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Abstract

We investigate the existence of a rainbow Hamilton cycle in a uniformly edge-coloured randomly

perturbed digraph. We show that for every δ ∈ (0, 1) there exists C = C(δ) > 0 such that the

following holds. Let D0 be an n-vertex digraph with minimum semidegree at least δn and suppose

that each edge of the union of D0 with a copy of the random digraph D(n,C/n) on the same

vertex set gets a colour in [n] independently and uniformly at random. Then, with high probability,

D0 ∪D(n,C/n) has a rainbow directed Hamilton cycle.

This improves a result of Aigner-Horev and Hefetz (2021), who proved the same in the undirected

setting when the edges are coloured uniformly in a set of (1 + ε)n colours.

1 Introduction

Determining which minimum degree forces the containment of a given spanning subgraph is a central

theme in extremal combinatorics. The prototypical example is Dirac’s theorem [10], which says that

for an n-vertex graph G the condition δ(G) ≥ n/2 is sufficient to guarantee that G is Hamiltonian, and

that this minimum degree condition is best possible. The question has been investigated in the setting

of digraphs as well. Here a natural notion of minimum degree is the minimum semidegree, denoted by

δ0(D), which is the minimum over all in- and out-degrees of the vertices of D. Ghouila-Houri [15] proved

a directed analogue of Dirac’s theorem, showing that, if D is an n-vertex digraph with δ0(D) ≥ n/2,

then D is Hamiltonian. Here by a digraph D being Hamiltonian we mean that D contains a directed

Hamilton cycle, i.e. a Hamilton cycle with all edges oriented consistently.

On the other hand, one of the main pursuits in probabilistic combinatorics is understanding the mini-

mum p such that G(n, p), the binomial random graph on [n] with edge probability p, contains a given
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subgraph with high probability1. Following the breakthrough of Pósa [24], it was proven [19, 20] that,

with high probability, G(n, p) is Hamiltonian if it has minimum degree at least 2, implying that log n/n

is a sharp threshold for Hamiltonicity. Here p̂ = p̂(n) is said to be a sharp threshold for a graph property

P if, for every ε > 0, with high probability the following holds.

G(n, p) /∈ P if p ≤ (1 − ε)p̂,

G(n, p) ∈ P if p ≥ (1 + ε)p̂.

The directed analogue of G(n, p), which we call the random directed graph and denote by D(n, p), is the

random digraph on [n] where each ordered pair of distinct vertices forms a directed edge independently

with probability p. McDiarmid showed [21] that the threshold for Hamiltonicity in D(n, p) is at most

that of G(n, p), and Frieze [14] proved a directed analogue of the above result about Hamiltonicity of

random graphs with minimum degree at least 2, from which it follows that log n/n is a sharp threshold

for Hamiltonicity for directed random graphs as well. Recently, Montgomery [23] determined sharp

thresholds for all possible orientations of a Hamilton cycle in D(n, p).

As an interpolation between the deterministic and probabilistic models, Bohman, Frieze and Martin [8]

introduced the perturbed model for graphs and digraphs. Given a fixed δ > 0, let D0 be a digraph on

vertex set [n] with minimum semidegree at least δn. The perturbed digraph is D0 ∪D(n, p), i.e. it is

the union of a digraph on vertex set [n] with minimum semidegree at least δn, and the random digraph

D(n, p) on the same vertex set. The perturbed graph model is defined similarly as G0 ∪G(n, p), where

G0 is an n-vertex graph with minimum degree at least δn. In [8] they proved that there exists C > 0,

depending only on δ, such that for each n-vertex digraph D0 with minimum semidegree at least δn,

the perturbed digraph D0 ∪D(n,C/n) has with high probability a directed Hamilton cycle. That is,

for every digraph with linear minimum semidegree, adding linearly many random edges results in a

graph that with high probability contains a directed Hamilton cycle. Up to the dependence on δ and

C, this is best possible for all δ ∈ (0, 1/2), since the complete bipartite digraph with parts of size δn

and (1− δ)n, with each edge appearing with both orientations, requires Ω(n) edges to be Hamiltonian.

(When δ ≥ 1/2 no random edges are needed, due to Ghouila-Houri’s theorem.) This was generalised

very recently by Araujo, Balogh, Krueger, Piga and Treglown [5], who showed that with high probability

the same hypotheses ensure that the perturbed digraph contains every orientation of a cycle of every

possible length, simultaneously.

In this paper we consider a rainbow variant of the theorem of Bohman, Frieze and Martin. A subset

of the edges of an edge-coloured graph or digraph is called rainbow if no two edges share a colour,

and a subgraph is called rainbow if its edge set is rainbow. For a finite set of colours C, a graph

or digraph is uniformly coloured in C if each edge gets a colour in C independently and uniformly at

random. The problem of finding rainbow subgraphs of uniformly coloured graphs is well studied, in

particular for G(n, p) [6, 9, 11–13]. The analogous problem in perturbed graphs was considered only

more recently [1, 2, 4]. In particular, the problem of containing a rainbow Hamilton cycle was first

addressed by Anastos and Frieze [4], who showed that if the number of colours is at least about 120n,

1We say that a sequence of events (An)n∈N holds with high probability if P[An] → 1 as n → ∞.
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then G ∼ G0∪G(n,C/n) has a rainbow Hamilton cycle with high probability, for suitable C depending

only on δ. Later, Aigner-Horev and Hefetz [1] improved this result by showing that, at the same edge

probability in the random graph, (1 + ε)n colours suffice for every ε > 0 (where C now depends also

on ε). We prove that the optimal number of colours suffices.

Theorem 1.1. For any δ ∈ (0, 1/2) there exists C > 0 such that the following holds. Let G0 be an

n-vertex graph with minimum degree at least δn and let G ∼ G0 ∪G(n,C/n) be uniformly coloured in

[n]. Then with high probability G contains a rainbow Hamilton cycle.

In fact, we can prove the corresponding result for uniformly coloured perturbed digraphs.

Theorem 1.2. For any δ ∈ (0, 1/2) there exists C > 0 such that the following holds. Let D0 be an n-

vertex digraph with minimum semidegree at least δn and let D ∼ D0∪D(n,C/n) be uniformly coloured

in [n]. Then with high probability D contains a rainbow directed Hamilton cycle.

As explained above, for δ ∈ (0, 1/2), both results have the optimal edge probability, up to the depen-

dence of C on δ. We remark that the first two authors proved Theorem 1.1 in unpublished work2, using

a somewhat simpler version of Lemma 3.1. Here, we will deduce Theorem 1.1 from Theorem 1.2 by a

variation of McDiarmid’s celebrated coupling argument [21] (see Section 3).

The paper is structured as follows. In Section 2 we sketch the proof of Theorem 1.2. In Section 3 we

prove Theorem 1.2 assuming Lemma 3.1, the key lemma of the paper, and deduce Theorem 1.1 from

Theorem 1.2. In Section 4 we state and prove some preliminary results that we will need later. Section 5

is the most technical, where we prove the existence of the ‘gadgets’ which underpin Lemma 3.1. In

Section 6 we prove Lemma 3.1. We finish with some concluding remarks in Section 7.

Notation. Given a digraph D and x, y ∈ V (D), we write xy for the edge directed from x to y. Given

X,Y ⊆ V (D), we write ED(X,Y ) for the set of edges xy with x ∈ X and y ∈ Y , and e+D(X,Y ) =

|ED(X,Y )| for its size, and similarly e−D(X,Y ) = |ED(Y,X)|. The out-neighbourhood of a vertex v

is denoted by N+
D (v) and its size by deg+D(v). For a vertex set Y , we write N+

D (v, Y ) = N+
D (v) ∩ Y

and denote its size by deg+D(v, Y ) = |N+
D (v, Y )|. Similarly we will use N−

D (v),deg−D(v), N−
D (v, Y ) and

deg−D(v, Y ). We will suppress D when the digraph in question is clear. We recall that the length of a

(directed) path is the number of its edges. Given an edge-coloured digraph D, we denote the colour of

an edge e by C(e) and the set of colours on the edges of a subdigraph D′ by C(D′). Moreover we say

that D′ is spanning in a colour set C′ if C(D′) = C′.

Throughout the paper, we will assume that n is sufficiently large. Asymptotic notation hides absolute

constants: if for some x, ε, n > 0 we write x = O(εn), then there is an absolute constant C > 0, which

does not depend on x, ε, n or any other parameters, such that x ≤ Cεn. We write x = Ω(y) if y = O(x),

and we write x = Θ(y) if both x = Ω(y) and x = O(y). For x, y ∈ (0, 1), we write x ≪ y if x < f(y)

for an implicit positive increasing function f .

