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SOBOLEV SPACE THEORY FOR POISSON’S AND THE HEAT
EQUATIONS IN NON-SMOOTH DOMAINS VIA
SUPERHARMONIC FUNCTIONS AND HARDY’S INEQUALITY

JINSOL SEO

ABSTRACT. We prove the unique solvability for the Poisson and heat equations
in non-smooth domains Q C R? in weighted Sobolev spaces. The zero Dirichlet
boundary condition is considered, and domains are merely assumed to admit
the Hardy inequality:

To describe the boundary behavior of solutions, we introduce a weight sys-
tem that consists of superharmonic functions and the distance function to the
boundary. The results provide separate applications for the following domains:
convex domains, domains with exterior cone condition, totally vanishing ex-
terior Reifenberg domains, conic domains, and domains  C R? which the
Aikawa dimension of Q¢ is less than d — 2.
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1. INTRODUCTION

The Poisson and heat equations are among the most classical partial differential
equations. Together with the Schauder and Lj-theories, the L,-theory for these
equations in R? and C2?-domains has been developed long before. In particular,
there are extensions in various directions, including variable coefficients [18] [50],
semigroups [27, 58], and non-smooth domains. This paper concentrates on non-
smooth domains, where unweighted or weighted L,-theories have been developed
for several tyes of domains: C*-domains [33} [37], Reifenberg domains [10} [I1], con-
vex domains [I, 20], Lipschitz domains [28 [74], smooth cones [42] [63], [66], and
polyhedrons [43] [6T], [62].

In this paper, we present a weighted L,-theory for the Poisson equation

Au=f in Q ; wulgn=0 (1.1)
and the heat equation
Uy = Au + f in (07 OO) x £ ; U(O, ) =Uup , u|(0,oo)><69 =0. (12)

Here, Q C R? is an open set admitting the (Lo-)Hardy inequality, i.e., when there
exists a constant Co(£2) > 0 such that

/Q‘%‘2dx§CO(Q)A|Vf(x)|2dx for all f e CX(Q), (1.3)

where d(-,99) is the distance function to the boundary of Q. One of notable suf-
ficient conditions for the Hardy inequality is the volume density condition:
c
o MEENB0) (1.4)
ped m(B.(p))
>0
where m is the Lebesgue measure on R? (see Remark [5.1T]).
Our main results are introduced in a simplified manner in Subsection The
results provide separate applications for the following domain conditions:
(1) Domains 2 satisfying (L4);
(2) Domains 2 C R? with dim4 Q¢ < d — 2;
(3) Domains satisfying the exterior cone condition, and planar domains satsi-
fying the exterior line segment condition;
(4) Convex domains;
(5) Domains satsifying the totally vanishing exterior Reifenberg condition;
(6) Conic domains (containing smooth cones and polyhedral cones).
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These applications are presented in Subsubsections [[L3}1 - [[L36, sequentially. Be-
fore summarizing the main results and their applications, we first introduce several
studies related to the L,-theory of the Poisson and heat equations in various do-
mains.

1.1. Historical remarks and aims of this paper.

Remark on L,-results for non-smooth domains. One of the most remarkable
studies on the Poisson equation in non-smooth domains is the work of Jerison and
Kenig [28], where the authors proved the following result:

Theorem ([28], Theorems 1.1-1.3 and Proposition 1.4). For a domain Q C R? and
p € (1,00), we denote

WHQ) = the closure of C°() in Wi (Q);

111 - (1.5)
W, (Q) = the dual space of Wp/(p_1)(Q) :

(1) For any bounded Lipschitz domain Q C R, there exists € > 0 such that if
4/3—e<p<4+e when d=2;
3/2—e<p<3+¢e when d>3,

then for any f € Wp_l(Q), the equation Au = f is uniquely solvable in
Vi/pl (Q). For the solution u, we have

lullwz) < NIl (o -

(2) If p > 4 when d = 2, and p > 3 when d > 3, then there exists a bounded
Lipschitz domain Q and f € W, '(Q) such that the equation Au = f does

not have solution u in VVp1 Q).

This theorem establishes that the Poisson equation is not uniquely solvable in un-
weighted Sobolev spaces VT/Z}, in general, for non-smooth domains 2 and values
of p € (1,00). For (1) of the above theorem, Jerison and Kenig investigated the
trace map w — w|gq for w € Wz} (RY) satisfying Aw = flg, and the homogeneous
Dirichlet problem Av = 0; v|ga = w|sq. The Lipschitz boundary condition for 2
plays a crucial role in this context.

Elliptic and parabolic equations in smooth cones and polyhedrons have been
extensively studied in the literature, including studies in [43] [61) [62] (for elliptic
equations) and [42] 63, 66] (for parabolic equations). Here, a smooth cone is a
domain Q C R? defined as

Q={roc :r>0 and o€ M},

where M is a a smooth subdomain of S*~! := 9B;(0) (see Figure [6.7). The refer-
ences provide the unique solvability of the equations in specific weighted L,-Sobolev
spaces for all p € (1,00), by using the spectral theory of so-called operator pencils
for elliptic equations and by using Green function estimates for parabolic equations.
The weight system in these Sobolev spaces (for smooth cones and polyhedrons) con-
sists of distance functions for each vertex and edge; the range of weights for the
solvability is closely related to the eigenvalues of the spherical Laplacian on M.
Furthermore, by Sobolev-Holder embedding theorems (introduced in [62, Lemma
1.2.3, Lemma 3.1.4]), the pointwise behavior of solutions near vertices and edges is
also obtained.
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The aforementioned studies suggest considering weight systems associated with
each domain and Laplace operator to investigate the solvability of the Poisson
and heat equations in various non-smooth domains and to describe the boundary
behavior of solutions.

There are many other notable studies in this area. In Section [[L3] dealing with
several types of non-smooth domains, we mention works relevant to each situation.

Remark on the method of this paper. Our approach is based on the localiza-
tion argument developed by Krylov [46], where the author investigated the Poisson
and heat equations in the half space R? := {(z1,...,z4) : z1 > 0}. Krylov provides
the following weighted L,-estimates (see [46, Theorem 4.1]): if § € (—p — 1, —1),
then for any n € No, v € C(2) and f := Au,

n+2 p n p
/d <Z|kakUI> pedxﬁ/d <Z|pk“Dkf|> P’ d, (1.6)
R N k=0 Ry Nk=o

where p(z) = d(z,0R%) = 21 for x = (21,...,24). By setting § = —p, this implies
[l a1 D2 s £ [ ofP e+ DR e
RE RS

The value of 6 in (L6 describes the boundary behavior of solutions and their
derivatives. We further refer to [46, Theorem 3.1] for Sobolev-Hélder embedding
theorems for the above weight system.

Briefly speaking, the proof of [46, Theorem 4.1] can be divided into two steps.
Firstly, a localization argument is applied to estimate higher order derivatives of
the solution u (the left-hand side of (L6l)) by the zeroth-order derivative of u
([ |ulPp? dz) and the force term f (the right-hand side of (L6])). Secondly, the
author estimates the zeroth-order derivative of u by f, using the weighted Hardy
inequalities for R, ; the sharp constants in the weighted Hardy inequalities play a
crucial role.

The localization argument used in [46] is applicable to any domain and any 6 € R,
not just to RY and 6 € (—p—1, —1) (see, e.g., [37,38] or Lemma[3.22). However, the
second step of the proof for [46] Theorem 4.1] cannot be directly applied to other
domains; this step relies on the weighted Hardy inequalities for R . For instance, the
authors of [38] employ the localization argument for parabolic equations in smooth
cones. However, in contrast to the approach in [46], they use pointwise estimates
of Green functions to estimate zeroth-order derivatives of solutions since weighted
Hardy inequalities on conic domains have yet to be explored as extensively as those
on R, .

We concentrate on the (unweighted) Hardy inequality (T3] to estimate zeroth-
order derivatives of solutions. We do this because the Hardy inequality holds on
various non-smooth domains (see (I4))), and the approach used in [46] is indepen-
dent of the kernels of the Poisson and heat equations. To the best of our knowledge,
the class of domains admitting the Hardy inequality is broader than the class of
domains for which sharp estimates for the Poisson kernel have been investigated.

To focus on the Hardy inequality, we note the work of Kim [36], where the author
investigated stochastic parabolic equations in bounded domains 2 admitting the
Hardy inequality. In particular, in [36, Theorem 2.12] the author provides a (L)
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type estimate, in which (R%, p(-)) is replaced by (€, d(-,99)) and the range of 6 is
restricted to to around —2.

This work revealed a connection between the Hardy inequality (L3]) and the
approach used in [46]. However, it should be noted that the range of 6 in [30]
Theorem 2.12] is not specified. Therefore, the results in [36] may not fully describe
the boundary behavior of solutions sufficiently well and may not include the results
on R¢ [46] and C'-domains [37).

Objective and approach of this paper. This paper aims to develop a general
L,-theory for the Poisson equation (L)) and the heat equation (I.2) in a variety of
non-smooth domains. We focus on domains that merely admit the Hardy inequality,
following [36]. A distinguishing feature of this paper from earlier studies is the use
of superharmonic functions. These functions are used with the Hardy inequality to
estimate zeroth-order derivatives of solutions, as shown in Theorem [Z.11]

Furthermore, we introduce the concept of Harnack functions and reqular Har-
nack functions (see Definition [[]) to extend the localization argument employed
in [46] to a broader class of weight functions. These notions enable us to obtain a
unified formulation for the main theorem. While the weight system used in most
applications within this paper consists only of the distance function to the bound-
ary, the notion of Harnack functions helps us to derive a result for conic domains,
as presented in Subsection

The main result of this paper, Theorem [[5 establishes that for a domain
admitting the Hardy inequality (I3]) and a superharmonic Harnack function v on
2, equations ([I)) and ([T2)) are uniquely solvable in weighted Sobolev spaces related
to 1. This result has applications to various non-smooth domains listed below (L.4)
(see Subsection [[3). By proving the existence of suitable superharmonic functions
reflecting geometric conditions for domains, we obtain unique solvability results
that differ for each domain condition (see Theorems (512 (211 G.10] G.T8]).

Our results bridge the gap between [37], [46] and [36]. Since we only assume the
Hardy inequality for domains, this paper can be seen as an extension of [36]. In
addition, when focusing only on the Poisson and heat equation, Corollaries
and encompass [46, Theorem 4.1, Theorem 5.6] and [37, Theorem 2.10], re-
spectively.

Finally, we mention that the approach presented in this paper can be applied
not only to the Poisson and heat equations but also to extended evolution equa-
tions, such as the time-fractional heat equations and the stochastic heat equation
(for definitions, see, e.g., [26, [34] and [35] 39, [44], respectively). The localization
argument presented in Section Ml and the results that provide appropriate super-
harmonic functions for each domain (see Sections [l and [l) can be directly applied
to these equations. In future work, we plan to extend the results obtained in this
paper to these extended evolution equations.

1.2. Summary of the main result. Let d € N, 2 C R? is an open set, and
T € (0, 00]. We denote

p(x) := d(z,00) := dist(x, 00)
and when T' = oo, we adopt the convention that [0, 7] = [0, 00).

Definition 1.1. Let ¢ : Q@ — R, be a locally integrable function.
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(1) ® is said to be superharmonic if Ay <0 in the sense of distribution, i.e.,
/ PYA(dz <0 for all ¢ € CX(02) with ¢ > 0.
Q

(2) We call ¢ a Harnack function if ¢ > 0, and there exists a constant Cq ()
such that

ess su <C ess inf for all z € Q.
B(z,p(z)I?Q) v ' (w)B(myp(r)ﬂ) v

The primary motivation for the concept of Harnack functions is a localization
argument. The following is proved in Lemma 1 is Harnack if and only if there

exists U € C*°(2) such that

U ~ 1 almost everywhere on €;
k —k (L.7)
|D*¥| < p~ "0 forall k € N.

We call ¥ a regularization of ¢. The concept of regularization enables us to gen-
eralize a localization argument used in [46] to a broader class of weight functions;
see Lemmas and for this generalization.

We introduce weighted Sobolev spaces and weighted Sobolev-Slobodeckij spaces.

Definition 1.2. Let p € (1,0), 0, 0 € R, and ¢ is a Harnack function.
(1) Forne€ {0, 1,2, ...} and 0 < s < 1, we denote

i im = D [ 10 DA 0 (= S 10D )
k=0 k=0

||f||€vgg’5(ﬂﬁwg): ||f||z‘:V:,9(Q,'L/J") + [an]gvs

p,0+np

Q)
where
() = h(y)[” 0
7]y . ;:/ (/ e Ay |0 (@)7 pla) P e
Wiosn @0 Jo X\ tytayi<ptwyzy 12— ylFor
(2) For n € Nand s € [0,1), we denote
||f||W;g+s(Q)wg) = inf{ Z Hp_‘alfa||W§,9(Qy¢") Cf = Z Dafa}.
la|<n |a|<n
(3) For v € R, we denote
W) o(Q,97) = {feD(9Q): |\f|\w;e(9,wa) < oo},
where D’(2) denotes the spaces of all distributions on €.
Definition 1.3. Let p € (1,0), 0, c € R, n € Z.

(1) We denote W7 ,(Qr,¢7) = Ly ((0,T); W, (Q,47)).

(2) By WZ’ZZQ(QTJ/JU), we denote the set of all w : [0,T] — D'(Q) satisfying
the following:
o ue W'H(Qr,97) and u(0,-) € W)'a 2,2/ (Q,4°);

p,
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e there exists f € W (Qr,17) such that

p,0+2p

<u(t,~),<> = <u(0,~),<>—|—/0 <f(s,),<> ds . (1.8)

for all ¢t € (0,7] and ¢ € C°(Q).
In the case (L), we denote Oyu = f. The norm of W;gQ(QT, ¥7) is defined

by
||U||w;,;2(sz,¢v) = ||u||w;l’+92(n,¢v) + [[u(0, ')||W;;i;2/p(97wa + ||3tu||wg o2p (D7) -
Remark 1.4.

(1) The spaces W) (%, 47), W} o(2,97) and W' 5(€,47) appear only in this
section. However, these spaces have the following equivalent relation (see

Propositions [A7] [A-8 Corollary B.16] and Remark [4.6]):
o Let n € Z,0< s <1,and let U be a function satisfying (L.7).

na(Qu7) = UTOPHD Q) and WIEN(Q,47) = UTUPBIES (Q),

where \Il_”/pnger and \If_"/pB; 9+q are introduced in Subsections([3.2]
and (421 In addition,

Who(Qr, 07) = O7H 4, o(Q,T) and - Wyg2(Qr, 07) = WPHER (Q,T),
where U~ "/pH”9+d and U~ "/p’H,Zgid( ) are introduced in ([@I6) and

the below of (I, respectively.

(2) Propertles of W y(Q,47) and W} (1, 7)) are introduced in Subsections
3.2l and [ Espec1a11y, Lemmas B]ZL Za and Proposition .9 provide that
the dual space of W ,(Q,97) is W%, (€2, ¢, where

1 1 06 0 o o

p' vV p P p P
In addition, W), (£2,¢7) is a Banach space, and C2°(Q2) is dense in W) (2, 97).
Similarly, W;)G(Q, ¥7) is a Banach space, and Cg"([O, 00) X Q) is dense in

W, o(,47).

For 0 <1y <wy < oo and T € (0, 00], we denote

e M(vq,1v2) @ the set of all d x d real-valued symmetric matrices (aij dxd

satisfying
d
nlg? < Y algg <mle? YV EeRY
|

o My (vi,12) : theset ofall £ := Z i1 a¥(-)D;;, where {a¥ (-)}; j=1.._aisa
family of time measurable function on Ry such that (a"(t)), , € M(v1,v2)
for all ¢t € (0,T).

We state main results of this paper as a version by W;G(Q, P7).

Theorem 1.5 (see Theorems BI8 ET12] with Proposition and Remarks 319
[A13). Suppose that

€(l,00),n€Z, o€ (—p+1,1);
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Q admits the Hardy inequality (L3);
1 1s a superharmonic Harnack function on €.
(1) For any A >0 and f € W'y, 5(2,97), the equation
Au—du=f
has a unique solution u in W;f%(Q,d)") Moreover, we have

lullwrtz.pe) + Mlullwy,, L@y < NIfllwy,, 0w
where N depends only on d, p, n, o, Co(2) and Cy1 ().
(2) For any f € W} o, »(Qr,v7) and ug € W;gz_wp(ﬂ, ¥7), the equation
u=Au+f ; u(0)=u

has a unique solution u in W"2 Qr,97). Moreover, we have
p,—2 I i

Fullyr ey < N (0lgraarm g gy + 170, im0
where N depends only on d, p, n, o, Co(2) and Cy ().
(3) Let 0 < v1 < vy < oo and L € Mrp(v1,v2), and additionally assume that v
satisfies
o Dijih <0
in the sense of distribution for all (a*)gxa € M(v1,12). Then for any f €
W2 o) 2 (Qr,¢7) and ug € W:a&*z/p(Q,w“), the equation
w=Lutf 5 u(0)=uo

has a unique solution u in Wgt% (Qr,v?). Moreover, we have

||u||W;’t22(QT,¢") < N (||u0||W;g2*2/P(gL¢o) + ||f||W" (QT,’l/JU)> 5

P,2p—2
where N depends only on d, p, n, v1, va, o, Co(Q) and C1(¢).
The constant function 1g is a trivial example of superharmonic Harnack func-
tions. As another example, it is provided in Example 3.2]] that if  is a domain
(connected open set) admitting the Hardy inequality, then Gq(xo, -) A1 is a su-

perharmonic Harnack function, where Gq is the Green function for the Poisson
equation in ) and xq is an arbitrary fixed point in €.

1.3. Summary of applications. This subsection considers a domain Q C R<,
where d > 2. For convenience, we denote

W;G(Q) = W;9(97 1) ) Z,G(QT) = WZ,G(QTv 1) ) WZG(QT) = W;ZG(QTv 1) )
and define the following statement:
Statement 1.6 (Q,p,0).
[Pois| Let A > 0. For any n € Z, if f € W;'4(), the equation
Au—du=f (1.9)

. . . n+2
has a unique solution u in Wp)9+2p(ﬂ). Moreover, we have

[ullwrs2i) + Allullwnizi@) < Nillfllwniz) (1.10)
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where Ny is independent of f, u, and .

[Heat] For any n € Z, if f € Wy ,.5,(Qr) and ug € W:;f;z/p(Q), then the
equation

w=Autf ; u(0)=u

has a unique solution u in ngz(QT). Moreover, we have
||“||Wg§2(QT) < N2(||u0||W;;i;2/p(Q) + ||f||WZE2(QT)) ) (1.11)

where Ny is independent of f, u, and T.
[Para] Let £L € My (v,v=1) for somev € (0,1]. Foranyn € Z, if f € W2 g0, (021)

P
and ug € W:;ﬁ;wp(ﬂ), then the equation
we=Lutf i u(0)=ug

has a unique solution u in ng(QT). Moreover, we have

||u||W;‘;2(QT) < N3 (||U0||W:ﬁ52/P(Q) + ||f||WZE2(QT)> ’ (1.12)

where N3 is independent of f, u, and T'.

1.3.1. (Subsections [5.1] and [5.2]) Domains with fat exterior.

Consider a domain 2 satisfying the capacity density condition for Q°:

o Sap (0 B.(p), Bar(p))
reo2 Cap (Br(p), Bar(p))

>€ >0, (1.13)

where Cap(K,U) denotes the capacity of K relative to U (for the definition, see
E0). Tt is worth noting that this condition has been studied in the literature,
including [4, [5] [6L 56], and the volume density condition (4] is a sufficient condition

for (LI3) (see Remark GTT)).

Theorem 1.7 (see Corollary B3] with Remark BIT)). Let Q satisfy (LI3). Then
there exists a > 0, which depends only on d and ey, such that for any p € (1,00)
and 0 € R satisfying

—2-(p-la<b<—-2+a,
Statement [LA (2, p, 0)-[Pois, Heat] holds. In addition, Ny (in (LI0)) and N2 (in
(TII)) depend only on d, p, n, 0, and €.

Moreover, we also obtain a solvability result for the Poisson and heat equations
in unweighted Sobolev spaces W (Q), where W} () is the closure of CZ°(Q) in

Wpl(Q) ={feD'(Q) : Iz, + IV Fllz,@ < oo}
Theorem 1.8 (see Theorem [5.14). Let Q satisfies (LI3) and

A>0 if do:=supd(z,00) <oco and A>0 if dg=o0.
e

Then there exists € € (0,1) depending only on d, ey (in (LI3))) such that for any
p € (2—¢,2+¢€), the following holds:
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For any f°, ..., f1 € L,(%), the equation

d
Au—)\uzfo—i-ZDifi

=1

is uniquely solvable in Wp1 (Q). Moreover, we have

d
1 . _ i
Vull,@) + ) )l 2, () Sdapeo min (A2, do) | £l L, @) + Z £z -

min (A~1/2, dg —

A counterpart of Theorem [I.§ for parabolic equations is provided in Theo-
rem [9. 19

1.3.2. (Subsection [5.3]) Domains with thin exterior.

dim 4 Q¢ denote the Aikawa dimension of ¢, which is defined as the infimum of
[ > 0 such that

1
sup  — p(x)~ 4P dr < Ag < o0,
peQe,r>0T" JB(p,r)

with considering 0~! = co. We consider a domain (2 for which dim4(Q°¢) < d—2. A
relation between the Aikawa dimension, the Hausdorff dimension, and the Assouad
dimension is mentioned in Remark 5] For instance, for a Cantor set C' C {(t,0,0) :
0<t<1}, Q:=R3\C satisfies

dim 4 (Q2¢) = Hausdorff dimension of C' =log;2 < 3 — 2.

