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Image classification, a pivotal task in multiple industries, faces computational challenges due to
the burgeoning volume of visual data. This research addresses these challenges by introducing two
quantum machine learning models that leverage the principles of quantum mechanics for effective
computations. Our first model, a hybrid quantum neural network with parallel quantum circuits, en-
ables the execution of computations even in the noisy intermediate-scale quantum era, where circuits
with a large number of qubits are currently infeasible. This model demonstrated a record-breaking
classification accuracy of 99.21% on the full MNIST dataset, surpassing the performance of known
quantum–classical models, while having eight times fewer parameters than its classical counterpart.
Also, the results of testing this hybrid model on a Medical MNIST (classification accuracy over 99%),
and on CIFAR-10 (classification accuracy over 82%), can serve as evidence of the generalizability
of the model and highlights the efficiency of quantum layers in distinguishing common features of
input data. Our second model introduces a hybrid quantum neural network with a Quanvolutional
layer, reducing image resolution via a convolution process. The model matches the performance of
its classical counterpart, having four times fewer trainable parameters, and outperforms a classical
model with equal weight parameters. These models represent advancements in quantum machine
learning research and illuminate the path towards more accurate image classification systems.

Introduction

Image classification is a critical task in the modern
world due to its wide range of practical applications in
various fields [1]. For instance, in medical imaging, im-
age classification algorithms have been shown to signif-
icantly improve the accuracy and speed of diagnoses of
many diseases [2, 3]. In the field of autonomous vehicles,
image classification plays a crucial role in object detec-
tion, tracking, and classification, which is necessary for
safe and efficient navigation.

Deep learning approaches [4] like deep convolutional
neural networks (CNNs) have emerged as powerful tools
for image classification and recognition tasks [5, 6],
achieving state-of-the-art performance on various bench-
mark datasets [7, 8]. However, as the amount of visual
data grows, modern neural networks face significant com-
putational challenges.

Quantum technologies, on the other hand, offer the
potential to overcome this computational limitation by
harnessing the power of quantum mechanics to perform
computations in parallel [9]. Quantum machine learn-
ing (QML) is a rapidly evolving field that combines the
principles of quantum mechanics, and classical machine
learning [10–13]. This field has the potential to rev-
olutionize various areas of computing, including image
classification [14–16]. It has attracted significant atten-
tion due to its potential to solve computational problems
that classical computers are unable to solve efficiently [9].
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This potential arises from the unique features of quan-
tum computing, such as superposition and entanglement,
which can provide an exponential speedup for specific
machine learning tasks [17]. QML algorithms produce
probabilistic results, which align well with classification
problems [18]. They also operate in an exponentially
larger search space, which has the potential to enhance
their performance [19–21]. However, it’s important to
note that the realization of these advantages in practical
applications remains an active area of research and in-
vestigation. However, the real-world implementation of
quantum algorithms faces significant challenges, such as
the need for error correction and the high sensitivity of
quantum systems to external disturbances [22]. Despite
these challenges, QML has shown promising results in
several applications [23]. In the context of image classi-
fication, QML algorithms can process large datasets of
images more efficiently than classical algorithms, leading
to faster and more accurate classification [24]. Recent
studies have also explored hybrid quantum-classical con-
volutional neural networks and demonstrated the classi-
fication [18, 25–31] and generation [32–35] of images.

A promising area of research within QML for im-
age classification is the hybrid quantum neural net-
work (HQNN) [17, 36–38]. HQNNs combine classical
deep learning architectures with QML algorithms [39–
43], namely Parameterized Quantum Circuits (PQCs),
creating a hybrid system that leverages the strengths
of both classical and quantum computing. This ap-
proach allows for the processing of large datasets with
greater efficiency than classical deep learning architec-
tures alone [44, 45]. HQNNs have shown promise in a va-
riety of industrial tasks, e.g., in the healthcare [27, 30, 46–
48], chemical [49, 50], financial [51], and aerospace indus-
tries [52, 53]. Further research is needed to explore the
full potential of HQNNs in image classification and to
develop more robust and scalable algorithms.
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In this article, we propose two approaches to lever-
age quantum computing in the field of image recogni-
tion. The first approach involves applying parallel PQCs
after classical deep convolutional layers, while the second
approach involves using an HQNN with a quanvolutional
layer. We evaluate the performance of these hybrid mod-
els on the MNIST dataset of hand-written digits, which
is described in Section A1, and demonstrate their ability
to classify images.