2See https://arxiv.org/abs/2304.09155v1.
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2 Proof sketch

Our proof uses the absorption method. This method is typically applicable when one searches for a

spanning subgraph, and involves two stages: finding an almost spanning subgraph; and dealing with

the remainder, by having a ‘special’ set of vertices, put aside at the beginning, that can cover any

sufficiently small set of vertices. For finding the special set of vertices, we prove Lemma 3.1. It states

that with high probability the perturbed digraph has a subgraph Habs such that, for any small sets of

vertices V ′ and colours C′ with |V ′| = |C′|, disjoint from the vertices and colours of Habs the following

holds: there exists a rainbow directed path Q with vertex set V ′ ∪ V (Habs) and colours C′ ∪ C(Habs),

whose ends can be chosen arbitrarily within V ′.

Let us briefly sketch the proof of Lemma 3.1. We first put aside a subset of the vertices and a subset

of the colours, which are typically called the ‘reservoir’ or the ‘flexible set’, that have the following

property: for any sets of vertices and colours V ′ and C′ of the same small size (much smaller than the

reservoir) which are disjoint from the reservoir, we can find a rainbow directed path Q0 that uses V ′,

C′, and a set of O(|V ′|) vertices and colours from the reservoir. The question is then how to cover the

rest of the reservoir; to this end, we build an ‘absorbing structure’ (Habs above) which has the following

property: it can ‘absorb’ any subset of vertices and colours of the same size of the reservoir in a rainbow

directed path Qabs. Then combining Qabs and Q0 gives Q.

The ‘absorbing structure’ Habs is built by putting together several ‘gadgets’ or ‘absorbers’, graphs on

Θ(1) vertices with the following property: each gadget has two directed paths with the same endpoints

such that one avoids a designated vertex v and colour c in the reservoir, and the other one ‘absorbs’

v and c (see Figure 1 in Section 5). This absorbing structure is based on one that was introduced

by Gould, Kelly, Kühn and Osthus [16] for constructing rainbow Hamilton paths in random optimal

colourings of the (undirected) complete graph, which in turn is based on ideas of Montgomery [22].

3 Proof of Theorem 1.2 and Theorem 1.1

In this section we prove the main theorem, Theorem 1.2, and use it to deduce Theorem 1.1. We will

use Lemma 3.1 below, which we prove in Section 6.

Lemma 3.1. Let 1/n ≪ 1/C ≪ η ≪ γ ≪ δ. Let D0 be a digraph on n vertices with minimum

semidegree at least δn, and suppose that D ∼ D0 ∪D(n,C/n) is uniformly coloured in C = [n]. Then,

with high probability, D contains a digraph Habs on at most γn vertices with the following property. For

any V ′ ⊆ V \ V (Habs), C′ ⊆ C \ C(Habs) with 2 ≤ |V ′| = |C′| ≤ ηn and distinct x, y ∈ V ′, there exists a

rainbow directed path Q such that

• Q is a path from x to y,

• V (Q) = V (Habs) ∪ V ′,

• C(Q) = C(Habs) ∪ C′.
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The next lemma is a rainbow directed version of a commonly used consequence of the depth first search

algorithm [7], which we will use to find an almost spanning rainbow directed path. The undirected

version of the lemma was used in [12, Lemma 2.17] in the binomial random graph and in [1, Proposition

2.1] for finding a Hamilton cycle in the undirected perturbed graph. Lemma 3.2 can be proven by

following almost verbatim the proof of [1, Proposition 2.1].

Lemma 3.2 (cf. Proposition 2.1 [1] and Lemma 2.17 [12]). Let D be an n-vertex edge-coloured digraph.

If every two disjoint sets of vertices X, Y of size k satisfy |C(E(X,Y ))| ≥ n, then D has a rainbow

directed path of length at least n− 2k.

The next lemma can easily be proved using Chernoff’s bound (cf. Theorem 4.1).

Lemma 3.3. Let 1/n ≪ 1/C ≪ α ≤ 1/2 and let D ∼ D(n,C/n) be uniformly coloured in C = [n].

Then, with high probability, every two disjoint sets of vertices X, Y of size αn satisfy |C(E(X,Y ))| ≥
(1 − α)n.

Our main theorem now follows easily from the previous three lemmas.

Proof of Theorem 1.2. Let η and γ satisfy

1/n ≪ 1/C ≪ η ≪ γ ≪ δ,

and write V = V (D) and C = [n]. By Lemma 3.1 we may assume that there exists a subdigraph

Habs ⊆ D with |V (Habs)| ≤ γn and the properties stated in Lemma 3.1, so in particular |C(Habs)| =

|V (Habs)| − 1; and by Lemma 3.3 (on input α = η/4) that any two disjoint subsets X,Y ⊆ V of size

k = ηn/4 satisfy |C(E(X,Y ))| ≥ (1 − η/4)n = n− k. Let C2 = C \ C(Habs) and let V2 be an arbitrary

subset of V \ V (Habs) of size n− |V (Habs)| − k. Then |C2| ≥ n− γn, |V2| = |C2| − k − 1, and, for any

two disjoint subsets X,Y ⊆ V2 of size k,

|C(E(X,Y )) ∩ C2| ≥ |C2| − k ≥ |V2| .

Then, by Lemma 3.2, applied to the subgraph of D spanned by edges in D[V2] coloured in C2, there

is a rainbow directed path P2 of length at least |V2| − 2k with vertices in V2 and colours in C2. Let

V ′
2 = V \ (V (Habs) ∪ V (P2)) and C′

2 = C \ (C(Habs) ∪ C(P2)) be the set of vertices and colours used by

neither Habs nor P2. Observe that |V ′
2 | ≤ 3k ≤ ηn − 2 and |C′

2| = |V ′
2 | + 2. Denote the first and last

vertices of P2 by x and y. Then by the property of Habs there exists a rainbow directed path Q from

y to x, with V (Q) = V (Habs) ∪ V ′
2 ∪ {x, y}, and C(Q) = C(Habs) ∪ C′

2. The concatenation of P2 and Q

gives a rainbow directed Hamilton cycle, as desired.

Finally we prove Theorem 1.1.

Proof of Theorem 1.1. Let C be given by Theorem 1.2 such that for any digraph D0 on [n] with

minimum semidegree at least δn/4, the perturbed digraph D0 ∪D(n, C
2n) uniformly coloured in [n] has
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with high probability a rainbow directed Hamilton cycle. Let N =
(
n
2

)
and e1, . . . , eN be an enumeration

of the edges of the (undirected) complete graph on [n]. For each 0 ≤ i ≤ N , define a randomly edge-

coloured digraph Γi on [n] as follows, recalling that G0 is an n-vertex graph with minimum degree at

least δn, and writing ej = {x, y}.

a) For j > i:

1. If ej ∈ E(G0), then add both xy, yx to E(Γi), and colour both edges with the same colour,

chosen uniformly in [n].

2. If ej /∈ E(G0), then add both xy, yx to E(Γi) together with probability C
n , and colour both

edges with the same colour, chosen uniformly in [n].

b) For j ≤ i:

1. if ej ∈ E(G0), toss a coin that comes up heads with probability 1/3. If it comes up heads,

add both xy, yx to E(Γi) and colour each independently and uniformly at random in [n]. If

it comes up tails, add each xy, yx independently with probability C
2n to E(Γi), and colour

each independently and uniformly at random in [n].

2. If ej /∈ E(G0), add each of xy, yx independently with probability C
2n to E(Γi), and colour

each independently and uniformly at random in [n].

The sequence is coupled, i.e. Γi−1 and Γi agree as probability spaces (but not as digraphs) on all edges

apart from ei, for i ∈ [N ]. Clearly Γ0 ∼ G0 ∪ G(n,C/n) and is uniformly coloured in [n], where we

view the undirected edges as two parallel directed edges. It is also easy to see that ΓN ∼ D0∪D(n, C
2n)

and it is uniformly coloured in [n], where D0 is a random subgraph of G0, with each edge selected

independently (as two parallel edges) with probability 1/3. Indeed, for e = {x, y} /∈ E(G0), clearly

each of xy, yx is in E(ΓN ) independently with probability C
2n . For e ∈ E(G0), with probability 1/3, both

orientations of e are added to E(D0), and each is coloured independently and uniformly in [n]; otherwise

each orientation is added independently to E(Γ0) with probability C
2n and coloured independently and

uniformly in [n]. A straightforward application of the union bound and Chernoff’s bound implies that

with high probability the minimum semidegree of D0 is at least δn/4. Hence, by the choice of C, with

high probability ΓN has a directed rainbow Hamilton cycle. We will show that for each i ∈ [N ]

P[Γi−1 has a rainbow Hamilton cycle] ≥ P[Γi has a rainbow Hamilton cycle] , (1)

which then implies the theorem.

To this end, reveal the randomness on all edges apart from ei = xy, i.e. on all those edges that Γi−1,Γi

automatically agree on. There are three possibilities:

1. Γi−1 ∪ {xy, yx} has no rainbow Hamilton cycle, irrespective of the colouring of xy, yx. Then,

regardless of the outcome of ei, both Γi−1 and Γi have no rainbow Hamilton cycle.