Theorem 1.9 (see Corollary £:23)). Let d > 3 and dim4(Q°) =: o < d — 2. For
any p € (1,00) and 6 € R satisfying

—d+fo <0 < (p—1)(d— o) —2p,

Statement [LA (2, p, 0)-[Pois, Heat] holds. In addition, Ny (in (LI0)) and N2 (in
(TI1)) depend only on d, p, n, 8, Bo, and {Ag}s>3a,-

1.3.3. (Subsection [6.7]) Domains with exterior cone condition.

For § € [0,7/2) and R > 0, Q is said to satisfy the exterior (6, R)-cone condition
if, for every p € 99, there exists a unit vector e, € R? such that

{reR?: (x—p)- e, >|r—p|lcosd , |z —p| < R} C Q°;

when 0 = 0, this condition is often called the exterior R-line segment condition.
Examples for this condition are given in Example and illustrated in Figure 6.1
Given § > 0, we denote

BTN ZEFITY

where As > 0 is the first eigenvalue for Dirichlet spherical Laplacian on

{o =(01,...,04) € 0B1(0) : 01 < cosd}.
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When d = 2 and § = 0, we set \s = 1/2. We provide information on As in (64)
and Proposition [6.3] Note that 0 < As < 1 for 0 < § < 7/2, and

1
limAs =0 ifd>3 and limAs== ifd=2. (1.14)
N0 N0 2

Theorem 1.10 (see Corollary [6.0). Let 6 € (0,7) if d >3, and § € [0,7) if d = 2.
Assume that Q satisfies the (9§, R)-exterior cone condition, where

0<R<oo 1if Q is bounded;
R =00 if Q@ is unbounded.

Then, for any p € (1,00) and 6 € R satisfying
“Alp—1)—2<b< s —2,

Statement [1.0 (2, p, 0)-[Pois, Heat] holds. In addition, if Q2 is bounded, then Ny (in
([CI0)) and Ny (in ([LII))) depend only on d, p, n, 6, §, and diam(Q)/R. If 2 is
unbounded (and R = o), then N1 and N2 depend only on the same parameters,
except for diam(Q))/R.

Corollary [6.6] deals with the exterior cone condition, which can be considered as
a generalization of the Lipschitz boundary condition. One of the most well-known
studies on Lipschitz domains is the work of Jerison and Kenig [28]. It should be
noted that Corollary 6.6l and [28, Theorems 1.1, 1.3] address different aspects of the
Poisson equation in non-smooth domains, and hence cannot be directly compared.

For instance, let 2 C R? be a bounded domain satisfying the exterior (0, R)-cone
condition, R > 0. Theorem guarantees the unique solvability of equation (9]
in Wpl(Q), for p € [3/2.3] and f € W, 1(Q) (see Remark [LTT1(1) and (LI4)). On
the other hand, in Theorem 1.3 of [28], Jerison and Kenig showed that if Q C R? is
a bounded Lipschitz domain, then the unique solvability is ensured for p € [4/3,4].
Therefore, for bounded Lipschitz domains, the range of p provided in [2§] is broader
than what is implied by Theorem However, the class of domains considered
in Theorem is broader than the class of Lipschitz domains.

Notably, the results in [28] are more comprehensive than what has been described
above, especially regarding the regularity of solutions. To compare [28] with Corol-
lary in general cases, we refer the reader to the following remark on function
spaces:

Remark 1.11. This remark explains the relation between the function spaces W; 0 ()
(and H) 4, 4(€?) in Definition B.7) and other types of Sobolev spaces.

(1) Recall the definition of WZ} (Q) and W, '(Q) in [@5). If Q is a bounded
domain satisfying (I4]), then there exists N = N(§) > 0 such that

FP + ’i’pdx <N [ |VfPdz Y feCE(Q)
Q P Q

(see, e.g., [22, (7.44)] and [72] page 60]). This implies that Wpl(Q) =

W, _,(Q). Furthermore, by Remark[L4l(2), we also have W, 1(Q) = W, }(Q).
(2) Let © be a bounded Lipschitz domain, and let L£(2) and L% , denote func-

tion spaces introduced in [28] Section 2], where p € (1,00) is the inte-

grability parameter, and s € R is the regularity parameter. To avoid any
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ambiguity, we use the notation L2(Q) to refer to L .. We recall that for
any k=0,1,2, ...,

k
LY(Q) =WHQ):={feD'Q): Y |D'fll, < o0};
i=0

LP(€Q) = the closure of C°(Q) in L2(Q);
L7, (9) = the dual of LI/®™V ().
In addition, H§)9+d(ﬂ) = WﬁG(Q), where H§79+d(Q) is the space defined in
Definition B7
Since C°(€) is dense in H§79+d, we have
HO () =LE and HF, ,(Q)CL(Q) VEkeN, pe(l,00).

Using the interpolation properties for L2(Q) and H 4(Q) (see [28, Corol-
lary 2.10] and Proposition [A-2](3), respectively), we obtain that for any

s >0, Hy, () C LP(€). We also obtain that for s < 0, LP(Q) C
Hp ; ., (Q). Indeedn, LE(€2) and H; ;. (€2) are the dual spaces of lo'fils Q)

and H 5, (), respectively, where p’ = p/(p — 1).

1.3.4. (Subsection [6.2]) Convex domain.
Q is said to be convex if for any z, y € Q and ¢ € [0,1], (1 — t)z + ty € Q.

Theorem 1.12 (see Corollary [6.11)). Let d > 2 and 1 < p < oo. Suppose that 2 is
convex (not necessarily bounded). For any p € (1,00)) and § € R satisfying

-p—1l<l< -1,

Statement [0 (€2, p, 0)-[Pois, Para] holds. In addition, Ny (in (LI0)) depends only
ond, p,n, 0, and N3 (in (LI2)) depends only on the same parameters and v; in
particular, N1 and N3 are independent of ).

Adolfsson [I] and Fromm [20] have established the solvability of the Poisson
equation in bounded convex domains. In terms of unweighted estimates for higher
regularity, their result is more general than Corollary [6. 111 However, Corollary [6.11]
considers convex domains that are not necessarily bounded and also provides solv-
ability results in weighted Sobolev spaces; when comparing these results with Corol-
lary [617] it is useful to note Remark [[.TT] and that bounded convex domains are
Lipschitz domains (see, e.g., [25, Corollary 1.2.2.3]).

Combining the results of Corollary with [25] Theorem 3.1.2.1] may yield
results similar to [20, Corollary 1]. However, we do not pursue this direction in this

paper.

1.3.5. (Subsection [6.3]) Totally vanishing exterior Reifenberg condition.

This subsubsection discusses the totally vanishing exterior Reifenberg condition
(abbreviate to ‘(TVER)’), which is a generalization of the concept of bounded
vanishing Reifenberg domains introduced below (614).

To clarify the main point of (TVER), in Definition [[.T3] we provide a simpli-
fied version of the concept in Definition [121(3); (TVER) in Definition is a
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sufficient condition for the totally vanishing exterior Reifenberg condition in Defini-
tion[6.12(3). (Figure[GHlillustrates the differences between the vanishing Reifenberg
condition, (TVER) in Definition [[T3] and the totally vanishing exterior Reifenberg
condition in Definition 6121 (3).)

Definition 1.13. We say that (2 satisfies the totally vanishing exterior Reifenberg
condition (abbreviate to ‘(TVER)’) if for any ¢ € (0,1), there exist Ry,5, Roo,s > 0
satisfying the following: for every p € 92 and r» € Ry with r < Ry 5 or r > R s,
there exists a unit vector e,, € R? such that

QN B.(p) C{x € By(p) : (x—p)-ep, <or}. (1.15)

As shown in Example [6.14] (TVER) is fulfilled by bounded domains of the fol-
lowing types: the vanishing Reifenberg domains, C''-domains, domains with the
exterior ball condition, and finite intersections of Reifenberg domains. Moreover,
several unbounded domains also satisfy (TVER) (see Proposition [6.15).

We now present our result for the Poisson and heat equations in domains satis-
fying (TVER).

Theorem 1.14 (see Corollary [620). Suppose that Q satisfies (TVER). For any
p € (1,00) and 0 € R satisfying
—-p—1<l< -1,

Statement(€2, p, #)-[Pois, Para] holds. In addition, Ny (in (LI0)) depends only on
d, p,n, 0, and {ROJ;/R and N3 (in (LIZ)) depends only on the same

parameters and v.

0016}66(0,1]’

The Poisson and heat equations in bounded vanishing Reifenberg domains have
been investigated in the literature, such as the works of Byun and Wang [10, [IT],
Choi and Kim [13], and Dong and Kim [18]. More specifically, these studies focus
on the elliptic and parabolic equations with variable coefficients, and the results in
[13} 18] also provide weighted L,-estimates for Muckenhoupt A,-weight functions.
It is worth noting, however, that these studies mostly dealt with bounded vanish-
ing Reifenberg domains. In contrast, Theorem [[.T4] considers the class of domains
satisfying (TVER), which includes bounded vanishing Reifenberg domains.

1.3.6. (Subsection [6.4]) Conic domain.

Let M be a subdomain of S¢71 := {z € R? : |z| = 1} and Q be a conic domain
generated by M, i.e.,
Q={roc :r>0, oceM}.
We consider M satisfying Assumption [6.23 this assumption is satisfied if 2 is a
smooth cone or polyhedral cone (see Proposition [6.241(3)).
For r € (0,1], we denote

BY:=QNB,(0) cR? and Q%= (1-121]x BY.
Ao > 0 represents the first Dirichlet eigenvalue for spherical laplacian Ag on M;

for the definition and more information of Ag and Ag, see (E39) and Proposi-
tion [6:241 (1), respectively. We define

Ao = —?—F\/Ao—i— (?)2.
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We obtain the following pointwise estimate for homogeneous solution to the heat
equation in :

Theorem 1.15 (see Theorem .25 and Remark 6.26). Let M C S¢71(d > 2)
satisfy Assuption[6.23, and suppose that u € C™®(QY) satisfies that

uy = Au in QY
lim  wu(t,x) =0 whenever 0<ty <1, xy € (00)N B;.
(t,z)—(to,x0)

Then for any X € (0,Xo) and R € (0,1),
fu(t, 2)] < N (suplul)lal* ¥ (t,2) € QF, (1.16)
Qf

where N = N(Q,¢, R) > 0.

When € is a smooth cone, i.e., M C S%! has a smooth boundary, estimate
(TI0) is already established in the literature (see, e.g., [42, Theorem 2.1.3]). In
Lemma 3.8 of [42], an estimate of the same type as ([L.IG) was employed to obtain
pointwise estimates for Green functions for parabolic equations in smooth cones.
Following the approach in [42], we anticipate that Theorem can be used to
derive estimates of the heat kernels for polyhedral cones, as Assumption [6.23] holds
for such cones. However, we leave the details for future work.

1.4. Plan for the paper and notation. We provide an outline of Sections [2] -
and Appendix [Al

In Section 2, we present key estimates associated with superharmonic functions
and provide weighted L,-estimates for zeroth-order derivatives of solutions to the
Poisson equation.

Section [ is devoted to function spaces for the Poisson equation and the solv-
ability of this equation. Subsection B] introduces the notions of Harnack functions
and regular Harnack functions. Subsection B2 presents the weighted Sobolev spaces
UH) ,(Q), where ¥ is a regular Harnack function and H) ,(f2) are the Sobolev
spaces introduced in [46, 57]. Additionally, we provide properties of WH. ;9(9) in
this subsection. In Subsection [B.3] we prove the unique solvability of the Poisson
equation in the context of WH ,(92).

Section[lfocuses on the heat equation. Subsection €Il presents results for the heat
equation corresponding to Section 2] while Subsection introduces the function
spaces for parabolic equations. In Subsection [£.3] we prove the unique solvability
of parabolic equations.

In Section [ we begin by exploring the relationship between the Hardy inequal-
ity and dimensional notions. We also recall classical results for superharmonic func-
tions. Subsections [5.1] and present results for domains introduced in Subsubsec.
1.3.1, while Subsection [5.3] provides results for domains introduced in Subsubsec.
1.3.2.

Section [0 sequentially provides results for domains introduced in Subsubsec-
tions 1.3.3 - 1.3.6.

Appendix [Al discusses the function spaces H) (), WH) ,(Q), B) (), and
UB) ,(52). Appendix [A1] complies properties of H) () and B (), based on
the analysis in [46] 57]. In Appendix [A2] we provide auxiliary results used in the
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proofs of Lemmas and B12(5). Finally, Appendix [A3] offers equivalent norms
for WH 4(2) and \IIB;};S(Q), where n € Ny and s € (0,1).

Notations.

e We use := to denote a definition.
e Throughout the paper, the letter N denotes a finite positive constant which

may have different values along the argument while the dependence will be
informed; N = N(a,b,---), meaning that N depends only on the parame-
ters inside the parentheses.

A <ap,... B means that A < N(a,b,...)B, and A ~,; . B means that
A Sa,b,... B and B Sa,b,... A.

e aVb:=max{a,b}, a Ab:=min{a,b}.
e R? stands for the d-dimensional Euclidean space of points « = (xt,. .., :Cd),

and R? := {z = (',...,2%) : 2! > 0}.

e S%7! denotes S = {(z1,...,2q) ER? 1 \/(z1)2+ -+ (za)? = 1}.
e N denotes the natural number system, No = {0} UN, and Z denotes the set

of integers.

For z = (xlu' .. wrd)a Yy = (ylu' .. 7yd) in Rd? -y = (‘Tvy)d = Z?:l iy
denotes the standard inner product. |z| denotes v/z - .

e For an open set O in R%, 9O denotes the boundary of O, O\ O.
e A non-empty connected open set is called a domain.
e For aset E C RY d(x, E) denotes the distance between a point = and a set

O € R?, defined by inf,cp |z — y|. For two sets By, E» C R, d(Fy, Ey) :=
inf,ep, d(z, Eg).

For a set E C R?, 1x denotes the indicator function on F so that 1g(z) = 1
ifx € E,and 1g(x) =0ifz ¢ E.

For a measure space (4, A, 1) and a measurable function f : A — [—o0, o0l

esssup f :=esssup f(x) := inf{a € [—00, 0] : ,u({x cA: f(z)> a}) =0},
A z€A

essAmff = eiseglff(x) = —ess:up(—f).

For a measure space (4, A, (1), a Banach space (B, || - ||g), and p € [1, o0l
we write L,(A, A, u; B) for the collection of all B-valued .A-measurable
functions f such that

1 ey = [ I < o0 it pelloo);
Il ca,a,mB) :ZQSSSX.pr(LL‘)HB<OO if p=oo.
e

Here, A is the completion of A with respect to p. We will drop A or u or
even B in L,(A, A, ii; B) when they are obvious in the context.
For any multi-index a = (a1, ..., aq), a; € {0} UN,

of of o o o
Of = FIR foi i =D;if = ek D f(x) := Dy*--- D" f(x).
We denote |a| := Ele a;. For the second order derivatives we denote

D;D;f by D;jf. We often use the notation |gf,[? for |g|P )", |D;f|P and
|9 fzalP for |g|P 32, 5 [Dsj f|P. We also use D™ f to denote arbitrary partial
derivatives of order m with respect to the space variable.
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Af = Ele D;; f denotes the Laplacian for a function f defined on O.
For n € {0} UN, W(O) := {f : 30|, <, Jo [D*f|P dz < oo}, the Sobolev
space.
For an open set O C R? and a Banach space B, C(O;B) denotes the
set of all B-valued continuous functions f in O such that |f|co;p) =
supe || fllB < o0. For n € N, by C™(O; B) we denote the set of all f : O — B
which is strongly n-times continuously diffrentiable on O with

|fllceom = (sup D" f(@)l5) < oo

k=0 TEQ

For n € Ny and o € (0,1], by C™*(O; B) we denote the set of all f €
C"(O; B) such that

Ifllem=oi) = I flonoim) + [fleneom)
= florom + sup 2D =D W5
( ) ) e |x_y|0¢

supp(f) denotes the support of the function f defined as the closure of
{z : f(z) # 0}. For an open set O C R4 C>(0) is the the space of
infinitely differentiable functions f for which supp(f) is a compact subset
of 0. Also, C*°(0O) denotes the the space of infinitely differentiable functions
in O.

Let O C R? be an open set. For X(0) = L,(O) or C"(0) or C™*(0),
Xioc(O) denotes the set of all function f on O such that f¢ € X(O) for all
¢ € C(0).

For an open set O C R, D'(O) denotes the set of all distrubitions on O,
which is the dual of C2°(Q). If f is a distribution with the reference domain
O, then the expression (f, ¢), p € C(0O), will denote the evaluation of f
with the test function ¢.

For F € D'(f2), the notation F' > 0 denotes that (F,{) > 0 for any ¢ €
C(Q) with ¢ > 0.

2. KEY ESTIMATES FOR THE POISSON EQUATION

This section aims to obtain estimates for the zeroth-order derivatives (the func-

tion itself) of solutions to the Poisson equation

Au—Adu=f inQ ; wulspa=0,

where A > 0 and Q admits the Hardy inequality (see Theorem 2.IT]). In this esti-
mates, superharmonic functions are used as weight functions. We begin with the
definition and elementary properties of superharmonic functions.

Definition 2.1.

(1) A function ¢ € L} () is said to be superharmonic if A¢ < 0 in the sense

loc
of distribution on 2, i.e.,

/¢A§dx§0 Ve e Q).
Q

(2) A function ¢ : Q — (—o0, +00] is called a classical superharmonic function

if the following are satisfied:
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(a) ¢ is lower semi-continuous on €.
(b) For any x € Q and r > 0 satisfying B,.(x) C Q,
[
T Yy)ay,
m(B:()) /5. @)

where m is the Lebesgue measure on RY,
(c) ¢ # +oo on each connected component of €.

P(x) >

Recall that ¢ is said to be harmonic if both ¢ and —¢ are classical superharmonic
functions.

Remark 2.2. Equivalent definitions of classical superharmonic functions are in-
troduced in [7, Definition 3.1.2, Theorem 3.2.2]. It follows that if ¢ is a classical
superharmonic function on a neighborhood of each point in 2, then ¢ is a classical
superharmonic function on Q.

Remark 2.3. It is well known that every classical superharmonic function is super-
harmonic. Conversely, if ¢ is a superharmonic function, then there exists a classical
superharmonic function ¢y such that ¢ = ¢y almost everywhere on 2. They can be
found in [7} Theorem 4.3.2] and [68] Proposition 30.6], respectively.

Proposition 2.4. Let ¢ be a classical superharmonic function on Q.

(1) If ¢ is twice continuously differentiable, then A¢ < 0.

(2) ¢ is locally integrable on .

(8) For any compact set K C Q, ¢ has the minumum value on K.
(4) For e >0, put

6O (z) = /B (610) (@ — ey)C(y) dy., (2.1)

where

2
() == Noe /71015 o) (2)

and Ny is a positive constant such that fRd Zdaz = 1. Then for any compact
set K CQ and e € (O, d(K, QC)), the following hold:

(a) ¢'9) is infinitely smooth on RY.

(b) ¢\ is a classical superharmonic function on K°.

(¢c) For any x € K, ¢')(x) / ¢p(x) as e \, 0.

For this proposition, (1) - (3) follow from Definition 2] and Remark 23] and
(4) can be found in [7, Theorem 3.3.3].

Remark 2.5. If ¢ is a positive classical superharmonic function on 2 and ¢ < 1,
then ¢¢ is locally integrable on 2. Indeed, for any comapct set K C , if ¢ € (0, 1],
then by Proposition [241(2),

/I(¢Cdx§|K|1*C(/K¢>dx)°<oo.

If ¢ < 0, then by Proposition [Z41(3), m;(ix(#) = (m}%n ¢)° < 0.
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Lemma 2.6. Let ¢ be a positive classical superharmonic function on Q. If f €
LY(Q) and supp(f) is a compact subset of ), then for any c € R,

. (e)\¢ _ c
ggl%/ﬂlfl(q5 ) dz /Q|f|¢ dz, (2:2)
where ¢\ is defined in (Z1)).