Previous studies have primarily focused on either
purely quantum solutions [54–56] for image recognition
or various hybrid models [37]. Yet, the specific potential
of seamlessly integrating quantum circuits with classical
neural networks remains an under-explored area. In this
work, we venture into this niche and present an innova-
tive architecture for the HQNN, that is specifically de-
signed to operate even in the NISQ era, setting a bench-
mark by achieving record-breaking classification accu-
racy with significantly fewer parameters than its clas-
sical counterpart. Importantly, we achieved these results
without resorting to pretrained models or transfer learn-
ing techniques, underscoring the inherent strength of our
model’s design and training process. Our successful test
results across multiple datasets further support the claim
of the model’s broad applicability and generalizability.

The first model (described in Section B) combines clas-
sical convolutional layers with parallel quantum layers
(HQNN-Parallel). The quantum part is analogous to a
classical fully connected layer. We compare the hybrid
model with its most closely corresponding classical coun-
terpart (in terms of the architecture and the number of
layers) and observe that the hybrid model outperforms
the classical model in accuracy (achieving 99.21% accu-
racy) despite having eight times fewer parameters. More-
over, we tested this model on two more datasets, on Med-
ical MNIST, which is described in Section A2, and on
CIFAR-10, which is described in Section A3, to ensure
its generalizability.

In the second model (described in Section C), we
introduce HQNN with a quanvolutional layer (HQNN-
Quanv), which is a kernel that applies a convolution to
the input image and reduces its resolution. The HQNN-
Quanv achieves similar accuracy to the classical model
(67% accuracy) despite having four times fewer trainable
parameters in the first layer compared to the classical
counterpart. Additionally, the hybrid model outperforms
the classical model with the same number of weights.

We note that having fewer trainable parameters does
not necessarily lead to a more efficient execution of quan-
tum machine learning models compared to classical ones.
The reason for this is the much more expensive training
and operation costs required for quantum models relative
to classical models. However, with future advancements
in quantum hardware technologies, the gap in training
and operation costs between quantum and classical mod-
els might become narrower. This highlights the potential
of quantum computing and QML in advancing the field
of image recognition. Our results contribute to the on-

going research in this area and demonstrate the exciting
possibilities for the future of QML in other fields.

Results

A. Datasets

1. MNIST

This section describes the Modified National Institute
of Standards and Technology (MNIST) [57] dataset. The
MNIST database consists of a large collection of grey-
scale handwritten numbers, ranging from 0 to 9. Sample
images from the dataset are presented in Fig. 1(a). Each
image has a resolution of 28×28 pixels, and the main ob-
jective is to classify each image by assigning a class label
using a neural network. In other words, the task is to rec-
ognize which digit is present in the image. This dataset
is widely used for making the first steps in the sphere of
machine learning. Nevertheless, it is worth studying as it
helps to test the performance of various neural network
models [58, 59], especially models with PQCs [37, 54, 60].
The MNIST dataset used in this study comprises a total
of 70000 images, with 60000 images reserved for train-
ing and 10000 images for testing. However, in certain
cases, it may be advantageous to reduce the number of
images in order to expedite the training process and gain
immediate insights into the model’s performance.

4 7 9 5

4 8 5 75 6 7 8 9

0 1 2 3 4
(a) (b)

FIG. 1: a) Examples of images from the MNIST dataset.
b) Examples of ambiguous images from the MNIST dataset.

Despite being a widely used dataset, the MNIST
database contains a few images that are broken or am-
biguous, posing a challenge even for human evaluators.
Fig. 1(b) provides examples of such images. However,
our hybrid model can accurately determine the number
in such images with over 99% accuracy.

2. Medical MNIST

AbdomenCT BreastMRI CXR ChestCT Hand HeadCT

FIG. 2: Examples of images from the Medical MNIST dataset.
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The integration of QML techniques, such as HQNNs,
holds immense promise in the field of medical image clas-
sification. Quantum computing’s inherent capacity to
handle complex and high-dimensional data, coupled with
the power of neural networks, offers a unique advan-
tage for solving intricate medical image analysis tasks.
HQNNs leverage quantum computing’s ability to effi-
ciently perform certain mathematical operations required
for image feature extraction and classification, poten-
tially leading to breakthroughs in medical diagnosis and
treatment [61].

To test our models in this sphere, we utilized the Medi-
cal MNIST dataset [62], which comprises a total of 58954
medical images distributed across six distinct categories:
Abdomen Computer Tomography (AbdomenCT), Breast
Magnetic Resonance Imaging (BreastMRI), Chest X-
Ray (CXR), Chest Computer Tomography (ChestCT),
Hand X-Ray (Hand), and Head Computer Tomography
(HeadCT). Sample images from this dataset can be ob-
served in Figure 2. Each of these images possesses a
resolution of 64× 64 pixels, with our primary goal being
the classification of each image through the utilization of
a neural network.