6



2. Γi−1 has a rainbow Hamilton cycle without using {xy, yx}. Then, regardless of the outcome of

ei, both Γi−1 and Γi have a rainbow Hamilton cycle.

3. Both events above do not hold. In other words, Γi−1 has a rainbow Hamilton cycle using one

of xy, yx, for some choice of colours, but it has no rainbow Hamilton cycle that avoids both of

xy, yx. Let C1, C2 ⊆ C, satisfy the following: Γi−1 ∪ xy has a rainbow Hamilton cycle through xy

if and only if C(xy) ∈ C1, and Γi−1 ∪ yx has a rainbow Hamilton cycle through yx if and only if

C(yx) ∈ C2. (So C1 ∪ C2 ̸= ∅.)

Conditioning on either of the first two cases, both Γi−1,Γi have the same probability to have a rainbow

Hamilton cycle. Conditioning on the third case, the probability that Γi−1 has a rainbow Hamilton cycle

is {
|C1∪C2|

n if ei ∈ E(G0),
C
n · |C1∪C2|

n if ei /∈ E(G0).

and the probability that Γi has a rainbow Hamilton cycle is
1
3 ·
(

1 −
(

1 − |C1|
n

)(
1 − |C2|

n

))
+ 2

3 ·
(

C
2n · |C1|+|C2|

n − C2

4n2 · |C1||C2|
n2

)
≤ |C1|+|C2|

2n ≤ |C1∪C2|
n if ei ∈ E(G0),

C
2n · |C1|+|C2|

n − C2

4n2 · |C1||C2|
n2 ≤ C

n · |C1|+|C2|
2n ≤ C

n · |C1∪C2|
n if ei /∈ E(G0).

This shows that in either case the probability that Γi−1 has a rainbow Hamilton cycle is at least as

large as the probability that Γi has one, thereby proving (1) and thus the theorem.

4 Preliminaries

Next we collect three preliminary results that we need: the Chernoff bound, Theorem 4.1; that random

sparse subgraph of dense hypergraphs have large matchings, Lemma 4.2; and that in the perturbed

digraph, between any two vertices, there is a large rainbow collection of directed paths of length three,

Lemma 4.3.

Theorem 4.1 (Chernoff Bound, [17, eq. (2.8) and Theorem 2.8]). For every ε > 0 there exists cε > 0

such that the following holds. Let X be the sum of mutually independent indicator random variables

and write µ = E [X]. Then

P[|X − µ| ≥ εµ] ≤ 2 exp(−cε µ).

The next lemma, despite its technical appearance, proves the following straightforward statement: quite

sparse random subgraphs of dense hypergraphs contain, with very high probability, a matching of linear

size. A matching in a hypergraph is a collection of pairwise vertex-disjoint edges. The degree of a vertex

v is the number of edges incident to v.

Lemma 4.2. Let 1/n ≪ ρ ≪ α, c, 1/r where r ≥ 2 is an integer. Let H be an r-uniform hypergraph

on n vertices with at least αnr edges.

7



Writing m = cn, let Hm be the random subgraph of H that consists of m edges of H, chosen with

replacement and uniformly at random. Then, with probability at least 1− exp
(
− cα2n

3

)
, the hypergraph

Hm has a matching of size at least ρn.

Writing p = cn−r+1, let Hp be the random subgraph of H where we keep each edge independently with

probability p. Then, with probability at least 1 − exp
(
− cα2n

3r

)
, the hypergraph Hp has a matching of

size at least ρn.

Proof. Write β(G) for the size of a largest matching of a hypergraph G.

It is not hard to see that H contains an induced subgraph H′ of minimum degree at least αnr−1 on at

least αn vertices.

We first prove the result for Hm. Let H′
m be the hypergraph with vertices V (H′) and edges E(Hm) ∩

E(H′). We will show that, with high probability, H′
m has a matching of size at least ρn. Clearly

β(Hm) ≥ β(H′
m), so the lemma readily follows.

Suppose β(H′
m) < ρn, and let M be a maximal matching in H′

m. Then S = V (H′) \ V (M) is an

independent set in H′
m and |S| ≥ (α − rρ)n. By the minimum degree condition of H′, the number of

edges with all vertices in S is at least 1
r |S|(αn

r−1 − rρnr−1) ≥ 1
r (α− rρ) (α− rρ)nr ≥ α2

2r n
r. This gives

P
[
S is independent in H′

m

]
=

(
1 − e(H[S])

e(H)

)m

≤ exp

(
−cn ·

α2

2r n
r(

n
r

) )

≤ exp

(
−α2

2
(r − 1)! cn

)
.

Then, since α, rρ < 1/2, the number of S ⊆ V (H) with |S| ≥ (α− rρ)n is at most

n

(
n

(α− rρ)n

)
≤ n

(
n

rρn

)
≤ n ·

(
e

rρ

)rρn

≤ e2rρn(rρ)−rρn = exp
(
(2rρ− rρ log(rρ))n

)
.

Thus, by the union bound, P[β(H′
m) < ρn] ≤ exp (−fc,r,α(ρ)n) , where

fc,r,α(ρ) = −2rρ + rρ log(rρ) +
(r − 1)!

2
cα2 .

Since fc,r,α(ρ) is continuous near 0 and fc,r,α(ρ) → (r−1)!
2 cα2 as ρ → 0, for ρ sufficiently small fc,r,α(ρ) ≥

(r−1)!
3 cα2 ≥ cα2

3 , which gives the first part of the lemma.

For the second part of the lemma observe that the same argument works: with S as above, in Hp we

have

P[S is independent in Hp] = (1 − p)e(H[S]) ≤ e−pe(H[S]) ≤ exp

(
−cα2n

2r

)
and a similar calculation as above shows that, for ρ sufficiently small, the probability there is such an

S is at most exp
(
− cα2n

3r

)
.

Lemma 4.3 (Triangles and short paths). Let 1/n ≪ 1/C ≪ λ ≪ ρ ≪ δ, q. Let C be a set of colours

of size qn, let D0 be a digraph on n vertices with minimum semidegree at least δn, and suppose that

8



D ∼ D0 ∪ D(n,C/n) is uniformly coloured in C. Then, with probability at least 1 − exp (−λn), the

following holds. For any two vertices u, v ∈ V (D) there is a matching M of size at least ρn such that⋃
xy∈M{ux, xy, yv} is rainbow.

Moreover, with probability at least 1 − exp (−λn), for any u ∈ V (D) there is a matching M of size at

least ρn such that
⋃

xy∈M{ux, xy, yu} is rainbow.

Proof. Let ρ1 satisfy 1/C ≪ λ ≪ ρ ≪ ρ1 ≪ δ, q. Fix u, v ∈ V . By the minimum semidegree assumption

on D0, there exist disjoint subsets Nu ⊆ N+
D0

(u), Nv ⊆ N−
D0

(v), each of size δn/2. Consider the oriented

bipartite graph with bipartition (Nu, Nv) and edges

{ zw ∈ E(D(n,C/n)) : z ∈ Nu, w ∈ Nv}

Then, by Lemma 4.2 (applied with (α, c, r, n)4.2 = (1/4, δC, 2, δn)), with probability 1−e−Ω(δCn), it has

a matching M of size ρ1n. For each zw ∈ M , reveal whether the directed path uzwv is rainbow, without

exposing the colours. Then each uzwv is rainbow independently with probability 1 − o(1). Hence by

Chernoff’s bound (Theorem 4.1), with probability 1 − e−Ω(ρ1n), there is M ′ ⊆ M with |M ′| ≥ ρ1n/2

such that for each zw ∈ M ′, uzwv is rainbow. Let P ′ = {uzwv : zw ∈ M ′}, and observe that the same

colour may still repeat on different paths in P ′.

We now show that we can find a large subset of P ′ where the paths are pairwise colour-disjoint. Reveal

the colours on the edges of the paths in P ′. By symmetry, each triple of distinct colours in C is equally

likely to appear in P ′. Hence P ′ corresponds to selecting uniformly at random with replacement

|P ′| ≥ ρ1n/2 edges from the complete 3-graph with vertex set C. Thus, by Lemma 4.2 (applied with

(α, c, r, n)4.2 = (1/7, ρ1/(2q), 3, qn)), with probability 1 − e−Ω(ρ1n), this 3-graph has a matching of size

ρn. This corresponds to an M ′′ ⊆ M ′ of size ρn so that
⋃

xy∈M ′′{ux, xy, yv} is rainbow.

The probability this fails for some pair u, v is, by the union bound, at most

n2 ·
(
e−Ω(δCn) + e−Ω(ρ1n) + e−Ω(ρ1n)

)
≤ e−λn,

proving the first statement of the lemma.

The second statement of the lemma follows similarly by finding a large matching between disjoint

subsets of N−
D0

(u) and N+
D0

(u).

5 Finding absorbers

In this section we show how to find ‘absorbers’, which are the building blocks for the digraph Habs in

Lemma 3.1.