Proof. Take a bounded open set U such that supp(f) C U and U C ). Proposi-
tion 241 implies that for 0 < € < d(supp(f),U¢) and « € supp(f),

o (z) A p(x) as e\, 0, and 0 <ming=:m < ¢ (z).
T

If ¢ > 0, then ([22) follows from the monotone convergence theorem. If ¢ < 0,
then | f|(¢9))° < me|f|, and therefore ([Z2) follows from the Lebesgue dominated
convergence theorem. 0

Remark 2.7. Under the assumption in Lemma 2.6] we additionally assume that
¢ <1 and f is bounded. Then f¢° is integrable on ) (see Remark[ZH]). By applying
Lemma 206 with f replaced by max(f,0) and max(—f,0), we obtain

. (e)\¢ - c
ll_r)%/ﬂf(gb ) dx—/ﬂfgb dz.

The following is the key lemma of this section.

Lemma 2.8. Letp € (1,00) and ¢ € (—p+1,1) and suppose that u € C(2) satisfies
that

supp(u) is a compact subset of Q,

weCE.({xeQ :ulx)#0}) , and / |u|P~ D?u|dz < oo, (2:3)

and ¢ is a positive superharmonic function on a neighborhood of supp(u).
(1) If ¢ is twice continuously differentiable, then

2
/|u|P¢°*2|V¢|2dxg( =) / |ulP~2|Vu|26¢ dz. (2.4)
Q l-c QN{u#0}

(2) If (Au)l{yz0y is bounded, then

/ |u[P~2|Vul?¢°de < N (—Au) - ulu|P~?¢¢ dz, (2.5)
QN{u#0} QN{u#0}

where N = N(p,c) > 0.
(3) If the Hardy inequality (L3)) holds for Q, then

[ lupeoas < [ulP2 [Vl dz, (2.6)
Q Qn{u#0}

where N = N(p,c,Co(R2)) > 0.
Lemma is mainly used for v € C2°(£). However, in order to obtain ap-
propriate solutions of the Poisson equation that are aruitable for our purpose

(see Lemma [2.12), we consider the condition (23] in Lemma 2.8 Before proving
Lemma 2.8 we introduce a lemma that help us handle functions satisfying (2.3]).

Lemma 2.9. Let p € (1,00) and u € C(RY) satisfy (2.3).
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(1) [u[P?>~ u € W3 (RY) and Di(|ul?/> u) = §luP/>~H(Diu) {0y -
(2) |ulP € WER?) and

Di([ul?) = plulP"*uD;ul fyr0y ;
Dij([ul?) = (plu[’"uDiju + p(p — 1)|u[P"*DjuDju) 1{y0}-

The proof of Lemma is provided in the end of this subsection.

Remark 2.10. If ([L3) holds, then the inequality in (L3]) also holds for all f €
W4(€2), where W4 (Q) denotes the closure of C°(£2) in W} ().

Proof of Lemma[2Z.8 By Remark[2.3] we may assume that ¢ is a classical superhar-
monic function on a neighborhood of supp(u). In this proof, all of the integrations
by parts are based on Lemma

(1) Recall that ¢ is twice continuouly differentiable on a neighborhood of supp(u).
Integrate by parts to obtain

(1-0) /Q P62 V|2 de

=~ [ 1apvs- (o) as

“ (2.7)
b [ g (Vu- Voo + [ JuPo a0 do

QN {u0} Q

1/2 1/2
<o [ prweperan) ([ e vetas)
QN {uz0} Q

where the last inequality follows from the Holder inequality and that A¢ < 0 on
{u # 0}. Since the first term of (2.7 is finite, we obtain (2.4]).

Although in (2) and (3), we do not assume that ¢ is infinitely smooth, we can
restrict our attention to this case. This is because if @3) and (Z8) hold for ¢(¢)
instead of ¢, for all sufficiently small € > 0, then ([235) and (26l also hold for
¢ by Lemma and Remark 2771 Note that if 0 < e < d(supp(u),df?), then
that ¢(©) is a positive superharmonic function on supp(u) (see Proposition 2.4 ).
In addition, |u[P~2|Vu|?1{,.0; and |u[P’p~? are integrable (see Lemma 29) and
—Au-u|ulP 1,40y in ZF) is bounded. Therefore, in the proof of (2) and (3), we
additionally assume that ¢ is infinitely smooth.

(2) Case 1. c€ [0,1)

Integrate by parts to obtain

—Au-uluP2¢¢dz = (p— 1) /

Q Qn{u#£0}

p—2 2 ¢ _1 p c
P Vuo do /Q|u| A(°) de.
Since

A(G) = oAb +elc— 16 2VEP <0 on supp(u),  (2.8)

[23) is obtained.
Case 2. c€ (—p+1,0)
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Due to integration by parts, Holder inequality, and (24]), we have

/ —Au - ulu|P%¢¢ dx

Q

(=) [ P2 (TuPe do e [ (Tu) (Vo)ulu e da
Q Q

>(p=1) [ JuP 2 VuPe do
Q

1/2
e / P2 Vg dz - / P2V [? da
QN{u#0} Q

-1
2Pl [ et ds.
- Q

(3) Recall that ¢ is assumed to be positive and smooth on a neighborhood of
supp(u). Due to Lemma 23] |u[P/2~ u¢® belongs to W3 (2) and

(jul/2tuge) = g|u|p/2’1(Vu)1{u¢0}¢c/2 " §|u|p/2¢c/27lv¢'
Therefore, due to the Hardy inequality (see Remark 210) and (24), we have

/ “u|p/27lu¢c/2‘2p72 dz
Q

S0 Cols) | (Ju Va0 g + [P 62T
Q

Spie CO(Q)/ |u|P~2|Vu|?¢° da.
QN{us£0}
O
Theorem 2.11. Let p € (1,00) and suppose that
Q admits the Hardy inequality (L3);
¢ s a positive superharmonic function on Q, and —p+1<c<1.
If u € C(Q) satisfies 2.3) and (Au)lg,20y is bounded, then for any A > 0,
/ lulPgcp=2da < N/ |Au — Mu|P¢Cp®P 2 dx,
Q Q
where N = N(p, ¢, Co(£2)).
Proof. Since A > 0, Lemma 2.8 implies
/ lulPpp~2da < N/ (—Au) - uluP~*1 {20y ¢° do
Q Q (2.9)

= N/ (—Au+ M) - ululP 120y 6° dz
Q

where N = N(p,c,Co(R2)) > 0. Since ¢¢p~2 is locally integrable on Q (see Re-
mark 275)), the first term in (29) is finite. By the Holder inequality, the proof is
completed. O

Lemma 2.12 (Existence of a weak solution). Suppose that [L3]) holds for Q. Then
for any X > 0 and f € C*(Q), there exists a measurable function u : Q@ — R
satisfying the following:
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(1) u € Ly 10c(82).
(2) Au— Au= f in the sense of distrituion on 2, i.e., for any ¢ € C°(Q),

/ u(A¢ — XC) dx:/ f¢dx. (2.10)
Q Q
(8) For anyp € (1,00), p € (—1/p,1—1/p) and positive superharmic function
¢ on €,
[uroroan < [ (pomre2as (2.11)
Q Q

where N = N(p, ¢, Co(R2)) > 0.
Proof. Take infinitely smooth bounded open sets €2,,, n € N, such that
supp(f) C 1, 2 C i, ([JW =20

(see, e.g., [16, Proposition 8.2.1]). For h € C2°(Q1) and n € N, by R ,h we denote
the classical solution H € C*°(Q,,) of the equation

AH — \H = thl on Qn ) H|8Q =0.
Since
Q,, is a compact subset of Q , Ry n,h € C®(Q,), Rinhlaq, =0,

we obtain that (Rxnh)lq, € C(Q) satisfies 23). By Theorem Il for any p €
(1,00), u € (—1/p,1 —1/p) and positive superharmonic fucntions ¢ on 2, we have

[ 1)

Note that N in (212) is independent of n.
Take F' € C°(1) such that F > |f|, and put

flzf_TF and  fo =

so that f17 f2 < 07 and fl _f2 :f
For v,, := (R,\,n f1) 1q, , the maximum principle implies that

p=2da < N(p,c, Co() / B[P o2 dy (2.12)
Q

—f-F
2

(2.13)

0<v,<wvp41 on .

We define v(z) := lim, 00 ’Un( ). By applying the monotone convergence theorem
o 212) with (h, ¢, p,c) = (f1,1q,2,0), we obtain

[ ko2 s [ 1nRear,

which implies that v € L 10c(£2).
We next caim that for any ¢ € C°(Q),

/QU(AC—/\C) dx:/ﬂflcdx. (2.14)

Fix ¢ € C(Q), and take N € N such that supp({) C Qn. It follows from the
definition of v, = Ry, f1 that for any n > N,

/Qvn(AC—)\C) dx:‘/ﬂflgdx.
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Since 0 < v, < v and v € L 10¢(2), the Lebesgue dominated convergence theorem
yields ([2.14). By the same argument,

w:= lim (Rynf2)la,

belongs to Li 1oc(§2), and satisfies that for any ¢ € C°(§),

/w(AC—AC)dxz/fQCd:E.
Q Q

Put
u=0v—w= lim {(RAnf) lgn}
n— o0

(the limit exists almost everywhere on Q). Then u € L1 10c(€2), and u satisfies (2.10]).
In addition, by applying Fatou’s lemma to (Z12]) with h = f, (211 is obtained. O

Remark 2.13. We discuss Lemma and the Green functions for the Poisson
equation. It follows from [7, Theorem 4.1.2, Theorem 5.3.8] and [6l, Theorem 2]
that if Q admits the Hardy inequality, 2 also admits the Green function Ggq :
0 x Q — [0, 00] for the equation

—Au=f on Q

(the definition of G can be found in [7] Detinition 4.1.3]). For {2, }en in the proof
of Lemma [2T2] Gq, increases and converges to Gg on 2 x Q (see e.g. [7, Theorem
4.1.10]). Since f1 in (ZI3) belongs to C°(2,) and €, is a infinitely smooth domain,

we have

i ulea =0

Ronfi(z) = — /Q G, (@,9)f1(y) dy.

The monotone convergence theorem implies that

mm:mnwmmmmmmzié%@Mﬁ@@.

n—r oo

By the same argument for w, we conclude that the function v = v—w in Lemma[2Z.12]
is representated by

wm:—AGmeﬂw@.

We end this subsection providing the proof of Lemma

Proof of Lemma[Z9. This proof is a variant of [46, Lemma 2.17]. Take nonnegative
functions g, € C'(R) such that

gn = 0 on a neighborhood of 0 for each n € N, and
gn(8) A |s[P/2 M4z for all s € R.

Recall the assumption ([23), and denote A = sup |u|. Since 0 < g, (s) < |s[P/271,
the Lebesgue dominated convergence theorem implies that

¢
2

/ gn(s)ds — = |t|p/2_1t7
0 p

3

—
~+

~

Q
3
—~
~+
~

I

t
2 1 —92
gn(s)) ds - ——|t|P™<¢
/0( () il
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uniformly for ¢ € [—A, A]. Furthermore, there absolute values increase as n — co.
Since F,(u) and G, (u) vanish on a neighborhood of {u = 0}, these functions are
supported on a compact subset of {u # 0}, and continuously differentiable with

DZ(Fn(u)) = gn(u)Diulg,20y and D; (Gn(u)) = (gn(u))2Diu T{uz0y -

(1) Integrate by parts to obtain

/ |gn (v)Vu 1{u¢0}|2 dr = —/ Gr(u)Au 1,20y do
Rd ]Rd
1
< — |u[P~ | Au| dx .
P =1 Jiuzoy

Apply the monotone convergence theorem to obtain that
|uP/?71|Vu| € Ly(RY). (2.15)

We denote v = %|u|p/2_1u. For any ¢ € C2°(R?), we have

—/ v-D;(dr = — lim F,(u)-D;¢dx
R n—oo R
= lim gn(w)Diu - (dx = / lu[P/2 1 Dyu - ¢ dax .
o0 J{uzt0} {u#0}

Here, the first and the last equalities follow from the Lebesgue dominated con-
vergence theorem, because |F,(u)| < |v| and |gn(u)] < |u[P/?7! (recall @IH)).
Therefore v € W} (R?) and D;v = [u|P/2"*Dju 1,203
(2) It follows from (1) of this lemma that [ul? € W{(RY) with D;(|u’) =
plulP72uD;ulyzo. For any ¢ € C°, we have
1 -2
— [ulP"*uD;u - D¢ dz
-1
p {u#0}
= lim Gn(u)D;u - D;¢ dx

n—oo R

= — lim (|gn(u)|2DiuDju + Gn(u)Diju)Cdx

n—oo R4

1
—/{ Loy (|U|p72DiuDju+ - 1|u|p72UDijU1{u7é0})<dI.
u#0

Here, the first and last inequalities follow from the Lebesgue dominated conver-
gence theorem, because |Gy, (u)| < ﬁ|u|p’1 and |g, (u)| < |u[P/?>~" (recall (ZI5)).
Therefore |u[P~2uD;u € Wi (R%) and

Dj(JulP~"?uDsu) = |u[P~*DiuDju + |u|p72uDiju1{u¢0} .

p—1
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3. WEIGHTED SOBOLEV SPACES AND SOLVABILITY OF THE POISSON EQUATION

In this section, we focus on the Poisson equation
Au—du=f (A>0)
in an open set Q C R¢ admitting the Hardy inequality. We use the weighted Sobolev
UH) ,(Q) introduced in Definition B.7] for the classes of the solution u and the

force term f. It is worth noting that the zero Dirichlet condition (u|sq = 0) is
implicitly considered in these Sobolev spaces, as C2°(€2) is dense in WH ,(2) (see

Lemma [312]).

We recall the organization of this section. In Subsection 3.1l we present the no-
tions of Harnack function and reqular Harnack function. Subsection B2l introduces
the weighted Sobolev spaces W H ;9(9), which is a combination of regular Harnack
functions ¥ and the spaces H) ,(2); the spaces H) ,(Q2) was first introduced by
Krylov (for Q = R%, [46]) and Lototsky (for general €2, [57]). In Subsection B3]
we prove the main theorem of this section (Theorem BI8]), through Section [2] and
the localization argument used in [46]. The concept of regular Harnack functions
helps us state the main theorem in a unified manner to obtain useful applications
provided in Subsections [Bl and

3.1. Harnack function and regular Harnack function.

Definition 3.1.
(1) We call a measurable function ¢ : Q@ — Ry a Harnack function, if there
exists a constant C' =: C1(¢)) > 0 such that

esssup ¥ < C essinf ¢ forallz €.
B(z,p(z)/2) B(z,p(x)/2)

(2) We call a function ¥ € C*°(Q) a regular Harnack function, if ¥ > 0 and
there exists a seqeunce of constants {C'®) } oy =: Cy(¥) such that for every
keN,

|IDFw| < C® p=kF on Q.

(3) Let ¢ be a measurable function and ¥ be a regular Harnack function on
Q. We say that W is a regularization of v, if there exists a constant C' =:
Cs(1, ¥) > 0 such that

C7v < ¥ < CWV almost everywhere on (2.

A relation between the notions of Harnack functions and regular Harnack func-
tions is provided in Lemma

Ezxample 3.2.

(1) For any E C Q°, the function = — d(z, E) is a Harnack function on €.
Additionally, C1(d(-, F)) can be chosen as 3.
(2) Let ¥ € C*°(Q) satisfy

U >0 and AV =-AV

for some constant A > 0. We claim that ¥ is a regular Harnack function
on , and Co(¥) can be chosen to depend only on d. To observe this, for a
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fixed xo € 2, put
u(t, ) := e_Kp(wO)%\I/(xo + p(wo))

so that us = Au on Rx B1(0). The interior estimates (see, e.g., [49, Theorem
2.3.9]) and the parabolic Harnack inequality imply that for any k € R,

p(0)*| DU (x0)| = [DFu(0,0)] Skoa lullpa(—1/2,01x 5120 Sa u(l,0) < W(wo).

(3) The multivariate Fad di Bruno’s formula (see, e.g., [I5, Theorem 2.1]) im-
plies the following;:
Let U CRYand V C Rbeopensetsand f: U — V andl:V — R be
smooth functions. For any multi-index «,

||

k
Do ) < NWda) Y ([P o] 3 T[ID%5).
k=1 B1t+...+Br=c i=1
[Bil>1
This inequality implies that for any regular Harnack function ¥ on €2, and
o € R, U7 is also a regular Harnack function on €2, and C2(¥7) can be
chosen to depend only on d, o, Co().

(4) If ¥ and ® are regularizations of ¢ and ¢, respectively, then U®, U 4 &,

and qﬁr—‘p‘y are regularizations of ¢, max(y, ¢), and min(¢, @), respectively.

Lemma 3.3. A measurable function ¢ : Q@ — Ry is a Harnack function if and
only if there exists r € (0,1) and N, > 0 such that

esssup ¥ < N, essinf ¢ for all z € Q.
B(z,rp(z)) B(z,rp(x))

In this case, C1(v)) and N, depend only on each other and r.

Proof. We only need to show that for fixed constants ro, r € (0,1) and N>1,

if  esssup 1/)§]\7 essinf ¥ Vax e,
B(z,rop(x)) B(z,rop())

then  esssup w§1\~72M+1 essinf ¥ VzeQ,
B(z,rp(x)) B(z,rp(x))

where M is the smallest integer such that M > m
If r < 7o, then there is nothing to prove. Consider the case r > ry. For z € (2
we denote B(z) = B(z,rop(x)). For fixed zgp € Q and y € B(zo,rp(z0)), put

xk:(l—ﬁ)xo—l—ﬁy,k:l,...,M. Since

(3.1)

p(zk) = p(zo) — |20 — k| = (1 —1)p(20),
we obtain that
|0 — yl

|21 — 2x| = =77 < (1 = r)rop(zo) < r0p(2k) -
Therefore x;_1 € B(xy), which implies B(xi—1) N B(zy) # 0, and hence
esssupy < N ess infy < N  essinf P < N ess sup ¥ . (3.2)
B(zk) B(wy) B(wg—1)NB(zk) B(wk_1)
By applying B2) for k=1, ..., M, we have
esssupy) < NMesssup ). (3.3)

B(y) B(zo)
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Since B(zo, rp(xo)) is contained in a finite union of elements in

{B(y) : y € B(zo,rp(0))},

B3) implies
esssup ¥ < NM s sup . (3.4)
B(zo,mp(x0)) B(zo,rop(z0))
By the same argument, we obtain that
essinf < NM essinf . 3.5
B(zo,m0p(z0)) v B(xo,rp(z0)) v (3:5)

By combining ([34]), (3], and the assumption in (B1]), the proof is completed. O

Remark 3.4. Let ¢ be a Harnack function on €. Since 1 € L 10¢(f2), almost every
point in € is a Lebesgue point of ¥. If x € € is a Lebesgue point of ¥, then for any
r € (0,1),
essinf ¢ < (x) < esssup 9.
B(x,rp(x)) B(z,rp(x))
By Lemma[33] we obtain that for almost every 2 € Q and for any r € (0, 1), there
exists N, > 0 depending only on C;(¢) and r such that

Nt esssup ¢ < ¢(z) < NTB?ssinf Y.
z,rp(z

" B(erp()) (2))

Lemma 3.5.

(1) If v is a Harnack function, then there exists a regularization of 1. For this

reqularization of 1, denoted by J, CQ(’JJ/) and Cs(v,1) can be chosen to
depend only on d and Cy(v).

(2) If U is a reqular Harnack function, then it is also a Harnack function and
C1(¥) can be chosen to depend only on d and Co ().

This lemma implies that a measurable function is a Harnack function if and only
if it has a regularization.

Proof of Lemmal3.3.
(1) Let % be a Harnack function on 2. Take ¢ € C2°(R?) such that

¢>0, supp(C) C By, /(dx:l.
Fori=1, 2,3 and k € Z, put

—1 i 1 T
Ui)k = {.’I] SV 2k < p(fE) < 2k+ } and Ck;(fﬂ) = WC(F> .
Note that for each 1,
{Uivk}kez is a locally finte cover of 2, and Z 1y, , <2i. (3.6)
kEZ

For each k € Z, put

Ui(@) = (V1) * Gr(z) = / (V1v,,) ()Ck(z — y) dy,
B(z,2k—4)
so that ), € C*°(£2). Since

xelU;, = B(z, 2k_4) C B(z,p(x)/8) C Uz i, ,
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we have
i < . .
(B ess (1358)¢)1U1,k($) < Up(z) (3.7)
Since
reUsy = B(x,2"%) C B(x,p(x)/2); (3.8)
T ¢ Usp = B(;v, 2k_4) NUz = 0, -
we have
Uy(z) < ( ess sup @[J)lUg,k(x). (3.9)

B(z,p(x)/2)

By B), 39), and Remark [34] we obtain that
Nﬁlw(x)lUl,k(x) < \I]k(‘r) < Nw(x)lUs,k(:E) (310)
for almost every z € 2, where N = N(Cy(¢)). Moreover,

Dowa)| < ID%G [ vl dy
B(z,2k—4)
§27|0“k( esssup )1y, (2) (3.11)

B(x,p(x)/2)
< Np(2)™ (@)1, , (2)
for almost every = € Q, where N = N(d, o, C1(v))) (see (B:8)) and Remark [3.4]). Due
to B.8), BI0), and BII), ¥ := >, ., ¥i belongs to C*(£2) and

Vg o DU <Y DM Sy op oy (3.12)
kEZ

for almost every x € €, where N = N(d, «, C1(¢)). By BI2)), the proof is com-
pleted.

