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In-Distribution and Out-of-Distribution
Self-supervised ECG Representation Learning for

Arrhythmia Detection
Sahar Soltanieh, Javad Hashemi, and Ali Etemad

Abstract—This paper presents a systematic investigation into
the effectiveness of Self-Supervised Learning (SSL) methods for
Electrocardiogram (ECG) arrhythmia detection. We begin by
conducting a novel analysis of the data distributions on three
popular ECG-based arrhythmia datasets: PTB-XL, Chapman,
and Ribeiro. To the best of our knowledge, our study is the first
to quantitatively explore and characterize these distributions in
the area. We then perform a comprehensive set of experiments
using different augmentations and parameters to evaluate the
effectiveness of various SSL methods, namely SimCRL, BYOL,
and SwAV, for ECG representation learning, where we observe
the best performance achieved by SwAV. Furthermore, our
analysis shows that SSL methods achieve highly competitive
results to those achieved by supervised state-of-the-art methods.
To further assess the performance of these methods on both
In-Distribution (ID) and Out-of-Distribution (OOD) ECG data,
we conduct cross-dataset training and testing experiments. Our
comprehensive experiments show almost identical results when
comparing ID and OOD schemes, indicating that SSL techniques
can learn highly effective representations that generalize well
across different OOD datasets. This finding can have major
implications for ECG-based arrhythmia detection. Lastly, to
further analyze our results, we perform detailed per-disease
studies on the performance of the SSL methods on the three
datasets.

Index Terms—Arrhythmia Detection, Contrastive Learning,
Electrocardiogram, Self-Supervised Learning, In-Distribution,
Out-of-Distribution.

I. INTRODUCTION

THe heart is a vital organ in the human body, and its study
is of high importance. Electrocardiogram (ECG) is the

most commonly used diagnostic technique for detecting and
quantifying the electrical activity of the heart [1]. ECG anal-
ysis can help identify a range of heart conditions including,
arrhythmia, heart attacks, and coronary artery disease. Tradi-
tional ECG analysis methods rely on the manual interpretation
of trained experts, which can be labor-intensive and susceptible
to inter-observer variability. In recent years, deep learning has
emerged as a promising approach for the diagnosis of heart
conditions based on ECG signals and has shown encouraging
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results in terms of performance and efficiency. Supervised
learning is a popular paradigm in deep learning which relies
on learning from input data along with respective output labels.
However, the reliance on output labels for training the model
can be viewed as a limitation, as the model can only learn
to recognize classes of data that are included in the training
dataset, and it may not be able to extract deeper features
that are not directly related to the labels. Moreover, labelling
medical datasets is a challenging task as it requires specialized
experts with a high level of knowledge in the relevant medical
field. This can make the process costly, time-consuming, and
prone to errors or inconsistencies.

However, recent advances in Self-Supervised Learning
(SSL) have begun to overcome some of these difficulties. SSL
uses unlabeled data to train a model, allowing it to learn from
the data itself without the need for labels. This can make
the training process more efficient and effective, and it can
also enable the model to extract deeper representations which
could lead to more accurate predictions. Self-supervision has
shown great promise in a wide range of applications, including
computer vision [2], and natural language processing [3].

While deep learning models have shown great potential
in various fields, they are often trained and tested on sim-
ilar data which contain similar distributions. This can lead
to unexpected behaviour and safety hazards when models
are presented with different data that come from different
distributions. Out-of-Distribution (OOD) training and testing
is a promising approach to address this issue by explicitly
evaluating models on OOD inputs, for instance by evaluating
models on datasets that are significantly different from the
training data (e.g., recorded in different conditions, using
different sensors, etc.). A number of recent studies [4]–
[6] have explored this notion in depth and made significant
contributions to the area.

In this paper, we conduct a comprehensive analysis of SSL
techniques for arrhythmia classification from ECG signals. Our
study evaluates the performance of popular self-supervised
methods across diverse datasets and assesses their gener-
alizability and OOD classification capabilities. The results
demonstrate that SSL achieves high accuracy in arrhythmia
classification and enhances the performance of ECG-based
diagnostic systems. Furthermore, we explore the potential of
cross-dataset training to understand the adaptability of these
models to different data distributions. Our findings provide
valuable insights into the capabilities and limitations of SSL
in arrhythmia ECG analysis, opening up promising avenues
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for future research.

In this research, we first analyze the distribution of samples
using three arrhythmia-based ECG signal datasets, namely
PTB-XL, Chapman, and Ribeiro. Based on the results of
this analysis, we conclude that these datasets are suitable for
our cross-dataset analysis and OOD experiments due to their
different distributions. Accordingly, we select PTB-XL and
Chapman datasets as pre-training datasets since they have a
large number of samples, and select PTB-XL, Chapman, and
Ribeiro test sets for testing the models.

Next, we select three popular and effective SSL methods,
namely Simple Framework for Contrastive Learning of Visual
Representations (SimCLR), which is a highly popular con-
trastive learning method, Bootstrap Your Own Latent (BYOL),
which is a strong method that doesn’t use any negative
pairs, and Swapping Assignments Between Views (SwAV),
which utilizes a cluster code book to categorize the features
in the datasets. We select these methods for their strong
performances through the use of different self-supervision
approaches. To train these SSL methods, we select several
commonly used augmentations for the ECG signals. Moreover,
we choose multiple parameter sets for each augmentation
based on prior research in the field. Finally, we pre-train each
method in ID and OOD settings, followed by linear evaluation
and finetuning.

Our extensive experiments reveal that SwAV consistently
achieves the best overall results for ECG arrhythmia detec-
tion across all explored datasets in both ID and OOD set-
tings. Moreover, our cross-dataset analysis demonstrates that
SSL methods, regardless of the technique, generally achieve
comparable performances for ID and OOD data, indicating
that SSL effectively enhances model generalization to OOD
scenarios. Finally, our per-class analysis highlights the signif-
icant influence of per-class distributions on the classification
performance of the models.

Our contributions in this work are summarized as follows:

• We adapt and implement various SSL techniques and
evaluate their effectiveness through a systematic study
of various hyper-parameters. To achieve this goal, we
adopt and implement the following popular SSL methods:
SimCLR, BYOL, and SwAV. By carefully studying mul-
tiple augmentations and hyper-parameters, we present the
efficacy of these techniques in the context of arrhythmia
detection from ECG signals.

• We assess the generalizability of different approaches for
handling OOD and ID data. To evaluate the strengths and
weaknesses of each approach, we use multiple datasets
and experimental setups and evaluate the performance of
the aforementioned SSL methods across ID and OOD
training-testing schemes.

• We perform a detailed disease-specific investigation on
the effects of various SSL methods and associated param-
eters on different classes of heart disease. We explore the
effects of different augmentations and their parameters on
various types of arrhythmias.

II. BACKGROUND AND LITERATURE REVIEW

SSL has gained significant attention in the machine learning
community in recent years. Various self-supervised approaches
have been proposed and evaluated successfully in different
application areas. These areas include image classification [2],
natural language processing [3], and speech recognition [7].
Moreover, SSL has shown promising results when applied
to the analysis of ECG signals for tasks such as emotion
recognition [8]–[10] and arrhythmia detection [11], [12].