Definition 5.1 (Absorber). Let v be a vertex and c a colour. A (v, c)-absorber is an edge-coloured

digraph Av,c with v ∈ V (Av,c) and c ∈ C(Av,c) that has two directed paths P, P ′ with the following

properties:
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• they are rainbow;

• they have the same first and last vertex;

• P is spanning in V (Av,c) and V (P ′) = V (P ) \ {v} = V (Av,c) \ {v};

• P is spanning in C(Av,c) and C(P ′) = C(P ) \ {c} = C(Av,c) \ {c}.

We call P the (v, c)-absorbing path and P ′ the (v, c)-avoiding path. The internal vertices of Av,c are

V (Av,c) \ {v} and the internal colours are C(Av,c) \ {c}. The first and last vertices of the absorber are

the first and last vertices of P and P ′.

The aim of this section is to prove the following lemma, which says that for any vertex v, colour c and

any small (but linear in size) sets of forbidden vertices and colours, we can find a (v, c)-absorber.

Lemma 5.2. Let 1/n ≪ 1/C ≪ ν ≪ δ < 1/2. Let D0 be a digraph on n vertices with minimum

semidegree at least δn, and suppose that D ∼ D0 ∪D(n,C/n) is uniformly coloured in C = [n]. Then,

with high probability, the following holds. For any v ∈ V (D) and c ∈ C, and for all V ′ ⊆ V (D) and

C′ ⊆ C each of size at least (1 − ν)n, there exists a (v, c)-absorber on 13 vertices with internal vertices

in V ′ and internal colours in C′.

Our absorbers are depicted in Figure 1. We describe their structure here, though it might be easier

to read off the structure from the figure. They consist of vertices {v, v1, v2} that induce an oriented

triangle with edges {v1v, vv2, v1v2}, and vertices {x, y, z, u, w1, w2} inducing an oriented K2,4 with

edges {xy, xz, yu, zu, w2y, w2z, yw1, zw1}, and two directed paths of length 3 — P1 from v2 to x and

P2 from w1 to w2 — whose interiors are vertex-disjoint and disjoint of previously mentioned vertices.

The absorber is equipped with an edge colouring satisfying the following: C(yu) = c, C(v1v) = C(xy),

C(vv2) = C(zu), C(v1v2) = C(xz), C(w2y) = C(w2z), C(yw1) = C(zw1), and the colours of the edges of P1

and P2 are different from one another and from those on the rest of the absorber. The (v, c)-absorbing

path P and (v, c)-avoiding path P ′ are

P = v1vv2P1xzw1P2w2yu, P ′ = v1v2P1xyw1P2w2zu.

For the existence of the oriented triangle (on vertices {v, v1, v2}) and the directed paths of length three

P1 and P2 we use Lemma 4.3. The existence of the oriented K2,4 (with the required colouring) is more

involved and uses the regularity lemma for digraphs. This is the most technical part of our proof and

is accomplished in Lemma 5.11.

5.1 Finding oriented squares with diagonal directed paths

The aim of this section is to prove Lemma 5.11, which allows us to find a K2,4 as required in Figure 1.
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Figure 1: At the top is the (v, c)-absorber used in Lemma 5.2. At the bottom the first
figure shows the (v, c)-absorbing path and the second figure the (v, c)-avoiding path. The
directed paths P1, P2 have length 3 and are rainbow with colours disjoint of one another
and of the other colours in the figure.

5.1.1 Regularity preliminaries

The (directed) densities of a pair of non-empty disjoint vertex sets V,W in a digraph are d+(V,W ) =
e+(V,W )
|V ||W | and d−(V,W ) = e−(V,W )

|V ||W | . For simplicity d(V,W ) will always stand for d+(V,W ).

Definition 5.3. An ordered pair of disjoint vertex sets (V,W ) is ε-regular if for any V ′ ⊆ V , W ′ ⊆ W

with |V ′| ≥ ε |V | , |W ′| ≥ ε |W | we have |d(V ′,W ′) − d(V,W )| < ε.

Since we need regular pairs to be sufficiently dense, we will find the following definition useful.

Definition 5.4. An ordered pair of disjoint vertex sets (V,W ) is (ε, ρ)-super-regular if it is ε-regular

and for every v ∈ V , deg+(v,W ) ≥ ρ |W | and for every w ∈ W , deg−(w, V ) ≥ ρ |V |.

We state without proof the following straightforward consequences of Definition 5.4.

Lemma 5.5. If (V,W ) is ε-regular, then for all but at most ε |V | vertices v ∈ V we have deg+(v,W ) ≥
(d+(V,W ) − ε) |W |, and for all but at most ε |W | vertices w ∈ W we have deg−(w, V ) ≥ (d−(V,W ) −
ε) |V |.

Lemma 5.6. Let 1/n ≪ ε, ρ, p. Let (V,W ) be (ε, ρ)-super-regular with |V | = |W | = n. Sample each

edge independently with probability p. Then, with probability at least 1 − exp(−Ω(pρn)), the resulting

pair is (ε, pρ/2)-super-regular.
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We use the following degree form of the regularity lemma for digraphs, from [18]. The original version

of Szemerédi’s regularity lemma [25] for digraphs was first proved by Alon and Shapira [3]. The version

we use is Lemma 7 in [18].

Theorem 5.7 (Degree form of the regularity lemma for digraphs). For every ε ∈ (0, 1) and every

integer M ′, there are integers M and n0 such that the following holds. If D is a digraph on n ≥ n0

vertices and d ∈ [0, 1] is any real number, then there is a partition (V0, . . . , Vk) of V (D), a spanning

subgraph D′ of D and a set U of ordered pairs (i, j), 1 ≤ i, j ≤ k and i ̸= j, such that the following

hold:

• M ′ ≤ k ≤ M ;

• |V0| ≤ εn;

• |V1| = · · · = |Vk|;

• for all x ∈ V (D), deg+D′(x) > deg+D(x) − (d + ε)n and deg−D′(x) > deg−D(x) − (d + ε)n;

• |U | ≤ εk2;

• for every ordered pair (i, j) /∈ U with i ̸= j the bipartite digraph D[Vi, Vj ] is ε-regular;

• D′ is obtained from D by deleting the following edges of D: all edges with both endpoints in Vi,

for all i ∈ [k]; all edges ED(Vi, Vj) for all (i, j) ∈ U ; and all edges ED(Vi, Vj) for all (i, j) /∈ U ,

i ̸= j, with dD(Vi, Vj) < d.

We call V1, . . . , Vk the clusters of the partition and V0 the exceptional set. Note that the last two

conditions of the lemma imply that for all 1 ≤ i, j ≤ k with i ̸= j, the bipartite graph D′[Vi, Vj ] is

ε-regular and has density either 0 or at least d.

5.1.2 Finding gadgets

In the following lemma we show that, if (A,B) and (C,B) are two dense regular pairs in a digraph

whose edges are uniformly coloured, and given a dense bipartite graph H with bipartition (A,C), with

very high probability there is a dense subgraph H ′ ⊆ H, such that for every edge ac in H ′ there is an

oriented path of length 2 from a to c through B which is monochromatic (and of course both edges are

directed outwards from a and c).

By applying this lemma twice (reversing edges for the second application, see the proof of Lemma 5.11),

given four dense regular pairs (W2, Y ), (W2, Z), (Y,W1), (Z,W1) in a digraph whose edges are uniformly

coloured, with very high probability we can find (y, z, w1, w2) ∈ Y ×Z ×W1 ×W2 such that C(w2y) =

C(w2z) ̸= C(yw1) = C(zw1),
3 in line with the edges spanned by {y, z, w1, w2} in our gadgets.

3In fact, we can find quadratically many such quadruples, with distinct pairs (y, z).
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Lemma 5.8. Let 1/n ≪ γ, ε, λ ≪ α, ρ, 1/q. Let D be a digraph, and let A,B,C be disjoint sets of

vertices in D of size n, such that (A,B), (C,B) are ε-regular and have density at least ρ. Let H be a

digraph with E(H) ⊆ A × C and e(H) ≥ αn2. Assign each edge in D a colour in C = [qn] uniformly

and independently. Then, with probability at least 1−exp(−λn), the number of edges ac in H for which

there exists b ∈ B such that ab, cb ∈ E(D) and C(ab) = C(cb), is at least γn2.

Proof. Let β be a constant satisfying γ, λ ≪ β ≪ α, ρ, 1/q.

Let H1 be the subgraph of H spanned by edges ac such that |N+(a)∩N+(c)∩B| ≥ ρ2n/2. We claim that

e(H1) ≥ αn2/2. Indeed, let A′ = {a ∈ A : |N+(a)∩B| ≥ (ρ−ε)n}. Then |A′| ≥ (1−ε)n by ε-regularity.

Given a ∈ A′, we have that |N+(a)∩N+(c)∩B| ≥ (ρ−ε)2n ≥ ρ2n/2 for all but at most εn vertices c ∈ C,

using ε ≪ ρ for the last inequality. Thus e(H1) ≥ e(H)− |A \A′| ·n− |A′| · εn ≥ e(H)− 2εn2 ≥ αn2/2,

using ε ≪ α.