(2) Let z,y € Q satisty | — y| < p(x)/2. For r € [0,1], put x, = (1 — r)z +ry,
so that

z, € B(z,p(x)/2) and  p(z,) > p(x) — |z — .| > o —y|.

Then we have

U(z,) < U(xo) + |z —y| /OT |(V®) ()| dt
< W(xo0) + Nolz — y| /OT p(zy) W (2,) dt

< \If(xo)-l-No/ U (xy)dt,
0

where Ny = N(d, C2(¥)) > 0. By Gronwall’s inequality, we obtain
U(y) = ¥(z1) < eMW(xg) = MOW(2).

If z, y € Q satisfy | — y| < p(x)/3, then |z — y| < p(x)/2 and |z — y| < p(y)/2.
Therefore we have

e MU(y) < U(x) < eM0U(y).
By Lemma [3.3] the proof is completed. O
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We end this subsection with the following remark, which describes the boundary
behavior of regular Harnack functions on domains satisfying a certain geometric
condition; this remark is used in Subsection

Remark 3.6. In [T1], the term ‘Harnack function’ is used not for the Harnack func-
tion defined in Definition Bl but for the continuous Harnack functions. It should
be noted that regular Harnack functions are continuous Harnack functions. If a do-
main is a John domain (which will be introduced later), then we obtain the upper
and lower bounds of the boundary behavior of regular Harnack functions.

It follows from [71, Corollary 3.4] that for any domain €, if ¥ is a regular Harnack
function on €, then

—(k(z.x LG T,z
N, (k(z,20)+1) < ﬂ < Néc( ,@0)+1 for all zg, z €9, (3.13)
W(zo0)
where Ny > 1 is a constant depending only on C;(¥), and k(z,z) > 0 is the quasi-
hyperbolic distance between z and zq (see [T1} paragraph 2.5] for the definition). In

addition, Gehring and Martio [2I, Theorem 3.11] proved that if 2 is a John domain,
then for any zg € 1, there exists N, A > 0 depending only on € and xg such that

ek (@mo) < Np(x)*A whenever z € (2. (3.14)

Here, Q is called a John domain if the following conditions are satisfied:
(1) Q is a connected and bounded open set.
(2) There exist a point zp € Q and a constant Lg, ¢g > 0 such that for any
x € (), there exists a rectifiable path ~ : [O,L] — () parameterised by
arclength such that L < Ly, v(0) = z, v(L) = x0, and

d(y(t),09) > %t for all t € [0, L].

Due to BI3)) and B4, if © is a John domain, then for any g € €2, there exist
constants N, A > 0 depending only on 2 and xg such that for any regular Harnack
function ¥ on 2 and x € ,

N~'p(@)? <

3.2. Weighted Sobolev spaces and regular Harnack functions.

In this subsection, we introduce the weighted Sobolev space H,) ,({2) and gener-
alize them through regular Harnack functions.

We first recall the definition of the Bessel potential space on R%. For p € (1, 00)
and vy € R, H) = H;(Rd) denotes the space of Bessel potential with the norm

1 1lery = 1L = A) 72 fll gy = [FH (L + €122 F(f)(©)] (3.15)

where F is the Fourier transform and F~! is the inverse Fourier transform. If
v € Ny, then H} coincides with the Sobolev space

N
W) (RY) = {f e D'(RY) : Z/ |DFfIP da < oo}
k=0 /R4

(see, e.g., [70, Theorem 2.5.6]).
We next introduce the weighted Sobolev spaces H) ,(2) and WH) ,(2). The

space H ) ,(€?) was first introduced by Krylov [46] for Q = R%, and later generalized

Hp’
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by Lototsky [57] for arbitrary domains  C R%. It is worth mentioning in advance
that for p € (1,00), 8 € R and v € Ny, the space HgG(Q) coincides with the space

Y
(<m0 [ otsmsar )
k=09

(see [57, Proposition 2.2.3] or Lemma [3.§] of this paper).
In the remainder of this subsection, we assume that

€ (1,00), 7,0 € R, U is aregular Harnack function on Q. (3.16)

By p we denote the regularization of p = d(-,9) constructed in Lemma B.5l(1).
Recall that for each k € Ny, there exists a constant Ny = N(d, k) > 0 such that

pn,p and [D5[< Nip'™F on Q. (3.17)

To define the weighted Sobolev spaces, fix a nonnegative function ¢, € C*(R;)
such that

supp(¢o) C [e™*, €] , and Z Co(e"t) =1 forallt e Ry .

nez
For z € R? and n € Z, put
Go.0m (2) = Co(e ")) 1a(x) (3.18)
so that
ZCO,(H) =1 on 2,
nez
supp(Co,(n)) C {z € Q : "1 < p(z) < e, (3.19)

Co.my € CP(RY) and  |DCo ()| < N(d,a,¢) el
Definition 3.7.
(1) By HJ(S2) we denote the class of all distributions f € D’(£2) such that
”f”i[;e(g)) = Zen9||(<0,(n)f)( )”H’Y (R4) < 0.

neL
(2) By WH, ,(2) we denote the class of all distributions f € D'(2) such that
f = Vg for some g € H ,(2). The norm in WH ,(2) is defined by

. -1
Ifllwey ) = 1" fllay @ -

We also denote
Lpo(Q) = H)y(Q) and WL, e(Q) = VH) 4(Q).
The spaces H) ,(2) and WH ,(1?) are independent of the choice of (o (see [57,
Proposition 2.2.4] or Proposition [A:3l(5) of this paper). Therefore we ignore the

dependence on (o. Similar to H and H ,(§), for 7 € No, the space WH ,(?) has
the following equivalent norm:

Lemma 3.8 (see Proposition [A). For any k € Ny,
||f||‘ka @ ~N Z / \p‘o‘|D°‘f| UPpI=d s,
|| <k
where N = N(c,p, k,0,Ca(V)).
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For the case —y € N, an equivalent norm of WH () is introduced in Corol-

lary [3.10]

Remark 3.9. If U is a regularization of a Harnack function v, then we have

PN Sl R i

|| <k
where N = N(dvpa k79702(w)503(¢7 ))

The remainder of this subsection presents the properties of \IIH; ¢() that are
used in Subsection Specifically, we focus on the generalization from H. ; 0(9) to
WH) (). While the properties of H () are provided in Appendix [AT] we list
the properties of H. ;0(9) in Lemma [3.10] which are directly used in this subsection
and Subsection

We denote

Z={d,p,v 0 and Z'=1{d, p,~, 0, C2(V)}.
Lemma 3.10 (see Proposition [A3]).
(1) For any s < 7,
111 ) Sz.s 117 002 -
(2) For anyn € CF(Ry),
Yo ln(eBlem)) flem )y Sz 115 -

nez
(8) For any s € R,

10° flliy o) ~zs 1 f 1y

P, 9+Sp

(4) For any multi-index «,
1% iy o0 Sz W s
(5) Let k € Ny such that |y| < k. If a € CF _(Q) satisfies
jal{” ==sup Y~ plol|D%| < o0,
la|<k
then
lafllm @ Sz lalX1F 17 0
Remark 3.11. Lemma 0 also holds if f is replaced by ¥~'f. Therefore Lem-
mas B.I0 (1), (3), and (5) remain valid when H; .(Q) is replaced by WH ,(€2).
Lemma 3.12.
(1) CX(Q) is dense in WH) ,(Q2).
(2) WH) , is a reflevive Banach space with the dual O~ H ", (Q), where

1 1 6 ¢

—+—/:1 G/fld —+—/:d

p P p P
Moreover, for any f € D'(Q)), we have

_ /5
NS gy oy € sup . 9)

geC(0),9#£0 ||g||‘ll 1H ,’YQI(Q)

< N||f||\1/H;9(Q)
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where N = N(Z').
(3) For any k, | € Ny,

I(D*®) D' fll a7 ) < NI f e o)

60— (k+1

where N = N(Z',1,k) > 0.
(4) Let @ be a regular Harnack function on §2, and there exist a constant No > 0
such that

U< Ng® on Q.
Then
WSy @) < NI®lay ,@)-
where N = N(Z',Cq(®), Ng) > 0.
(5) Let p’ € (1,00), v/, 0/ € R, and ¥’ be a reqular Harnack function on Q, if
feVvH] ()N \II’H;,:G,(Q), then there exists { fntnen C C°(R) such that

If = fallom o + 1 = fn||q,,H;// L@ 0 asn—oo,

Proof. (1), (2) When ¥ = 1, the results can be found in [57] (or see Proposition[A.2]
of this paper). Since the map f — W1 f is an isometric isomorphism from VH) ()
to H (), there is nothing to prove.

(3) Since ¥ and p are regular Harnack functions, we obtain that for any k, m €
N07

Dk (0)
} SN(da kvmch(\I/))

ﬁ_k\I] m
By Lemma [B.101(5) and (3), we have
k ~_k
(D" %) fller ) Sz 16~ O ey o) Sz 19 e, -, - (3.20)
Therefore we only need to prove that for any [ € N,
||‘I’le||H;9(Q) Sz ||\1Jf||H;,§iLP(Q) .

Recall that U~ is a regular Harnack function, and Co(¥~!) can be chosen to de-
pend only on Co(¥) and d. It follows from Leibniz’s rule, (8220, and Lemma[B10l (4)
and (1) that

l
1D 00 ) a7y Saa 3 NEDE (0 - D) )

n=0
l

SN Z ”\I/il‘lan(\I/f)||H;’97(lin)p(ﬂ)

n=0

<
~N H\I’JCHH;ELP(Q) .
(4) For any k € Ny,
W1\ < N(d, k, Co (W), Ca(®), No).
Therefore it follows from Lemma [B.T01(5). that
19 £l ) = 1221 @) a0y Sv 12l (0 -
(5) This follows from Lemma [A6l O
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Remark 3.13. Lemmas B8 and BI0 (1) imply that C2°(€) is continuously embed-
ded in WH) ,(Q). Due to Lemmas B.I2/(1), (2), and that C°(Q) is separable, we
obtain that W H ;9(9) is a separable and reflexive Banach space.

Remark 3.14. From Lemma[3.121(4), it follows thatfor regular Harnack functions ¥
and @, if N~1® < ¥ < N® for some constant N > 0, then \I!H;(,(Q) coincides with
@H;e(ﬂ). Therefore, applying Lemma BI0(3), we see that if ¥ is a regularization
of p7 (¢ €R), then WH) o(Q) = H, ().

Lemma 3.15. There exist linear maps

Ao : WH) g —» WHITHQ) and Ay, ..., Ag: WH) , — WHL (Q)
such that for any f € WH] ,(),

d
f=AMof+> Di(Aif) and
i=1
d

||A0f||q;H;j[;1(Q) + Z ||Aif||po;,§ip(Q) S ||f||\I/H;,9(Q) :
i=1
Proof. It is provided in Lemma [A5] that there exists linear maps
Ao, ..oy Mg o HY 4(Q) — D'(Q)

such that for any g € H) ,(2),

d d
g="RKog+> Di(Aig) and ||A09||H~+1(Q +y ||Azg||Hv+1 @ Sz l9llm 0 -
=1 =1
(3.21)
For fe WH, (& U~ f € H) ,(Q)), put
d
Aof = Tho(T~1f) =D (D Bk
=1
Azf:\IJAZ(\IJ_ f) fOI‘Z:L,d

Then we have

(AO n zd: DiAl-)f - qJ(KO n zd: Di&-) (T1f) = 1.

Moreover, Lemma( ) and (B2I)) imply that
d

1 -1
Ao fll gt () + >l Aiflmys @)

i=1

d
Y -1 -1 Yy -1 Y -1
< Ag(w f>||H;;1<Q>+_Z;(||\P DU KW )l yrney + IR@ Dl )
d

Sz 8o Dl gy + IR (ET Dl (o

i=1
Sz ||‘I’_1f||Hgy9(Q)
Therefore the proof is completed. (|
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Corollary 3.16. For any n € N and f € D'(Q),
1 lhwsy o =z i0f {32 Wallwgzn ot £ = D Dol
|| <n || <n
Proof. Repeatedly applying Lemma [3.15, we obtain linear maps
—+n
Ano : WH) o(Q) — \I/ng alp ()
indexed by multi-indices o with |a| < n, such that for any f € WH) ,(Q2),
f = Z Da(An,af) and Z HAn,af”q;H;*ef‘a‘p(Q) SI/,n ||f||‘11H;”9(Q)-
la|<n || <n '
Therefore we obtain that for any f € D'(Q),
inf{ Z Hfa”‘IJH;H[;:“Q‘p(Q) Cf= Z Dafa} STion HfH\I/H;,Q(Q)'
|| <n ' || <n
For the inverse inequality, let f = >, <, D*fa where f, € H;’g"la‘p(ﬂ) It
follows from Lemma BT21(2) and (3) that for any g € C°(£2),

[(f,9)] < > U fo, UD )|

lal<n
Son Y0 (10 Salger, @190l roe o)
|| <n

SI/,n ( Z H\IJ 1fa||HW+"‘ (Q) )”\I/g”H ’Y,(Q)

o] <n

where p’ = p/(p — 1) and 0'/p’ = d — 0/p. By taking the infimum over {fa}|a|<n
and applying Lemma [B.121(2), we have

Ifllwr @) Sz7m inf{ > Hfa”q;H;”[;’j‘a‘p(Q) SEDY Dafa}~
|| <n ' || <n
Therefore the proof is completed. O
We end this subsection with Proposition B.I7, which is a Sobolev-Holder em-
bedding theorem for the spaces \IJH 7 ,(€2). This proposition is not used in Sub-

section However, it provides Holder estimates for solutions obtained in Theo-
rem [3.18 For k € Ny, a € (0,1] and § € R, we define the weighted Holder norm

12, =3 supl 0|+ sup JLEPID - D )],

i—0 Q z,ye |I_y|a

Proposition 3.17. Let k € Ng, a € (0,1].
(1) For any § € R,

[ = Zsup\\lf p(x)* D f(x)|
+ sup (ﬁfl(x)p“k*a I =y
veo yily—z| <25 |z —yl* ’

where N = N(d, k, o, 0, Co(T)).
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(2) If « € (0,1) and k + o <~y —d/p, then for any f € \I/H;G(Q),
_ [
| 1f‘z(c,ip) < Nlfllwr @
where N = N(Z', k, o).

Proof. (1) This result from the direct calculation and the definition of regular Har-
nack functions. Therefore we leave the proof to the reader.

(2) We only need prove for ¥ = 1, and the result for this case is stated in [57,
Theorem 4.3]. We give a proof for the convenience of the reader.

For f € H, " 0(£2), the Sobolev embedding theorem implies

1 o) (" Ml e < N[ (F0.m)) (" )y < 00 (3-22)

where N = N(d,p,7,k,d). Hence f belongs to CF (). For z € €, take ng € Z

such that emo =1 < p(z) < e™. If |z —y| < @, then e™0=2 < p(y) < e™ 2. Take
constants A and B depending only on d such that
A7lp<p<Ap, and Z Go(e"t) =1 forall te[(Ae?)!, Ae?].
In|<B
Then we have
Z Co,my =1 on Uy, = {y e < py) < e"°+2}.
In—no|<B

Due to B(z, p(z)/2) C U, and ([3:22), we have

k k k
6/p+i () | D F(x 0/pthto, u |D"f(x) — D*f(y)]
;(p (2)| D' f()]) + @
k
<y ool ( SOD(f(e™ ) @)
1=0
L s \D’“(f<e”°~))<x>—Dk(f(e"°->)<y>|>
yie "0y€EUn, |z — y|*
< > P (Fhom) e )l ora
[n—no|<B
1/p
s (S 0ae ol )
nez

where N = N(d,p,~,0,k,d). By (1) of this proposition, the proof is completed. O

3.3. Solvability of the Poisson equation.
Throughout this subsection, we assume ([B.10). The goal of this subsection is to
prove the following theorem:

Theorem 3.18. Let

Q admit the Hardy inequality (L3);
1 be a superharmonic Harnack function on €;

€ (=1/p,1-1/p),
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and suppose that U is a reqularization of . For any A > 0 and f € \IJ“H; d+2p_2(Q),
the equation

Au—du=f (3.23)
has a unique solution u in W“H;ZEQ(Q), Moreover, we have
cdt2p—2() < N||f||\WH;
where N = N(d, p, v, i, Co(2), C2(¥), C3(¢h, ¥)).

Recall that Co(2) is the constant in (L3]), and C3(¥) and Cs(¢, V) are the
constants in Definition [311

In Theorem [3.I8, one can take 1) = ¥ = 1. Another example of ¢ is introduced
in Example B.21] which is associated with the Green function, and valid for any
domain admitting the Hardy inequality.

||“||WH;;32(Q) + )‘HUH‘IMH;’ aaya(Q) (3.24)

Remark 3.19. The spaces W“H;Zg(ﬂ) and WHH ) ;o 5(Q) in Theorem B.18 do
not depend on the specific choice of ¥ among regularizations of ¢ (see Remark[B14)).
If we take W as {/)V which is the regularization of ¢ provided in Lemma B35l (1), then
Theorem [B.I§ can be reformulated without including ¥, by taking ¥ = J Indeed,
Ca(1h) and Cs(1h, ) depend only on d and C1(v), the constant N in (3.24) depends
only on d, p, v, p, Co(Q), and Cq(¢). Therefore, Additionally, for the case v € Z,
equivalent norms of JHH;;%Q(Q) and J“H;d+2p72(§2) are provided in Lemma 3.8

and Corollary B.16

Remark 3.20. If p ¢ (=1/p,1 — 1/p), then Theorem does not hold in general,
as pointed out in [46], Remark 4.3]. To observe this, consider Q = (0,7), ¥(z) =
U(z) =sinx, and v = 0, and refer Lemmas [3.8 and

For ;> 1—1/p, we aim to prove the non-existence of solutions to the equation
Au = fin WFH? ; ,(Q), for any fixed f € C°(Q) such that f < 0 and f # 0.
Assume that there exists uy € WFH? ; () such that Au; = f. Since Q = (0, )
is bounded, we have

w € UPH2 ,_,(Q) = H? Q) CHZ, () =0""2PH2, ().

,d—pp—2 p

Let ug be the classical solution of the equation
Au=f on (0,m) ; u(0)=wu(r)=0.
Then ug(x) ~ sinz, which implies that
o € Lya—jip-2(Q) (= ¥Lpa o(Q) <= E<1-1/p.
Due to Lemma [3.22] we have
uw € VPH? 4 ,(Q) = n<1-1/p. (3.25)

Since wug, u1 € \Ill’z/pHidd(Q) and Au; = Aug = f, by the uniqueness of
solutions in \111_2/pH§1d72(Q) (see Theorem [318), we conclude that u; = wuy,
which implies u; € ‘IJ“H§7d_2(Q). However, this leads to a contradiction, since
uw>1—1/p (see (328)). Therefore, there are no solutions to the equation Au = f
in WHH? ; 5().

If 4 < —1/p, then 1o belong to WFH?2 ; ,(Q) (see Lemma B.8). Therefore the
equation Au = 0 has at least two solutions in WFH? ; ,(€).
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Consider the case y = —1/p. For n € N, take ¢, € C(£2) such that
Lz r2) SCo S 1pa o) and |D*¢| < N(k)n”.
One can observe that

logn < ch”%g’dil(g) and ||A<n||1£p,d+2p71(g) <1

for all large enough n. Therefore there is no constant N satisfying (3.24]) for v = 0.

Ezample 3.21. Let Q C R? be a domain admitting the Hardy inequality. We claim
that ¢g := Ga(zo, -) A1 is a superharmonic Harnack function on 2, where Gq, is
the Green function of the Poisson equation in §2 (see Remark 213 for Gq), and x
is an arbitrary fixed point of 2. Note that

Ga(zg, +) is a positive classical superharmonic function on ;

Ga(zg, +) is harmonic on Q\ {z} .
This implies that ¢¢ is a classical superharmonic function on Q (see Proposi-
tion BBL(1)).

For z € ), denote B(z) = B(z, p(x)/8). If |z — | > p(z)/4, then Gq(zo, -) is

harmonic on B(z, p(x)/4). By the Harnack inequality, we have

sup ¢g = ( sup Gg(xo,y)) AN <q4 ( inf Gg(xo,y)) A1l = inf ¢g.
B(z) yeB(x) y€B(z) B(x)

If [z—zo| < p(x)/4, then p(x) < 4p(z0)/3, which implies B(z) C B(zo, p(z0)/2). By
PropositionZ41(3), there exists ey € (0, 1] such that G (o, ) > € on B(zo, p(z0)/2).
Therefore we have

sup ¢g <1 §eal inf ¢q .

B(z) B(z)
Consequently, ¢¢ is a superharmonic Harnack function on 2.