The study [13] demonstrated the effectiveness of contrastive
loss for SSL of bio-signals by developing augmentation tech-
niques and addressing inter-subject variability through subject
specific distributions. Their results showed that promoting
subject-invariance improved classification performance and
yielded effective weight initialization, highlighting the im-
portance of subject awareness in bio-signal representation
learning. The paper [14] introduced Intra-Inter Subject SSL,
designed to improve the diagnosis of cardiac arrhythmias from
unlabeled multivariate cardiac signals. This method captured
the temporal dependencies between heartbeats through intra-
and inter-subject procedures.

The 3KG method introduced in [15], involves projecting
12-lead signals onto a 3D space and applying augmentations
in that space. This approach has demonstrated strong results
when fine-tuned for various heart diseases. Another approach,
CLOCS, presented in [16] utilizes patient-specified charac-
teristics to achieve state-of-the-art performance in learning
spatiotemporal representations of ECG signals in a contrastive
learning manner. Lastly, [17] presents a novel SSL method
for pre-training ECG signals that incorporates both local and
global contextual information. This method features a new
technique called Random Lead Masking, which enhances the
model’s robustness to arbitrary ECG leads.

In our recently published paper [12], we conducted a
systematic investigation of the effectiveness of various aug-
mentations and their corresponding parameters in arrhythmia
detection. Through our analysis, we identified the optimal
ranges of complexities for different augmentations. Our find-
ings revealed the crucial role of type of augmentations and
their hyperparameters in successful training with ECG.

In [18], a method was proposed for learning representations
of the cardiac state of a patient using a combination of
contrastive and supervised learning called Patient Cardiac
Prototype (PCP). The authors showed that these PCPs could be
used to identify similar patients across different datasets and
that the representations maintained strong generalization per-
formance when used to train a network. An SSL method was
proposed in [19], referred to as Segment Origin Prediction,
for classifying arrhythmia from ECG. The proposed method
utilized a technique of assigning labels to samples based on
their origin without the need for manual annotations.

In [20], a deep learning approach for reducing false ar-
rhythmia alarms in intensive care units using CNNs to learn
representations of physiological waveforms automatically was
presented. The proposed method employed a contrastive learn-
ing framework with a Siamese network and a similarity loss
from pair-wise comparisons of waveform segments over time.
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The approach was augmented with learned embeddings from
a rule-based method to leverage domain knowledge for each
alarm type. The paper [21] presented a comprehensive assess-
ment of self-supervised representation learning for clinical 12-
lead ECG data. Finally, the authors adapted state-of-the-art
self-supervised methods to the ECG domain and evaluated
their quality based on linear evaluation performance and
downstream classification task performance.

The authors of paper [22] suggested an SSL algorithm that
utilized ECG delineation as a method for classifying arrhyth-
mia. They demonstrated the effectiveness of this approach and
also the algorithm’s ability to transfer the features learned
during pre-training on one dataset to a different dataset,
resulting in improved performance. A group of customized
masked autoencoders for SSL ECG representation learning
called MAE family of ECG was presented in paper [23].
The approach contained three customized masking modes that
focused on different temporal and spatial features of ECG.
The encoder was utilized as a classifier in downstream tasks
for arrhythmia classification.

Our literature review reveals promising results in using
SSL techniques for ECG representation learning, showcas-
ing competitive performance to or surpassing fully super-
vised methods. However, existing works often suffer from
limitations such as small training datasets affecting model
generalizability, insufficient exploration of robustness across
diverse data setups, and challenges in hyperparameter and
augmentation selection. To overcome these limitations, our
work addresses the critical need to comprehensively evaluate
SSL techniques for ECG-based arrhythmia detection by adapt-
ing popular SSL methods for ECG learning, studying diverse
hyper-parameters and augmentations, and most importantly,
systematically assessing the generalizability of SSL models
across different datasets and OOD settings. This is crucial for
real-world applications of automated ECG-based arrhythmia
classification and robust deployment in clinical settings.

III. METHODOLOGY AND EXPERIMENT SETUP

As discussed earlier, our goal in this paper is to evaluate the
effectiveness of various SSL methods in ECG arrhythmia de-
tection. In this section, we provide a comprehensive overview
of the SSL methods used for this goal. Specifically, we select
the SSL methods to cover a diverse range of approaches. The
first method is SimCLR, a popular SSL approach that utilizes
contrastive learning. The second method used in this paper is
BYOL, which belongs to the SSL category that exclusively
operates on positive pairs without the use of negative pairs.
Finally, we use Swav, which is known for its ability to use
a cluster code book and feature clustering. The following
section also offers an in-depth description of the datasets used
in our experiments, followed by implementation details and
evaluation protocols. We also provide a detailed account of the
implemented augmentations. Lastly, we describe the protocol
used for calculating the data distribution.

A. Self-supervised Learning Techniques
In this section, we present the details of the SSL techniques

that we use in this study, including, SimCLR, BYOL, and
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Fig. 1: An overview of SimCLR.

SwAV.
1) SimCLR: The SimCLR [2] method is a popular SSL

technique that trains deep neural networks through contrastive
learning. Contrastive learning is the notion of training a deep
learning model by encouraging it to differentiate between pairs
of similar and dissimilar data samples. In contrastive learning,
the model learns to map samples from the same class closer
together in a high-dimensional feature space, while pushing
samples from different classes apart. The ultimate goal is
to learn representations that capture meaningful features and
patterns from the data, which can then be used for down-
stream tasks such as classification, segmentation, or clustering.
Figure 1 illustrates an overview of the SimCLR method.
In this method, sample x from the ECG dataset undergoes
augmentations to generate two augmented signals, x̃i and x̃j ,
which are two correlated versions of the original signal. The
specific augmentations used are described in the following
sections of the paper. As these two signals are derived from
the same source signal, they are considered positive pairs and
are treated as negative pairs with respect to all other samples.
This approach allows SimCLR to learn without the use of class
labels. Both augmented signals are then input into the encoder
model f(.), resulting in the final representations hi and hj .
These representations are then passed through the projection
head g(.) and the contrastive loss is calculated.

The Normalized Temperature-Scaled Cross-Entropy (NT-
Xent) loss function introduced in [24] aims to maximize
the similarity between positive pairs while minimizing the
similarity between negative pairs. As a result, it has been
widely used in the SimCLR setup (which we also use in our
study). The loss function is defined as follows:

Li,j = − log
( exp(sim(zi, zj)/τ)∑2N

k=1 1(k ̸=i) exp(sim(zi, zk)/τ)

)
. (1)

Here, for a batch of N samples, by applying two augmen-
tations per sample, the total data used for loss calculation
becomes 2N . The pairs (zi, zj) are considered positive pairs,
while they are considered negative pairs with respect to the
remaining 2N−2 samples. The temperature parameter τ serves
to adjust the slope of the loss function. Specifically, higher
values of τ result in a smoother loss function, while lower
values yield a steeper loss function. The indicator function 1

in the denominator of the equation takes a value of 1 when
the samples are negative pairs, and 0 when they are positive
pairs. The similarity function sim employed in this equation
is the cosine similarity, defined as follows:

sim(zi, zj) =
⟨zi, zj⟩

∥ zi ∥∥ zj ∥
. (2)



4

𝑥 𝑎𝑢𝑔.