It is noteworthy that all images within this dataset em-
ploy 3 channels, adding an additional layer of complexity
compared to the original MNIST dataset. Furthermore,
we conducted various data preprocessing techniques, in-
cluding random rotations of up to 10 degrees, random
horizontal flips, and resizing to dimensions as large as
244 × 244 pixels. These steps were implemented to sta-
bilize the training process and enhance the performance
of our models.

Similar to the MNIST classification task, we divided
the entire dataset into two subsets: a training set consist-
ing of 47163 samples and a testing set containing 11791
samples.

3. CIFAR-10

airplane automobile bird cat deer

dog frog horse ship truck

FIG. 3: Examples of images from the CIFAR-10 dataset.

The CIFAR-10 dataset is a pivotal resource in the do-
main of computer vision and image classification. Devel-
oped as part of the Canadian Institute for Advanced Re-
search (CIFAR) program, this dataset serves as a funda-
mental benchmark for assessing the performance of ma-

chine learning algorithms in the context of image classi-
fication tasks [63]. CIFAR-10 is comprised of a total of
60000 images, which are divided into training and testing
sets with 50000 and 10000 samples in each respectively.
Each image in the CIFAR-10 dataset is of size 32 pix-
els. These images are color images, incorporating three
color channels: red, green, and blue. Consequently, ev-
ery image is represented as a 32 × 32 × 3 tensor. One
of the distinguishing features of CIFAR-10 is its cate-
gorization into ten distinct classes, each representing a
different object category. These classes are as follows:
airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, truck. This diverse set of classes ensures that the
dataset is suitable for a wide range of image classification
challenges, spanning various domains and object types.
As it has more classes than Medical MNIST and input
images have bigger resolution than in MNIST, classify-
ing images from CIFAR-10 seems to be complex task.
Sample images from this dataset are shown in Fig. 3.

B. Hybrid Quantum Neural Network with parallel
quantum dense layers, HQNN-Parallel

This section describes our first proposed model, the
Hybrid Quantum Neural Network with parallel quan-
tum dense layers, each of which is a PQC. Section B 3
presents the results of our comparison between the hy-
brid model and its classical counterpart, CNN B4. The
HQNN-Parallel consists of two main components: a clas-
sical convolutional block B 1 and a combination of classi-
cal fully connected and parallel quantum layers B 2. The
main purpose of the classical convolutional block is to
reduce the dimensionality of the input data and prepare
it for further processing. The classical fully connected as
well as parallel quantum layers constitute the core of the
HQNN-Parallel, and are responsible for prediction tasks
of the model. Further details on the architecture and
implementation of the HQNN-Parallel are presented in
subsequent sections.

1. Classical Convolutional Layers

Fig. 4 depicts the general structure of the classical con-
volutional part of the proposed HQNN-Parallel. The con-
volutional part of the network is comprised of two main
blocks, followed by fully-connected layers. In this study,
we utilized Rectified Linear Unit (ReLU) as the activa-
tion function [64]. Batch Normalization [65] is employed
in the network as it stabilizes the training process and
improves the accuracy of the model.
The first block of the convolutional part of the HQNN-

Parallel comprises a convolutional layer with one input
channel and 16 output channels, utilizing a square kernel
of size 5 × 5. The layer operates with a stride of one
pixel and applies a two-pixel padding to the input data.
We opted for the 5× 5 kernel size primarily to maintain
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FIG. 4: Architecture of the proposed HQNN-Parallel. The input data samples are transformed by a series of convolutional
layers, that extract relevant features and reduce the dimensionality of the input. The output channels of the convolutional
layers are then flattened into a single vector before being fed into the dense part of the HQNN-Parallel. The hybrid dense part
contains a combination of classical and quantum layers. The quantum layers are implemented using parallel PQCs, which allow
for simultaneous execution, reducing the total computation time. Quantum layers are depicted in the figure as blue rectangles,
the top rectangle is a detailed version of subsequent quantum layers in the amount of c circuits. The output of the last classical
fully connected layer is a predicted digit in the range of 0 to 9.

the input image’s spatial dimensions. By implementing a
two-pixel padding, the 5×5 kernel facilitates the creation
of 16 channels without altering the original pixel size of
28×28. Additionally, the larger kernel sizes, such as 5×5,
can capture more complex and diverse features from the
input image compared to smaller kernels [66, 67]. This
aligns with our objective of preserving both spatial and
feature details of the image during convolution. Batch
Normalization is applied to the output of the convolu-
tional layer, followed by an activation function (ReLU)
and MaxPooling [68] with a kernel size of two pixels. The
resulting feature map has dimensions of 16×14×14 pix-
els.