It is worth noting that ¢g is the smallest positive classical superharmonic func-
tion, up to constant multiples. That is, if ¢ is a positive classical superharmonic
function on 2, then there exists Nyg = N(¢, €, x0) > 0 such that ¢9 < Ny¢ on Q.
To prove this, we start by noting that Gq(xo,-) is continuous in dB(xg, p(x0)/2)
and ¢ has the minimum in 9B(z, p(x¢)/2). Indeed, Go(xo, -) is harmonic and ¢ is
superharmonic in Q \ {z}. Take M > 1 such that

Ga(zo,) < M¢ on  0B(wo,p(w0)/2).
Then we have
b0 < Ga(zo,") < M¢ on Q\ B(xo, p(z0)/2)
which follows from properties of Ggq (see [7, Lemma 4.1.8]). In addition, we obtain

that ¢o < 1 < Mi¢ on B(zo, p(x0)/2), where Mt = Ming o oey/2) @ > 0.

To prove Theorem B.I8 we need the following two lemmas; the proof of Theo-
rem [3.18 is provided after the proof of Lemma [3.23]

Lemma 3.22 (Higher order estimates). Let A > 0, and suppose that u, f € D'(Q2)
satisfy

Au—du=f.
Then for any s € R,

p,0+2p p,0+2p

llg 32y + Mellarry, o < N (lelloms o + 1 lwi, @) - (326)
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where N = N(d,p,0,~,Ca2(¥),s).

Proof. We denote ® = U1 so that Co(®) depends only on d and Cq(¥).
Step 1. First, we consider the case s > v+ 1. We can certainly assume that

IPullas ) + 1@ flmr, ., @ <o,
for if not, there is nothing to prove. Since
||‘I)U||H;;1(Q) §d,p,s,7 ||‘I)U||H;Y9(Q)

(see Lemma [BI01(1)), we only need to prove for s =y + 1. Put
vy () = (o(e "p(e"x)) (e z)u(e"x). (3.27)

Since

D ol or gy = 12Ul ) < 00
nez

we have v, € H) ™ (R?). Observe that
Avy — 2" Ny, = f (3.28)

where

Fal@) =G (e ple"a)) (Bf) (")

— e (o (e"ple")) (PAu) (e"x) + Avy, (¢, )
=e""Co(e7"p(e"2)) (Pf)(e"x)
+2e" ¢y (e "ple™x)) (Vp - V(Pu))(e"x)
+2e*"Co (e "ple"x)) (Vu - V) (")
+ G (e7"ple" ) (IVA*@u) (e"x)
+ "¢y (e7"p(e"x)) ((Ap)Pu) (™)
+e*Co(e7"p(e"x)) (A®R)u) (") .
Make use of Lemmas BI0l(1) - (3) and BI2(3) to obtain

> "1l ey

nez
SISy, ) T 1Pe(@w)all o) +1®P0uallly (o

~ P ~ p p
el o) + el oy @asilly, o

(3.29)

SIIRFIE o+ 18Ul gy < 0,

where N = N(d, p,7, 6, Co(¥)). Hence f,, belongs to HY)(R?), for all n € Z.
Due to .28) and that v, € H}**(R?) and fn € HY)(R?), we have
Vo= (1— A0, € HE(RY) , F,:=(1-A)/2f, € L,(RY);
AV, — ("N +1)V,, = F, = V,.
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It is implied by classical results for the Poisson equation in R? (see, e.g., [49,
Theorem 4.3.8, Theorem 4.3.9]) that

lvnll 2 ey + € Mlvnllay ey = 1Vall g ey + € MIVallp, ge)
< 1AVl + @A D Vol g0
SdpllFn = VallL,®e
< N Fallmy s + loall ey -
Combine (3:330) and ([B:29)) to obtain that

p _ 6 p 2 p
@l o gy + NIl ) = Z (ol 12 gy + (€2 NP ol )
n
v € (on 2y gy + 17l )
nez
< p D
NNH(I)UHH;F(Q) + ||q)f||H;’9+2p(Q) :

Therefore the case s = v+ 1 is proved. Consequently, (3.28) holds for all s > v+ 1.
Step 2. Recall that for the case s > v + 1, (28] is proved in Step 1. For
s <~v+1, take k € N such that

and repeatedly apply (B:26) with (v, s) replaced by (v,v+ 1), (v = 1,7), ..., (v —
k,v+1—k). Then we have

1@l sz () + AllPully, ()
NN||(I)U||H’Y+1(Q + 12 fll e
SN
Snll@ull gy wrs iy + 1@ Fllary

p,0+2p Q)

P, 9+2p(Q) ’
Since ||<I>u||H;;k+1(Q) < ||<I>u||H;’9(Q) (see Lemma [BT01(1)), the proof is completed.
(]

Lemma 3.23. Let A > 0, and suppose the following:
For any f € WH) ., (), in TH;gQ(Q) there exists a unique solution u
of equation m For this solution, we have

@ < Nyl fllwar

where N, is a constant independent of f and u.

Then for all s € R, the following holds:
For any f € WHy 4.,,(€), in \IJH;:’(f(Q) there exists a unique solution u
of equation [B23). For this solution, we have

o) < Nsllfllwns, . @ (3.32)

where N is a constant depends only on d, p, vy, 8, C2(¥), Ny and s.

HUH‘IJHV“(Q + /\HUH‘IIH" Q) > (3-31)

,0+2p P, 9+2p(

lullgrrst2) + Alullwn; , ., 0

Proof. To prove the uniqueness of solutions, let us assume that @ € ‘IJH;"O'2(Q)
satisfies AT — A\u = 0. By Lemma B.22 @ belongs to \I/H;f((l). Due to the as-

sumption of this lemma, in WH ; '52(9), the zero distribution is the unique solution
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for the equation Au— Au = 0. Consequently, @ is also the zero distribution, and the
uniqueness of solutions is proved. Thus it remains to show the existence of solutions
and estimate ([3.32).

Step 1. We first consider the case s > ~v. Let f € UH?

o.0+2p(§2). Due to
UH; 510,(Q2) C VH) ., (), f belongs to WH) ,,, (), and hence there exists

a solution u € \IIH;ng(Q) of equation [B.23). It follows from Lemma B.22, (3.31l),
and Lemma B.I0L(1) that

||u||‘11H;’+92(Q) + A ||u||\pH;19+2p(Q) SN ||u||\pH;;2(Q) + ||f||\IJH;19+2p(Q)
< Nlfllens, o @ + 1 lless

,0+2p p,9+2p(ﬂ)

§N(N7 + 1) ||f||\1/H

p,9+2p(ﬂ) ’

where N = N(d, p,0,~,C2(¥), s). Therefore u belongs to \IJH;’}EQ (©), and the proof
is completed.

Step 2. Consider the case s < . Since the case s > ~ is proved in Step 1,
by mathematical induction, it is sufficient to show that if this lemma holds for
s = 8o + 1, then this also holds for s = sg.

Let us assume that this lemma holds for s = so + 1. For f € WH S, (©2), by
Lemma [3.T5] there exists

fOeVHNL (Q) and f1, .., fTe WHG (Q)

such that f = f9 4 E?:l D;f* and
d

HfOHqJHSO“ Q) + Z Hﬁflfinm;?;gp(sn < Nlifllwze () (3.33)
i=1

p,0+2p p,0+2p

where N = N(d,p, 8, sg, C2(¥)). Due to the assumption that this lemma holds for
s = 8o + 1, there exist v°, --- , v € \IJH;?;}Q(Q) such that

A =X =9 and AV —Mi=p"1ft fori=1,...,d,

and
d . .
I sy + A lamzs, o+ 30 (19 hero M o, )
d
< Nooua (1 o+ 217 a0 ) cen
2
SN Noor1llf e, ()

where the last inequality follows from B.33). Put v = v° + Z?:l D;(pv'), and
observe that

d
Av— v =f+ Z Di(A(ﬁvi) - ﬁAvi) .

=1
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By Lemmas 310 and BI12/(3), we have
1D: (@) = A0 ) [y 021, (g
< S00) — AV .
SN ARV = pAV g geote ()
d

~ ~ i
< ]; (”Dkkp v ||\pH;?{;fp(Q) + ||ka Dyv H‘I’H;?etfp(ﬂ))

SN ||’Ui||\I/H;?9+3(Q) < 00,

where N = N(d,p, 8, sg, C2(¥)). Due to the assumption that this lemma holds for
s = 89 + 1, there exists w € ‘IJH;?;“?’(Q) such that

d
Aw — Iw = Z D;(A(pv') — pAV) (= Av— v — f),
i=1
and
”wH\pH;f’e“(Q) + )‘||w||q;H;?9++12p(Q)
d
< N50+1 ; HDl (A(pv ) - pA’U )H\I/HZS’;;F(Q) (335)
d .
SN Nso+1 Z Hle\IJH;f’;S(Q) '
i=1
Put
d .
uzv—w:vo—l—ZDi(ﬁvl)—w.
i=1
Then u satisfies Au — Au = f. Moreover, by (834 and (3.35]), we obtain [B8.32]) for
s = Sp. O

Proof of Theorem[318 By Lemma [3.23] we only need to prove for v = 0.
A priori estimates. Assume that u € WFH? ; () and Au—Au € WFLy, 442, -2(Q).
By Lemma [3:22] we obtain

lullgnrz , @) + Alullwrr, iiop o (3.36)
/SNHU’H\IWLP,GL72(Q) + ”Au - Au||\IIMLp,d+2p72(Q) <00, '

where N = N(d, p, i, C2(¥)). Due to (B.36]) and Lemma B.I21(5), whether A = 0 or
A > 0, there exists u,, € C2°(€2) such that

Tim (= wallgnmz ) + M= tnllunr, ges, a@) =0

This implies

lim H(A—)\)(u— =0.

n—o00 un)”‘lﬂll‘p,d+2p72(ﬂ)
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Since ¥ is a regularization of the superharmonic Harnack function v, Theorem 2.17]
and Lemma 3.8 imply

lunllwnr, @) =N |t [P~ P p~2 da
Q

SN / | Ay, — Ay [Py~ HP p?P =2 dx (3.37)
Q

~N ||A’un - )\un||‘11"Lp,d+2p—2(Q) ’

where N = N(d, p, i, Co(Q2), C2(¥), C3(¢p, ¥)). By letting n — oo, we obtain (331
for u instead of . By combining this with (8:36), we obtain the a priori estimates,

lullwer , @) + AMullwnr, iapa@

SN llullwrr, 4@ + 1A = Mullwer, 40, a2) (3.38)

SN ||A’U, - >‘u||‘I’“Lp,d+2p—2(Q) .

Note that ([B38)) also implies the uniqueness of solutions.

Existence of solutions. Since C°(Q) is dense in U*L, 449,—2(2), for f €
UH Ly, arop—2() there exists f, € C°(Q) such that f,, — f in UF*Lg g1op—2(£2).
Lemmas 2.12 and B8 yield that for each n € N, there exists u, € WFL2 ; ,(Q) such
that

Auy — My = [
Due to Lemma[3.22 u,, € W“Hg)d_z(Q). Since f, = fin U*L, 410p—2(S2), it follows
from (B3]) that

Hun - umH\IJMHgydﬁ(Q) < Nan - fm||\I/HLp,d+2p72 =0

as n, m — oo. Therefore there exists u € ‘P“Hg 4_2(€) such that u,, converges to u
in \IJ“Hg)dfz(Q). Since u, and f, converge to u and f in the sense of distribution,
respectively (see Lemma [BT21(2)), u is a solution of equation ([B23)). O

We end this subsection with a global uniqueness of solutions.

Theorem 3.24 (Global uniqueness). Suppose that [L3]) holds for Q, and for each
i=1,2, U; is a regularlization of a superharmonic Harnack function, p; € (1, 00),
vi €R, and p; € (=1/p;, 1 —1/p;). For f € mi:l,z \I/fiHZZ7d+2pi_2(Q) andi=1, 2,
let u) € \1171H$;32(Q) be solutions of the equation

Au—du=f.
Then v =4 in D'(Q).
Proof. By Lemma[BT21(5), there exist {f,} C C°(Q) such that

fo—= foin () WEHY L (9Q).

i=1,2
By Lemmas 212 and B8, for each n € N, there exists u,, € () V'L, 4—2(Q)
i=1,2
such that
Aup — iy = fr .
Lemma 322 yields that u, € (| U H;ZZ(Q) Since

i=1,2

(A - /\)(un —u(l)) = (A - )\)(un —u(2)) =fuo—1F,
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Theorem [3.1§] implies that
ty, = u in \I/ingll)Zz_z(Q) ,and  u, — u® in \Ilnggj)Zz_z(Q).
Consequently, by Lemma B.121(2),
(u®,g) = lim (un,g) = (u®,g)
for all g € C°(Q). O

4. PARABOLIC EQUATIONS

For 0 <1y <wy < oo and T € (0,00], we denote

e M(vy,v5) : the set of all d x d real-valued symmetric matrices (a%)gxq

satisfying
d
nlg? < Y alGg <mle? VY EeRY
ij=1

o Mr(vi,12) : theset of all £ := Zijzl a¥(-)D;;, where {a¥ (-)}; j=1.._aisa
family of time measurable function on Ry such that (a"(t)) . , € M(v1,v2)
for all ¢ € (0,T7.

Throughout this section we assume that © be a domain in R%,
Te 0,00, 0<1ny<wp<oo, and L€ Mryp(vy,r), (4.1)

and use the convention that (0,7] = (0,00) and [0,7] = [0,00) if T = co. We deal
with the equation
d
Ou=Lu+f:=Y a’t)Dyu+f, te(0,T] ; u0,)=u, (4.2)
i,j=1

repeating the arguments in Sections [2 and

4.1. Key estimates for parabolic equations. Unlike A, the operator £ in (£2)
consists of variable coefficients. Hence Lemma [2.8(2) is not applied directly. For
this reason we introduce the following definition:

Definition 4.1. Let ¢ be a positive superharmonic function on . For § € (0,1]

and p € (1,00), by I(¢,p,d) we denote the set of all constants p € (—1—1), 1-— %)

satisfying the following: there exists a constant C4 > 0 such that the inequality

d
/ |ulP~2|Vul?¢ ™" da < C4/ (- Z o’ Djju) - ululP"2¢" P dz (4.3)
Qn{uz0} ¢

ij=1
holds for all u € C°(Q) and (&) gxq € M(4, 1).

We employ the set I(¢, p,d) to state the main theorems in this section, specif-
ically Theorems [43] and According to Lemma 28 when 6 = 1, I(¢,p,1)
coincides with (—1/p,1 — 1/p). Notably, even for ¢ € (0,1) and without additional
assumptions on €2, ¢, and p, the following proposition guarantees the existence of
a non-empty interval contained in I(¢, d, p).
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Proposition 4.2. Let ¢ be a positive superharmonic function on , p € (1,00),
and 6 € (0,1].

(1) 1If

(p—1)/p (p—1)/p
wE (_ p(0~Y2+1)/2—-1"p(6-Y2-1)/2+ 1) ; (4.4)

then p € I(¢,p,0), and the constant Cy4 in [3) can be chosen to depend
only on 6,p and p. In particular, I(¢,p,8) = (—=1+1/p,1/p).
d

(2) Suppose that for any (a*)axq € M(0,1), > a“D;j¢ <0 in the sense of

ij=1
distribution. then

I(¢,5,p)= (_1/]771_1/]9)

Moreover for any p € ( —1/p,1 - 1/p), the constant Cy4 in [@3)) can be
chosen to depend only on d,d,p and u.

Proposition 21 (2) is used for results on convex domains and domains satisfying
the totally vanishing exterior Reifenberg condition; see Subsections and [6.3]
respectively.

Proof of Proposition[{-2 (1) Let u satisfy (£4). By the same argument as in the
beginning of the proof of Lemma 2.8 (2) and (3), it sufficies to prove (£3) only for
u € C°(9Q) and a positive smooth superharmonic function ¢ on a neighborhood of
supp(u).

Put ¢ = —up € (—p+1,1) and v = u¢®/?»=2). Due to Lemmas 29 28 (1), and
that (a%) € M(4, 1), we have

By
. Q
]
== / o wgug|uP2g¢d + Y / o P2 60~ da
i 79 i e
:(p - 1)/ (Zaijv-v-)|’u|p*2¢c’ dx — L/ |U|P(Zaij¢_¢.)¢c’72 dz
QN J 4(p_ 1) Q ~ j
’ c2 ,
> (p— 105 [ [VoPlop=26 do— = [ ol VoPe 2 ar
Q 4p—1) Jo
Zm'/ Vol2olP~26¢ dz,
Q

where ¢ := =2 ¢ (—p4+1,1) and

2p—2
’_ . _# pc \?
w=op-1) 4(p—1)(1—c’) '

One can observe that ' > 0 if and only if u satisfies ([@4]). Therefore we only need
to show that

/ P 2|Vul2¢° de < N(p, 1) / P2V ol?67 de. (4.5)
Q Q
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Note that

[ rveps s
QN{u#0}

> [ prvepetar s S P ~2u(Vu - V)¢ da
QN {u0} P — 1 Jonguzo)

If ¢ € [0,1), then A(¢°) < 0 on supp(u) (see (Z.8])), which implies
c
p—1

Therefore (@A) holds.
If c € (—p+1,0), then Lemma [Z8 (1) implies

1
P2,V - Vo dp = —— 1 PA(GS)dz > 0.
/Q o T T = /Q P A(¢%) da >

/ P2 V¢ dar + —C / il 2u(V - V)¢ da
QN {uz0} P — 1 Janfuzo)

> [ v ds
QN{u#0}

c 1/2 1/2
b ([ urvapetds) ([ upesvep do
p—l( QN {uz0} ) ( Q )
p—- 1 +c / -2 2 .c
> |u|P~|Vul*¢¢ da .
(=D =) Jantuzoy

Since p — 1 + ¢ > 0, the proof is completed.
(2) For a fixed A = (a)4xq € M(6,1), take B € M(v/§,1) such that B2 = A.
We denote up(y) = u(By) and ¢p(y) = ¢(By). Since

Agp =Y a(Dij¢)(B-) <0

i,7=1

on B™1Q := {B71z : z € Q} (in the sense of distribution), Lemma 28 (2) implies
that for any v € C2°(€2),

/ P2 V6 da
QN{u#0}
< s / fup P2 Vs P65 dy
B-1Qn{up#0}
o / (—Aup) - uplus/P 65" dy
B-1Q
= det(Bfl)/ (= a”Djju) - ululP2¢~ P du.
Q

Since det(B7!) = (det(A))A/2 € [1,67%/7, it follows that the last term in (8] is
positive, and thus the proof is completed. (I

Theorem [£.3] and Lemma .4 are counterparts of Theorem 2.11] and Lemma [2.12]
respectively.
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Theorem 4.3. Suppose that
Q admits the Hardy inequality (L3)) ;

¢ is a positive superharmonic function on §2;
€ (17 OO); and ne I(¢7p7 Vl/”?) :
Then for any u € C2°([0,T] x Q) and f := dyu — Lu, we have
T
swp [ futt o rrdes [ [ juperp s
Q 0o Jao

0<t<T

T (4.7)
<N ([ romans [ [ ispaeerasar)
Q 0 Jo
where N = N(p,M,CO(Q),C4)
Proof. For a fixed to € (0,T] and € > 0, integrate
p (Oru)ulul"~? 67 — p Z (t)Diju - ululP"2¢ ™47 = pf - ululP~2¢7HP
5,J=1
over (0,%p] x 2, and apply Young’s inequality, to obtain
/|u IPo~ ””dw—i—p/ / Za” Duu)u|u|p 2pHP da dt
< [ lutto, Yo dz+ / P62 e (4.8)
Q 0o Jao

to
1) / / s P p 2 de dt
0 Q

for any € > 0. Due to Lemma [2.8(3) and that p € I(¢,p,v1/v2), we have

t() t()
/ /|u|1’¢—ﬂp “2dadt Sy / /|Vu| |u[P~2¢~HP dx dt
0 Q

<1s,C4 /0 /Q - Z a® (t)Diju)u|u|p*2¢*“p dz dt.
4,J

(4.9)
By combining [@8)) and (), taking the supremum over ¢y € (0,T], and choosing
a small enough € > 0, we obtain ([£7]); note that since ¢~#P is locally integrable
(see Proposition [24]), the first term in (@3] is finite. O

Recall that (F,¢) is the result of application of F' € D'(2) to ¢ € C°(Q).

Lemma 4.4 (Existence of a weak solution). Let Q admit the Hardy inequality (L3]).
For any ug € C°(Q) and f € C([0,T] x Q), there exists a measurable function
w:[0,T] x Q = R satisfying the following:

(1) u(t, -) € L110c(2) for each t € [0,T], and u € L1 16c([0,T] x Q).

(2) For any ¢ € C2(Q) and t € [0,T],

(u(t,-),¢) = (uo,¢) —l—/o (Au(s,) + f(s,),¢) ds. (4.10)
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(8) For anyp € (1,00), p € (—1/p,1 —1/p) and positive superharmic function
¢ on €,

T
sup /|u(t, -)|p¢_“pd;v+/ /|u|p¢_“pp_2d;vdt
Q o Jo

t€(0,T]
T

S N(/ |f|P¢*#Pp2;D*2 dzds +/ |uO|P¢*#P dJJ)
0 Q Q

where N = N (p, ¢, Co(£2)).