Let M1, . . . ,Mk be a maximal collection of pairwise edge-disjoint matchings in H1 of size at least αn/4.

We claim that k ≥ αn/4. Indeed, otherwise, since |Mi| ≤ n for every i, we have e(H1\(M1∪. . .∪Mk)) ≥
αn2/2−αn2/4 = αn2/4. But the graph H1\(M1∪. . .∪Mk) can be decomposed into at most n matchings,

showing that there is a matching Mk+1 in H \ (M1 ∪ . . . ∪Mk) of size at least αn/4, a contradiction.

Let M ′
i be the (random) submatching {ac ∈ Mi : there is b ∈ B such that C(ab) = C(cb)}. For ac ∈ Mi,

we have

P
[
ac ∈ M ′

i

]
= 1 −

(
1 − 1

qn

)|N+(a)∩N+(c)∩B|

≥ 1 − exp

(
−|N+(a) ∩N+(c) ∩B|

qn

)
≥ 1 − exp

(
−ρ2

2q

)
= 8α−1β.

Thus, E [|M ′
i |] ≥ |Mi| · 8α−1β ≥ 2βn. Because, for each i ∈ [k], the events {ac ∈ M ′

i} with ac ∈ Mi are

independent, by Chernoff’s bound we have

P
[
|M ′

i | ≤ βn
]
≤ P

[
|M ′

i | ≤
E [|M ′

i |)]
2

]
≤ exp

(
−Ω

(
E
[
|M ′

i |
]))

≤ exp(−Ω(βn)).

By a union bound, with probability at least 1 − 2n exp(−Ω(βn)) ≥ 1 − exp(−λn)), we have |M ′
i | ≥ βn

for every i ∈ [k], showing |M ′
1 ∪ . . . ∪M ′

k| ≥ (αn/4) · βn = γn2. This proves the lemma.

In the next lemma we construct the part spanned by {x, y, z, u}. Recall that we would like the colours

of zu, xz, xy to match the colours of the edges vv2, v1v2, v1v in the oriented triangle in the absorber.

To achieve this, we let C0 be a collection of Ω(n) triples of distinct colours, which are pairwise disjoint,

and ensure that the colours of zu, xz, xy match the colours of one of the triples in C0.

Lemma 5.9. Let 1/n ≪ λ ≪ ε ≪ α, ρ, q0 ≤ 1 and let 1/n ≪ µ ≤ 1. Let X,Y, Z, U be disjoint sets of

µn vertices in a digraph D such that (X,Y ), (X,Z), (Y, U), (Z,U) are (ε, ρ)-super-regular. Let H be a
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digraph with E(H) ⊆ Y × Z and e(H) ≥ αµ2n2. Let C = [n], let c ∈ C, and let C0 be a set of pairwise

disjoint triples of colours in C \ {c} of size at least q0n.

Assign each edge in D a colour from C, uniformly and independently. Then, with probability at least

1 − exp(−λn), there is a quadruple (x, y, z, u) ∈ X × Y × Z × U with xy, xz, yu, zu ∈ E(D) and

yz ∈ E(H), such that (C(zu), C(xz), C(xy)) ∈ C0 and C(yu) = c.

Proof. Let γ, γ1, γ3, λ
′ satisfy

1/n ≪ λ ≪ λ′ ≪ γ3 ≪ γ1 ≪ γ ≪ ε, µ.

Let D0 be the subgraph of D consisting of edges in D contained in X × (Y ∪Z) or in (Y ∪Z)×U . We

find a quadruple (x, y, z, u) satisfying the requirements of the lemma, by revealing the colours of E(D0)

in the order E(Y, U), E(Z,U), E(X,Y ), E(X,Z). At each step we find a linear size monochromatic

matching between the corresponding vertex sets. To ensure that each new matching extends nicely

previously chosen matchings, we will ‘clean up’ the graph before finding it.

First, let D1 be the subdigraph of D0 obtained by removing edges yu ∈ Y ×U with |N−
D0

(u)∩N+
H (y)| ≤

(αρµ/4)n. We claim that e(D1[Y, U ]) ≥ (αρµ2/4)n2. Indeed, writing Y ′ = {y ∈ Y : d+H(y) ≥ (α/2)|Z|},

observe that |Y ′| ≥ (α/2)|Y | (otherwise e(H) ≤ (|Y \ Y ′| · (α/2)|Z| + |Y ′| · |Z| < |Y | · (α/2)|Z| +

(α/2)|Y | · |Z| = α|Y ||Z| = αµ2n2, a contradiction). For every y ∈ Y ′, all but at most ε|U | vertices u in

U have at least (ρ − ε)|N+
H (y)| ≥ (αρµ/4)n in-neighbours in N+

H (y). This implies that e(D1[Y,U ]) ≥
e(D0[Y

′, U ]) − |Y ′| · ε|U | ≥ (ρ− 2ε)|Y ′||U | ≥ (ρ/2) · (α/2) · µ2n2 = (αρµ2/4)n2.

Reveal the colours of ED1(Y,U). Since e(D1[Y, U ]) ≥ (αρµ2/4)n2, and each edge is coloured c indepen-

dently with probability 1/n, Lemma 4.2 yields that, with probability at least 1− exp(−Ω(λ′n)) , there

exists a matching M ⊆ D1[Y,U ] of size at least γn with all edges coloured c.

For (c1, c2, c3) ∈ C0, say an edge xz in ED(X,Z) is good for (c1, c2, c3) ∈ C0, if there exist u ∈ U and

y ∈ Y such that yz ∈ E(H), xy, yu, zu ∈ E(D), C(xy) = c3, C(yu) = c, and C(zu) = c1. Notice

that this definition does not depend on the colours of ED(X,Z). Observe also that if xz is good for

(c1, c2, c3) ∈ C0 and C(xz) = c2, then (x, y, z, u) satisfies the requirements of the lemma. Therefore, to

complete the proof it suffices to show that, with high probability, for some (c1, c2, c3) ∈ C0 there exists

at least one good edge xz ∈ ED(X,Z) with C(xz) = c2. For that, the crucial argument is the following

claim, where we show that, with very high probability, there are many good edges for (c1, c2, c3). We do

so by ‘extending’ M with a monochromatic matching M1 ⊆ D1[Z,U ] in colour c1, and a monochromatic

matching M3 ⊆ D1[X,Y ] in colour c3.

For (c1, c2, c3) ∈ C0, write

G(c1, c2, c3) := {e ∈ ED(X,Z) : e is good for (c1, c2, c3)}.

Claim 5.10. Fix (c1, c2, c3) ∈ C0. With probability at least 1 − exp(−Ω(λ′n)), we have |G(c1, c2, c3)| ≥
γ3n.
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Proof. For y ∈ Y ∩ V (M), denote by M(y) the neighbour of y in M . Let D2 be the subdigraph of D1

obtained by removing all edges in Z × U except edges of the form zM(y) satisfying yz ∈ E(H) and

|N−(y) ∩N−(z) ∩X| ≥ (ρ2µ/2)n, for some y ∈ Y .

We claim that e(D2[Z,U ]) ≥ (αρµγ/8)n2. Indeed, given y ∈ Y ∩ V (M), by (ε, ρ)-super-regularity, we

have |N−
D1

(y) ∩X| ≥ ρ|X|, and all but at most ε|Z| vertices z ∈ Z satisfy

|N−
D1

(z) ∩N−
D1

(y) ∩X| ≥ (ρ− ε)|N−
D1

(y) ∩X| ≥ (ρ2/2)|X| = (ρ2µ/2)n.

Thus, using that |N−
D1

(M(y)) ∩N+
H (y) ∩ Z| ≥ (αρµ/4)n = (αρ/4)|Z|, by choice of D1,∣∣N−

D2
(M(y)) ∩ Z

∣∣ ≥ ∣∣N−
D1

(M(y)) ∩N+
H (y) ∩ Z

∣∣− ε|Z|

≥ (αρ/4 − ε)|Z| ≥ (αρ/8)|Z| = (αρµ/8)n.

Hence, e(D2[Z,U ]) ≥ |M | · (αρµ/8)n ≥ (αρµγ/8)n2, as claimed. Reveal the colours of ED2 [Z,U ].

Since each edge is coloured c1 independently with probability 1/n, using e(D2[Z,U ]) ≥ (αρµγ/8)n2, by

Lemma 4.2, with probability at least 1 − exp(−Ω(λ′n)), there is a matching M1 in D2[Z,U ] coloured

c1 that has size at least γ1n.

Denote by M1(y) the neighbour of M(y) in M1 (if it exists). Notice that, by the definition of D2, the

matching M1 ‘extends’ the matching M in the sense that V (M1)∩U ⊆ V (M), and, moreover, for every

y ∈ Y such that M1(y) exists, so does M(y), and yM1(y) ∈ E(H).

