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Using large-scale density-matrix renormalzation group calculations and minimally augmented
spin-wave theory, we demonstrate that the phase diagram of the quantum S = 1

2
J1–J3 ferro-

antiferromagnetic model on the honeycomb lattice differs dramatically from the classical one. It
hosts the double-zigzag and Ising-z phases as unexpected intermediaries between ferromagnetic and
zigzag states that are also extended beyond their classical regions of stability. In broad agreement
with quantum order-by-disorder arguments, these collinear phases replace the classical spiral state.

Introduction.—Ever since the Anderson’s seminal work
on the resonating valence-bond state [1], the significant
role that can be played by quantum fluctuations in mag-
nets with competing interactions has remained at the
forefront of condensed matter physics, inspiring a mul-
titude of quests for exotic states, models that can realize
them, and real materials that can host them [2–7]. The
elusive spin-liquid states with strongly entangled spins
are but one example [2]; others include valence-bond
phases with spatial symmetry breaking [8–14], quantum
multipolar spin nematics that are quantum analogues of
liquid crystals [15–18], and an especially extensive class
of unconventional magnetically ordered phases that do
not appear in the classical solutions of the underlying
spin models [19–28]. It is the latter group of phenomena
that creates a broader context for the present study.

The ordered phases that are not favored classically but
are stabilized in the quantum S= 1

2 limit have attracted
significant attention in the search for Kitaev magnets
on the honeycomb lattice [29–32]. Recently, this exten-
sive experimental and theoretical effort has expanded to
the Co2+ materials [33–46]. It appears that the mini-
mal XXZ-anisotropic J1–J3 model with “mixed” ferro-
antiferromagnetic (FM-AFM) couplings, given by
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provides a tantalizingly close description for many of
these compounds [43–49], calling for its unbiased study.
Here ⟨ij⟩1(3) stands for the first-(third-)neighbor bonds,
J1 =−1 is the energy unit, J3 > 0, and 0≤∆n ≤ 1 are
the XXZ anisotropies. We note that earlier pre-Kitaev
searches for exotic quantum states have focused on a pure
AFM J1–J2–J3 honeycomb-lattice model [50–61], moti-
vated by the expectation of stronger fluctuations due to
the lattice’s low coordination number and by the degen-
eracies in its classical phase diagram [53].

The model (1) was studied in the 1970s [62], yield-
ing the classical phase diagram reproduced in Fig. 1(a).
These phases are independent of ∆n because all relevant
classical states are coplanar. The ground state is FM for
small J3, while zigzag (ZZ) order is preferred for large
J3, and the ferrimagnetic spiral phase (Sp) continuously
interpolates between FM and ZZ.
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FIG. 1. The classical (a) and quantum (b) phase diagrams
of the XXZ J∆

1 –J3 model (1) with the ferromagnetic (FM),
zigzag (ZZ), spiral (Sp), double-zigzag (dZZ), and Ising-z (Iz)
phases. The solid lines are phase boundaries interpolating
transition points (diamonds) inferred from the DMRG scans
along J3 (red) and ∆ (yellow). The vertical and dashed lines
are classical and MAGSWT phase boundaries, respectively.
Spins are in-plane for all phases except Iz, see also Fig. 2.

In this Letter, we combine density-matrix renormaliza-
tion group (DMRG) and minimally-augmented spin-wave
theory (MAGSWT) to obtain the groundstate phase di-
agram of the quantum S = 1

2 model (1). We focus on
the partial XXZ version of the model (1), with the J3-
term left in the Heisenberg limit, ∆3 = 1, referred to
as the J∆

1 –J3 model. This choice is motivated by real
materials, in which further exchanges tend to be more
isotropic [32, 63]. The standard version of the model
with equal anisotropies, ∆1 =∆3, referred to as the full
XXZ or J∆

1 –J∆
3 model, is considered too.

Phase diagram.—Our phase diagram for the S = 1
2

J∆
1 –J3 model is given in Fig. 1(b). In a dramatic devia-

tion from the classical case, we find two unconventional
phases stabilized by quantum fluctuations—the double-
zigzag (dZZ) and Ising-z (Iz) phases—as intermediary
between the FM and ZZ phases. The FM and ZZ phases
also extend well beyond their classical regions to com-
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FIG. 2. Long-cylinder scans of the J∆
1 –J3 model (1) vs J3 in the (a) Heisenberg (∆=1) and (b) XY (∆=0) limit. The arrows

show the local ordered moment ⟨Si⟩. FM, ZZ, and Iz phases are indicated and transitions are determined as described in text.
The honeycomb lattice is in the xy plane while spins shown in the figure are in the xz plane.

pletely supersede the non-collinear classical spiral phase.

The solid lines are phase boundaries interpolating tran-
sition points obtained from the DMRG long-cylinder
DMRG “scans” by varying J3 or ∆, as well as from the
more precise measurements. The dashed lines are phase
boundaries of the same phases obtained by MAGSWT,
with both approaches described below.

The qualitative agreement between these approaches is
quite remarkable. Both methods produce the classically
unstable dZZ and Iz phases, both expand the FM and ZZ
phases beyond their classical ranges, and both eliminate
the Sp phase. These findings are also in a broad agree-
ment with order-by-disorder arguments [20, 27], which
generally favor collinear phases.

We note that recent studies of related models also
found the Sp phase to be absent [64, 65]. However, our
conclusions on the nature and extent of the quantum
phases that replace it differ substantially from theirs. For
the details on these differences for the J1–J3 and other
models, see Ref. [66] and the discussions below.

The U(1)-preserving Iz phase, with spins ordered Néel-
like along the z axis, has been first discovered in the XY
J1-J2 AFM-AFM model [60], where Iz order is stabilized
solely by quantum effects with no exchange coupling fa-
voring it. In our case, we find the z axis component of
the J3-exchange in the J∆

1 -J3 model crucial for stabilizing
the Iz phase in a wide range of parameters, see Fig. 1(b).
In contrast to Ref. [65], we find only a very narrow Iz
phase in the J∆

1 -J∆
3 model. The spin-liquid phases in

this model [64, 65] are also not supported [66].