𝑓𝜃(. )

𝑓𝜉(. )

𝑔𝜃(. )

𝑔𝜉(. )

෤𝑥𝑖

෤𝑥𝑗

ℎ𝑖

ℎ𝑗

𝑞𝜃(. )

𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐.

𝑠𝑔(𝑧𝑗)

𝑧𝑖 𝑞𝑖

𝑠𝑔

𝑧𝑗

𝑂𝑛𝑙𝑖𝑛𝑒 𝑁𝑒𝑡𝑤𝑜𝑟𝑘

𝑇𝑎𝑟𝑔𝑒𝑡 𝑁𝑒𝑡𝑤𝑜𝑟𝑘

Fig. 2: An overview of BYOL.

Upon training the model using the contrastive learning
paradigm, the encoder model, f(.), is used as a pre-trained
feature extractor which could be used as frozen or fine-tuned
for better domain alignment.

2) BYOL: BYOL [25] is an SSL technique that uses posi-
tive pairs to train deep neural networks. A visual representation
of this method can be seen in Figure 2. This method involves
the use of two networks, referred to as the online and target
networks, which learn from each other by comparing the repre-
sentation of an input sample as it passes through each network.
Specifically, the online network is trained to recognize that
the sample passing through the target network is the same as
the original input sample. This interaction between the two
networks allows for effective learning without the need for
explicit labels.

In this method, a sample x is first processed through
an augmentation block, resulting in two different augmented
versions, x̃i and x̃j , which represent distinct perspectives of
the same input sample. The first augmented version, x̃i, is
then passed through the online network encoder, denoted as
fθ(.), which produces a deeper representation hi of the sample.
This representation is further processed through the online
projection head, gθ(.), to produce zi. From the other side of the
network, the second augmented version of the sample x, x̃j , is
passed through the target encoder, fζ(.), and projection head,
gζ(.), to produce the representations hj and zj , respectively.

Since the online and target networks are both trained using
different versions of the same sample, they are anticipated
to contain similar information. The online network is trained
to predict the target network representation, thus eliminating
the need for negative pair training. This is achieved through
the use of the function qθ(.), which serves as a prediction
mechanism for the online network to match the representations
generated by the target network. The final representation of
the online network, zi, is passed through the predictor function
qθ(.), resulting in qi. Meanwhile, a stop gradient (denoted
as sg) is applied to the final representation of the target
function, zj , as only the weights of the online network will be
updated at this stage. By learning to predict the representations
generated by the target network, the online network encodes
the underlying features of the input data effectively, leading
to robust and highly representative feature extraction.

The loss function is designed to encourage the outputs of
the online and target networks, represented by qi and zj , to
become more similar. This is achieved by calculating the mean
squared error between the L2-normalized output of the online
network’s predictor, and the final representation of the target
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Fig. 3: An overview of SwAV.

network. The resulting loss is expressed in the following:

Lθ,ζ = ∥q̄i − z̄j∥22 = 2− 2.(
⟨qi, zj⟩

∥qi∥2∥zj∥2
), (3)

where q̄i, z̄j are the L2-normalized form of qi, zj , and ⟨qi, zj⟩
is the dot product of qi, zj .

To ensure symmetry in the loss calculation, the input x̃i is
fed to the target network, while x̃j is fed to the online network.
The resulting loss, denoted as L̃θ,ζ , is computed. The final loss
is given by LBY OL

θ,ζ = Lθ,ζ + L̃θ,ζ , which combines the loss
calculated from both the online and target networks and their
flipped versions.

In each iteration of the training process, the target network’s
weights are updated by taking a weighted average of the online
network’s weights and the target network’s previous weights.
The weight applied in this average, known as the exponential
moving average decay, is predetermined and serves to grad-
ually incorporate the weights of the online network into the
target network while maintaining some of the target network’s
own previous weights to stabilize training.

One of the key benefits of BYOL is its use of SSL without
the need for negative pairs. This reduces the difficulties
associated with selecting negative pairs, such as the challenge
of finding pairs that are appropriately challenging, as well as
the problem of curriculum learning. The predictor function,
qθ(.), is specifically designed to learn to identify the semantic
segments that are important for ECG signal classification,
while ignoring irrelevant information, such as noise or errors in
signal acquisition. This results in a model that is more robust to
hyper-parameters and able to accurately classify ECG signals.

3) SwAV: SwAV [26] is an innovative clustering-based SSL
approach that eliminates the need for pairwise comparisons,
as briefly depicted in Figure 3. Unlike the two previous
methods, the SwAV approach slightly changes the way the
loss function and augmentation are implemented. This method
starts by obtaining representations of the input data after
undergoing various transformations. These representations are
then assigned to codes using a cluster codebook and the
Sinkhorn-Knopp algorithm [27]. The model compares the
representations of each path with the codes assigned to the
opposite path and attempts to minimize the loss function
and bring the representations closer together. In the following
paragraphs, we will provide a more in-depth explanation of
the SwAV method.

This method begins by applying augmentations to the
ECG signal x to obtain different views of the input signal,
denoted as x̃i and x̃j . These views are then processed through
the network fθ(.), resulting in representations hi and hj .
These representations are passed through shallow non-linear



5

TABLE I: Summary of datasets used in this paper.

Dataset # of Subjects # of Samples Reference

PTB-XL 18,885 21,837 [28]
Chapman 10,646 10,646 [29]
Ribeiro 827∗ 827∗ [30]

* This is the number of patients and samples in Ribeiro dataset designated
by the authors of [30] as the test set.

networks, Z1(.) and Z2(.), to produce zi and zj . The next step
involves utilizing a cluster codebook, or a set of prototypes,
denoted as C = [c1, c2, ..., cK ], to assign representations to
their corresponding codes. These prototype vectors are trained
using the dominant features of the dataset. The prototype
vectors can also be thought of as the weights of a single-layer
fully connected network, where the dot product between the
weights and the representations is calculated. The Sinkhorn-
Knopp algorithm [27] is then applied to generate the codes
for each sample, qi and qj .

The next step in the process involves computing the loss
for weight updates using the swapped prediction method.
This involves utilizing the codes of sample qi to predict
the representation of sample zj , and vice versa. The loss is
calculated by computing the cross entropy between the codes
and the softmax of the dot product of the representations and
cluster codes. This calculation enables the optimization of the
weights, leading to improved predictions. The loss function
for this process is given by the following equations:

Lzi,zj = l(zi, qj) + l(zj , qi), (4)

l(za, qb) = −
∑
k

qkb log
exp( 1τ z

T
a Ck)∑

k′ exp( 1τ z
T
a Ck′ )

, (5)

where the temperature parameter, τ , is used to regulate the
confidence or uncertainty of the predictions. The higher the
temperature value, the softer or more uncertain the output will
be, and the lower the temperature value, the harder or more
confident the output will be. Upon completion of training, the
network fθ(.) can be detached from the framework and be
used as a powerful feature extractor for ECG signals or other
types of data.