(4.11)

Proof. We repeat the argument of Lemma[2.12] Take a sequence of infinitely smooth
bounded domains {2, },en such that

supp(uo) C 1, supp(f) C [0,T]x 2, @ C Dy, [J2%W =9,

For h € C°(1) and H € C°([0,T] x 1), by Ry (h, H) we denote the classical
solution U € C*°([0,T] x €2,,) of the equation

0U =AU+ Hlg, on (0,77 xQ, ; Ulprxon, =0 and U(0,-)=hlg, .
We first claim that

T
sup |Rn(h, H)(t, - )1q, [P¢° dz +/ |R,(h, H)lq, [Pp~2¢° dzds
tel0,T]1JQ 0 Q

T
< N(p, e, Co(Q)) ( / /Q HPg o de ds + /Q |h|P¢Cdx> ,

for all p € (1,00), ¢ € (—p + 1,1) and positive superharmonic functions ¢. Note
that €2, is a compact subset of 2, and for each ¢ € [0, T},

Ru(h,H)(t,-) € C® () , Ru(h, H)(t,)|oq, =0,

which implies that R,,(h, H)(t, - )1q, satisfies condition ([2.3)). If T' < oo, then we
can repeat the proof of Theorem 3l for R, (h, H)1q, in place of u, using Lemma[2.8
This gives us ([IZ). For the case T = oo, we first obtain [@I2) for K € (0,00)
instead of T'. Then, by letting K — oo, we obtain ([@I2) even for the case T = occ.
Take Uy € C°(Q) and F € C([0,T] x Q) such that |ug| < Up and [f| < F
(recall that [0,7T] := [0,00) when T' = o), and put
F+f F—f
1_ 2 _
5 = ] 5
so that these functions are nonnegative, ug = up — u, and f = f! — f2
For v, := R, (u}, f})1q,, the maximum principle implies that

(4.12)

up

0<wv,<v,y1 on [0,T]xQ.

We denote the pointwise limit of v,, by v. Apply the monotone convergence theorem
to (@I2) with (h, H, ¢,p,c) = (u}, f1,10,2,0) to obtain

T T
sup /|v(t, -)|2d33—|—/ /|v|2p_2dxdt§/ /|f1|2p2d:1:dt—|—/ lug|? dz .
tef0,7]JQ 0o Ja 0o Ja Q

This implies that v(t,-) € L1,10¢(€2) for each ¢ € (0,T], and v € Lq,10¢([0, T] X Q).
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We next claim that for any ¢ € (0,71,

(v(t,),¢) = (ug, ¢) —l—/o (Av(s,-) + (s, ),¢)ds. (4.13)

For a fixed ¢ € C°(Q2), take N € N such that supp(() C Qu. Since v, :=
Ry, (up, f)1q,, we obtain that for any n > N,

/Qvn(t,-)Cdx:/u%,g‘d:c—i—/ot/g(vn(s,-)AC—i—fl(s,-)C) dads.

Since 0 < vy, < v, v(t,-) € L110c(2) for each t € [0,T], and v € Lq 10¢([0, T] X §2), the
Lebesgue dominated convergence theorem implies (II3]). By the same argument,

w(t,x) = lim Rn(uf, f2)(t,2)la, (z)

satsifes that w(t,-) € L1 10c(€2) for each t € (0,7], and w € Ly 15c([0,7] x ©2). In
addition, for any t € (0,T] and ¢ € C (),

t
(w(t,-), ) = (ug,C) —l—/ (Aw(s,") + f(s,), () ds.
0
Put
U= —w= le R, (ug, f)lq,, -
Then u(t, -) € L1,10c(2) for each t € [0,T], u € Ll,loc([07 X ), and u satis-

fies (4I0). By applying Fatou’s lemma to [@I2)) with (h, H) = (uo, f), @I is
obtained. g

4.2. Function spaces for parabolic equations. Throughout this subsection, we
assume (B.I6). This subsection introduces the function spaces WB) ,(Q), VH ,(Q),
and \IJHZG(Q). These spaces correspond to the initial data wug, the force term f,

and the solution u for equation ([@2]), respectively.
Forn € Z and s € (0,1], by Bjt* = BiH(R%) we denote the Besov space whose
norm is given by

11l gots ey = (1 - A)n/szLp(Rd) + [(@ = a2 ] B3 (R4) "

where (1 — A)*/2f is introduced in ([BI5), and

+h) —2f(x) + f(z—R)P 1/p
[f] By (RY) = (/}Rd/Rd | |hf|c(l+)sp Iz ) dhd:zc) .

Note that BJ*(R%) coincides with By ##(R?) introduced in [70, Definition 2.3.1/2],
and for any 7, s € R,

11 ety apenas 1L = D) sy ey

(see, e.g., [T0, Theorem 2.3.8/(i), Remark 2.5.12/2]). If n € Ny and s € (0, 1), then
B;}*S also coincides with the Sobolev—Slobodeckij space

Wt (RY) = feW” /Rd/Rd D" f(@) = D" F )P dx<oo}

oo

n n P
{rew; // D" 1(0) = DS g, g, o)
R J {y:|y—z|<1} |z — y|ttsp

(see, e.g., [T0, Theorem 2.5.7/(i)
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Let (o € CZ(Ry), p, and {{p,(n) }nen be the functions used in Definition .7 (for
H) 4(€)); recall (517) - (5.19). Similar to the space H) ,(€2), we define

B o) = {£ €D/ 1l 0y = 20 €l (Com ) (€ ) oy < 5

nez
As mentioned in [57, Remark 3.6], B) () has properties similar to H, ,(Q). Prop-
erties of B) ,(Q2) are provided in Appendix [A.1]
For a regular Harnack function ¥, we denote

‘I’B;,G(Q) = {‘1’9 VRS B;,e(ﬂ)} and ||f||qu;’9(Q) = ||\I/71f||B;’9(Q) .

The following equaivalent norm on WB] , is provided in Proposition if k € Ng
and « € (0,1), then

k
1 e =n S [ 1D P~ (114)
» i=0

Dkf a _Dkf y ’ - a _
+/Q (/ <) | |§;1y|d+ap( ) dy)‘l’(fc) Pp(x)kterto=d q,
yily—z|<—5=

where N = N(d, p, k, o, Co(0)).

Lemma 4.5.
(1) Lemmas[3ID (1)-(4), 1312, and[I13 hold with B () and B, instead of
H; () and H.
(2) Let k € No with |y| < k. If a € CE_(Q) satisfies |a|\”) < 0o, then
0
lafllzy ) < Nlal N1l 57 o)
where N = N(d,p,v,0,k).
(3) If ¥ > ~, then
||f||\I/H;9(Q) + ||f||\I/B;9(Q) < N min (Hf”\pH;,'g(Q)v ||f||\PBZ,/9(Q)) .
where N = N(d, p,~v,v',6).
(4) Ifp>2, then
Iflwsy @ < Nlifllwm @) -
and if 1 <p <2, then
||f||\I/H;,9(Q) < N||f||‘113;’9(9) .
Here N = N(d,p,~,9).
LemmalLH] except for the counterparts of LemmasB.I2 and BTl (in LemmalLH (1)),
follows from Propositions [A.2] and [A.3] The excepted counterparts are proved by

repeating the proofs of Lemmas [3.12] and .18 with H} ,(Q2) replaced by B} ,(9);
we left the proof to the reader.

Remark 4.6. By repeating the argument of Corollary B.16 with using the counter-
part of Lemma B.15 in Lemma 5 (1), we obtain that for any n € N,

1wy o0 = {3 Walamrse oy £= 3 DMa},

la|<n la|<n

where N = N(d, p,,60,Ca(¥),n).
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Next, we define function spaces for parabolic equations, following Krylov [46].
Let u be D’ (Q)-valued function on [0, T]. d;u denote a function f : (0,7) — D’'(£2)
satisfying the following condition: for any ¢ € C2°(Q),

<f()7<> € Ll,loc([(),T]) , and
(u(t),¢) = (u(0),¢) +/0 (f(s),¢) ds forall e (0,T].

In this situation, we also say that d;u = f in the sense of distribution (on ).
Since C2°(Q) is a separable topological vector space, if d;u = f and dyu = ¢ in
the sense of distribution, then f(s) = g(s) for almost every s € [0, T.
We denote

HY (RY, T) = L,((0,T); H)(RY)) , Ly(R%,T) = HY(R,T) ,
H) 4(2.T) = Ly((0,T); Hy 4()) Lp,e(Q,T) =Hpo(Q,T) , (4.16)
UHY o(Q,T) = Ly ((0,T); WH) () , WLy, p(Q,T) = VHY ,(2,T).

(4.15)

Definition 4.7. By \I/’H,;fgz(Q, T) we denote the space of all functions « : [0,T] —
D'(Q) satisfying the following condition:

u € \I!H;f(SQ(Q,T), u(0) € \IIB;;JQFEWP(Q), and there exists dyu in WH ;.5 (Q,7T).

The norm in WH) ,(2, T) is defined by

||“||po;'j[;2(sz,T) = ”“”@HZ;%Q,T) + ||U(0)||\p3;r;i;2/r'(g) + ||atu||\I/H;”9+2p(Q,T) .
For the case ¥ = 1g, we denote H;;Q(Q,T) =1q H;;Q(Q, T).

Remark 4.8. The initial data space \IJB;;JQFEW P(Q) coincides with

Tro := {u(0)|u: [0,00) — D'(Q) satisfies that

u € \II]HI;?(Q, oc0) and Qwu € VH 5., (9, 00)} .

Note that for u € \IJHZ;Q(Q, 00), if there exists f € WH) ., (€2, 00) such that

<u(t)—u(s),()=/ (f(r),¢)dr Voi<s<t<oo, (€CX),

then u(0) € D'(2) is (uniquely) well defined to satisfy ([@IH), by

1 s
0.0 = [ ((w.0 = [ @0 ar) as.
The space Trq is rewritten in the Bochner sense:
Tro = {u(0) |u: [0,00) = X + X; satisfies that
u € Ly(Ry; Xo) ,0u € Ly(Ry; X1) }
where X = \I/H;JgQ(Q), X1 =VH),.,,(Q), and dyu is understood as the weak
derivative of v : Ry — Xy + X3 in the Bochner sense.

It follows from the trace theorem (see, e.g., [69, Theorem 1.8.2]) and Proposi-
tion [A21(5) that

Tro = [Xo, X1]1/pp = \I/B;ﬁf/p(ﬂ) ;
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where [Xo, X1],,p is the real interpolation space of X and X;. Actually, the second
equality is implied by Proposition [A21(5) and that the map u +— ¥~ 1y is isomet-
ric isomorphism from WH §%(Q) (resp. WH) o, (), WBIH22/(Q)) to H)$%(%2)

(vesp. H) 45,,(€), B;Jgi;z/p(ﬂ)). In addition, we also obtain that

||f||¢B;;i;2/P(Q)
~N ||f||{Xo,X1]1/p,p

~, inf{||u||Lp(R+;X0)—|—||8tu||Lp(R+;X1) | u:[0,00) — Xo+ Xy satisfies

u € Ly(Ry; Xo) , Ou e Ly(Ry; Xq) , u(0)

)
1}

= inf {HU‘H\IJH;*;(Q)OO) + ”atuH\IngyeJrzp(Q,oo) ‘ u € ‘I’HZTEQ(Qa OO) ) ’U,(O)
where N = N(d,p,0,7).

Proposition 4.9.
(1) \I/’H;;Q(Q, T) is a Banach space.

(2) C°([0,00) x Q) is dense in WH;;%Q,T).

Proof. The mapping u — ¥~ 'y is an isometric isomorphism from \I/’H;ng(Q, T) to
H;;2(Q, T). Therefore, we only need to consider the case ¥ = 1g. In this case, (1)
and (2) of this proposition are implied by the arguments presented in [46, Remark
5.5] and [48, Remark 3.8|, respectively. We give proofs for the convenience of the
reader.

(1) Since H;}Q (Q,T) is a normed vector space, we only need to prove the com-
pleteness. By Lemma B.12(2), for any v € ’H;;Q(Q,T) and S € (0,7], we have

v—(0) € C([0,5]; H;G+2P(Q)) with

Q,7T) s (4.17)

,9+2p(

1-1
tsup lo(t) — v(0)||%;’9+2p(m <N-S /P||8tv||H;r

)

where N is independent of v and S. Let {u" },,en be a Cauchy sequence in 7{;?(9, T).
Then there exists

. n - 2-2
(uo, f) := nlggo(u (0),0pu™) in B;,Jer+2 /p(Q) X HZ,0+2p

(€, 7).
Moreover, due to ([@I7), there exists u : [0,7] — D'(R2) such that for any K € N,

U —uy = nl;rgo (u" — u"(())) in C([O,T/\ K];H;G+2P(Q)) .

Therefore, by Lemma 3121 (2), we have

<’U,(t),<> = lim <un(t)7c> = lim (<u87<>+A <6tun(s)7<> dS)

n—oo n—00

= (w0, ) +/O (£(s),¢) ds

for all t € [0,T] and ¢ € C'°(R). Since u,, is a Cauchy sequence in H;:’f (Q,T), we
also obtain that

u= lim u" in H;;2(Q,T).
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Consequently, u € H;;Q(Q,T) with dyu = f and «(0) = up, and v — wu in
M, T).
(2) In this proof, we use results in Appendix [A.1l For f € D'(Q), we denote
Apf= Z Co,(n) f -

In|<k

Due to ([(A33), for u € ’H;’Jf(ﬂ) we have

HAku - uHszz(Q’T) —0 ask— 0.
Therefore we only need to show that each Aju belongs to the closure of CZ° ([0, 00) x
Q) in H)5*(Q,T). By Proposition [A.3(8), we obtain that
Apu € HDP2RYT) | Ap(0pu) € HY(RY,T) , and Apu(0) € By H2~2/P(RY).

Note that 0 (Aku) = Ay (Btu) in the sense of distribution on R?. By a standard
mollification and cut-off argument, there exist v, € C2°([0,00) x R?) such that
Ik,m = ||’U;€)m - AkuHHZ+2(Rd,T)
 9rvm — Okl gy + [0m(0,) = At(O) o g
converges to 0 as m — oco. Put
Uk.m = Vk,m Z CO,(n) .
[n|<k+1

Since

> GomeC'RY) YV EkeN,

|n|<k+1 leN

Proposition [A:3] (8) implies

S NIk,m7

[Awu = wkmllyg20,m) = H(Aku —vem) Y. Com

HYE2(Q,T
|n|<k+1 po (1)

where N is independent of m. Since the last term converges to 0 as m — oo, the
proof is completed. O

Lemma 4.10. Let ¥’ be a regular Harnack function, p’ € (1,00) and ~', 8’ € R. If
feVH o(QT)NY'H), (2, T), then for any e > 0, there ezist g € C°((0,T) x )
such that

||f - g”\I/H;’e(Q,T) + Hf - gH\P/H;:y@/(QvT) <e€.
Proof. We denote X := WH () N \IJ'H;/:Q,(Q), and
lgllx = HQH\IJH;,S(Q) + H9||\1,,H;/’,9/(Q) .

By a standard molification and cut-off argument, for any € > 0, there exist F' €
C° ((0,T); X) such that

17 = Pllwsgy 0y + 1 = gy ozy < €



52 JINSOL SEO

This yields that for any € > 0, there exists 1, ..., nnv € CZ° ((O, T)) and f1, ..., [N €
X such that

I f— f"Lp((O,T];X) <e, where f(t, Zm ) fi(5)

Due to Lemma 312 (5), the proof is completed. O

We end this subsection with the following parabolic embedding theorem for the
space \I/’H,'Y“( ), which is used in Subsections 5.1l and

Proposition 4.11. Let 5 € R satisfy 1/p < B < 1. Then for anyu € \IJH;:?(Q, T),
and 0 < s<t<T,

Hu(t) - U(S)H\pH;jﬁgﬁg(Q) < N|t - 5|ﬂ_1/p(|‘u”\p]}ﬂg§2(ﬂj) + Hatu”\I/H;YHZP(Q,T))
where N = N(d,p,~,0,5).

Proof. The map f — ¥~'f is an isometric isomorphism from \IIH;:‘Q,(Q) (resp.
UBY (), UHY 1, (Q,T)) to H) 5, () (resp. BY 5, (Q), H1 4/ (Q,T)), for all o/, ¢’ € R.
Therefore we only need to prove this proposition for the case ¥ = 1. The proof of
this case is provided in [48], and we introduce this proof for reader’s convenience.
Since u € H;;z(Q, T),
un(t,x) := u(t,e"x)(o,n)(e"x) € H;“(Rd, T)

satisfies that

(Orun) (s) = Dpu(s,e™ Yo,y (™) 5 un(0,-) = uo(e™)Co,my(€" )
in the sense of distribution on R?. Since u,, € HY**(R*,T) and dyu, € H) (R, T),
by [48, Theorem 7.3] with a = e~"P, we obtain

e™(2PB) ||, (1) — un(S)HiI;“*w(Rd)

T
§N|t_5|ﬂp_1/0 (”un( )Hsz(Rd + 2P || Oy, (r, )HHV ]Rd))

where N = N(d,p,~, ). In fact, [48, Theorem 7.3] considers the case that v (=
un) € HYP2(RY, T) satisfies v € HY(RY, T) and v(0) € Hy ™ */P(R?). However,
(#I8) can be obtained without any additional assumptions on u,. This is because
[48, Theorem 7.3] is a consequence of [44] Theorem 7.2], and the proof of [44]
Theorem 7.2] only requires that v € H;”(Rd,T) and O € Hg(Rd,T), without

assuming v(0) € Hy P27/ (R4).
Consequently we obtain

_ D
J1(t) = )y s

Z en(9+2p5) Hun(t) — Un(S)HII)_Ig+275(Rd)
nez

<n|t— s/ 1/ Z n0 Hun ‘HW+2(Rd)+€2np||3tun( )Hm Rd)) dr
neL

(4.18)

T
= o [ (g + 100 )
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O

4.3. Solvability of parabolic equations. In this subsection, assuming (3.16]) and
(#1), we introduce the main theorem of this section.
Theorem 4.12. Let

O admit the Hardy inequality (L3);

1 be a superharmonic Harnack function on ;

w € Iy, p,v1/va).
and suppose that ¥ is a reqularization of v. Then for any
up € WUBITHPQ) and  f € WPHD 4, o(Q,T),

the equation

Ou=Lu+f in (0,T] ; u(0,-)=ug (4.19)
has a unique solution u in WH ’H;;EQ(Q, T). Moreover, for this solution u, we have
||u||‘1m7{;;i2(sz,T) < N(HUOH\IJ“B;’UZ(Q) + ||f||\IWH;”d+2p72(Q,T)) ;

where N = N(dvpa ez CO(Q)a CQ(\I/)a C3(¢7 ‘Ij)v 04)

Recall that Co(€?) is the constant in ([I3]), C2(¥) and C3(1p, ¥) are the constants
in Definition B.1], and C, is the constant in Definition .11

Remark 4.13. As mentioned in Remark B.19 Theorem can be reformulated
without including ¥. In addition, when considering the case v € Ny, an equivalent
norm of WH ,(2, T') is implied by Lemmal[3.8 An equivalent norm of \If“B;’J;%Q/p(Q)
is also provided by (#.14) when p # 2, and Lemmas[4.35]l(4) and B.8 when p = 2. For
equivalent norms in the case where —y € N, Corollary B.16] and Remark can be
used.

The proof of Theorem [£.12 is parallel with the proof of Theorem B.I8 We begin
with introducing a well known counterpart of ([B.30).
Lemma 4.14. Suppose that u € H)™ (R, T) and f € H)(RY, T) satisfies u(0,-) €
BYPYP(RY), and
Ou=Lu+f inte(0,T] (4.20)

in the sense of distributions on R?. Then u € Hg”(Rd, T), and

|y > @a,ry < N(HU”Hg“(Rd,T) + || fllery e,y + [lu(0, ')||B;+2*2/P(Rd))
where N = N(d,p,v1,12).

Proof. We first consider the case T' < oo. By applying the operator (1 — A)?/2 to

both sides of (£20), we only need to prove for v = 0. Since u(0) € B§*2/p, 51l
Section 4.3] yields that there exists @ € H2(R?, T') such that

ow=Au ; u(0)=u(0),
and

[z, ey Sdp U0l g2-2/p gay -
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Put w = v —u so that
w=Lw+ f+(L-A)u ; w(0)=0.
It is implied by [47, Theorem 1.2] that

||wm||]L(Rd,T) Sd,p,m,w ||f||]Lp(Rd,T) + ||(‘C - A)EHIL(W,T)-

Therefore we have
||U||H§(Rd,T) Sdp lullL, ®e, 1y + lUee L, ®e,1)
< lullL, ®e,7) + TezllL, ®e,r) + | WeellL, ®e,) (4.21)

Sd>P>V17V2||u||Lp(Rd,T) + ||u0||B§*2/P(Rd)T) + ||f||]Lp(Rd,T) .