The dZZ phase has been recently reported experimen-
tally [43] and found favored by the bond-dependent ex-
tensions of the XY J∆

1 –J∆
3 model [45, 46]. Instead, we

find the dZZ phase already in the Heisenberg limit of the
principal J1–J3 model (1), see Fig. 1(b).

DMRG calculations.—DMRG calculations were per-
formed on the Lx×Ly-site honeycomb-lattice open cylin-
ders of width Ly up to 16 (8 honeycomb cells), using the
ITensor library [67]. The majority of the results were ob-
tained on the so-called X-cylinders (XC) [59], in which
the first-neighbor bond is horizontal, while both X- and
Y-cylinders (YC) were used for more delicate phases [68].
We allow for a spontaneous breaking of the spin U(1)
symmetry [69], enabling us to measure the local ordered
moment ⟨Si⟩ instead of the correlation function.

Our main exploratory tool is the long-cylinder “scans,”
in which one parameter, J3 or ∆, is varied along the
length of the cylinder with Lx up to 40. It provides 1D
cuts through the 2D phase diagram [70–73], see Fig. 2,
which give approximate phase boundaries. By narrow-
ing parameter ranges of the scans one can determine the
boundaries with increased precision, distinguish first- and
second-order transitions [15], and uncover hidden phases.
In cases when the phase boundary is less obvious, we uti-
lize the fixed parameter (non-scan) calculations on clus-
ters up to 16×16, with the aspect ratio that closely ap-
proximates the 2D thermodynamic limit [74].

In Fig. 2, we present two long-cylinder scans for the
J∆
1 –J3 model (1), one in the Heisenberg limit, ∆ = 1,

and the other in the XY limit, ∆ = 0, vs J3. In the
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FIG. 3. (a) Ordered moments in the 16×16 non-scan cluster
for J3=0.24, showing dZZ pattern. (b) Energies of the three
competing phases vs J3, crosses are DMRG results and higher-
energy states are metastable. Lines are extrapolated energies,
⟨ψi|H(J3)|ψi⟩, where ψi are the three states at J3=0.24.

Heisenberg limit, Fig. 2(a), the transition from FM to ZZ
is very sharp and FM phase seems to terminate right at
the classical boundary of this state, Jcl

3 =0.25. However,
one would expect that the FM phase should retreat from
this boundary, as the competing ZZ state is fluctuating
in the Heisenberg limit, while the FM state is exact. The
subsequent analysis reveals a hidden intermediate dZZ
state, discussed next. We note that the scan calculation
in Fig. 2(a) misses it not only due to the narrow region
of the dZZ phase, but also because of the high symme-
try of the model in the Heisenberg limit, which requires
additional effort to avoid metastable states.

Fig. 2(b) for the XY limit shows transitions from the
FM to Iz and from Iz to ZZ vs J3. By using scans in the
narrower ranges of J3, we verify that the spiral-like spin
patterns in the transition regions in Fig. 2(b) are prox-
imity effects of the neighboring phases, not additional
phases. The phase boundaries shown in Fig. 2(b) and
used in the phase diagram in Fig. 1(b) are the crossing
points of the order parameters vs J3 [66]. The error bars
are the width of the transition region in the scans, where
a discontinuous transition is assigned a width equal to
the parameter change over one lattice spacing.

In the Heisenberg limit, the three states, FM, dZZ, and
ZZ, compete in the proximity of the classical FM bound-
ary J3=0.25. Because of the high spin-symmetry of the
model, and depending on the initial state, all three can
be stabilized in the non-scan DMRG simulations, such
as the one shown in Fig. 3(a) for J3=0.24 in the 16×16
cluster. As is shown in Fig. 3(b), the energy of the dZZ is
the lowest, with the FM and ZZ being metastable, sug-
gesting that the transitions between the corresponding
phases are first order. To identify their phase bound-
aries, we compare the energies of these three states as
a function of J3 using extrapolations based on the spin-
spin correlations extracted at J3 = 0.24 from the center
of the cluster for each of the states. While the FM line
is exact in this limit, the extrapolated energies for ZZ
and dZZ are also very close to the ones given by a direct
DMRG calculation at a different value of J3, justifying
the analysis, see Fig. 3(b). The dZZ phase is found to be
confined between J3=0.2333 and 0.2596.

The lower spin-symmetry away from the Heisenberg
limit helps to reveal the dZZ phase more readily, see
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FIG. 4. Long-cylinder ∆-scans of the J∆
1 –J3 model (1) for (a)

J3=0.25 and (b) J3=0.4. Notations are as in Fig. 2.

Fig. 4(a) for a long-cylinder scan along the ∆ axis and
fixed J3 =0.25, confirming the presence of this phase in
an extended region of the phase diagram in Fig. 1. A
similar ∆-scan for J3=0.4 in Fig. 4(b) compliments the
J3-scans in establishing boundaries of the Iz phase.
By using a combination of the narrower ranges of the

scans and fixed-parameter non-scans, we find that the
dZZ phase persists somewhat below ∆=0.5 while the Iz
phase ends close to ∆=0.4, where the FM-to-ZZ transi-
tion appears to be direct, see Fig. 1 and [66]. Although
we cannot completely rule out the Iz state for ∆=0.4, it
must be extremely narrow if it exists.
Minimally-augmented spin-wave theory.—The stan-

dard SWT is successful at accounting for quantum ef-
fects in the ordered states [75], but cannot describe either
the ordered phases that are not classically stable, or the
shifts of the phase boundaries by quantum fluctuations.
An analytical approach to address this problem, origi-
nally proposed for the classically unstable field-induced
states in the transverse-field Ising and frustrated Heisen-
berg models [76–78], can be successfully applied here.
The method consists of introducing a local field in the

direction of the ordered moment ni for the proposed (un-
stable) classical spin configurations, leading to a shift of
the chemical potential in the bosonic SWT language