B. Datasets

In this study, we aim to evaluate the performance of
the aforementioned SSL methods in the context of ID and
OOD data. To this end, we use several popular ECG-
arrhythmia datasets, namely, PTB-XL [28], Chapman [29],
and Ribeiro [30]. Below we provide the characteristics and
details of these datasets, and Table I provides a summary of
the datasets used in this study.
PTB-XL. PTB-XL [28] dataset is a publicly available resource
and one of the largest of its kind for ECG signals. It serves as
a widely used benchmark for evaluating the performance of
models on 12-lead ECG signals, consisting of 18, 885 patient
records, totalling 21, 837 records of 10-second duration each,
collected using Schiller AG devices between 1989 and 1996.
The dataset is available at two different sampling frequencies:
100Hz and 500Hz. In this study, we use the 100Hz version to

limit the required computational resources. PTB-XL dataset is
comprised of three categories: Diagnostic, Form, and Rhythm,
amounting to a total of 71 classes. In this study, we focus
on the Diagnostic labelling category, which contains 5 main
categories. The dataset is relatively balanced in terms of
gender, with 52% male and 48% female patients, and has a
wide age range from 0 to 95 with a median of 62 years.
Chapman. The Shaoxing People’s Hospital and Chapman
University have jointly collected and published a dataset
in 2020 that contains 12-lead ECG signals from 10, 646
patients [29]. The dataset includes ECG signals with both
arrhythmia and various cardiovascular diseases, including 11
rhythm conditions. The ECG signals are recorded with a
duration of 10 seconds at a sampling frequency of 500Hz
and have undergone necessary pre-processing steps to ensure
consistency with other datasets. This dataset is chosen for its
size, comprehensiveness, and representation of various heart
conditions. The age range of the participants in the dataset is
from 4 to 98 years old, and it is relatively gender balanced
with 44% female and 56% male participants. 17% of the
dataset consists of samples with a normal heartbeat, while the
remaining 83% have been diagnosed with a specific type of
heart abnormality.
Ribeiro. The Telehealth Network of Minas Gerais in Brazil
has compiled a dataset (Ribeiro [30]) of ECG signals for the
purpose of evaluating the performance of algorithms for the
diagnosis of cardiovascular abnormalities. The dataset includes
samples from patients diagnosed with one of six specific
abnormalities. The dataset is divided by the original authors of
the dataset [30] into standard training and test sets. The age of
the patients in the test set ranges from 16 to over 81 years old,
and the dataset exhibits a bias towards female patients, with
38.8% of the patients being male and the rest being female.
The sampling frequency is 400Hz which is pre-processed
for the sake of consistency with other datasets. All of the
conditions in Ribeiro dataset can fall under the main category
of Conduction Disturbance (CD), specifically, 1st-degree AV
block (1dAVb), Right Bundle Branch Block (RBBB), Left
Bundle Branch Block (LBBB), Sinus Bradycardia (SB), Atrial
Fibrillation (AFIB).

C. Implementation Details and Evaluation Protocol
We divide PTB-XL and Chapman into three distinct portions

for training, validation, and testing. More specifically, in the
case of PTB-XL, the dataset is divided into 10 subsections
recommended by the original authors of [28], based on which
we create the three sets using 8 folds for training, 1 fold for
validation, and 1 fold for testing. For Chapman, given a lack of
standardized subsets, we randomly select 80% of the samples
for training, 10% for validation, and the remaining 10% for
testing. Finally, Ribeiro is only used for fine-tuning/testing,
unlike PTB-XL and Chapman which are commonly used for
pre-training. Accordingly, we divide the test set of Ribeiro
into 3 distinct folds where 80% of the test subjects are used
fine-tuning, 10% are used for validation, and 10% are used for
testing.

Next, we down-sample Chapman and Ribeiro datasets from
500Hz and 400Hz respectively to 100Hz. PTB-XL dataset is
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available in two versions, 100Hz and 400Hz, and we opt for
the former. Finally, as common in the area [21], we window
the signals into 2.5-second segments with no overlap, resulting
in samples consisting of 250 data points each.

During the pretraining phase, we optimize the NT-Xent loss
which is described in section III-A. In this phase, the best
model is selected based on the lowest loss observed on the
validation set. In the fine-tuning phase, we use a binary cross-
entropy loss and select the best model based on the highest f1
score observed on the validation set.

For training, we implement our method using PyTorch and
utilize a pair of NVIDIA GeForce GTX 2080 GPUs. To train
both the contrastive framework and supervised baselines we
utilize the Adam optimizer with a learning rate of 5 × 10−4

and a weight decay of 1 × 10−3. For fine-tuning, we reduce
the learning rate to 5×10−3 to prevent catastrophic forgetting
and minimize the chance of overwriting the network weights
completely. The contrastive phase is trained for 2000 epochs
with a batch size of 4096 for SimCLR and BYOL, and a
batch size of 1024 for SwAV due to computational resource
constraints. For the fine-tuning phase, we train the model
for 50 epochs. Parameters are carefully chosen to maximize
performance and considering prior works, e.g., [16], [17], [21].

We utilize the xResNet1d50 model as our backbone model
for the experiments, as it was shown in [31]. This model is
an adaptation of ResNet50 model for 1-dimensional data, and
is known to be an effective backbone that provides stable and
consistent performance for ECG representation learning.

To evaluate performance, we use the macro f1 score instead
of the micro f1 score with a threshold of 0.5 as commonly used
in this area ( [8], [32], [33]). This is because the micro f1 score
assigns equal weight to all observations, while the macro f1
score assigns equal weight to each class. Since most medi-
cal datasets, including ECG datasets, are imbalanced across
classes, it is more reasonable to use a performance metric that
treats all classes equally. Additionally, many medical datasets
have more negative samples than positive ones. Therefore,
metrics such as accuracy, which treats all samples equally,
may not be suitable. By using the macro f1 score, we can
accurately evaluate our model’s performance on imbalanced
datasets while ensuring that each class is given equal weight.

D. Augmentation Details
1) Gaussian Noise. We add a noise signal N(t) to ECG
signal x(t). N(t) is the same size as the ECG sample and
each of its data points is driven from a Gaussian distribution
with a mean equal to 0, and a standard deviation equal to the
adjustable parameter. We examined σG = [0.01, 0.1, 1] in our
experiments.
2) Channel Scaling. To obtain this augmentation, we multiply
the ECG signal by a scaling factor S, which is a set of scaling
factors for each of the 12 leads: S = {si | i = 1, 2, . . . , 12}.
Each si is randomly derived from the range [a, b], where both a
and b are selected as augmentation parameters. We tested scal-
ing factors in the range of Sch = [(0.33, 3), (0.33, 1), (0.5, 2)]
in our experiments.
3) Negation. The input signal is subject to vertical flipping
across the time axis, which can be expressed as x̃(t) = −x(t).