The second block contains a convolutional layer with
16 input channels and 32 output channels, utilizing the
same kernel size and padding as the previous layer. The
MaxPooling parameters remain unchanged, resulting in
a feature map with dimensions of 32×7×7 pixels, which
will become an input for the fully connected part of the
network.

2. Hybrid Dense Layers

Following the convolutional block, the HQNN- Paral-
lel, continues with a hybrid dense part, as shown in Fig.
4. The 32× 7× 7 feature map produced by the convolu-
tional part serves as input for the first dense layer, which
transforms the feature map from 1568 to n features. The
value of n is determined by the chosen quantum part
and represents the total number of encoding parameters
in the quantum layers.

Each quantum layer is designed to maintain the num-
ber of input and output features, and the output of the
quantum layer is fed into the second classical fully con-

nected layer. This layer performs the final transformation
and maps the n input features to 10 output features, cor-
responding to the number of classes into which the images
can be classified. After each classical dense layer, Batch
Normalization and ReLU activation are applied.
It is worth noting that the structure of the HQNN-

Parallel, including the number of layers and the number
of features, can be adjusted to optimize the performance
on a specific task.

3. Structure of Quantum Layer

The quantum component of the proposed HQNN-
Parallel, depicted in Fig. 4, consists of c parallel quan-
tum layers, each of which is a PQC composed of three
parts: embedding, variational gates, and measurement.
The input data to the quantum layers are n features
from the previous classical fully connected layer, divided
into c parts, with each part being a vector of q values,
x = (ϕ1, ϕ2, ..., ϕq) ∈ Rq. To encode these classical fea-
tures into quantum Hilbert space, we use the “angle em-
bedding” method, which rotates each qubit in the ground
state around the X-axis on the Bloch sphere [69] by an
angle proportional to the corresponding value in the in-
put vector: |ψ⟩ = Remb

x (x) |ψ0⟩, where |ψ0⟩ = |0⟩⊗q
.

This operation encodes the input vector into quantum
space, and the resulting quantum state represents the in-
put data from the previous classical layer. It is important
to note that n is divisible by q since the input data vector
is divided into c = n/q parts, with each part serving as
input to a PQC.
The encoding part for each PQC is followed by a

variational part, which consists of two parts: rotations
with trainable parameters and subsequent CNOT oper-
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FIG. 5: (a-b) Train and test results for the HQNN-Parallel and the CNN. The HQNN has a 99.21% accuracy on the test data
and outperforms the CNN which has a 98.71% accuracy. The classical model has 8 times more variational parameters than the
hybrid one. (c) Test accuracies of the HQNN-Parallel and its classical counterpart, the CNN.
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FIG. 6: (a-b) Test results for the HQNN-Parallel and the CNN on Medical MNIST dataset. The HQNN has a 99.97% accuracy
on the test data and slightly outperforms the CNN which has a 99.96% accuracy. (c-d) Test results for the HQNN-Parallel and
the CNN on CIFAR-10 dataset. The HQNN has a 82.78% accuracy on the test data and outperforms the CNN which has a
82.64% accuracy.

ations [70]. The rotations serve as quantum gates that
transform the encoded input data according to the vari-
ational parameters, while the CNOT operations entan-
gle the qubits in the PQC. The depth of the variational
part, denoted as i, is a hyperparameter that determines
the number of iterations of the rotations and CNOT op-
erations in the PQC. It is important to note that the
variational parameters for each PQC are different in each
of the i repetitions and for each of c quantum circuits.
Thus, the total number of weights in the quantum part
of the HQNN-Parallel is calculated as q · 3i · c.
After performing these operations, measurement in the

Pauli basis matrices is performed, resulting in

v(j) = ⟨0|Remb
x (ϕj)

†
U(θ)

†
YjU(θ)Remb

x (ϕj) |0⟩ , (1)

where Yj is the Pauli-Y matrix for the jth qubit,
Remb

x (ϕj) and U(θ) are operations, performed by the em-
bedding and trainable parts of the PQC, respectively,
and θ is a vector of trainable parameters. After this op-
eration, we have the vector v ∈ Rq. The outputs of all
the PQCs would be concatenated to form a new vector
v̂ ∈ Rn that is the input data for a subsequent classical

fully-connected layer. This layer, being the final layer in
the classification pipeline, produces an output in the form
of a probability distribution over the set of classes. In our
case, each input image is associated with one of the ten
possible digits from 0 to 9, and the output of each neuron
represents the probability that the image belongs to that
class. The neuron with the highest output probability is
selected as the predicted class for the image.
More detailed theoretical analysis, involving ZX-

Calculus reduction and Fourier expressivity of the
HQNN-Parallel was conducted in Appendix A.