δH = µ
∑

i

(S − Si · ni) = µ
∑

i

a†iai, (2)

while leaving the classical energy of the state unchanged.
The minimal value of µ is chosen to ensure stability of
the spectrum, i.e., that the squares of all eigenvalues of
the SWT matrix are positive definite. Then, the energy
of the proposed spin state, E =Ecl + δE, with the 1/S-
correction to the groundstate energy δE, is well-defined
and can be compared with the energies of the competing
states calculated to the same O(S) order.
The power of the method, coined as theminimally aug-

mented SWT (MAGSWT), is not only in its simplicity,
but in the form of Eq. (2), which guarantees that its con-
tribution to the Hamiltonian is positive for µ>0. In turn,
this implies that the so-obtained groundstate energy E is
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FIG. 5. The quantum S= 1
2
phase diagrams of the full XXZ

J∆
1 –J∆

3 model (1), c.f. Fig. 1(b). See text.

an upper bound for the energy of the suggested spin state
to the order O(S). This method allows one to consider
the phase beyond its classical range of stability and in-
spect states that are classically not competitive, but can
lower their energy due to quantum fluctuations. The new
phase boundaries are determined from the crossings of
the energies E for the competing phases as a function of
the varied parameter(s).

We note that MAGSWT may not be applied to an
arbitrary classically-unstable state [78], with the absence
of the linear-bosonic terms in the 1/S-expansion for a
given state being a sufficient criterion of its applicability.

MAGSWT results.—In case of the XXZ J∆
1 –J3 model

(1), all four competing phases of interest are collinear,
which guarantees the absence of the linear-bosonic terms,
while the non-collinear Sp state is not the subject of
MAGSWT, as it corresponds to a minimum of the clas-
sical energy in its entire possible range of existence.

The technical procedure of extracting minimal µ vs J3
and ∆ for each phase is discussed in Ref. [66]. We note
that the limiting XY and Heisenberg cases and select
momenta are useful for obtaining analytical expressions
for µ(J3,∆), eliminating the need of a numerical scan
of the momentum space for spectrum instabilities. With
that, the energy surfaces E(J3,∆) are readily obtained
for each phase and the MAGSWT phase boundaries are
drawn from the intersections of such surfaces.

The resulting phase boundaries are shown in Fig. 1(b)
by the dashed lines. Most, if not all, of the features al-
ready discussed above are present. The noncollinear Sp
phase is not effective at benefiting from quantum fluc-
tuations, in agreement with the order-by-disorder argu-
ments [20], and is wiped out. The classically-unstable
dZZ and Iz phases are extensive and both FM and ZZ
expand beyond their classical borders. A close quanti-
tative agreement with the DMRG phase boundaries can
also be observed, with most discrepancies concerning the
borders of the less-fluctuating FM phase [66]. Otherwise,

the entire picture for the J∆
1 –J3 model in Fig. 1(b) is in

rather astonishing agreement with the numerical data.
The J∆

1 –J∆
3 model.—The phase diagram of the full

XXZ model (1) with equal anisotropies in both terms,
obtained using the same methods as described above, is
presented in Fig. 5. It repeats most of the trends of the
partial XXZ model in Fig. 1(b), such as the absence
of the Sp phase, expansion of the FM and ZZ, and the
presence of the two unconventional phases, Iz and dZZ.
In contrast to the recent studies [64, 65], our results

do not support the proposed spin-liquid states in the
Heisenberg [65], or strongly-anisotropic (∆=0.25) nearly
XY [64] limits. The J3-width of the quantum Iz phase in
the same XY limit (∆=0) is also an order of magnitude
narrower in our case than the one suggested in [65].
While the first of the quantum phases, dZZ, missed

by the previous works due to small cluster sizes or an
approximate nature of their approaches [65], is nearly the
same in the partial and fullXXZ models in Fig. 1(b) and
Fig. 5, respectively, the Iz phase is substantially more
tenuous. In fact, the initial DMRG scans have shown
a direct FM-ZZ transition, with some possible narrow
intermediate state. Dedicated non-scans in that region
did uncover short-range correlations in both XC and YC
clusters [66], not unlike the ones reported in Ref. [64].
However, these spin-liquid-suspects either order on the
cylinder width increase (XC), or indicate a sufficiently
robust Iz order in the range of J3=0.315-0.325 for ∆ =
0.25 and J3=0.34-0.36 for ∆=0, see [66].
It is worth noting that MAGSWT in the XY limit of

the full XXZ model shows a close, but insufficient, com-
petition of the strongly fluctuating Iz phase, rendering it
absent from its version of the phase diagram in Fig. 5.
Summary.—In this letter, we have studied the emer-

gence of the quantum phases that are not stable clas-
sically within a simple model of great current inter-
est. We have combined state-of-the-art DMRG and ana-
lytical approaches to obtain conclusive phase diagrams
of this model. It is established beyond any reason-
able doubt that the two unconventional quantum phases
occupy a significant portion of this diagram, with the
known phases also extending well beyond their classical
regions and completely replacing the less-fluctuating non-
collinear phase. The results of the analytical MAGSWT
approach are shown to be in a close accord with the nu-
merical DMRG data, providing additional insights into
the energetics of the quantum stabilization of the non-
classical phases and offering a systematic path for the
explorations of similar models.
The proposed phase diagrams have direct relevance to

a group of novel materials and provide important guid-
ance to the ongoing theoretical and experimental searches
of the unconventional quantum states.
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I. PHASE BOUNDARIES FROM THE DMRG SCANS

Here we illustrate how we determine the approximate phase boundaries and corresponding error bars from the
DMRG scans. In Figure S1, we show the in-plane, |⟨Sx

i ⟩|, and out-of-plane, |⟨Sz
i ⟩|, ordered moments along the DMRG

J3-scan in Fig. 2(b) of the main text. Spins in the FM and ZZ phases are along the x axis, while in the Iz phase they
order along the z axis. The transition points are chosen as the crossing points of their order parameters. Error bars
are either the distance to the inflection points of the order-parameter curves or a minimum of one step of the scan
(one column of the cylinder) for sharper transitions.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

FM ZZIz

J3

|⟨Sz
i ⟩|

|⟨Sx
i ⟩|

FIG. S1. |⟨Sz
i ⟩| and |⟨Sx

i ⟩| along the length of a 16×40 cylinder in a DMRG scan vs J3 for the ∆=0 limit of the J∆
1 –J3 model.