4) Baseline Wander. To simulate this type of noise in an ECG
signal, we artificially introduce a low-frequency sinusoidal
waveform with the frequency of fw to the original ECG
signal. The sinusoidal waveform is generated with the chosen
frequency, and the scale for the waveform is selected as Sbw.
In our experiments, we choose the frequency of the sinusoidal
fw = 100 and we test scales Sbw = [0.1, 0.7, 1].
5) Electromyographic (EMG) Noise. To simulate EMG
noise, high-frequency white Gaussian noise is used. This
is because EMG noise is primarily caused by fast muscle
contractions, which have high-frequency components [34].
A Gaussian distribution with a mean of 0 is used, and the
standard deviation of the distribution can be adjusted to
achieve the desired level of noise. We use a variance equal
to: σEMG = [0.01, 0.5, 1] in our experiments.
6) Masking. This augmentation technique involves zeroing out
specific segments of each lead in the ECG signal. To apply
this technique, we first select the higher and lower bound
of windows that we want to set to zero. Accordingly, two
percentage values a and b are chosen as this augmentation’s
parameters. Next, for each ECG signal in the batch, a random
value c is chosen from the range [a, b], and using this value, a
c% segment of that lead is set to zero. In our experiments we
examined the following ranges for the masking parameters:
[10%, 20%], [0%, 50%], [40%, 50%].
7) Time Warping. We start this augmentation by dividing
x(t) into w segments, denoted as x1(t), · · · , xw(t). Next,
we randomly select half of the segments and apply time
warping to stretch them by a scaling factor of r% while
simultaneously squeezing the other half by the same amount.
Finally, we concatenate the segments in the original order to
produce the augmented signal, denoted as x̃(t). We test the
following list of parameters for this augmentation: (w, r) =
[(1, 10), (3, 5), (3, 10)].
8) Combination of Augmentations. To further analyze the
impact of augmentations on our pre-training process, we con-
duct additional experiments where we apply a combination of
four augmentations simultaneously. This allows us to observe
how different augmentations interact with each other and how
this affects the performance of the models. In each iteration
of pre-training, we randomly select four augmentations from
our previously described list of augmentations. We select the
parameters through experimentation with the goal of maxi-
mizing performance. The parameters for the augmentations
when combined are as follows: Gaussian noise (σG = 1),
channel scaling (Sch = (0.33, 3)), baseline wander (Sbw = 1),
EMG noise (σEMG = 0.01), masking ([40%, 50%]), and time
warping ((w, r) = (1, 10)).

E. Data Distribution

The distributions of data play a crucial role in this study, as
we aim to investigate various SSL techniques in both ID and
OOD settings. To achieve this goal, we thoroughly analyze the
three datasets used in this study, namely Chapman, PTB-XL,
and Ribeiro, with a focus on their data distributions. This anal-
ysis allows us to comprehend the relationships between these
datasets and gain insights into their relative characteristics.
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Fig. 4: Data distribution analysis framework.

To perform this analysis, we use a pre-trained model to pro-
cess every sample xD1

i from a dataset (D1) and produce their
respective outputs yD1

i as illustrated in Figure 4. Similarly,
samples xD2

i from D2 are passed through the same model to
produce yD2

i . This approach of using the outputs to determine
the dataset distributions has been previously employed in other
studies as well [35]–[37]. Dimensionality reduction is then
applied on the resulting outputs (yD1

i and yD2
i ) using the

UMAP method [38] with the number of neighbors equal to 30
and a minimum distance of 0.25. This analysis shows whether
two datasets, D1 and D2, are ID or OOD based on the overlaps
observed in their UMAP distributions. If UMAP distributions
of the datasets have considerable overlap, the samples from
D1 and D2 are considered ID. Conversely, if the distributions
are weakly overlapped, they are considered OOD.

To mathematically measure the overlap between the distri-
butions of the two datasets, we adopt the method proposed
in [39]. After obtaining the lower-dimensional representations
of D1 and D2 through UMAP (ŷD1

i and ŷD2
i ), we estimate

their respective Probability Density Functions (PDFs). To
quantify the degree of overlap between the two distributions,
we calculate the overlapping index (η) using the following
equation:

η(D1, D2) =

∫ ∞

−∞
min(fX(x), fY (x))dx (6)

This formula calculates the area under the curve where the
PDFs of the datasets overlap. A value of η approaching
1 indicates that the datasets are from similar distributions,
whereas, if η is significantly lower than 1, it suggests that
the datasets are OOD in relation to each other.

IV. RESULTS AND DISCUSSIONS

This section presents the results of our experiments and their
implications. We begin by analyzing the distribution of the
datasets used in this work, as described in Section III-E. Next,
we evaluate the impact of different augmentation techniques
on the performance of different SSL methods, as explained
in Section III-D. This is followed by a comparison of the
performance of the SSL methods themselves in the context of
ID and OOD, as outlined in Section III-A. Finally, we examine
how different factors influence the model’s ability to classify
each disease class in the datasets.

A. Data Distribution Analysis

To demonstrate and analyze the distributions of the datasets
used in this study, we use the training sets of the two larger
datasets, PTB-XL and Chapman, for pre-training, while all

(a) (b)

Fig. 5: Visual representation of the distribution of the datasets.
Part (a) illustrates the distributions of PTB-XL train and test
subsets (ID) and part (b) shows the OOD instances (Chapman
and Ribeiro) with respect to PTB-XL dataset.

(a) (b)

Fig. 6: Visual representation of the distributions of the datasets
used in our experiments. Part (a) illustrates the ID instances
for Chapman dataset, while part (b) shows the OOD instances
(PTB-XL and Ribeiro) with respect to Chapman dataset.

three datasets Ribeiro, PTB-XL, and Chapman are used for
distribution analysis. For training the xResNet1d50 model
from which to obtain the embeddings, the best-performing
SSL method, SwAV, is used with time warping augmentation
using parameters (3, 10). Finally, dimensionality reduction is
performed using UMAP. Figure 5 (left) shows the outcome of
this analysis for PTB-XL train and test sets, where we observe
that the distributions expectedly fall within one another. In
Figure 5 (right) we present the embeddings of the other
two datasets (Chapman and Ribeiro) when a model that is
pre-trained on PTB-XL (training set) is used to obtain the
embeddings. It can be seen that the embeddings of Chapman
and Ribeiro are considerably outside the distribution of PTB-
XL, making our configuration of data effective for cross-
dataset OOD analysis.

Here, we aim to quantify the distribution shifts using the
procedure outlined in Section III-E. This procedure involves
applying a Kernel Density Estimation (KDE) on the UMAP
outputs to estimate PDFs for the distributions. The overlap
between the train and test sets of PTB-XL dataset is thus
estimated by taking the integral of the overlapping area of
the two KDEs. Our results, which are presented in Table II
indicate that the overlap between the two distributions (PTB-
XL train and test sets) is 83.52%. The same procedure is
then applied to Chapman and Ribeiro datasets, to calculate
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TABLE II: Quantitative comparison of the distribution overlap
between PTB-XL train and test sets (ID) and PTB-XL with
Chapman and Ribeiro datasets (OOD).