4. Training and results

As described above, the HQNN-Parallel was trained
on MNIST dataset A 1. No preprocessing is applied, so
the entire collection is used for training (60000 images
are in the training set and 10000 are in the test set). In
the context of training the proposed HQNN-Parallel, the
ultimate objective is to minimize the loss function during
the optimization process. The cross-entropy function is
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FIG. 7: Architecture of the HQNN-Quanv. The Quanvolutional layer maps the input image into 4 Quanvolutional feature
maps. These feature maps are then concatenated and flattened to go into the fully-connected classical layer, which gives us 10
probabilities for each class.

Dataset Model train loss test loss
test
acc

param
num

MNIST
CNN 0.0205 0.0449 98.71 372234
HQNN 0.0204 0.0274 99.21 45194

Medical
MNIST

CNN 0.456 · 10−2 0.396 · 10−2 82.64 247642
HQNN 0.429 · 10−2 0.332 · 10−2 82.78 247462

CIFAR-10
CNN 0.3659 0.5484 82.78 81698
HQNN 0.3851 0.5208 82.64 81578

TABLE I: Summary of the results for the HQNN-Parallel and
its classical analog, CNN.

employed as the loss function, given by:

l = −
k∑

c=1

yc log pc, (2)

where pc is the prediction probability, yc is either 0 or
1, determining respectively if the image belongs to the
prediction class, and k is the number of classes.
The parameters of the classical layers are optimized

using the backpropagation algorithm [71], which is auto-
matically implemented in the PyTorch library [72]. The
backpropagation algorithm is used to calculate the gradi-
ents of the loss function with respect to the parameters of
the network, allowing for their optimization via gradient
descent. However, the use of quantum layers in this task
is more complex than classical methods for computing
gradients. To overcome this challenge, we employ the
PennyLane framework [73], which provides access to a
variety of optimization techniques. We utilize the param-
eter shift rule [74], which is compatible with physical im-
plementations of quantum computing [75]. This method
involves evaluating the gradient of a quantum circuit by
shifting the parameters in the circuit and computing the
corresponding change in the circuit’s output. The result-
ing gradient can then be used to update the circuit’s pa-
rameters and iteratively minimize the loss function. By

using the parameter shift rule, we are able to efficiently
optimize the variational parameters in the quantum lay-
ers of the HQNN, enabling the network to learn complex
patterns in the input data and achieve accurate results.
In the process of solving the problem, we tried various

architectures of quantum layers. The most successful ar-
chitecture for the HQNN-Parallel used a quantum layer
with 5 qubits and 3 repetitions of the strongly entangling
layers. The number of quantum layers is equal to 4.
The HQNN-Parallel managed to achieve a 99.21% ac-

curacy on MNIST dataset. In order to compare the per-
formance of the HQNN with a classical CNN, the con-
volutional part of the HQNN was held constant, while
the quantum part was replaced with a classical dense
layer containing n neurons. This modified CNN was then
trained on the same MNIST dataset. A comparison of
the training outcomes is depicted in Fig. 5(a-b).
The trainable parameters, as well as the primary train-

ing and testing results, for both the HQNN-Parallel and
the CNN, are summarized in Table I and illustrated in
Fig. 5(c). From these results, it is evident that the
most successful implementation of the HQNN-Parallel
surpasses the performance of a CNN that possesses ap-
proximately eight times more parameters.
HQNN-Parallel with its classical analog were also

tested on Medical MNIST dataset. The HQNN-Parallel
managed to achieve a 99.97% accuracy. The classical
CNN showed less accurate results with 99.96% accuracy
on test data. It is worth noting that HQNN model
had 247462 trainable parameters and classical CNN had
247642. A comparison of the training outcomes is de-
picted in Fig. 6(a-b).
To confirm the generalizability of hybrid architecture

we tested hybrid and classical models on CIFAR-10
dataset. The HQNN-Parallel managed to achieve an
82.78% accuracy. The classical CNN showed less accu-
rate results with 82.64% accuracy on test data. It is
worth noting that HQNN model had 81578 trainable pa-
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rameters and classical CNN had 81698. A comparison of
the training outcomes is depicted in Fig. 6(c-d).