The crossing points are the phase boundaries and the shaded regions are the error bars.

II. PROXIMITY EFFECT IN THE SCANS AND THE ABSENCE OF AN SPIRAL PHASE

0.1 0.2 0.3 0.4 0.5 0.6 0.7J3

(a)

FM ZZIz

J3

0.45 0.48 0.51 0.54 0.57 0.6

⟨Sx ⟩

J3

ZZIz

(c)

(b)

FIG. S2. Results for the J∆
1 –J3 model at ∆=0. (a) The J3-scan from Fig. 2(b) of the main text. (b) The “zoom-in” J3-scan

of the Iz-to-ZZ transition region in the 16×32 cylinder. (c) The column-averaged ⟨Sx⟩ vs J3 for the scans in (a) and (b).

ar
X

iv
:2

30
4.

06
06

2v
4 

 [
co

nd
-m

at
.s

tr
-e

l]
  2

9 
M

ar
 2

02
4



2

In some DMRG scans, such as the one in Fig. 2(b) of the main text, reproduced in Fig. S2(a), spins at the boundary
between the Iz and other phases appear to form a spiral pattern. To rule out an additional intermediate spiral phase,
we perform a scan in a smaller range of the varied parameter (“zoom-in” scan) to observe the boundary region closer.
In Fig. S2(b) we focus on the transition region between the Iz phase and the ZZ phase. If the spiral phase would exist,
it would become wider in such a scan. In Fig. S2(b), the transition region has the same width (about ten columns)
as in Fig. S2(a), with the transition getting sharper for the smaller gradient of J3, see Fig. S2(c), strongly suggesting
the absence of any intermediate phase in the thermodynamic limit. In the non-scan calculation at J3=0.55 we also
do not find the spiral phase. This analysis clearly shows that the spiral-like pattern in the scans is due to a proximity
effect at the phase boundary. Similar verifications were carried out for all suspicious phases in all scans.

III. OTHER DMRG SCANS FOR THE PARTIAL XXZ J∆
1 –J3 MODEL

0.26 0.28 0.3 0.32 0.34 0.36

0.25 0.27 0.29 0.31 0.33 0.35

0.26 0.28 0.3 0.32 0.34

Δ = 0.5

Δ = 0.4
J3

J3

J3

Δ = 0.3

FM dZZ ZZ

FM ZZ

FM ZZIz

JΔ1 − J3

FIG. S3. DMRG J3-scans for ∆=0.5, 0.4, and 0.3 in the J∆
1 –J3 model. The scans for ∆=0.5 and 0.3 are on the 12×32 cylinders

while the ∆=0.4 scan is on the 16×40 cylinder.

In Fig. S3, we show additional J3-scans that are used to construct the phase diagram of the J∆
1 –J3 model in

Fig. 1(b) of the main text. In each scan, approximate transition boundaries with error bars are indicated. In the
∆=0.5 scan, we observe a narrow phase intervening between FM and ZZ, which is identified as the dZZ phase using
non-scan calculations in the region of J3 from 0.28 to 0.29 (not shown). The ∆=0.4 scan in Fig. S3 shows a direct
transition from FM to ZZ. The non-scans using smaller clusters in the vicinity of J3=0.3 have initially suggested a
spin-liquid (SL) state discussed below, which turns into ZZ order in the larger non-scan clusters. The ∆=0.3 scan is
similar to Fig. 2(b) of the main text with an extended region of the Iz phase intervening between FM and ZZ.

IV. DMRG SCANS FOR THE FULL XXZ J∆
1 –J∆

3 MODEL

In Fig. S4, we show DMRG J3-scans that are used to construct the phase diagram of the J∆
1 –J∆

3 model in Fig. 5 of
the main text. While the ∆=0.5 scan looks somewhat similar to the scan for the same ∆ in Fig. S3, it has a direct
FM-ZZ transition at J3=0.30, with the separate non-scan calculations showing no sign of the intermediate phase.

In the ∆=0.25 and ∆=0 scans, an intermediate region is suggested with the suppressed ordered moments. As we
discuss next, initial non-scans in these regions have shown strongly anisotropic correlations, with short correlations
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in one direction and FM-like in the other, resembling the state that has been hypothesized as a spin liquid in Ref. [1].
Upon closer inspection and finite-size scaling, they reveal a narrow region of the Iz phase. For ∆=0, J3=0.33 is in
the FM phase, J3=0.37 is in the ZZ phase, and J3=0.35 is in the Iz phase by that analysis, confining the Iz phase
between J3=0.34 and 0.36. For ∆=0.25, the Iz phase is even narrower, between J3=0.315 and 0.325.

While the Iz phase in the XY limit (∆ = 0) of the full XXZ J∆
1 –J∆

3 model has been suggested in Ref. [2], the
J3-width of it in our analysis is an order of magnitude narrower than in the results of the pseudo-fermion functional
renormalization group method used in Ref. [2].

0.26 0.3 0.34 0.38 0.42 0.46 0.5J3

0.25 0.27 0.29 0.31 0.33 0.35

Δ = 0.5

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

Δ = 0
J3

J3

??

??

FM ZZ

FM ZZ

FM ZZ

Δ = 0.25

JΔ1 − JΔ3

FIG. S4. DMRG J3-scans in the J∆
1 –J∆

3 model for ∆=0.5, 0.25, and 0 on the 12×32 cylinders.