Next, we will find a large matching M3 coloured c3 which, along with M1 and M , will give us a large

number of good edges for (c1, c2, c3). To this end, let D3 be the spanning subgraph of D2 obtained by

removing all edges xy ∈ X × Y except those for which M1(y) exists and xM1(y) is an edge in D2.

We claim that e(D3[X,Y ]) ≥ (ρ2µγ1/2)n2. Indeed, let y ∈ Y be such that M(y) and M1(y) exist.

Then |N−
D2

(y) ∩N−
D2

(M1(y)) ∩X| ≥ (ρ2µ/2)n, by choice of D2, showing |N−
D3

(y)| ≥ (ρ2µ/2)n. Hence,

e(D3[X,Y ]) ≥ |M1| · (ρ2µ/2)n ≥ (ρ2µγ1/2)n2.

Reveal the random colouring of D3[X,Y ]. Since each edge of D3[X,Y ] is coloured c3 independently

with probability 1/n, using Lemma 4.2, with probability at least 1 − exp(−Ω(λ′n)), there exists a

matching M3 in D3[X,Y ] coloured c3 that has size at least γ3n.

For y ∈ Y , denote by M3(y) the neighbour of y in M3 (if it exists). Notice that, by the definition of

D3, the matching M3 ‘extends’ the matching M1 in the sense that if M3(y) exists then so does M1(y)

and M3(y)M1(y) ∈ E(D3).

Let

G0(c1, c2, c3) := {M3(y)M1(y) : y ∈ Y and M1(y),M3(y) exist}.

Notice that |G0(c1, c2, c3)| = |M3| ≥ γ3n. Moreover, M3(y)M1(y) is good for (c1, c2, c3), as can be

seen by taking u = M(y), since we have: yM1(y) ∈ E(H); M3(y)y, yM(y),M1(y)M(y) ∈ E(D);

C(M3(y)y) = c3, C(yM(y)) = c, C(M1(y)M(y)) = c1. Hence |G(c1, c2, c3)| ≥ |G0(c1, c2, c3)| ≥ γ3n, with

probability at least 1 − exp(−Ω(λn)), as required for the claim.
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By the union bound over the q0n triples (c1, c2, c3) ∈ C0, Claim 5.10 implies that, with probability

at least 1 − exp(−Ω(λ′n)), for each (c1, c2, c3) ∈ C0, we have |G(c1, c2, c3)| ≥ γ3n. We finally show

that, with probability at least 1 − exp(−Ω(λ′n)), for some (c1, c2, c3) ∈ C0 there exists e ∈ G(c1, c2, c3)

satisfying C(e) = c2.

For e ∈ ED3(X,Z), let

G′(e) := {c2 ∈ C : there exist c1, c3 such that (c1, c2, c3) ∈ C0 and e ∈ G(c1, c2, c3)}.

Then, using that no two triples in C0 share a colour, we have∑
e∈ED(X,Z)

∣∣G′(e)
∣∣ =

∑
(c1,c2,c3)∈C0

|G(c1, c2, c3)| ≥ |C0| · γ3n = q0γ3n
2.

Now we reveal the colours of ED3(X,Z). For e ∈ ED3(X,Z), let Ae be the event that e gets a

good colour, i.e. C(e) ∈ G′(e). Each edge is coloured independently, so the events Ae are mutually

independent, and it holds that P[Ae] = |G′(e)| /n. Hence, the probability that no event Ae holds is

∏
e∈ED3

(X,Z)

(1 − P[Ae]) ≤ exp

−
∑

e∈ED3
(X,Z)

P[Ae]


= exp

−
∑

e∈ED3
(X,Z)

|G′(e)|
n

 ≤ exp (−q0γ3n) .

Hence, with probability at least 1− exp(−q0γ3n), at least one edge gets a good colour, i.e. there exists

e ∈ ED3(X,Z) such that C(e) ∈ G′(e), as required for the lemma. Altogether, all the required events

hold simultaneously with probability at least 1 − exp(−Ω(λ′n)) − exp(−q0γ3n) ≥ 1 − exp(−λn), as

required.

Next, we show how to find a copy of K2,4 with the orientation in Figure 1. As above, we additionally

make sure that the edges zu, xz, xy are coloured according to a triple of colours from a linear set C0
of pairwise disjoint triples of distinct colours. When applying Lemma 5.11 to find a (v, c)-absorber

(cf. Lemma 5.2 and Section 6), C0 will be precisely the set of colour triples seen on a collection of

rainbow triangles intersecting only on v.

Lemma 5.11 (Finding a K2,4). Let 1/n ≪ λ ≪ δ, q0. Let C = [n], c ∈ C, and C0 ⊆ C3 be a collection of

colour triples that are pairwise disjoint and avoid c, with |C0| = q0n. Let D be a digraph on n vertices

with minimum semidegree at least δn, which is coloured uniformly in C.

Then, with probability at least 1 − exp(−λn), the following holds. There exists an oriented copy K of

K2,4, with V (K) = {x, y, z, u, w1, w2} and E(K) = {xz, xy, yu, zu, zw1, yw1, w2z, w2y}. Moreover, the

edges of K are coloured as follows: (C(zu), C(xz), C(xy)) ∈ C0, c = C(yu), and C(yw1) = C(zw1) ̸=
C(w2y) = C(w2z), with C(yw1), C(w2y) disjoint from {c, C(zu), C(xz), C(xy)}.
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Proof. Let M ′,M, α′, α′′, λ′ satisfy

λ ≪ λ′ ≪ 1/M ≪ 1/M ′ ≪ ε ≪ α′′ ≪ α′ ≪ ρ ≪ δ, q0.

Consider a partition (V0, . . . , Vk), with M ′ ≤ k ≤ M , of V (D) and a spanning subgraph D′, both given

by Theorem 5.7 with parameters ε5.7 = ε, d5.7 = ρ and M ′. Let R be the reduced digraph associated

with this partition, that is the digraph on [k] where ij ∈ E(R) if and only if eD′(Vi, Vj) > 0. Observe

that if ij ∈ E(R) then D′[Vi, Vj ] is ε-regular and has density at least ρ.

Claim 5.12. The digraph R contains a copy of K.

Proof. We observe that the minimum semidegree of R satisfies δ+(R) ≥ δk/2 because, otherwise, there

would be vertices with out-degree at most (δk/2) · (n/k) < δn − (ρ + ε)n in D′, contradicting that

deg+D′(x) > deg+D(x) − (ρ + ε)n for all x ∈ V (D).

We will use, twice, the following assertion.

(❀) If U is a set of at least 4/δ vertices in R, then there are two distinct vertices u1, u2 ∈ U such that

|N+(u1) ∩N+(u2)| ≥ δ2k
10 .

First, let us prove (❀). Suppose that U is a set contradicting (❀). Write ℓ = |U |, and note that we

may assume ℓ = ⌈4/δ⌉, so 4/δ ≤ ℓ ≤ 5/δ. Then,

k ≥

∣∣∣∣∣ ⋃
u∈U

N+(u)

∣∣∣∣∣ ≥ ∑
u∈U

|N+(u)| −
∑

u,v∈U distinct

|N+(u) ∩N+(v)|

≥ ℓ · δk
2

−
(
ℓ

2

)
δ2k

10

=
ℓδk

2

(
1 − (ℓ− 1)δ

10

)
> k,

a contradiction.

Now, using (❀) (with U = V (R)), we can find two distinct vertices x,w2 with |N+(x) ∩ N+(w2)| ≥
δ2k/10 ≥ 4/δ. Apply (❀) again, with U = N+(x) ∩ N+(w2) to find two distinct out-neighbours of

both x and w2, denoted y, z, such that |N+(y) ∩ N+(z)| ≥ δ2k/10 ≥ 4. Now pick distinct u,w1 ∈
(N+(y) ∩N+(z)) \ {x,w2}. Then {x, y, z, u, w1, w2} spans a copy of K, as required.

Let X,Y, U, Z,W1,W2 ⊆ V (D) be the vertex clusters corresponding to the vertices of the copy of K

in R given by Claim 5.12. Using Lemma 5.5, by removing up to O(εn) vertices from each cluster, we

can ensure that (X,Y ), (X,Z), (W1, Y ), (W1, Z), (Y,U), (Z,U), (Y,W1), (Z,W1) are (ε, ρ/2)-super-

regular and that X,Y, Z, U,W1,W2 all have the same size, which we denote by n′. Thus, without loss

of generality, we assume this is the case for the remainder of the proof.

Delete some triples from C0 if necessary so that C0 covers at most n/2 − 1 colours, and let C1 and

C2 be disjoint sets of n/4 colours that do not appear in triples in C0 and are not c. For each edge
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of E(Y ∪ Z,W1), and for these edges only, reveal if its colour belongs to C1, and delete if it does

not. Similarly, for each edge of E(W2, Y ∪ Z), and for these edges only, reveal if its colour belongs to

C2, and delete it if not. This amounts to sampling each edge in E(Y ∪ Z,W1) ∪ E(W2, Y ∪ Z) with

probability 1/4. Hence, by Lemma 5.6, with probability at least 1− exp(−Ω(ρn)), the remaining edges

in E(Y ∪ Z,W1) ∪ E(W2, Y ∪ Z) span (ε, ρ/16)-super-regular pairs.