In this section, we provide a comprehensive overview
of the model’s architecture employed during training on
the MNIST dataset. While the foundational structure
remained consistent when testing on both the Medi-
cal MNIST and CIFAR-10 datasets, there were varia-
tions. Specifically, input dimensions varied based on im-
age sizes. Additionally, the number of convolutions dif-
fered: two for Medical MNIST and three for CIFAR-10.
Furthermore, the neuron count in the output layer was
adjusted in line with the respective number of classifica-
tion classes. The quantity of qubits and quantum layers
remained unchanged across all experiments.

C. Hybrid Quantum Neural Network with
quanvolutional layer, HQNN-Quanv

In this section, we give a detailed description of our sec-
ond hybrid quantum approach for solving the problem of
recognizing the numbers from the MNIST dataset, based
on the combination of a quanvolutional layer and classical
fully connected layers. The scheme of this network is pre-
sented in Fig. 7. We also compare our hybrid model with
its classical analog CNN and investigate the relationship
between quanvolutional and convolutional layers, as well
as their dependence on the number of output channels.

1. Quanvolutional layer

The general architecture of a quanvolutional layer [76]
is shown in Fig. 7. Similar to classical convolutional lay-
ers, the quanvolutional layer comprises a kernel of size
n × n pixels that convolve the input image, producing
a lower-resolution output image. However, the quanvo-
lutional layer is unique in the sense that its kernel is
implemented using a quantum circuit consisting of nq
qubits. The circuit can be decomposed into three dis-
tinct parts: classical-to-quantum data encoding, varia-
tional gates, and quantum measurement. These parts
work together to determine the kernel’s action on the
input image.

There are plenty of encoding (embedding) methods to
transfer classical data into quantum states. In this sec-
tion, as in the previous one, we use the “angle embed-
ding” technique. It is achieved by rotating the qubits
from their initial |0⟩ value with the Ry(φ) unitaries,
where φ is determined by the value of the corresponding
pixel. After the classical data is encoded, the quantum
states undergo unitary transformations, defined by the
variational part.

The variational part in the quanvolutional layer usually
consists of arbitrary single-qubit rotations and CNOT
gates, arranged in a particular way determined by the
researcher. The unitaries in the PQC are parameterized
by a set of variational parameters, which are learned via

training the neural network. The ultimate goal of the
model training is to find a measurement basis (by tweak-
ing variational gate parameters) that tells us the most
information about a fragment of a picture confined by
the quantum kernel.
Finally, for each wire, the expectation value of an arbi-

trary operator is calculated to obtain the classical output.
As it is a real number, it represents the kernel’s output
pixel, while each wire yields a different image channel.
For instance, a quanvolutional kernel of size 2 × 2 has
a 4-qubit circuit, which transforms one input image into
four images of reduced size.

2. Structure of HQNN-Quanv

This subsection details the architecture of the HQNN-
Quanv, which is shown in Fig. 7. At first, a simple angle
embedding of the classical data via Ry(φ) single-qubit ro-
tations on each wire is used, where the original pixel value
[0, 1] is scaled to φ ∈ [0, π]. Then, we have a variational
circuit part, which consists of 4 single-qubit rotations,
parameterized with trainable weights, as well as three
CNOT gates. At the end of the circuit, we measure the
expectation value ⟨σz⟩ of the Pauli-Z operator on each
qubit. Each channel is a picture with 4 × 4 pixels. After
that, four output channels are flattened and fed into a
fully connected layer, which yields a digit’s probability.

3. Training and results

In this section, we describe the training process. In
order to reduce the training time of the HQNN-Quanv,
only 600 images from the MNIST dataset A 1 are used
with 500 of them acting as training data and 100 as test
data. We also use PyTorch’s resize transform with bi-
linear interpolation to downscale images from 28× 28 to
14× 14 pixels. We still use a cross-entropy loss function.

While the classical model has only one way of train-
ing weights via backpropagation, the HQNN has several
options, such as the parameter-shift rule, adjoint differ-
entiation [77] or backpropagation (which, of course, is
impossible on a real quantum computer). Adjoint differ-
entiation seems to have the most favourable scaling with
both layers and wires [78], but on this particular circuit
(Fig. 7) backpropagation proved to be quicker.