V. PSEUDO-SPIN-LIQUID STATE

In some of the transition regions discussed above for both versions of the XXZ J1–J3 model, we have found regimes
that can be taken as evidence for a spin-liquid state, similar to the ones reported in Ref. [1]. These include nearly
zero ordered moment at intermediate bond dimension in DMRG calculations, for which the system is expected to
spontaneously break symmetry if it has an order, and the short-range spin-spin correlation in one direction, as shown
in Figs. S5(a) and S5(b). This anisotropy in correlations is suspicious, however, as one would expect a “lock in” of
such 1D-like correlations into some order in a larger system. Indeed, with the increase of the system’s width, one of
the spin-liquid possibilities in the J∆

1 –J3 model (∆=0.4), develops a ZZ order, see Fig. S5(c).
Another such suspect region is in the J∆

1 –J∆
3 model, ∆=0.25, near J3=0.32, similar to the one reported in Ref. [1],

but it does not follow that trend. In fact, as is shown in Fig. S5(d), the spin-liquid candidate looks even more realistic
(less anisotropic) in the YC lattice. However, the system was tested with various boundary conditions and responded
strongly to the staggered pinning field (−1)ihSz

i , developing a substantial Iz order, see Fig. S5(e), with the ordered
moment nearly constant ⟨S⟩≈0.1 in the bulk. Following Ref. [3], we carry out an 1/Ly-scaling of the ordered moment,
which gives a strong indication of the Iz order in the thermodynamic limit, see Fig. S5(f).
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Δ = 0.25, J3 = 0.32, (JΔ1 − JΔ3 )
⟨S⟩

1/Ly

0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

YC
XC

(a)     

(f)

Δ = 0.4, J3 = 0.3 (JΔ1 − J3)

(b)     (c)     

(d)     

(e)     

⟨ ⃗Si ⋅ ⃗Si+δ⟩ ⟨ ⃗Si0 ⋅ ⃗Sj⟩

⟨⃗ S i
0⋅

⃗ S j⟩
⟨⃗ S i

⟩

⟨ ⃗Si⟩

FIG. S5. (a) and (b) 12×12 XC cylinder non-scans for ∆ = 0.4 and J3 = 0.3 in the J∆
1 –J3 model showing: (a) nearly-zero

ordered moment and nearest-neighbor ⟨S⃗i · S⃗i+δ⟩ (thickness of the bond), and (b) spin-spin correlation ⟨S⃗i0 · S⃗j⟩, denoted by
the length and direction of the arrow, with i0 site shown by the green oval. The arrow on i0 is of length 0.25. (c) Same as (a)
on the 16×16 cylinder. (d) Same as (b) on the 8×32 YC cylinder for ∆=0.25 and J3=0.32 in the J∆

1 –J∆
3 model. (e) Ordered

moment in (d) under the Iz pinning field of 0.5 on both edges. (f) The 1/Ly-scaling of the Iz ordered moment in the center of
the cylinder with the edge pinning fields from (e) and the XC and YC cylinders having the aspect ratio 2, which mimics the
2D limit closely—see Ref. [3].

VI. DMRG RESULTS FOR THE J∆
1 -J∆

2 MODEL

Ref. [2] has studied the J1–J2–J3 XXZ model, demonstrating a potentially richer structure of its phase diagram
compared to the J1–J3 model investigated in our work. Specifically, it was suggested that the spin-liquid phase in
the isotropic Heisenberg limit is stable in a much wider region along the J1–J2 axis than along the J1–J3 axis, with
a specific point J2 =0.18 studied in more detail. In that work, an XXZ cut of the J∆

1 –J∆
2 model along the ∆-axis

for J2=0.18 (and J3=0) was also investigated, and a transition to an incommensurate phase from an SL phase was
identified near the Heisenberg limit, at ∆=0.96, with a wide range of the incommensurate phase extending down to
the low values of ∆.

Here we briefly present our additional results for the J∆
1 –J∆

2 model for this specific choice of J2=0.18 and J3=0,
thus extending our work in a different region of the parameter space. The summary of our results is the following.
We do not find any evidence for a spin-liquid state in the Heisenberg limit of this model, and find a double-zigzag
state instead. This is similar to our results for the dZZ state in the J1–J3 model, found instead of the SL state
suggested in Ref. [2], as is discussed in the main text. For the 1D phase diagram along the ∆-axis for the same
choice of J2 =0.18 and J3 =0, we find two transitions, one at ∆=0.93(2) and the other at ∆=0.86(2). The lower
one is a transition to a FM state, with no sign of the incommensurate phase. While the existence of a transition at
∆=0.93(2) is, ideologically, in agreement with the transition found in Ref. [2], in our case it is between a dZZ phase
and a potentially novel triple-zigzag state that also has a significant modulation of spins, characteristic of that of the
spin-density wave (SDW). We refer to it as to tZZ-SDW state.

The numerical results to substantiate these findings are presented in Fig. S6. The Fig. S6(a) part shows a scan
calculation at J2=0.18 vs ∆ from the Heisenberg limit down to ∆=0.8. The double zigzag phase at the isotropic limit
(∆=1.0) evolves into a FM state via an intermediate phase. The non-scan calculations in Fig. S6(b) and Fig. S6(d)
confirm the dZZ and the FM phases at the respective ends of the scan, with both exhibiting a robust order. The
non-scan for the intermediate phase at ∆=0.9 in Fig. S6(c) retains the characteristics of the SDW state, as the spin’s
magnitude is not varied in a fashion that would be consistent with a “simple” triple-zigzag phase. While it is possible
that the SDW variation may be an artifact of the finite cluster as the tZZ phase has a large unit cell, the dZZ phase
in the J1–J3 case is much more symmetric and we believe that the observed SDW variation is genuine.
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J2 = 0.18

Δ

Δ = 1.0 Δ = 0.9 Δ = 0.8
dZZ SDW FM

(a)

(b) (c) (d)

FIG. S6. Results for the J∆
1 –J∆

2 model for J2 = 0.18. (a) DMRG scan on 12×32 cylinder vs ∆, and (b), (c), and (d) are
non-scans on 16×16 and 12×12 cylinders for three representative values of ∆.