Datasets Overlap with PTB-XL Train Set
PTB-XL Test Set 83.52%

Chapman 63.65%
Ribeiro 46.36%

(a) (b)

Fig. 7: Comparing ID (PTB-XL train and test sets) against
OOD (PTB-XL train set, Chapman, and Ribeiro) distribution
overlaps through fitted KDE on the representations (left: ID,
right: OOD).

the overlap between the train set of PTB-XL dataset and the
other two datasets. The results show that the overlap between
PTB-XL (train) and Chapman is 63.65%, and the overlap
between PTB-XL (train) and Ribeiro is 46.36%. These results
are depicted in Figure 7 and Table II. As per the results of this
experiment, it can be concluded that PTB-XL training and test
sets are considered ID with each other while being considered
OOD with Chapman and Ribeiro datasets.

Next, we apply the same procedure to Chapman train and
test sets. Figure 6 displays the results of this analysis on the
Chapman dataset. Our results, which are shown in Table III,
show that the overlap between Chapman train and test sets
is estimated as 82.52%. We also perform the procedure using
PTB-XL and Ribeiro datasets to find the overlap with Chap-
man train set. The overlap between the train set of Chapman
dataset and PTB-XL dataset is calculated as 67.73%, while the
overlap with Ribeiro dataset is estimated to be 60.29%. These
results are depicted in Figure 8. These results confirm that
PTB-XL and Ribeiro datasets can be considered OOD with
respect to Chapman train set since their overlap is significantly
lower than that of Chapman train and test sets.

B. SSL Method Performance

In this section, we conduct an extensive experiment to
obtain a comprehensive evaluation on the performance of SSL
methods for ECG-based arrhythmia detection. Based on the
results from our data distribution analysis (Section IV-A) we
use cross-dataset training and testing with Chapman and PTB-
XL (train sets) used for training, while PTB-XL, Chapman,
and Ribeiro datasets are used for testing. To follow a fair
comparison between different methods and evaluate only the
impact of the self-supervised aspect of the models, we use

TABLE III: Quantitative comparison of the distribution over-
lap between Chapman train and test sets (ID) and Chapman
with PTB-XL and Ribeiro datasets (OOD).

Datasets Overlap with Chapman Train Set
Chapman Test Set 82.52%

PTB-XL 67.73%
Ribeiro 60.29%

(a) (b)

Fig. 8: Comparing ID (Chapman train and test sets) against
OOD (Chapman train set, PTB-XL, and Ribeiro) distribution
overlaps through fitted KDE on the representations (left: ID,
right: OOD).

a standard encoder (xResNet1d50) throughout all of these
studies. Our findings indicate that each of the SSL methods
exhibit unique strengths and weaknesses, providing valuable
insights into the performance of these approaches for ECG-
based arrhythmia detection in ID and OOD settings.

Table IV presents the results for the highest f1 scores
obtained across all augmentation parameters and settings de-
scribed in Sections III-C and III-D, respectively. In addition
to individual augmentations, we also explored various com-
binations of augmentations. While combining augmentations
were consistently among the strong performers, they did not
show a clear advantage over the best individual augmentations,
and therefore were not shown in the table. As evident by
the results, across all datasets, the performance of the SSL
methods outperforms that of fully supervised training. These
findings suggest that SSL methods have significant potential
for learning ECG representations and can be effectively lever-
aged for arrhythmia classification after finetuning.

Moreover, we observe that the SwAV method outperforms
SimCLR and BYOL. For instance, when the model is pre-
trained on Chapman and tested on the same dataset (ID),
SwAV achieves an f1 score of 72.19%, which is higher than
that of SimCLR (71.95%) and BYOL (70.69%) as shown in
Table IV. Similarly, when the model is pre-trained on PTB-
XL dataset and tested on Chapman dataset (OOD), SwAV
achieves a higher f1 score (70.47%) than SimCLR (71.89%)
and BYOL (96.54%). Furthermore, when pre-trained on PTB-
XL and tested on the same dataset (ID), SwAV achieves an
f1 score of 85.43%, which is higher than SimCLR (84.65%)
and BYOL (85.09%). Finally, when pre-trained on Chapman
dataset and tested on PTB-XL dataset (OOD), SwAV achieves
an f1 score of 85.53%, while SimCLR and BYOL achieve
f1 scores of 84.38% and 84.50%, respectively. Additionally,
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TABLE IV: Performance of SimCLR, SwAV, and BYOL in arrhythmia classification from ECG signals on PTB-XL, Chapman,
and Ribeiro Datasets. The performances are presented in the following format: F1 (%) / Precision (%) / Recall (%). The reported
F1 values are the best scores across all the tested augmentation settings (described in Section III-D). The dataset names in the
second row represent those used for pre-training, while the dataset names in the first column are the testing datasets.

SimCLR BYOL SwAV Supervised

Pre-training Chapman PTB-XL Chapman PTB-XL Chapman PTB-XL

PTB-XL 84.38 / 90.92 / 79.13 84.65 / 91.92 / 78.50 84.50 / 90.60 / 78.82 85.09 / 91.20 / 77.95 85.53 / 92.11 / 78.32 85.43 / 90.49 / 77.44 80.24 / 88.20 / 74.53
Aug. Baseline Wander Baseline Wander Masking Masking Dynamic Time Warp Masking -

param. 1 1 [0%-10%] [40%-50%] [3, 5] [40%-50%] -

Chapman 71.95 / 80.53 / 65.97 71.89 / 80.25 / 65.27 70.69 / 79.74 / 65.16 69.54 / 79.09 / 64.27 72.19 / 81.86 / 66.95 70.47 / 78.59 / 65.75 70.96 / 78.95 / 64.59
Aug. Dynamic Time Warp Channel Resize EMG Noise Channel Resize Dynamic Time Warp EMG Noise -

param. [3, 10] [0.33-3] 0.5 [40%-50%] [1, 10] 0.01 -

Ribeiro 98.5 / 99.63 / 98.83 97.93 / 99.38 / 96.97 98.86 / 100 / 97.49 97.39 / 99.35 / 96.64 99.10 / 100 / 98.86 97.97 / 99.72 / 96.68 84.84 / 90.29 / 80.67
Aug. Masking Dynamic Time Warp Gaussian Noise Dynamic Time Warp Masking Gaussian Noise -

param. [40%-50%] [1, 10] 0.01 [3, 5] [0%-50%] 0.01 -

when pre-training the model using Chapman dataset and
testing on Ribeiro dataset (OOD), the results show that SwAV
obtains an f1 score of 99.10%, again outperforming SimCLR
(98.54%) and BYOL (98.86%). When pre-training the models
on PTB-XL dataset and testing them on Ribeiro (OOD), SwAV
obtains an f1 score of 97.97% outperforming the other two
methods, SimCLR (97.93%) and BYOL (97.39%). The results
above confirm that SwAV is able to learn more effective
representations for ECG-based arrhythmia detection, followed
by SimCLR and BYOL. Prior work [21] has also shown the
superiority of SimCLR over BYOL in the context of ECG.