For T = o0, obtain (£21]) with T replaced by K € N, and let K — oo. O

The next two lemmas are driven along the same lines as the proofs of Lem-
mas .22 and B23] respectively. We leave the proofs to the reader. For proving
Lemma T8 put v, (¢, 2) = (o (n) (e"2) ¥ (e"x)u(e®t, e"x) (¢f. B2T)).

Lemma 4.15 (Higher order estimates). Let s € R, and let u € \II]HI;?;Q (Q,T) and

feVH o, (Q,T) satisfy u(0, -) € B;:gi;z/p(Q), and

Ou=Lu+ [ in(0,7T)
in the sense of distributions. Then u belongs to WH) ,(Q,T), and

||“||‘1;H;;2(Q,T) < N(HUH\PH;[,(Q,T) + ”f”'l/H;,H%(Q,T) + ||U(0)||¢B;;i;2/p(gl)>
where N = N(dvpa e 97 v, V2, CQ(‘Ij)v S)

Lemma 4.16. Assume the following:

For any ug € \IIB;:gi;wp(Q) and f € WH ., (), EID) has a unique

solution u in \IJH;? (Q). Moreover, we have

19 w2y < Ny (197 iy

p,0+2p

-1
(£2) + ||\I] UOHB;;i;?/P(Q))

where N is a constant independent of uo, f and u.
Then for all s € R, the following holds:

For any ug € \I/B;:Zi_;/p(ﬂ) and f € WHY o.,,(2), @IJ) has a unique
s+2

solution w in WH 7" (Q2). Moreover, we have

19l < N (197

—1
,9+2p(Q) + ”\I/ uOHB;Ei;?/P(Q))

where Ny is a constant depending only on d, p, 7y, 0, v1, va, C2(¥), N, s.

Proof of Theorem[{.12 By Lemma .16, we only need to prove for v = 0.
A priori estimates. Make use of Theorem and Lemmas B.8 and €5 (3) to
obtain that for any v € C°([0,T] x Q),
lullwir, 4nr) SN 0, ) lwir, 4@ + 10w — Lullwir, 400, n@.1)

SN ||’LL(0, ')||\IJMB§;2/P(Q) + ||8tu - £u||\IlM]]_,p,d+2p,2(Q,T) .
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By combining this with Lemma [£.T5] we have
lullgnaez , m) SNllulles, ,o@m)
+ [Ju(0, ')||\I,MB§;2/1J(Q) + 100w — Lullgir, 410 1) (4.22)
SN”U’(O, -)”q;uBi:i?/P(Q) + ||atu - EU’H\PM]prdJeriz(Q’T) ,

where N = N(d, p, 1, Co, C2(¥), C3(¢p, ¥), Cy). By Proposition[£9] (£:22)) also holds
for all u € \I/“Hﬁ)dfz(Q,T). Therefore the a priori estimates are obtained. The
uniqueness of solutions also follows from (£.22)).

Existence of solutions. We first consider the case £ = 11 A. Let

(f,u0) € WLy apzp—2(Q,T) x WHB22/P(Q) = F.
By Lemma[.I0and Lemmal4.35l (1) (the counterpart of LemmaB.I0 (1), C2°([0, T] x
Q) x C°(R) is dense in F. Therefore there exists (f("),u(()")) € C([0,T] x Q) x

C°() such that (f, uén)) — (f,up) in F. Make use of Lemmas [£4] and to
obtain that there exists a solution u(™) € THH2 4 5(Q,T) of the equation

ou™ = v Au™ + fn e (0) = uén) .

By @22), u™ is a Cauchy sequence in UHHZ 4 o(Q,T). Since WHH2 ; 5(Q,T) is a
Banach space, there exists u € W*H2 ; (2, T) such that u(™ — uin THHZ 4 5 (Q,T).
We also obtain that

lim (f("),ugn)) = lim (8™ — v1 Au™ W™ (0)) = (Oyu — v1Au, u(0)) in F,

n—oo
which implies dyu — v1Au = f and u(0) = ug. Therefore, we have proven the
theorem for the case £ = v A.

Let us consider a general £ := ), ; aD;; € Mr(v1,19), where (a¥(t))axa €
M(v1,v0) for all t € (0,T]. For s € [0, 1], put

d
ES = Z ((1 — s)uléij + saij)Dij .
i,j=1
Since
rl€l? < Y (1= 8)p18 + sa™ (1)) &€ < alé] (4.23)
1,j=1

for all t € (0,T], we have L; € Myp(vy,12). It follows from (£22) that
||u||\I/H’H§,d72(Q,T) < N(HU(O, .)H\P“Biff/p(ﬂ) + ||6tu - ‘CSUH\P“Lp,cng,g(Q,T))

for all u € \I/‘“H,;dfz(Q,T) and s € [0,1], where N is the constant in [@22]). In
particular, N is independent of s. Since the unique solvability for Ly, the method
of continuity (see, e.g., [22] Theorem 5.2]) yields the unique solvability for £;. O

We end this subsection with the global uniqueness of solutions.

Theorem 4.17 (Global uniqueness). Suppose that (L3) holds for Q, and for k =
1,2,

Y is a superharmonic Harnack functions on Q , Wy is a reqularization of ¥y ,

W ER, pre(l,00) and pp € I(Yr,pr,va/v1).
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Let
2—2
Fe () WHE 4oy o(Q.T) and uoe () Bl /Pr(Q),
k=1,2 k=1,2

and for each k=1, 2, u®) e \I/tkfy'-[;:jf_ﬂﬂ, T) be the solution to the equation
o™ = £u® 4 f o WP (0) = .
Then uM(t) = u (t) in the sense of distribution, for all t € [0,T].
Proof. We denote
Xp =W (QT), X =X1NX,

Y, = 9/ H* (Q,T) x \I/IQ”CB;::;?—?/M Q), Y=Y1NY,.

DPk,d+2pi —2
Step 1. We first consider the case £ = 11 A. For (f,up) € Y, by Lemmas
and LT (1) (the counterpart of LemmaBI0L(1)), there exists (fn, uo,n) € C2°((0,T]x
Q) x C°(Q) such that
(frsuom) = (fyuw) in Y.

Since u € (—1/pg, 1 —1/pyg), it follows from Lemmas .4 and .15 that there exists
u, € X = X1 N Xy such that

8tun = VlAun + fn ) un(o) = Uo,n -
By Theorem [£12] we have
. _ (k) < . _ _
Tim [~ u®x, S T [(Favon) = (Fruo) g = 0
for each k =1, 2. Due to (£I7) and that ug, — uo in D'(Q) (see the counterpart
of Lemma [B121(2)), we obtain that
uD@)=u@(#) in D'(Q), foralltel0,T].

Therefore the case £ = v1 A is proved.
We can also observe that u™) (- )(= u(?(-)) is the unique solution of the equation

ou=viAu+f ; u(0)=up, (4.24)
in the class X. This is because X7 N X5 and X; admits the unique solution to the
equation ([@24), and X7 N X C X;.

Step 2. Let £ € My (v1,v2). For r € [0,1], denote £, := (1 — r)v1 A 4+ rL. Due
to (.23, Theorem .12 implies that
lullx = llullx, + lullx, < NI[(Qeu — Lru,u(0))]ly forall ue X

where N is independent of u and r € [0,1]. In addition, by the result in Step 1,
the map u +— ((?tu — Eou,u(O)) is a bijective map from X to Y. Therefore the
method of continuity yields that for any (f,ug) € Y, there exists a unique solution
u € X = X7 N Xy of the equation

Ou=Lu+f ; u(0)=up. (4.25)

For each k = 1, 2, u® is the unique solution of equation #28) in X}, which implies
u = u®. Consequently, u"(t) = u(t) = u?(t) for all t € (0,T). O
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5. APPLICATION I - DOMAIN WITH FAT EXTERIOR OR THIN EXTERIOR

In this section, we introduce applications of Sections[3anddlto domains satisfying
fat exterior or thin exterior conditions. The notions of fat exterior and thin exterior
are closely related to the geometry of a domain 2, namely the Hausdorff dimension
and Aikawa dimension of Q°¢.

For a set E C R, the Hausdorff dimension of E is defined by

dimy(E) :=inf {\ >0 : HY(E) =0},
where

HA(E) = inf{er :EC U B(z;,r;) where z; € E and r; > 0}.
i€N ieN
The Aikawa dimension of E, denoted by dim4(F), is defined by the infimum of
B > 0 for which
sup i/ _1 dz < 0
peEE, r>0 P B, (p) d({E, E)diﬁ ,

with considering % = +00.

Remark 5.1.

(i) The Aikawa dimension is defined through integration. However, this dimen-
sion equals the Assouad dimension (see [55, Theorem 1.1]). The Assouad dimension
is defined in terms of a covering property, similar to the Hausdorff dimension and
Minkowski dimension. Specifically, the Assouad dimension of a set E' is the infimum
of 8 > 0 for which there exists Ng > 0 such that, for any ¢ € (0,1), each subset
F C E can be covered by at most Nge~? balls of radius r = ¢ - diam(F).

(ii) For any E C RY,

dimy (F) < dimy4(E)
and the equality does not hold in general (see [54, Section 2.2]). However, if E is
Alfors regular, for example, if E' has a self-similar property such as Cantor set or
Koch snowflake set, then dimy (E) equals dim 4(E); see [54, Lemma 2.1] and [60,
Theorem 4.14].

Koskela and Zhong [41] established the dimensional dichotomy results for do-
mains admitting the Hardy inequality, using the Hausdorff and Minkowski dimen-
sion. Their result can be expressed through Hausdorff and Aikawa dimension, as
shown in [54] Theorem 5.3].

Proposition 5.2 (see Theorem 5.3 of [54]). Suppose a domain Q@ C R? admits the
Hardy inequality. Then there is a constant € > 0 such that for each p € 02 and
r > 0, either

dimy (Q°NB(p,4r)) >d—2+¢ or dima (Q°NB(p,r)) <d—2—¢.
For a deeper discussion of the dimensional dichotomy, we refer the reader to [72].

In virtue of Proposition [5.2, we consider domains € R? which satisfy one of the
following situations:

(1) (Fat exterior) There exists € € (0,1) and ¢ > 0 such that
HI2HE(Q° N B(p, r) > crd=2t forallpe 9, r>0. (5.1)
(2) (Thin exterior) dim_4(Q°) < d — 2.
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It is mentioned in detail in Subsections [B.1] and that if a domain satisfyies one
of these situations, then this domain admits the Hardy inequality.

In this section and Section [6 for various domains Q C R?, we construct su-
perharmonic functions equivalent to powers of boundary distance functions p® :=
d(-,00)“. It is provided in Remark 54 that for each p € (1,0), these superhar-
monic functions imply ranges of 8 € R for which the following statement holds:

Statement 5.3 (2,p,0). For any v € R, the following hold:
(1) For any X\ >0 and f € H),.,,(Q), the equation
Au—Au=f
has a unique solution u in H;;Q (Q). Moreover, we have

H“HH;jf(Q) + AlJull g @ < Nl flle (Q) > (5.2)

p,0+2p p,0+2p
where N1 is a constant independent of u, f, and \.

(2) Let T € (0,00]. For any uy € B;;i;wp(Q) and f € H) 4.,(Q,T), the
equation

uy=Au+f onQx(0,T] ; u(0,:)=mug.
has a unique solution u in H;Jg2(Q). Morever, we have
H“HH;;%Q) < N2(H“0||B;j9~i;2/r'(g) + HfHH;”[H%(Q)) ) (5.3)
where Ny is a constant independent of u, f, and T.

Remark 5.4. Let Q admit the Hardy inequality (3] and suppose that for a fixed
a € R\ {0}, there exists a superharmonic function ¢ and a constant M > 0 such
that
M*lpaSwSMpa.

Then ) is a superharmonic Harnack function, and ¥ := p“ is a regularization
of ¢. Furthermore, the constants Cy(¥) and Cs(¥,v) can be chosen to depend
only on d, @ and M. In this case, Lemmas B.I0(3) and EHl(1) (the counterpart
of Lemma [BI0(3)) imply that for any p € (1,00) and «, § € R, there exists
N = N(d,p,~,«, i, M) such that

Toan@ 4 fllwnny o) =n I8y, @

Therefore, due to Theorems and (with Proposition @21(1)), we conclude
that Statement (Q, p,0) holds for all p € (1,00) and

fe(d—2—(p—Da,d—2+0a) fa>0;
e (d-2+a,d-2—-(p—1)a) ifa<0.
Moreover, N7 (in (5:2)) and N3 (in (&3])) depend only d, p, 7, 6, Co(2), o and M.

HfH\IWH;ﬁ(Q) ~N || flla

We collect basic properties of classical superharmonic functions, which are used
in this section and Section

Proposition 5.5. Let Q be an open set in RY.

(1) Let ¢1, ¢ be classical superharmonic functions on Q. Then ¢1 A ¢ is also
a classical superharmonic function on €.

(2) Let {po} be a family of positive classical superharmonic functions on §).
Then ¢ :=inf, ¢, is a superharmonic function on Q.
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(3) Let ¢1, ¢2 be positive classical superharmonic functions on Q. For any
€ (0,1), ¢§ ;_O‘ is also a classical superharmonic fucntion on €); in
particular, ¢% is a classical superharmonic function for all a € (0,1).
(4) Let Q1 and Q2 be open sets in R? and ¢; be a classical superharmonic
function on Q;, for i =1, 2. Suppose that
liminf ¢o(x) > ¢d1(x1) for all 1 € Q1 NONs;
r—x1,2EQ

liminf ¢1(x) > ¢a(x2) for all o € Q2N OQ; .

rx—xo,xEN

Then the function

¢1 (I) r e \ Qs
gf)(:t) = (;51 (x) A\ ¢2(£L‘) z € NN
®2 (x) x € Q9 \ 0

is also a classical superharmonic function on €.

For the proof of Proposition 58] (1) follows from the definition of classical su-
perharmonic functions, (2) and (3) can be found in [7, Theorem 3.7.5, Corollary
3.4.4], respectively, and (4) is implied by [7, Corollary 3.2.4].

5.1. Domain with fat exterior : Harmonic measure decay property.

This subsection begins by introducing a relation among the condition (GI),
classical potential theory, and the Hardy inequality; see the paragraph below Re-
mark B.1T}

We first recall notions in classical potential theory. For a bounded open set
U C R? (d > 2) and a bounded Borel function f on U, the Perron-Wiener-Brelot
solution (abbreviated to ‘PWB solution’) of the equation

Au=0 inU ; w=f on dU (5.4)
is defined by
u(zx) := inf {(b(:v) : ¢ is a superharmonic function on U and

liminf ¢(y) > f(z) for all z € OU } . (5:5)
Yy—z

For a Borel set E C 9U, w(-,U, E) denotes the PWB solution u of the equation
Au=0 inU ; u=1g on 0U,

which is also called the harmonic measure of E over U.

Remark 5.6. A bounded open set U is said to be regular if, for any f € C(oU),

the PWB solution of equation (54)) belongs to C'(U) and satisfies (5.4]) pointwisely.

One of the equivalent conditions for U to be regular is provided by N. Wiener [73]
(see with [7, Theorem 7.7.2]), which is called the Wiener criterion.

We fix an arbitrary open set @ C R? d > 2 (not necessarily bounded). For
p € 02 and r > 0, we denote
w(-,p,r)= w( Q2N B, (p), 2N 6BT(p))

(see Figure 5.1l below); note that Q N 0B, (p) is a relatively open subset of (Q N

B,(p)).
Here are basic properties of w( -, p,r) which can be found in [, Chapter 6].
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FIGURE 5.1. w:=w(-,p,r)

Proposition 5.7.
(1) w(-,p,r) is harmonic on QN By(p) with values in [0, 1].
(2) For any xo € Q2N IB(p), Jm w(x,p,r) = 1.
z€QNB,-(p)

For convenience, based on Proposition5.7), we consider w( -, p, ) to be continuous
on QN B(p,r) with w(z,p,r) =1 for x € QN IB(p,r).

Definition 5.8. A domain € is said to satisfy the local harmonic measure de-
cay property with exponent o > 0 (abbreviated to ‘LHMD(«)’), if there exists a
constant M, > 0 depending only on 2 and « such that

w(z,p,1r) < M,y <|:Zj —p|) for all z € QN B(p,r) (5.6)
r

whenever p € 92 and r > 0.

It is worth noting that if Q satisfies LHMD(«) for some « > 0, then (2 is regular
(see, e.g., [7, Theorem 6.6.4]).

Remark 5.9. LHMD is closely related to the Holder continuity of the PWB solu-
tions. We temporarily assume that € is a bounded regular domain (see Remark [5.6)).
For « € (0,1] and f € C(99), by Hqf we denote the PWB solution u of the equa-
tion
Au=0 on Q; ulpa=/,
and denote Vo |
Hq fllco.ea
|Holla = sup o=l
Fec®(oQ) HfHCUva(BQ)
F#0

The following are provided in [4, Theorem 2, Theorem 3]:
(1) [[Hall = oo.
(2) For a € (0,1), if || Hglla < oo then Q satisfies LHMD(«). Conversely, if €
satisfies LHMD (o) for some o/ > «, then ||Hq|lo < oc.

Remark 5.10. Let © be a bounded domain, and suppose that for a constant a > 0,

there exist constants ry, M e (0, 00) such that

w(:v,p,r)gﬂ(u) forall ze€QnB(p,r)

r
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whenever p € 9Q and r € (0,7¢]. Then Q satisfies LHMD(«), where M, in (5.0)
depends only on a, M and diam(2)/ro. Indeed, for a fixed p € 99, the function
w(z,p,70)LonB(p,re) + 1o\ B(p,ro)

is a classical superharmonic function on © (see Propositions (5.5l (4) and B.7). In
addition, the definition of harmonic measures implies the following:

If r > rg then w(-,p,r) <w(-,p,ro) on QN B(p,70),;

If r > diam(Q2), then w(-,p,r) =0.
Therefore for any r > 0,

_ d. Q « _ (0%
w(x,p,r)gM(M\/l) <u> for all z € QN B(p,r).
To T
Remark 5.11. For an open ball B ¢ R? and compact set K C B,
Cap(K,B) :=inf {|Vf|3: f€CX(B), f>1onK}, (5.7)

denotes the capacity of K relative to B. Ancona establishes the following in [6]
Lemma 3, Theorem 1, Theorem 2]:
(1) Q satisfies LHMD(«) for some « € (0, 1) if and only if there exists €y such
that
. Cap(Q°N B(p,r), B(p,2r))
inf )
pEN,r>0 r

>€>0. (5.8)

Here, €¢p and (o, M,,) depend only on each other and d.

(2) If Q satisfies (B.8]), then the Hardy inequality (I3]) holds for Q, where Cy(12)
depends only on d and ep.

(3) If Q C R? is a planar domain and admits the Hardy inequality, then (5.8)
holds for some €.

The condition (B8] is also called the capacity density condition or uniformly fat
exterior condition. A well-known sufficient condition to satisfy (B.8]) is

it m(QC N B(p, 7“))

pEIN, >0 rd =a >0, (5.9)

where m is the Lebesgue measure on RY. Indeed, if f € C°(B(p,2r)) satisfies
f>1o0nQ°NB(p,r), then the Poincaré inequality implies

Q° N B(p,
T,—d+2/ |Vf|2 dz >4 T,—d/ |f|2 dz > m( . (p 7")) '
B(p,2r) B(p,2r) r

Therefore, (2.9) implies (B.8]), where ¢y depends only on d and ;.
For a deeper discussion of the capacity density condition, we refer the reader to
[40, 56] and the references given therein.

We finally introduce the relation between (B.I)) and the local harmonic measure
decay property. It was established by Lewis [56, Theorem 1] that if Q satisfies the
capacity density condition (58], then there exist constants ¢, e > 0 depending only
on d, €y such that

Hﬁo‘?*ﬁ (Qc N B(p, r)) > cpd=2te
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for all p € 9Q and r > 0. Conversely, it is well known (see, e.g., [3 Theorem B] or
[T, Theorem 5.9.6]) that for any € > 0 and a compact set £ C B1(0), we have
HI2HE(E) < N(d, ) - Cap(E, B2(0)) .

Therefore, due to Remark E1T1(1), (&) holds for some €, ¢ > 0 if and only if
satisfies LHMD(«) for some « > 0.

Based on this discussion, we consider domains satisfying LHMD(«) for some
a > 0, instead of (B.I)). This condition is implied by geometric conditions introduced
in Section Bl and the value of « reflects each geometric condition; see Theorem [G.5]
Remark [6.9] and Corollary[6.19 In the rest of this subsection, we construct appro-
priate superharmonic functions related to « (see Remark [5.4). The results in this
subsection are crucially used in Subsection

Theorem 5.12. Let Q satisfy LHMD(«), a > 0. Then for any 8 € (0, ), there
exists a superharmonic function ¢ on 0 satisfying
NP <p<Np?
where N = N(«, 8, M,) > 0.
Before proving Theorem 512, we look at the following corollary:
Corollary 5.13. Let Q C R? satisfy LHMD(a), a > 0. For any p € (1,00) and
0 € R satisfying
d-—2—-(p—-la<f<d-2+a,
Statement[5.3 (2, p, 0) holds. In addition, Ny (in (52)) and N1 (in (B3])) depends
only ond, p, v, 0, a, M.
Proof of Corollary[513. Take 8 € (0, a) such that
d—-2—-(p-1)8<0<d-2+p.