Lastly, we note that in the energy comparison for the J1–J3 Heisenberg case discussed in the main text and shown
in Fig. 3(b), we have also investigated a stability of the triple-ZZ state. The tZZ did come very close near the FM-dZZ
boundary, but did not become the ground state in that limit. In that sense, the stabilization of the tZZ phase, or a
descendant of it, in a different part of the phase diagram does not come as a complete surprise.

VII. GENERALIZED J∆1
1 -J∆3

3 MODEL FOR BaCo2(AsO4)2

As is mentioned in the main text, extensive experimental and theoretical searches for the Kitaev magnets on the
honeycomb lattice have recently expanded to the Co2+, Seff = 1/2 materials. Among this family, BaCo2(AsO4)2
has received significant attention [4–8]. Its minimal model description has currently coalesced to a generalized XXZ

FM-AFM J∆1
1 –J∆3

3 model [1, 4, 7, 8] with additional Kitaev-like bond-dependent terms.
One such model parametrization was advocated in Ref. [4], based on fitting experimental excitation spectrum in

high fields and assuming the spin-spiral ground state with a nearly commensurate ordering Q-vector in zero field.
Leaving the correctness of the latter assumption aside [6], the model parameters in Ref. [4] were constrained to match

the ordering Q-vector of the planar spin spiral from the classical solution of the generalized XXZ J∆1
1 –J∆3

3 model.
Since we find that such a spiral state does not survive at all in the quantum S = 1/2 version of the XXZ J1–J3

model, as it is overtaken by the collinear phases due to quantum fluctuations, we have checked the validity of the
key assumption made in Ref. [4] regarding the structure of the ground state for their proposed set of parameters.
The model used in Ref. [4] has strong XXZ anisotropies for the J1 and J3 terms, but of different sign, ∆1 ≈ 0.16
and ∆3 = −0.34, and the ratio J3/J1 ≈ −0.33 (see Eq. [13] of Ref. [4]). The model also contains two minimal
bond-dependent corrections in the J1 exchange matrix.

We have performed DMRG calculations for these parameters, including the bond-dependent terms, on a 12×12

lx

yz

x

(a) (b)

FIG. S7. (a) Spin pattern in the 12×12 DMRG cylinder and (b) spin components in the ground state of the generalized XXZ

J∆1
1 -J∆3

3 model model from Ref. [4].
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cylinder in order to see whether the opposite sign of ∆1 and ∆3, or the bond-dependent terms, are able to stabilize
the spiral state to avoid the fate we find for it in the other models. As is shown in Fig S7, we find an FM ground
state instead of the spiral state, suggesting that the model parameters for BaCo2(AsO4)2 proposed in Ref. [4] are not
adequate to describe its ground-state spin configuration and require a reconsideration.

VIII. MINIMALLY AUGMENTED SPIN WAVE THEORY

The spin-wave approach is based on the 1/S-expansion about a classical ground state of a spin model using bosonic
representation for spin operators [9]. Since the classical energy is at a minimum, the first non-zero term of the
expansion is quadratic (harmonic), yielding the liner spin-wave theory (LSWT) Hamiltonian in a standard form

H = Ecl +
1

2

∑

q

(
x̂†
qĤqx̂q − 1

2
tr(Ĥq)

)
+O(S0), Ĥq =

(
Âq B̂q

B̂†
q Â∗

−q

)
, (1)

where Ecl is the classical energy, O(S2), x̂†
q=
(
â†q, â−q

)
is a vector of the bosonic creation and annihilation operators,

and Ĥq is the Hamiltonian matrix, O(S), in this basis. The diagonalization of ĝĤq, where ĝ is the diagonal para-
unitary matrix, yields the LSWT magnon eigenenergies {ε1q, ε2q, . . . ,−ε1−q,−ε2−q, . . . } [10] that are guaranteed to
be positive definite because the expansion is around a minimum of the classical energy.

From that, the energy of the ground state to the order O(S) is E=Ecl+δE, where δE is the 1/S quantum correction

δE =
1

2

∑

q

(∑

α

εαq − tr(Âq)
)
. (2)

When the classical state stops being a minimum as some parameter of the model is varied, the quadratic Hamiltonian
in (1) ceases to be positive definite, with some of the ε2αq turning negative for some momenta q, and the quantum
correction in (2) becoming ill-defined. This hinders the use of the LSWT outside the classical region of stability of
a state and limits its ability to describe the shift of the phase boundaries between classical states due to quantum
effects and the appearance of the ordered phases that are not favored classically but stabilized in a quantum case.

The resolution to this general conundrum that has plagued application of the SWT to the classically unstable states

was suggested in Refs. [11–13]. The method consists of adding a local field term to the Hamiltonian, δH=µ
∑

i a
†
iai

(see the main text) and referred to as the minimally augmented SWT (MAGSWT). The minimal value of this field is
chosen from the condition that all eigenvalues ε2αq are positive definite for all the momenta q.

A. LSWT for the phases of the J1–J3 model

The classical energies of the collinear phases of interest per number of atomic unit cells NA are given by

EFM
cl = −3S2(1− J3), EZZ

cl = −S2(1 + 3J3), EIz
cl = 3S2(∆1 − J3∆3), EdZZ

cl = −2S2, (3)

valid for any J3 and ∆1(3) of the model (1) of the main text, inside or outside the phase’s stability region.
Of the five phases in Fig. 1 of the main text, the magnetic unit cell in the FM and Iz phases is naturally that of

the honeycomb lattice (two sites), while for the ZZ and Sp ones it can be reduced to that by the staggered or rotated

reference frames, respectively, resulting in the 4× 4 Hamiltonian LSWT matrix Ĥq (1) in all four cases. For the dZZ
phase, the staggered reference frame reduces the unit cell from eight to four sites and yields the 8× 8 LSWT matrix.