While Table IV presented the results using the ‘best’
settings, Table V presents the performance metrics averaged
over all augmentation settings (described in Section III-D).
Results again show that the SSL methods outperform the
fully supervised model. These results also confirm that SwAV
exhibits the best performance in terms of f1 scores among the
three SSL methods. We hypothesize that the clustering-based
approach in SwAV might have allowed the model to learn
more robust and diverse representations that capture the es-
sential and generalizable features of the ECG signals, leading
to better performance. Clustering can be especially effective
in cases where there are different underlying structures in the
data, as it can help to identify this structure and improve the
quality of the learned representations [40]–[42].

In Table VI, we present a comparison between the SSL
methods and popular models for PTB-XL and Chapman
datasets. The models presented for PTB-XL dataset are re-
ported in [31], and for Chapman dataset, the models are from
the literature. To maintain consistency with other methods and
for a fair comparison, we use the 4-class format of Chapman
dataset in this part of our study. For both of the datasets, the
SwAV method shows the highest F1 among all the methods.

As part of our methodology, we also conduct linear eval-
uations to assess the performance of the SSL models. This
involves freezing the weights of the model after pre-training
and adding a new fully connected layer. We then train this
layer using labeled data without making any modifications
to the pre-existing weights. The results are presented in
Table VII. As expected, linear evaluation achieves lower scores
than the fine-tuning approach. However, linear evaluation still
provides valuable insights into the effectiveness of the SSL

models in ID and OOD settings. It allows us to measure the
extent to which the models have learned useful and generalized
representations during pre-training. The results (presented in
Table VII) show that the model has performed reasonably
well, even though the encoder is kept frozen, and this in turn
shows that the model has learned meaningful and effective
representations during the self-supervised pre-training.

Discussion. First, by comparing TablesIV and VII, we expect-
edly notice that fine-tuning the model on the target dataset
will boost performance considerably for both ID and OOD
schemes. However, we make an interesting and unexpected
observation about the nature of ID and OOD ECG-based
arrhythmia detection with SSL. By considering the results
of Tables IV and VII, and comparing ID to OOD results
within each table, we notice that in almost every scenario, the
performance of the models are the same between OOD and
ID setting. While this observation would be more expected
with the fine-tuning setup, we even notice this trend with
linear evaluation. This finding indicates that irrespective of
dataset, equipment, and population of patients, SSL methods
are able to effectively learn representations that can be used to
accurately detect different types of arrhythmia. For instance,
in the case of training SwAV on Chapman dataset and testing
on PTB-XL, despite the relatively OOD nature of these two
datasets, we still witnessed comparable performance levels as
when pre-training using PTB-XL dataset and testing on the
same dataset (see Table IV and Table VII for the reported
results). This outcome suggests that the representations learned
by SSL models can transfer effectively across diverse datasets
and domains, regardless of the distribution shifts present
in the data, presenting important implications for practical
applications.

To investigate the robustness of SSL models against noise,
we introduce different amounts of synthetic 60 Hz (power line)
interference to PTB-XL test set, as a common type of noise
often present in ECG datasets [34], [44]. We evaluate the
performance of the highest-performing SSL method, SWaV,
trained on PTB-XL dataset with dynamic time warp augmen-
tation, alongside the fully-supervised model. The F1 score
plotted against the signal-to-noise ratio (SNR) in Figure 9,
demonstrates that the addition of noise has a smaller impact
on the SSL model’s performance compared to the fully-
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TABLE V: Performance of SimCLR, SwAV, and BYOL in arrhythmia classification from ECG signals on PTB-XL, Chapman,
and Ribeiro datasets. The performances are presented in the following format: F1 (%) / Precision (%) / Recall (%). The reported
F1 values are the average scores obtained across all augmentation settings (described in Section III-D). The dataset names in
the second row represent those used for pre-training, while the dataset names in the first column are the testing datasets.

SimCLR BYOL SwAV Supervised

Pre-training Chapman PTB-XL Chapman PTB-XL Chapman PTB-XL

PTB-XL 83.44 / 89.63 / 79.27 83.54 / 89.37 / 79.84 83.11 / 88.08 / 79.37 82.91 / 88.67 / 78.93 84.22 / 91.03 / 78.27 83.95 / 89.84 / 79.62 75.22 / 79.25 / 73.85
Chapman 66.99 / 77.52 / 59.63 65.69 / 76.53 / 58.36 67.15 / 78.26 / 61.62 65.36 / 76.38 / 58.85 67.99 / 77.08 / 60.70 66.38 / 77.27 / 59.26 63.25 / 69.56 / 60.40

Ribeiro 96.40 / 98.63 / 96.25 95.13 / 98.30 / 94.37 96.89 / 99.26 / 96.80 94.12 / 98.04 / 92.64 97.28 / 99.97 / 97.07 94.79 / 98.57 / 92.08 79.93 / 83.34 / 78.57

TABLE VI: A comparison of the SSL results in comparison
to a number of baselines tested on PTB-XL dataset (on the
left), and Chapman dataset (on the right). The baseline results
for PTB-XL dataset have been reported in [31].

PTB-XL Chapman

Method AUC Method Ref. AUC

LSTM 92.7% CPC [43] 84.4%
Inception1d 93.1% SSLECG [8] 52.6%
LSTM bidir 93.2% CLOCS [16] 90.6%
Resnet1d wang 93.6% w/o Inter [14] 76.4%
FCN awng 92.6% w/o Intra [14] 92.1%
Wavelet+NN 85.5% ISL [14] 96.5%
xResnet1d101 93.7% SimCLR - 93.5%
Ensemble 93.9% BYOL - 94.9%
SimCLR 93.6% SwAV - 96.7%
BYOL 93.6%
SwAV 94.0%
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Fig. 9: F1 scores versus SNR for the best-performing SSL
method, SwAV, and the fully-supervised baseline, trained on
PTB-XL dataset. This figure illustrates the robustness of SSL
against noise.

supervised model as a lower degradation is observed.

C. Per-Disease Analysis

Cardiovascular diseases encompass a wide range of con-
ditions, some of which can be rare and life-threatening. In
this section, we aim to evaluate the performance of SSL in
the classification of each cardiovascular disease separately.
To this end, we first present the per-class f1 scores of the
best performing models for PTB-XL dataset in Table VIII,
which examines the performance of the model on each disease
class separately to allow a detailed assessment of how well
the model predicts each individual class. Overall, the best

TABLE VII: Linear evaluation on Chapman, PTB-XL and
Ribeiro datasets. The dataset names in the second row rep-
resent those used for pre-training, while the dataset names in
the first column are the testing datasets.

SimCLR BYOL SwAV

Pre-training Chapman PTB-XL Chapman PTB-XL Chapman PTB-XL

PTB-XL 76.03% 76.57% 75.97% 76.67% 79.61% 79.60%
Chapman 49.79% 48.55% 48.30% 47.53% 50.37% 49.85%

Ribeiro 90.02% 87.89% 86.19% 84.32% 93.37% 86.96%

TABLE VIII: Per-class results for PTB-XL dataset. The dataset
names in the second row represent those used for pre-training,
while the dataset names in the first column are the testing
datasets.