Considering everything stated above, let us see the re-
sults of the training. We trained two CNNs with different
numbers of output channels and one HQNN for 20 epochs
(Fig. 8(a-b)). The models were intentionally made sim-
ple and had sufficiently few parameters so as to avoid
overfitting on the relatively small dataset. Test accura-
cies of these models are presented in Fig. 8(c). For each
epoch, the accuracy is averaged over 10 models with ran-
dom initial weights. The error bars depict one standard
deviation.
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FIG. 8: (a-b) Train and test accuracies for the CNN and HQNN-Quanv models with stride set to 4. The models differ only in
the kernel and the number of output channels. 1. HQNN: Quanvolutional kernel with 1 input channel, and 4 output channels;
2. CNN1: Convolutional kernel with 1 input channel, and 1 output channel; 3. CNN4: Convolutional kernel with 1 input
channel, and 4 output channels. The HQNN-Quanv achieved an accuracy of 67±1% on the test data, outperforming the CNN1
with an accuracy of 53± 2% and the CNN4 with an accuracy of 66± 2%. Notably, the CNN1 has the same number of weights
in the kernel as the hybrid model, while the CNN4 has four times more weights than the hybrid model. (c) Test accuracies
for HQNN-Quanv (67%), CNN1 (53%) and CNN4 (66%). The HQNN outperforms the CNN1, which has the same number of
variational parameters. The HQNN’s accuracy score is equivalent to CNN4’s, which has four times many weights in its kernel.

At the end of the training, the HQNN-Quanv had
a test accuracy of 0.67 ± 0.01, which is close enough
to the CNN4 result of 0.66 ± 0.02, while CNN1 had
0.53 ± 0.02. The HQNN model has only 4 trainable
weights in its quanvolutional kernel, which parameterizes
rotation gates in the PQC. CNN1 and CNN4 have 4 and
16 trainable parameters in their convolutional kernels,
respectively. Therefore, the HQNN’s performance based
on the accuracy score is equivalent to CNN4’s, which has
four times many weights in its kernel.

Discussion

In this work, we introduced two hybrid approaches to
image classification. The first approach was an HQNN-
Parallel. This method allowed us to classify handwritten
images of digits from the MNIST dataset with an accu-
racy of more than 99%. The classical model achieved a
similar performance of 98.71% and has eight times more
weights in a neural network. We also tested this model on
the Medical MNIST, where we achieved a quality of over
99%, and on CIFAR-10, where we showed that the hybrid
model classifies images with an accuracy of over 82% bet-
ter than its classical counterpart with a similar number
of weights. These examples confirm the generalizability
of the HQNN-Parallel model. Also, the successful imple-
mentation of parallel parameterized quantum circuits in
the hybrid model was demonstrated, which led to such re-
markable results. Our proposed architecture is a unique
combination of classical and quantum layers, which we
believe to be a breakthrough in solving image classifica-
tion problems.

The second approach we presented was an HQNN-

Quanv. The quanvolutional layer uses fewer weights, four
times less than the classical analog, to achieve approxi-
mately the same classification accuracy (67± 1% for the
hybrid model versus 66± 2% for the classical one on the
test samples when averaged over ten models), while the
classical analog with the same number of variational pa-
rameters as the hybrid model achieves an accuracy of
53± 2%.

Hybrid quantum approaches developed in this work
often had significantly fewer weights in the correspond-
ing neural networks. However, the reduced number of
weights does not imply increased efficiency of the hybrid
approach due to the slower training of the hybrid model
compared to the classical one with the same number of
weights. In practice, to obtain a practical advantage
with the fewer number of weights, more efficient quan-
tum computers or simulators of quantum computers are
required.

Our research, conducted during the NISQ era, navi-
gated the inherent constraints of current quantum cir-
cuits, such as noise levels and qubit entanglement limita-
tions. Relying on a hybrid quantum-classical approach,
the study was designed with current quantum hardware
in mind and assumed seamless integration of quantum
circuits within classical layers. Despite these consider-
ations, our models demonstrated quantum superiority
across three datasets, including MNIST. However, we
recognize the need for broader validation to ensure holis-
tic generalization across diverse datasets and real-world
scenarios. Further research is needed to explore the full
potential of HQNNs for image classification, including
testing more complex architectures. Additionally, the de-
velopment of more efficient optimization techniques for
training PQCs and the implementation of larger-scale
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quantum hardware could lead to even more significant
performance improvements.