The LSWT treatment of the collinear phases is rather standard and we do not elaborate on it except for a few details.
In all two-sublattice cases, FM, ZZ, Iz, and Sp, the LSWT matrices Âq, B̂q in (1) assume the same structure, for
which the eigenvalues of the 4×4 Hamiltonian matrix can be found analytically. One can find additional simplifications
of the eigenvalue problem for the FM and Iz phases, and in all four cases in the limit ∆1(3)=0, see also Ref. [14] for
the limiting cases for the Sp phase.

In the 4-sublattice dZZ case, the eigenvalue problem for the 8× 8 matrix is not reducible to a compact analytical
form. However, analytical solutions are available for the eigenenergies at the high-symmetry q=0 and q=(0, π/

√
3)

points in the Heisenberg limit, which are instrumental for finding the MAGSWT parameter µ.

B. Finding µ in MAGSWT

In the FM, ZZ, and Iz phases, the search for the minimal value of µ for the MAGSWT follows a similar pattern. In
a simplified case, such as full XXZ (∆1=∆3) or XY limits, analytical expression for the lowest branch ε21q simplifies
sufficiently to yield the J3-dependence of the offending negative minimum that needs to be lifted up by a positive
shift. The required energy shift is easily related to µ with the ∆-dependence of µ either absent or following trivially
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from the considered limiting cases. The resulting solutions correspond to a change of the diagonal matrix element
A → Ā of the LSWT matrix Âq, with Ā in all three cases given by

Ā = A+ µ = 3S |γ̄Qmax | , where γ̄q = γq − J3γ
(3)
q , (4)

with the first- and third-neighbor hopping amplitudes γq = 1
3

∑
α eiqδα and γ

(3)
q = 1

3

∑
α eiqδ

(3)
α , and Qmax defined as

Qmax =





(0, 0), J3 < J3,c1 = 0.25,

(Qx, 0), Qx = 2
3 · arccos

(
1

2J3
· 1−3J3

1−2J3

)
, J3,c1 < J3 < J3,c2,

(2π/3, 0), J3 > J3,c2 = (
√
17− 1)/8 ≈ 0.3904,

(5)

Technically, the condition for the maximum of |γ̄q| is related to that of the classical energy minimum in the Sp phase.
Interestingly, the resultant MAGSWT spectrum in the Iz phase and the quantum energy correction (2) that derives

from it, are fully independent of the anisotropy parameters ∆n.
In the dZZ case, the search of µ has involved analysis of the spectrum obtained by a numerical diagonalization of

the
(
ĝĤk

)2
matrix in the Heisenberg limit, which helped in identifying the relevant high-symmetry q points that

require stabilization corrections. The diagonalization at these points can be reduced to an analytical form, which, in
turn, yields the minimal value of µ. In a narrow region of 0.1892<J3<0.2030, the two lowest unstable branches trade
places and, in a row, develop negative minima at small but finite q’s. For that region, we find that a straightforward
linear interpolation for µ between the analytic solutions from the neighboring regions is the most effort-effective, as
it stabilizes the spectrum if not with zero but with a very small gap. The resultant explicit expressions for µ are

µ =





S
(√

5−2J3+J2
3−1−3J3

)
, J3<J̃c1 = 0.1892,

interpolate, J̃c1<J3<J̃c2 = 0.203,

2S
(√

2−2J3+J2
3−1

)
, J̃c2<J3<J̃c3 = 0.25,

2SJ3, J3>J̃c3.

(6)

As in the other coplanar phases, FM and ZZ, µ is independent of the XXZ anisotropies ∆n.

C. Energies

Following the MAGSWT strategy, quantum corrections to the groundstate energies in all competing phases can
now be calculated in a conventional 1/S fashion using Eq. (2) with the expressions for the minimal chemical potential
from (4) and (6). Then the total energies E(J3,∆) can be compared between the phases to create the phase diagram.

Figure S8(a) shows the J3 energy-cuts in the Heisenberg limit, ∆1(3)=1, of the J1–J3 model. The dashed lines are
classical energies (3) and solid lines are energies with quantum corrections (2). The vertical dashed lines are classical
FM-Sp and Sp-ZZ boundaries, J3,c1 and J3,c2. The dotted line is the intersection of the FM and ZZ classical energies,
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FIG. S8. (a) The classical (dashed lines) and quantum (solid lines, from (2)) energies of the FM, ZZ, Sp, and dZZ states vs J3
for ∆1(3) =1 per atomic unit cell. The vertical dashed lines are classical FM-Sp and Sp-ZZ boundaries and the dotted line is
the crossing of Ecl for the FM and ZZ states. (b) Same as (a) for the FM, ZZ, Sp, and Iz states for ∆1=0 and ∆3=1.
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FIG. S9. (a) Same as in Fig. S8(b) for the FM, ZZ, and Iz states in the “full” XY limit, ∆1=∆3=0. (b) Same as in Fig. S8(a)
for the FM, ZZ, Sp, and dZZ states for ∆1=0.5 and ∆3=1.

J3 = 1/3. The Iz phase is not competitive. The Sp phase uses standard SWT with no augmenting as it is stable
through its extent. The FM is an exact eigenstate, so the quantum corrections to it are zero.

The first effect is the expansion of the ZZ phase (blue lines). While the FM is fluctuation-free, the ZZ is not,
which pushes its energy down and the crossing with the FM’s energy below the J3,c1 point where the FM is unstable
classically, superseding the non-collinear Sp phase, which is not effective in lowering its energy. However, near J3,c1
another collinear phase, dZZ, is competitive, making it a ground state in a finite range of J3 (orange lines).

One can note a very close agreement of the MAGSWT dZZ-ZZ transition at J3 =0.262 compared to the DMRG
value of 0.26. On the other hand, the FM-dZZ transition is at a lower J3=0.1785 than the DMRG one at J3≈0.24.
One can ascribe this difference to a larger sensitivity of the MAGSWT phase boundaries to the higher-order corrections
in this case because FM state is non-fluctuating in the Heisenberg limit.