SimCLR BYOL SwAV

Pre-training Chapman PTB-XL Chapman PTB-XL Chapman PTB-XL

MI 78.05% 78.15% 77.45% 77.66% 78.96% 79.77%
HYP 67.82% 67.34% 66.08% 64.44% 70.07% 71.96%
Normal 87.81% 87.67% 87.60% 87.10% 88.14% 88.06%
STTC 75.78% 75.22% 74.33% 74.59% 76.62% 77.42%
CD 79.41% 80.15% 79.42% 79.59% 80.84% 80.85%

performance of the models on the Normal class of PTB-XL
dataset is achieved when SwAV is pre-trained using Chapman
dataset, with an f1 score of 88.14%. The CD and MI classes
also have relatively strong performances, with f1 scores of
80.85% and 79.77%, respectively, when pre-trained on PTB-
XL dataset. However, identifying instances from the HYP
and STTC classes prove more challenging for the models,
with f1 scores of 71.96% and 77.42%, respectively. This
could indicate that features corresponding to some diseases
are slightly more challenging to learn compared to others.

Table VIII demonstrates that the SwAV model pre-trained
on PTB-XL outperforms other models for each class of PTB-
XL dataset, with the exception of the normal class, where
pre-training on Chapman yields the best result.

To evaluate the performance of the models on Chapman
dataset, we use the 11-class configuration as described in Sec-
tion III-B. Although the classes are not evenly distributed, we
evaluate each class separately without making any adjustments
to the dataset. Per-class f1 scores are presented in Table IX.

The number of samples in each class of Chapman dataset
varies significantly, and there is a correlation between the
number of samples and the model’s classification performance,
shown in Figure 10. SB disease is the most populated class,
with 36.53% of the total samples, achieving the best result
with an f1 score of 96.72%. The next most populated class is
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TABLE IX: Per-class results for Chapman dataset.

SimCLR BYOL SwAV

Pre-training Chapman PTB-XL Chapman PTB-XL Chapman PTB-XL

AF 55.58% 56.59% 58.63% 54.31% 57.26% 57.08%
AFIB 90.37% 90.86% 90.65% 89.81% 89.14% 88.98%
AT 9.09% 8.99% 6.74% 6.90% 17.39% 8.89%
AVNRT 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
AVRT 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
SI 31.49% 29.94% 26.87% 30.81% 29.67% 30.32%
SAAWR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
SB 96.66% 96.36% 96.72% 96.56% 96.45% 96.35%
SR 86.31% 96.09% 86.34% 95.91% 86.22% 85.67%
ST 94.47% 94.25% 94.42% 94.72% 94.92% 94.51%
SVT 85.68% 84.22% 85.64% 85.29% 86.60% 85.82%
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Fig. 10: The figure depicts the distribution of each class
in Chapman dataset alongside the corresponding F1 scores,
providing an overview of the relationship between class dis-
tribution and model performance.

SR, accounting for 17.15% of the total samples, and achieves
an f1 score of 96.09%. For AFIB, ST, and SVT, the results are
reasonable, but there is a drop in performance for classes with
fewer samples. For instance, AF, which accounts for 4.18% of
the total samples, shows an f1 score of 58.63%, representing a
25% drop from the previous class. SI and AT, which account
for 3.75% and 1.14% of the dataset respectively, achieve f1
scores of 31.49% and 17.39%. However, for AVNRT, AVRT,
and SAAWR, which have less than 1% distribution in the
dataset, classification performances are poor.

Based on the analysis of the f1 scores presented in Table IX,
it appears that pre-training the models on Chapman dataset
has yielded superior results for the majority of the disease
classes compared to pre-training on PTB-XL dataset, with the
exception of AFIB and SR.

Finally, we present the f1 scores achieved for each disease
class using the best performing model for Ribeiro dataset in
Table X. The results indicate that the BYOL method pre-
trained on Chapman dataset performs better than the other
cases in classifying each disease class of Ribeiro dataset, with
the exception of the AFIB disease, where SimCLR pre-trained
on Chapman dataset achieved the best result. This may be
due to the fact that the diseases in Chapman dataset have
more similarities to those in Ribeiro dataset, as described in
Section III-B. Specifically, the main class of all the diseases
in Ribeiro dataset belong to the CD category, which is well-
represented in Chapman dataset, but less so in PTB-XL.
Considering the highest f1 scores in Table X, we can see that
despite the low number of samples used for fine-tuning, all
classes are classified well, except for AFIB, which appears to

TABLE X: Per-class results for Ribeiro dataset.

SimCLR BYOL SwAV

Pre-training Chapman PTB-XL Chapman PTB-XL Chapman PTB-XL
1-AVB 93.33% 81.08% 83.33% 82.35% 93.88% 95.24%
RBBB 100.00% 97.87% 97.96% 100.00% 100.00% 97.67%
LBBB 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

SBRAD 100.00% 100.00% 100.00% 100.00% 95.24% 100.00%
AFIB 61.54% 66.67% 71.43% 75.00% 87.50% 60.00%

STACH 100.00% 100.00% 100.00% 100.00% 97.96% 100.00%

be classified less accurately than the other classes.

V. CONCLUSION AND FUTURE WORK

In this paper we analyzed ECG-based arrhythmia detec-
tion using SSL methods, in ID and OOD settings. To this
end, we studied the distributions of three popular ECG-
based arrhythmia datasets to identify and quantify the their
relative distributions and to determine whether they can be
considered ID or OOD. Next, we implement three popular
SSL methods, SimCLR, BYOL, and SwAV for ECG-based
arrhythmia detection. In analyzing the augmentation parame-
ters we found that in general, certain augmentation techniques
such as mix of augmentations, time warping, and masking,
improve the learning of ECG representations and result in
better generalization, while negation augmentation showed
poor performance. In comparing different SSL techniques with
state-of-the-art, we observed highly competitive performances
in both ID and OOD settings, while among the SSL methods,
SwAV outperformed the others. Another interesting finding of
our work is that SSL techniques can detect arrhythmia in OOD
settings with competitive performance to that of ID settings.
Lastly, we conducted a per-class analysis for each dataset to
understand the performance of the SSL methods toward the
detection of different diseases and found that false negative
errors are more common than false positives.

A number of future directions can be considered to im-
prove upon the work presented in this paper. To broaden our
research, we can consider delving into finer step sizes and
wider parameter ranges for each augmentation to determine
the ideal augmentation parameters. Furthermore, we could
examine more sophisticated augmentations, such as those
implemented in the frequency domain. In this study, we
explored each augmentation individually, and the mix of all
of the augmentations together. Nonetheless, different com-
binations of augmentations may exhibit various behaviours,
which could be explored through forward/backward selection
methodologies in the future. In terms of the SSL methods
considered, more methods could be explored, and the number
and type of architectures and backbone encoders could also
be expanded. Additionally, we aim to conduct a more in-depth
investigation into the influence of each individual SSL method
on data distribution by incorporating additional visualizations,
to provide a deeper understanding of how these methods
shape meaningful features within the ECG data. Lastly, using
a combination of different datasets for pre-training the SSL
models may result in learning more generalizable ECG rep-
resentations, which could further improve the performance in
OOD settings.
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