Now reveal the colours of the remaining edges in E(Y ∪Z,W1), which are chosen uniformly from C1. By

Lemma 5.8, with (n, ε, α, ρ, q, A,B,C)5.8 = (n′, ε, 1, ρ/16, n/(4n′), Y,W1, Z) and H with E(H) = Y ×Z,

with probability at least 1− exp(−λ′n), the following holds: there is a subgraph H ′ ⊆ H with e(H ′) ≥
α′(n′)2, such that for every edge yz ∈ E(H ′), there is a vertex w1 ∈ W1 such that C(yw1) = C(zw1).

Next, reveal the colours of the remaining edges in E(W2, Y ∪ Z); they are coloured uniformly in

C1. By the same lemma, with (n, ε, α, ρ, q, A,B,C,H)5.8 = (n′, ε, α′, ρ/16, n/(4n′), Y,W2, Z,H
′), with

probability at least 1 − exp(−λ′n), the following holds: there is a subgraph H ′′ ⊆ H ′ with e(H ′′) ≥
α′′(n′)2, such that for every edge yz ∈ E(H ′′) there exists w2 ∈ W2 such that C(w2y) = C(w2z).4

Finally, by Lemma 5.9, applied with (ε, α, ρ, µ,H)5.9 = (ε, α′′, ρ/16, n′/n,H ′′), with probability at

least 1 − exp(−λ′n), there is a quadruple (x, y, z, u) ∈ X × Y × Z × U such that: xy, xz, yu, zu are

edges in D; yz is an edge in H ′′; (C(zu), C(xz), C(xy)) ∈ C0; and C(yu) = c. By choice of H ′′, there

are vertices w1 ∈ W1 and w2 ∈ W2 such that yw1, zw1, w2u,w2z are edges and C(zw1) = C(yw1) ∈
C1 and C(w2z) = C(w2y) ∈ C2. Altogether, all the required events hold with probability at least

1 − exp(−Ω(ρn)) − exp(−Ω(λ′n)) ≥ 1 − exp(−λn).

5.2 Proof of Lemma 5.2

Proof of Lemma 5.2. Let λ, ρ, ρ′ satisfy ν ≪ λ, ρ, ρ′ ≪ δ. Fix v ∈ V (D), c ∈ C and V ′ ⊆ V (D), C′ ⊆ C
of size at least (1 − ν)n.

For the next claim, it is useful to refer to Figure 1.

Claim 5.13. With probability 1 − exp(−Ω(λn)) the following holds. In D[V ′] there exist an oriented

triangle T with V (T ) = {v, v1, v2} and E(T ) = {vv2, v1v, v1v2}, and an oriented copy K of K2,4, with

V (K) = {x, y, z, u, w1, w2} and E(K) = {xz, xy, yu, zu, yw1, zw1, w2y, w2z}. Moreover, the edges of

K and T are coloured as follows. C(yu) = c, C(xz) = C(v1v2), C(xy) = C(v1v), C(zu) = C(vv2),

C(zw1) = C(yw1) and C(w2z) = C(w2y).

Proof. Let (V△, V□) be a random partition of V ′. Then, from Chernoff’s bound, a union bound over

the vertices of V ′, and ν ≪ 1, with probability 1 − exp(−Ω(δn)), the digraphs Dδ,n[V△], Dδ,n[V□] have

minimum semidegree at least δn/3, and |V△| , |V□| ≥ n/3.

First reveal the random edges and colours of D[V△].

Then, by Lemma 4.3, with probability 1−exp(−Ω(λn)), there is a collection ∆v of ρn rainbow triangles

{v, v1, v2}, oriented as in the claim, that pairwise intersect only on v, are pairwise colour-disjoint, and

4Technically, here we apply the lemma to the digraph obtained by reversing the direction of edges in E(W2, Y ∪ Z).
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with V (∆v) ⊆ V△ ∪ {v}. For T ∈ ∆v, denote its vertices by v, v1(T ), v2(T ) such that E(T ) =

{vv2(T ), v1(T )v, v1(T )v2(T )}. Let Cv be the collection of triples (C(vv2(T )), C(v1(T )v2(T )), C(v1(T )v))

with T ∈ ∆v, whose three colours are in C′. Then |Cv| ≥ ρn− 3νn ≥ (ρ/2)n.

Next, reveal the colours of edges in D[V□]. By setting C0 = Cv in Lemma 5.11, it follows that, with

probability 1− exp(−Ω(λn)), D[V□] contains a subgraph K isomorphic to K2,4 with the orientation as

in the claim, whose colours match those of a triangle T ∈ ∆v as in the statement of the claim.

We fail to find a T or K as required with probability at most exp(−Ω(λn)).

By Lemma 4.3, with probability 1 − exp(−Ω(λn)), for any two vertices a, b ∈ V ′ there are ρ′n rainbow

directed paths of length three from a to b which are pairwise colour disjoint and internally vertex disjoint.

Hence, with probability 1 − exp(−Ω(λn)), this and the conclusion of Claim 5.13 hold simultaneously.

Then, using ν ≪ ρ′, there exist two colour- and vertex-disjoint rainbow directed paths P1, P2 of length

3 such that: P1 is directed from v2 to x; P2 is directed from w1 to w2; the interiors of P1 and P2 are

in V ′ \ (V (K) ∪ V (T )); and the colours of P1 and P2 are in C′ \ (C(K) ∪ C(T )). Then the graph Av,c,

defined as

Av,c = K ∪ T ∪ P1 ∪ P2,

is a (v, c)-absorber: the (v, c)-absorbing path and the (v, c)-avoiding path are

v1vv2P1xzw1P2w2yu and v1v2P1xyw1P2w2zu

and it is straightforward to check they satisfy Definition 5.1 and have 13 vertices.

The number of V ′ ⊆ V of size at least (1 − ν)n is at most n
(
n
νn

)
= exp(O (ν log ν)n), and the same

bound holds for the number of C′ ⊆ C of the same size. Using ν ≪ λ, the probability we fail to find an

absorber for some v, c, V ′, C′, is by the union bound, at most

n2eO(ν log ν)n · e−Ω(λn) = o(1).

6 Proof of Lemma 3.1

In this section we prove Lemma 3.1. The following lemma enables us to cover any small set of vertices

and colours.

Lemma 6.1 (Flexible sets). Let 1/n ≪ 1/C ≪ ζ ≪ µ ≪ δ ≤ 1. Let D0 be a digraph on n vertices

with minimum semidegree at least δn, and suppose that D ∼ D0 ∪D(n,C/n) is uniformly coloured in

C = [n]. Then there exist Vflex ⊆ V , Cflex ⊆ C of size 2µn such that with high probability the following

holds. For all distinct u, v ∈ V , c ∈ C, and V ′
flex ⊆ Vflex , C′

flex ⊆ Cflex of size at least (2µ − ζ)n, there

exists a rainbow directed path of length seven from u to v, with internal vertices in V ′
flex and colours in

C′
flex ∪ {c}, that contains the colour c.
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Proof. Let γ satisfy ζ ≪ γ ≪ µ.

For a colour c, let Mc be a largest oriented matching of colour c in D, and for distinct vertices u, v,

let Pu,v be a largest collection of pairwise vertex- and colour-disjoint rainbow directed paths of length

three with endpoints u, v. By Lemmas 4.2 and 4.3, with probability at least 1 − exp(−γn), we have

|Mc| ≥ γn and |Pu,v| ≥ γn for every colour c and distinct vertices u, v.

Let V ′ be a random subset of V , obtained by including each vertex independently with probability µ,

and let C′ be a random subset of C, obtained by including each colour independently with probability

µ.

Then, by Chernoff and union bounds, with high probability, the following properties hold.

• |V ′|, |C′| ≤ 2µn,

• at least µ2γn/2 edges in Mc have both endpoints in V ′, for every c ∈ C,

• at least µ5γn/2 paths in Pu,v have their interior vertices in V ′ and all colours in C′, for all distinct

u, v ∈ V .

Suppose that all three properties hold, and let Vflex be a subset of V that contains V ′ and has size 2µn

and let Cflex be a subset of C that contains C′ and has size 2µn.

We show that these sets satisfy the requirements of the lemma. Indeed, fix u, v, c and V ′
flex, C′

flex as

in the lemma. Then, as ζ ≪ µ, γ, there is an edge e = xy ∈ Mc with both ends in V ′
flex. Similarly,

there are paths P1 ∈ Pu,x and P2 ∈ Py,v that are vertex- and colour-disjoint, their interiors are in V ′
flex,

and their colours are in C′
flex \ {c}. Then P1 ∪ e ∪ P2 is a path that satisfies the requirements of the

lemma.