For the “partial” XY limit, with ∆1=0 and ∆3=1, see Figure S8(b). In this case, dZZ is not competitive, but Iz
is. All phases are fluctuating in this limit, including FM. The Sp phase is not effective in benefiting from quantum
fluctuations. The transition point between FM and ZZ phase is renormalized to a slightly smaller J3 from its classical
value. However, both are overtaken by the strongly-fluctuating Iz phase in a wide window of J3. One observation is
that while the FM-Iz transition is associated with a rather steep energy crossing, the Iz-ZZ crossing is rather shallow,
suggesting stronger higher-order effects on the MAGSWT phase boundary for the latter, but not the former. This
is in accord with the numerical values: J3 ≈ 0.269(15) [DMRG] vs 0.2513 [MAGSWT] for the FM-Iz boundary and
J3 ≈ 0.554(23) [DMRG] vs 0.637 [MAGSWT] for the Iz-ZZ boundary. Similar discrepancies for the finite ∆1 in the
phase diagram in Fig. 1(b) of the main text can be attributed to the same effect.

We note that in the “partial” XY case in Fig. S8(b), the Heisenberg J3-term helps to stabilize the Iz state. The
effect of the ∆3 anisotropy is tested by the “full” XY limit of the model, in which the benefit of the out-of-plane
spin-coupling is absent. The J3-cut in this limit is shown in Figure S9(a). The Iz phase can be seen as remarkably
effective at lowering its energy, with the quantum fluctuation part being about four times of that for the FM and
ZZ states. However, while being closely competitive, the Iz phase is not stable in the full XY limit according to
MAGSWT. This result is, superficially, in a disagreement with the DMRG, which does show a narrow strip of the Iz
phase in Fig. 5 of the main text. Nevertheless, with the energy curves in Fig. S9(a) and Fig. S8(b) in mind, it is clear
that the MAGSWT misses Iz phase in the full XY limit only slightly.

An additional J3-cut for ∆1 =0.5 and Heisenberg J3 is shown in Fig. S9(b). Here, the competing phases are the
same as in Fig. S8(a), with the dZZ phase coming extremely close, but not able to stabilize, yielding a direct FM-ZZ
transition for this value of ∆1. This is in a close agreement with DMRG, which shows a narrow dZZ slice for J3
between 0.280(4) and 0.290(6) at this ∆1, with the FM-ZZ transition being direct for the next cut at ∆1 =0.4, see
Fig. 1(b) of the main text. Given the energy differences in Fig. S9(b), the agreement is indeed very close.

Such additional insights into the energetics of the competing phases are instrumental for the understanding of their
competition. They also underscore the undeniable success of the MAGSWT in describing classically unstable states.

[1] A. Bose, M. Routh, S. Voleti, S. K. Saha, M. Kumar, T. Saha-Dasgupta, and A. Paramekanti, Proximate Dirac spin liquid
in the J1-J3 XXZ model for honeycomb cobaltates, arXiv:2212.13271 (2022).



9

[2] Y. Watanabe, S. Trebst, and C. Hickey, Frustrated Ferromagnetism of Honeycomb Cobaltates: Incommensurate Spirals,
Quantum Disordered Phases, and Out-of-Plane Ising Order, arXiv:2212.14053 (2022).

[3] S. R. White and A. L. Chernyshev, Neél Order in Square and Triangular Lattice Heisenberg Models, Phys. Rev. Lett. 99,
127004 (2007).

[4] T. Halloran, F. Desrochers, E. Z. Zhang, T. Chen, L. E. Chern, Z. Xu, B. Winn, M. Graves-Brook, M. B. Stone, A. I.
Kolesnikov, Y. Qiu, R. Zhong, R. Cava, Y. B. Kim, and C. Broholm, Geometrical frustration versus Kitaev interactions
in BaCo2(AsO4)2, Proc. Natl. Acad. Sci. U.S.A. 120, e2215509119 (2023).

[5] R. Zhong, T. Gao, N. P. Ong, and R. J. Cava, Weak-field induced nonmagnetic state in a Co-based honeycomb, Sci. Adv.
6, eaay6953 (2020).

[6] L.-P. Regnault, C. Boullier, and J. Lorenzo, Polarized-neutron investigation of magnetic ordering and spin dynamics in
BaCo2(AsO4)2 frustrated honeycomb-lattice magnet, Heliyon 4, e00507 (2018).

[7] S. Das, S. Voleti, T. Saha-Dasgupta, and A. Paramekanti, XY magnetism, Kitaev exchange, and long-range frustration in
the Jeff = 1

2
honeycomb cobaltates, Phys. Rev. B 104, 134425 (2021).

[8] P. A. Maksimov, A. V. Ushakov, Z. V. Pchelkina, Y. Li, S. M. Winter, and S. V. Streltsov, Ab initio guided minimal
model for the “Kitaev” material BaCo2(AsO4)2: Importance of direct hopping, third-neighbor exchange, and quantum
fluctuations, Phys. Rev. B 106, 165131 (2022).

[9] T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev. 58,
1098 (1940).

[10] J. Colpa, Diagonalization of the quadratic boson hamiltonian, Physica A: Statistical Mechanics and its Applications 93,
327 (1978).

[11] S. Wenzel, T. Coletta, S. E. Korshunov, and F. Mila, Evidence for Columnar Order in the Fully Frustrated Transverse
Field Ising Model on the Square Lattice, Phys. Rev. Lett. 109, 187202 (2012).

[12] T. Coletta, M. E. Zhitomirsky, and F. Mila, Quantum stabilization of classically unstable plateau structures, Phys. Rev.
B 87, 060407(R) (2013).

[13] T. Coletta, S. E. Korshunov, and F. Mila, Semiclassical evidence of columnar order in the fully frustrated transverse-field
Ising model on the square lattice, Phys. Rev. B 90, 205109 (2014).

[14] E. Rastelli, A. Tassi, and L. Reatto, Non-simple magnetic order for simple Hamiltonians, Physica B+C 97, 1 (1979).


