gradually transformed into a daily motion, as shown in the final row.

motions. This workflow is inspired by the fine-tuning
strategy from MDM (Tevet et all |2022b) and please
refer to the original paper for implementation details.
Differently, we freeze one person’s motion instead of
setting the trajectory to zero and utilize two inputs
{Xa,Xp} rather than one input xo. The visualization
of this person-to-person generation process is shown in
Fig. [[0] The translucent person represents the frozen
motion, i.e., the ground-truth motion at each iteration,
while the opaque person represents the conditionally
generated motions. It can be observed that our diffu-
sion process produces diverse motion results.

Trajectory control. We further demonstrate combin-
ing additional trajectory controls with the text inputs
for more controllable human-to-human interaction gen-
eration. Specifically, it requires pre-inputting the trajec-
tory during the text processing stage to mask the global
transform of motion during the diffusion process. Such
a strategy allows us to apply the trajectory control in-
jected in the input stage to the diffusion at each time
step, thus easily obtaining the interaction motions of

two people that conform to the trajectory. As shown
in Fig. the trajectory of the human-to-human inter-
action and the differently stylized interaction actions
under this trajectory are clearly depicted. The skeleton
in the figure represents the historical trajectory of the
motion, and the two visualized SMPL models (Loper]
represent the end of the motion. Under
the constraint of the same trajectory, our approach can
generate diverse and naturally conformed motions.

Interaction inbetweening. Similar to person-to-
person generation, we can also fine-tune the InterGen
to freeze the beginning and ending segments of the
motion sequence, so as to enforce InterGen to gener-
ate diverse Interaction motions that fill the frozen seg-
ments in between for motion inbetweening applications.
Specifically, we implement time freezing of human-to-
human motion in the pipeline and freeze motions in-
stead of the training step during sampling. We then re-
place the part of in-between motion sequence inputs at
each timestep when sampling. As shown in Fig. the
translucent double models represent the motion that
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has been frozen at the initial and end time steps, and
the opaque double models represent the generated mo-
tions. Note that our approach can generate vivid mo-
tion in-betweening results that are also incorporated
with the text-prompt inputs, even under various inter-
action scenarios.

5.5 Limitation and Discussion

Our InterGen has achieved compelling results for gener-
ating realistic two-person interaction motions from text
prompts, yet still yielding some limitations. First, our
approach only considers the interactions between two
people, which may limit the applicability of our ap-
proach to more complex scenarios (e.g., crowd dynam-
ics simulation). It’s promising to model more complex
group interactions such as team sports or group dances,
yet it requires much more diverse training datasets. Be-
sides, our approach only generates motion sequences
based on given text prompts, without further consider-
ing the feedback from the user. This may limit the user’s
creativity over the generated motions, especially when
the text prompts are vague or ambiguous. It’s an in-
teresting direction to generate motions that satisfy the
user’s specific preferences or expectations, such as the
style, speed, or intensity of the motions. Our generated
motion is also limited to a fixed largest length, which
cannot support extremely long-sequence generation. It
hence hinders the diversity and coherence of the gen-
erated motions, especially when the text prompts are
complex. More advanced strategies like involving mul-
tiple sub-motions or transitions to span a longer period
of time will help. Moreover, our generated motions still
suffer from jittering artifact, which is a known chal-
lenge in motion generation especially when maintaining
a consistent trajectory over longer sequences. A more
carefully designed temporal smoothing can further al-
leviate it, yet may sacrifice the quality and diversity of
the generated motions. Besides, penetration artifacts
sometimes occur, which probably can be improved by
adding more self-contact constraints and further intro-
ducing physics simulation. We leave these issues to fu-
ture exploration where our dataset and approach can
serve as the cornerstone and a strong baseline.

6 Conclusion

In this paper, we present InterGen, a diffusion-based
approach to conveniently generate two-person motion
under diverse interactions, from only text-prompt con-
trols. Specifically, we contribute a novel multimodal
dataset with rich motion results and natural language

descriptions, covering a wide range of interaction sce-
narios. Then, in our interaction diffusion model, our
cooperative denoisers with sharing weights and a mu-
tual attention mechanism can effectively model the
symmetric fact of human identities during interactions.
Our non-canonical motion representation also effec-
tively models the global relations between performers
for the interaction setting. Our regularization design
with a specific damping scheme further encodes the
spatial relations to generate more diverse and reason-
able interactions. Extensive experimental results have
demonstrated the effectiveness of InterGen for the gen-
eration of compelling two-person motions and a series
of downstream interaction applications. We believe our
approach and multimodal dataset can serve as a solid
step towards text-guided generation and understanding
of human-to-human interactions, with numerous poten-
tial applications for entertainment, gaming, and immer-
sive experience in VR/AR.
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