In summary, our developments provide two hybrid ap-
proaches to image classification that demonstrate the
power of combining classical and quantum methods. Our

proposed models show improved performance over clas-
sical models with similar architectures. We believe that
these results pave the way for further research in devel-
oping hybrid models that utilize the strengths of both
classical and quantum computing.
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Appendix A: Theoretical Analysis

This section theoretically analyzes the quantum lay-
ers used in the HQNN-Parallel model in section B. We
focus on the methodologies of the ZX-calculus [79] to ex-
plore circuit reducibility, and Fourier accessibility [80] to
examine the data embedding strategy and expressivity.

1. ZX-Calculus Reduction

ZX-calculus is a graphical language that replaces cir-
cuit diagrams with ZX-diagrams by replacing quantum
tensors with so-called “spiders”, nodes on a graph with
edges that connect them [79, 81, 82]. These spiders come
in two flavors, a light or green-colored spider that repre-
sents tensors in the Z basis (|0⟩, |1⟩) and a dark or red-
colored spider that represents tensors in theX basis (|+⟩,
|−⟩). ZX-diagrams can be simplified and reduced with
the language’s graphical rewrite rules based on the un-
derlying quantum operations. For example, repetitions
of Pauli rotations sum together to form one Pauli rota-
tion with an angle equal to the sum of its parts. This
is translated into ZX-calculus as a specific instance of
the more general rule of “fusing” spiders, where nodes of
the same color combine and sum their angles. More gen-
erally, quantum operations often possess subtle symme-
tries that make it difficult to implement effective circuits,
and for exponentially large systems, matrix multiplica-
tion quickly becomes unwieldy. Essentially, ZX calculus
replaces tedious matrix multiplication of quantum gates
with easy-to-apply graphical rules. Thus, analysis of ZX

https://github.com/apolanco3225/Medical-MNIST-Classification
https://github.com/apolanco3225/Medical-MNIST-Classification
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(a)

(b)

FIG. 9: ZX-Calculus graphs. (a) The quantum layer from HQNN-Parallel (Fig. 4) written in ZX-calculus. (b) The same
quantum layer as in part (a) that has been reduced with ZX rewriting rules. All weights and inputs are on independent nodes,
which suggests the model is absent of redundancy.

diagrams are helpful for identifying redundancies in a
quantum model.

To analyze the reduced quantum layer of Fig. 9(a),
we first represented it as a red-green ZX-diagram. Then
ZX-calculus’s rewriting rules are applied to simplify the
circuit and remove redundancies. Finally, the resulting
new circuit is extracted. Fig. 9(b) shows the simplified
circuit in ZX form. Note that the reduced ZX-form still
has all the initial parameters wi on separate nodes. This
indicates that the model does not reduce away any of the
inputs or trainable parameters. This verifies that all the
weights and input data in the circuit actually make an
impact on the final result.

2. Fourier Expressivity

Ref. [80] showed that the output of a parameterized
quantum circuit is equivalent to a truncated Fourier se-
ries. For a feature vector of length N , the Fourier series
as a function of the feature vector x and trainable pa-
rameters θ is:

fθ(x) =
∑

ω1∈Ω1

. . .
∑

ωN∈ΩN

cω1...ωN
(θ)e−iω·x,

where ωi ∈ {−di, . . . , 0, . . . , di}. In other words, the
number of terms in the Fourier series is one more than
twice the number of times that input was placed in the
circuit, d. In this analysis, we show the expressivity of the
function fθ(x) by sampling over a uniform distribution
of random values for each θi from [0, 2π] and by sampling
equidistant x values with a sampling frequency of d.

For visual clarity, we display only the first two terms
(associated with the first two features) of the model on
the final output of the quantum circuit. If we write these
inputs as x and y, the output function fθ(x) becomes,

fθ(x, y) =

1∑
ωx=−1

1∑
ωy=−1

cωx,ωy
(θ) e−iωxxe−iωyy

Fig. 10 demonstrates a violin plot of the Fourier co-
efficients cωx,ωy

sampled over various θ realizations. A
completely non-expressive model would have terms close
to zero for all these coefficients. Instead, the figure shows
that the weights of the quantum layer have a wide range
of possible solutions. Additionally, the determinate of
the correlation matrix of all values was equal to zero for
every output, demonstrating the independent and expres-
sive nature of all the Fourier terms in the model.
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FIG. 10: A violin chart of 100 samples of the values of the Fourier coefficients for the first and second input parameters of the
final output measurement. The ij-th indices along the center line represent the Fourier coefficient cij . The width of the violins
represents the number of samples at that magnitude. The large spread on both the real and imaginary part of every coefficient
implies high expressivity in the model.
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