We will put together several (v, c)-absorbers to construct the digraph Habs in Lemma 3.1, by having

a (v, c)-absorber for each edge of a bipartite graph which has the following property. This follows an

idea introduced by Montgomery [22], which was adapted to the rainbow setting by Gould, Kelly, Kühn

and Osthus [16].

Definition 6.2 (Definition 3.3, [16]). Let H be a balanced bipartite graph with bipartition (A,B). We

say H is robustly matchable with respect to A′, B′, for some A′ ⊆ A and B′ ⊆ B of equal size, if for

every pair of sets X ⊆ A′, Y ⊆ B′ with |X| = |Y | ≤ |A′| /2, there is a perfect matching in H[A\X,B\Y ].

We call A′, B′ the flexible sets of H.

Proposition 6.3 (Lemma 4.5, [16]). For every large enough m ∈ N, there exists a 256-regular bipartite

graph with bipartition (A,B) and |A| = |B| = 7m, which is robustly matchable with respect to some

A′ ⊆ A,B′ ⊆ B with |A′| = |B′| = 2m.

Proof of Lemma 3.1. Let ζ, µ, ν satisfy η ≪ ζ ≪ µ ≪ ν ≪ γ.

By the union bound, the conclusions of Lemmas 4.3, 5.2 and 6.1 hold simultaneously with high proba-

bility. Let Vflex , Cflex be sets as given by Lemma 6.1; so |Vflex | = |Cflex| = 2µn.
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Let Vbuf , Cbuf be arbitrary subsets of V \ Vflex , C \ Cflex of size 5µn. Let H be a bipartite graph on

(Vflex ∪ Vbuf , Cflex ∪ Cbuf ) that is isomorphic to the graph in Proposition 6.3 such that Vflex , Cflex are

the flexible sets.

Claim 6.4. There is collection of absorbers Av,c on 13 vertices each and rainbow directed paths Pv,c

of length three each, for every edge vc in H, with the following properties: the internal vertices of Av,c

and of Pv,c are pairwise disjoint and disjoint of Vflex ∪Vbuf ; the internal colours of Av,c and the colours

of Pv,c are pairwise disjoint and disjoint of Cflex ∪ Cbuf ; and for some ordering of the edges of H, the

path Pv,c starts with the last vertex of Av′,c′ and ends with the first vertex of Av,c, where v′c′ is the

predecessor of vc in the ordering (with Pvc = ∅ the trivial path for the first edge vc).

Proof. Let H0 be a maximal subgraph of H with some ordering of its edges, for which we can find a

collection of absorbers and paths as in the claim. Suppose for contradiction H0 ̸= H and let v1c1 ∈
E(H \H0) and v0c0 be the last edge of H0 in the ordering that has absorber Av0,c0 .

Let V0, C0 be the union of the vertices and colours spanned by the absorbers for E(H0), the paths

connecting them, and Vflex ∪Vbuf , Cflex ∪Cbuf . Then, since each absorber has 13 vertices and each path

connecting consecutive absorbers has four vertices, we have

|V0| , |C0| = O(e(H0)) = O(µn) < νn/2.

Hence, by the assumption that Lemma 5.2 holds, there exists a (v1, c1)-absorber Av1,c1 on 13 vertices

with internal vertices and internal colours disjoint from V0 and C0. Moreover, from Lemma 4.3 there

exists a rainbow directed path Pv1,c1 of length three between the last vertex of Av0,c0 and the first

vertex of Av1,c1 , with internal vertices disjoint of V0 ∪ V (Av1,c1) and colours disjoint of C0 ∪ C(Av1,c1).

Then the subgraph of H with edges E(H0) ∪ {v1c1} satisfies the conditions of the claim and properly

contains H0, contradicting the maximality of H0.

Set

Habs :=
⋃

vc∈E(H)

(Av,c ∪ Pv,c) ,

where Av,c and Pv,c are as in Claim 6.4, with Pv,c = ∅ for the first vc,

Let w be the first vertex in the first absorber in Habs with the ordering given by Claim 6.4, and let w′

be the last vertex of the last absorber. We will now show how to construct a directed path Q from x

to y as in the statement of the lemma, given V ′ ⊆ V \ V (Habs) and C′ ⊆ C \ C(Habs) of size between

2 and ηn. Let c0 ∈ C′. From Lemma 6.1, there exists a rainbow directed path Q1 from x to w, with

internal vertices in Vflex and colours in Cflex ∪ {c0}, which includes the colour c0 and has length 7.

Claim 6.5. There exists a rainbow directed path Q2 from w′ to y, with internal vertices V ′′
flex ∪(V ′\{x}),

and colours C′′
flex ∪ (C′ \ {c0}), for some V ′′

flex ⊆ Vflex \V (Q1), C′′
flex ⊆ Cflex \ C(Q1) with

∣∣∣V ′′
flex

∣∣∣ =
∣∣∣C′′

flex

∣∣∣ ≤
µn− 7.

Proof. The Claim will follow by applying greedily Lemma 6.1.
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Let v0, . . . , vk be an enumeration of the vertices in (V ′ ∪ {w′}) \ {x}, with v0 = w′ and vk = y, and let

c1, . . . , ck be an enumeration of C′ \{c0}. We claim that there exist directed paths P1, . . . , Pk as follows:

Pi is a rainbow directed path from vi−1 to vi of length 7; the interiors of the paths Pi are pairwise

vertex-disjoint, contained in Vflex , and disjoint of V ′ ∪ {w′}; Pi contains an edge coloured ci, and all

other colours are in Cflex; and no colour appears on more than one path Pi.

To see this, suppose that P1, . . . , Pi−1 are defined. Let V ′
flex = Vflex \ (V (P1) ∪ . . . ∪ V (Pi−1) ∪ V (Q1)),

C′
flex = Cflex \ (C(P1) ∪ . . . ∪ C(Pi−1) ∪ C(Q1)). Then |V ′

flex | ≥ 2µn− 7k ≥ (2µ− ζ)n, using that k ≤ ηn,

|V (Q1)|, |V (Pj)| = 8, and η ≪ ζ, and similarly |C′
flex| ≥ (2µ − ζ)n. Hence, by Lemma 6.1 there is a

rainbow directed path Pi from vi−1 to vi of length 7, that contains an edge with colour ci, and whose

internal vertices and other colours are in V ′
flex and C′

flex, as required.

Write Q2 = P1 . . . Pk. Let V ′′
flex = V (Q2) ∩ Vflex , C′′

flex = C(Q2) ∩ Cflex. Then |V ′′
flex | = |C′′

flex| < |Q2| ≤
ζn < µn− 7, as required.

Let V ′′′
flex = (V (Q1)∪V (Q2))∩Vflex and C′′′

flex = (C(Q1)∪C(Q2))∩Cflex. Then we have |V ′′′
flex | = |C′′′

flex| ≤ µn.

Hence by choice of H there is a matching M ′ between Vflex \ V ′′′
flex and Cflex \ C′′′

flex.

For vc ∈ E(H) let QM ′(vc) be the (v, c)-absorbing path of Av,c if vc ∈ E(M ′) and the avoiding path

otherwise. Let

Qabs =
⋃

vc∈E(H)

(QM ′(vc) ∪ Pv,c).

Then Qabs is a rainbow directed path that is spanning in V (Habs) \ V ′′′
flex and C(Habs) \ C′′′

flex with first

vertex w and last vertex w′, with every colour used once. Therefore Q = Q1 ∪Qabs ∪Q2 is a rainbow

path, spanning in V (Habs) ∪ V ′ and C(Habs) ∪ C′ with first vertex x and last vertex y.

7 Conclusion

In this paper we considered the problem of containing a rainbow directed Hamilton cycle in uniformly

coloured perturbed digraphs, when the number of colours is n (optimal) and the probability is Θ(n−1)

(optimal up to a constant factor). A natural open problem to consider next is whether, under the

same assumptions, it is possible to guarantee with high probability a rainbow copy of every fixed

orientation of a Hamilton cycle, or even to prove a universality result, that is showing that we can

find a rainbow copy of every orientation simultaneously. In the uncoloured setting such a universality

result was recently obtained by Araujo, Balogh, Krueger, Piga and Treglown [5], for cycles of arbitrary

lengths (not just Hamilton cycles). They proved that for every δ ∈ (0, 1) there exists C > 0, such that

for every fixed orientation D of a cycle of length between 3 and n, with probability at least 1 − e−n,

the perturbed digraph D0 ∪D(n,C/n) (where as usual δn is a lower bound on the semidegree of D0)

contains D. Taking the union bound over the at most n2n choices for D gives the universality result.

This greatly generalises the original result of Bohman, Frieze and Martin [8] where, under the same

assumptions, they showed that with high probability the perturbed digraph has a directed Hamilton
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cycle. It is plausible that our methods in combination with those of [5] could extend the result of [5] to

the rainbow setting, i.e. that we can find with probability 1 − e−n a rainbow copy of a fixed oriented

cycle of length ℓ ∈ [2, n] when colouring uniformly with n colours.
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