It follows from Theorem that there exists a superharmonic function ¢ such
that

NP <¢ <Np°,
where N = N(a, 8, M,). Remarks[5111(1) and (2) yield that  admits the Hardy
inequality (3], where Co(£2) can be chosen to depend only on d,a and M, (in
(B6). Therefore, by Remark 5.4l the proof is completed. O

Proof of Theorem [5.12, The following construction is a combination of [6, Theorem
1] and [32, Lemma 2.1]. Recall that M, is the constant in (5.6]), and 5 < «. Take
ro € (0,1) small enough to satisfy M,r§ < rg, and take 7 € (0,1) small enough to
satisfy
(1= n)Mar§ +n<1p -

For w(x,p,r), we shall need only the following properties (see Proposition 5.7 and
Definition [5.8)):

w(+,p,r) is a classical superharmonic function on QN B(p,r);

w(,p,r)=10on QNOB(p,r);

0 <w(,p,r) < Myrg on QN B(p,ror) .
For p € 002 and k € Z, put

(bqu(x) = T]()Cﬁ((l - 77) w(x,p, Tg) + 77)
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Then ¢, 1, is a classical superharmonic function on QN B(p, r§),

Op ke < r(()k+1)ﬂ on QN B(p, TIOH'l) ,
p.k :rgﬁ on QNAB(p,rk),
n-rg’g < Opk STIOCB on QN B(p,ry).
For p € 002 and z € 2, we denote
¢p(x) = mf{gpk(x) : [&—p| <75}
If we prove the following:
¢p is a classical superharmonic function on €2 ; (5.10)
nfe = pl® < dp(x) < rg?la—pl?, (5.11)
then ¢ := inf,coq ¢p is superharmonic on Q (see Proposition [5.51(2)) and satisfies
np(x)’ < ¢x) <y’ plx)” .
Therefore the proof is completed.

To obtain (5.10) and (E.I1), we only need to prove each of the following, respec-
tively: for each kg € Z,

¢y is a classical superharmonic function on {z € Q : 720 < |z — p| < 7§ };

nr? < gp < b on fwe Qo < o —p| < o)
- (510) : For = € QN B(p,r4°), put

Dp.ko () it gt <o —p| < g
Vp,ko (T) = ' . ko+1
Dp.ko (T) N Dpor1(x) i |z —p| <rg.
Since ¢pro < Gpkor1 o0 QN AB(p, 760, Proposition [5.51(4) implies that v, g, is
a classical superharmonic function on QN B(p,rt"). We denote
Upy = {z€Q: rbo™? < |z —p| <rfo}.
For x € Uy,, we have
Op(x) = Up ko () ANinf{pp i(z) : k < ko — 1}.
Moreover, if nrgﬁ > Tlg“ﬁ then
k k
Upko (#) < Bpk (1) < 76”7 < mr” < ().
Therefore
Op(x) = Up ko () ANinf{pp () : k< koy—1 and nrlgﬁ < T]g“ﬁ},

which implies that ¢, is the minimum of finitely many classical superharmonic func-
tions, on Uy, . Consequently, by Proposition[5.5(1), ¢, is a classical superharmonic
function on Uy,.

- (BI0) : Let € Q satisfy 70 < |o — p| < r8*. Since

Dp.ko () < 7“]506 , and ¢, k(z) > nrg’g > nrg"ﬁ for all k <k,

we obtain that nrt°? < ¢,(x) < rio”. -
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5.2. Further results for domains with fat exterior.

In this subsection, we introduce a unweighted solvablity results and embedding
theorems for the Poisson and heat equations in domains satisfying the capacity
density condition (&.8]).

Recall that VVp1 (Q) denotes the closure of C2°(Q) in

Wy (@)= {f € D'(Q) : Iflwp) = Ifllp + IV fllp < o0}
Note that W () is a Banach space, and therefore W]D1 () is also a Banach space.

Theorem 5.14. Let Q satisfy the capacity density condition (&.8) and
A>0 if do<oo and A>0 if do=o00, (5.12)
where dq = sup,cq d(x,08). Then there exists € € (0,1) depending only on d, €y
(in (B8)) such that for any p € (2 —€,2 + €), the following holds:
For any f°, ..., f1 € L,(), the equation

d
Au—du=f"+> Dif' (5.13)

i=1
has a unique solution u in WZ} (Q). Moreover, we have

IVullz, @) + (A\% +dg") lullz, )

d (5.14)
< N(d,p, o) (min (AH2,do) |1 0Nl ) + Z ||fZHLp(Q)) :
=1

Proof. We first note the following two result which follows from (E.8):

(a) By Remark[G.IT1(1), there exists a € (0,1) such that © satisfies LHMD(q).

Due to Corollary B.13] Statement (Q,p,d — p) holds for
2—a<p<2+ L )
l-a

and Ny (in (5.2])) depends only on d, p,, €.

(b) Tt is implied by [56] Theorem 1, Theorem 2] (or see [40, Theorem 3.7,
Corollary 3.11]) that there exists pg € (1,2) depending only on d and €
such that for any p > po,

AN z < , P, €0 u|” dx u e . 5.15
U@ e < N VulPdz ¥ ue CX(Q
alp(@) Q

Due to Lemma BI2 (1) and the definition of Wpl(Q), C* () is dense in
Wfl (Q) and H} ; (), separately. Therefore (5.I5) implies that W]D1 Q) c
Hy 4 ().

Take € € (0,1) such that € < @ and € < 2 —py. We consider a fixed p € (2—¢€,2+¢).

We will use Lemma B8 Corollary B8, d,*|ull, < llp~ ullp, and [pf], <
da|| flp, without mentioning.

Step 1. Uniqueness of solutions.
Suppose that u € W]D1 (Q) satisfies Au— Au = 0. By (a) in this proof, u belongs to

Hl

) d?p(Q), which implies u = 0. Therefore, the uniqueness of solutions is proved.

Step 2. Existence of solutions and estimate (G.14).
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To prove the existence of solutions, it is enough to find a solution in Ly, 4(€2) N
H) 4 (). Indeed, if u € Ly a(Q) N H) ; (), then there exists u, € C2°(§2) such

p,d—p
that u, — u in L, o(Q) N H! ; (Q) (see Lemma [BI21(5)). Therefore,

p,d—p
ltn — wllwaiey S lwn = ull, o) + ln — ulls, (@) =0,
which implies that u € W]D1 Q).
Without loss of generality, we can assume that A =0 or A = 1 by dilation. Note
that e in (B.8) is invariant even if Q is replaced by Q2 = {rz : x € Q}, for any
r > 0.

- Step 2.1. Consider the case A = 1. Since p~ ' fO € L1, () and Statement
(Q,p,d — p) holds, there exists v € Hg)d_p(ﬂ) such that

Av—v=p"1f0

and ||v||H§’d7p(Q) Hlvllz, o @) Sdp.eo ||ﬁ_1f0HLp,d+p(Q) (see (a) in this proof) By
Proposition [A:3(9) and Lemma [3I01(1), we have

1ol at@) + (10000, + 02 o )

Sa (Iolli, o+ Wl o) + (1ol annion + ol o)

Sap Mvllez, @ + vz, @ (5.16)
~1 40
Sape |77 HLP,HP(Q)
~4p [Ny
Observe that f:= f9 — A(pv) + pv satisfies
d
f= —2[2 Di(vDiﬁ)} +vAp
i=1
and therefore
HfHHp”;ﬂ)(Q) /Sd,;v ”vﬁmHLp’d(Q) + ”'UﬁmcHLp,der(Q) (5 17)

Sdpeo ||U||Lp,d(52) Sd,p.co HfOHp )

where the last inequality follows from (5.I6). Since Statement [5.3] (€2, p, d—p) holds,
there exists w € H, ; ,(©) such that

d
Aw—szDifi—i—f
i=1
and

d d
Iy Wollig o0 Sane S0 eyt Wl o € 207
1= 1=

(see (a) in this proof). Therefore, by Proposition [A31(9), Lemma B.I0(1), and
EI0), we have

leollzy iy + (lollzy iy + 0l , (o)

Sd,pr”H;dw(Q) + ||w||H;Z+p(Q) Sd.p.co Z HJMHP .
i>0

(5.18)
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Put u = vp 4+ w. Then u is a solution of equation (513)) and satisfies

luzllp + (1 + dgllull,

Sap Nl s + i, @)

Sap wll,we) +llwla, @+ 1V, .0 + vla e (5.19)
Sapeo DN F Np
i>0

Here, the second inequality follows from Lemma B.101(3), and the last inequality

follows from (&10) and (EIS).
Note that (5.I9) also implies that u € Ly, 4(Q) N H, ; ().
- Step 2.2. Consider the case dg < 00, and observe that

12+ Difi||H;;+p(Q) S 170 L arni) + DMLy )
i>1 i>1

<dallflly + D 1fllp < o0,

i>1

(5.20)

Since Statement (Q,p,d — p) holds, either A = 0 or A = 1, there exists u €
H!, () such that

p,d—p
Al —Ni= f°+ > Dif’,
i>1
and
||ﬁ||H;’d7p(Q) + /\”ﬁ”H;ZM(Q) S ”fo + Z DifiHH;;er(Q) (5.21)

i>1
(see (a) in this proof). By Proposition [A:31(9), (5:20), and (52I]), we obtain that

IVallL, @) + d51||17||L,,(Q) + >\1/2||ﬁ||Lp(Q)

Sap Nz, o+ Ml

Sapeo dall Ol + D1 -
i>1
Due to (£.22), we have @ € L, 4(Q) N H, ; ().

- Step 2.3. The existence of solutions is proved in Steps 2.1 and 2.2, for all A
and dq satisfying ([G.I2)). For the cases where dg = oo and A = 1, and dg < o
and\ = 0, estimate (G.I4) is proved in (5.19) and (5.22), respectively. Therefore, we
only need prove estimate (.14]) in the remaining case where dg < oo and A = 1.
Since u in Step 2.1 and @ in Step 2.2 are the same (due to the result in Step 1),

(E23) can be obtained by combining (5.19) and (5.22]). O

Theorem 5.15. Let Q satisfy the capacity density condition [&.8) and

(5.22)

T<oco if dg<oo and T <oo if dg=o00,

where dg = sup,cq d(z,0). Then for any vy, v € R with 0 < vy < vy < 00, there
exists € € (0,1) depending only on d, ¢y (in (B.8)), v1, va such that the following
holds:



L,-THEORY FOR PDES IN NON-SMOOTH DOMAINS 67

Suppose that p € (2—e, 2+4€) and L € My (vy,v9). Then for any f°, ..., fl €
L,((0,T] x ), the equation

d
Ou=Lu+fO+> Dif* in (0,7] ; u(0,-)=0 (5.23)
i=1
has a unique solution u in Lp((O,T];VDV;(Q)) (see (@I for the definition
of equation (B23)). Moreover, we have

IVullL, (om1x) + (T2 + (do) ™) [ull, 0.1 x9)

a (5.24)
< N(d,p, €o) (min(Tl/Q, do) |1/l L, 0. 1)x0) + Z ||fl||Lp((0,T]><Q)) :

i=1
Proof. We introduce the expression ‘Statement,, ., (2, p, ) holds’ to indicate that
¢ Statement B.3](2, p, #).(2) holds for A replaced by arbitary
L e Mrp(v1,1s). In addition, Ny (in (53)) depends only

;
on da b, 97 €0, V1, V2.

Remarks [5.171(1), (2) and Theorem [5.12] imply the following:
- Q admits the Hardy inequality (L3)), where Cy(2) can be chosen to depend

only on d and ¢g.
- There exists @ > 0 and a superharmonic function ¢ on €2 such that

N~'p* <¢ < Np“,
where o and N depend only on d and €.

Therefore, due to Theorem (with ¥ = p®) and Proposition [£21(1), if # € R
satisfies

- (p—Da <f-d+2< (p— 1o

p(\/r2/rn —1)/2+1 p(\/v2 /1 +1)/2 1"

then Statement,, ., (£2,p,0) holds. The first term in (5.25]) goes to —a+/v1/v2 as
p — 2, while the second term in (B.25]) goes to ay/v1/v2 as p — 2. Therefore, there
exists €7 > 0 (which depends only on v1, v, and «) such that if p € (2 —€1,24¢€1),
then 6 := d — p satisfy (5.25)), and thus Statement,, ., (2, p,d — p) holds.

By (a) in the proof of Theorem [5.14] there exists pg € (1,2) such that for any
p>po, Wy(Q) C Hp 4, (Q).

Take € € (0, €1) such that 2—e > pg. Then for any p € (2—¢, 2+¢), Statement,, ,, (€, p, d—
p) holds and W, () C H, , ().

Step 1. Uniqueness of solutions. Suppose that v € L,((0,T7; Wp1 (Q)) satisfies
ou=Au ; u(0,)=0.

Since Wz} (Q) C H) ;_,(2), we have L,((0,T]; WZ}(Q)) C H, 4 ,(9,T). Therefore,
by Lemma ET5, v € H. , (9, T). Since Statement,, ,, (2, p,d — p) holds, u = 0.

p,d—p
Step 2. Existence of solutions and estimate (5.24)). Proof of the existence
of solutions and estimate ([B.24]) is left to the reader, as it can be shown in a similar
way by following Steps 2.1 - 2.3 in the proof of Theorem (.14 with the following
details:

(5.25)
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- To prove the existence of solutions, it is enough to find a solution in
Lpa(,T)NH, 4 (Q,T). Tt is because if u € Ly a(Q,T) NH) , (Q,T),
there exists u, € C((0,T) x Q) such that u, — w in L, 4(Q,T) and

H), 4 ,(Q,T), separately (see Lemma ET0). Since Ly 4(Q) N H) ; () C

I/i/'p1 (Q) (see Step 2 in the proof of Theorem B.I4), {uy}nen is a Cauchy
sequence in L, ((0,T]; W]D1 (Q)). Therefore
- 1 - 1L
u= nh_)rr;o un, in Ly((0,T; W, () .

- Without loss of generality, we can assume that T'= 1 or T" = oo by dilation.
- For the case T = 1, note that if v € "2 (Q,1) satisfies v(0) = 0, then

p,d—p
1 1 t
p
ol oy = [ 10Oy, ot < [ ([ o)l o ds)
p
< ot "y (1) < ||U||H;jip(ﬂ,1)'

d

Remark 5.16. Actually, from the proofs Theorem [5.14] and Theorem B.15] it can
observed that for a fixed p € (1,00), the assertion in Theorem [5.14] (resp. Theorem
E.I5) holds if Statement B3] (Q2,p,d — p) holds (resp. Statement,, ., (Q2,p,d — p)
holds) and W (Q) C H} ;_,(9). Note that if
m(Q°N By(p))

in >0
o B,
b m(B,(p)

where m is the Lebesgue measure on R?), then the L,-Hardy inequality holds (see
P
[40, Example 3.6, Corollary 3.11]), and therefore we hve Wp1 Q) Cc H) ; ().

In the next theorems, we discuss the embedding theorems, Propositions [B.I7 and
411l For a fixed € € (0, 1], let p be large enough such that p > d and € > 1/p. Then it
follows from PropositionBI7 that if f € W'™H ;. . ,(Q) andu € U'=H] ; ,(€)
satisfy Au = f, then

u(z) < ||f||\D1*€H;ép72(Q) - p(x) TP ().

In Theorems .17 and E.I8 we modify this type of estimates to delete the term
p~(4=2)/P ysing Theorem 512

Theorem 5.17. Let Q satisfy LHMD(«), A > 0, and ¢ be a superharmonic
Harnack function on ). Suppose that § and € are positive constants such that

d 0/2,1+46/2) if d=2;
0<o<—"C a1 ana el /2 (5.26)
at+d—2 (etd=251] i d>3.

If fO, i, ..., f* are measurable functions on Q0 with
d
F:: H —1+€ 2-6 0 4 —1+€ 1-06 pi 00, 527
[0 ) ;w P, o (5.27)
then the equation
d
Au—du=f'+> Dif’ (5.28)

i=1
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has a unique solution u in {/)VPEH;/&,O(Q)’ where 7:/; is the regularization of ¥ in
Lemmal33.(1). Moreover, we have

(@)] + pl@)'=  sup L&) ZuW)] ﬁ@' < NF- (¢(z) (5.29)
YEB,(2)/2(2) |,’E - y|

for all x € Q, where N = N(d, p, C1(¥), o, My, 0, €).
Proof. Put p=d/§, and note that Corollary B0 implies

d
0 i

177+ ; Dif'lli-crr1 () S F- (5.30)
Case 1. d = 2.
Observe that 6 =2/pand 1 —e € (=1/p,1 —1/p). Due to (530) and d — 2 =0,

this corollary is implied by Theorem [3.18 and Proposition B.17

Case 2. d > 3.
Take a1 € (0, @) such that

-2
e a2,
Oéld
and put
*d_2+(1—e) and t=p (1 —e)
Hw oL p ) H )
so that

IS (071_1/]9) , te [071] ’ Ntzl_eu O‘lu(l_t) = (d_2)/p
By Theorem (.12 there exists a superharmonic function ¢y such that ¢y ~n
p® where N = N(a, My, ;). Put ¥ = poa(i=t) (z/;)t which is a regularization
of the superharmonic function gb(l)_tz/)t (see Proposition B5(3)). Note that, by
Lemma B101(3),
\I’MH;9+d72(Q) = wl_eng(Q)

for all v, 6 € R. By (5.30) and Theorem B.18] equation (5.28)) has a unique solution
u in the class WFH ; ,(Q) = ' H, ,(Q). Furthermore, Proposition B.IT implies

(E29) for this u. O

Theorem 5.18. Let Q satisfy LHMD(«), T € (0,00), and ¥ be a superharmonic
Harnack function on Q. Suppose that B, Bt, § and € are constants in (0,1) such
that

5 d
<1-— —— 4o —— <1. :
B 428 <1-6  and o ta (d+25+2ﬁt><6_1 (5.31)
IfF O, ..., f4:(0,T] x Q = R and ug :  — R are measurable functions satisfy

d
H |¢—1+6p2—26t—6fo| n Z |¢—1+6p1—23t—5fz|
=1

L(d+2)/5((O,T] XQ, dzx dt)

o T o] + T |V |

Lg,s($,dz)
=F+1<oc0,
then the equation
ug = Au+ fO4+ Dift 5 w(0) = ug (5.32)
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has a unique solution u in 121’67-[;)72725&(9, T), where 7:/; is the regularization of
¥ in LemmalZ 3. (1). Moreover, we have
[ (ut, ) — (s, )
[t — $|ﬁt
for all s, t € [0,T] with t > s, where N = N(d,p,C1(¥),a, My, Bz, Bt, 0, €) (see
Proposition BI1) for the definition of | - |g)z))

}BI < N(F+1)

Proof. Take a € (0, ) such that

0
— - 2
e>d_i_2—|—oz1 (d+25+ ﬂt)
and put
d+2 _,/d _
Ta H:0411(]_9+25t)+(1—5)a t:,u 1(1_6)7
so that

d
€(0,1-1/p), t€0,1], pt=1—€, oqu(l —t)=—=+285,.
p
By Theorem [B.12] there exists a superharmonic function s satisfying s ~ p®*. Put
U= ﬁal(l—t)qzt

which is a regularization of the superharmonic function s ~*4!(see Proposition[5.5(3)).
Note that

UPH) 4 (. T) =0 Hy 5 05,(2.T),

UYL o(,T) = ¢ H ! L ova_pnp(T)
veB Q) = gt B;y_ééip(@) :

Corollary 3.16] implies

7%+ ZD I\l

,d+2p
i=1

d
~ || £0 s
,(Q,T) — Hf + Zle Hw HL L o g, (RT) S NF,
i=1 '
and Proposition [A-3](3) implies

HU’OH\IMBI 2/r() = HUOle B2 (@)~ NHuOHw1 <H! ) ~1.

d/s,—281d/s
Thererfore Theorem . I2limplies that there exists a unique solution u € ‘11“7-[11)) 1—2(Q,T) =

Jl_eH;1,272ﬁtp(Q, T) of equation (5.32)). Moreover, by Propositions B.17 and E11]
(with 8 = 8; +1/p), we obtain
- (0
|~ (ult, ) )| ) < < lult) (S)HJFEHg’/Dpwz
< |t — o|Be .
IR I
o |t — s [Jul| gures

Slt—sl?(F+1).

,d—2
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Remark 5.19. Assume that €2 is a bounded domain satisfying the capacity density
condition (5.8). By Remark [5.11], 2 satisfies LHMD(«) for some o > 0. Let €, dp €
(0,1] and f°, f1, ..., f¢ be measurable functions on {2 such that

Fs, = H¢—1+5|p2—60f0| 4 Z¢—1+e|p1—50fi|
i

Loo()

Take small enough d € (0, dg] such that (5.26) holds. Then, since € is bounded, F
in (5:27) satisfies
F <, diam(Q)% F, ,
where diam(€?) is the diameter of ). By Theorem 517, the solution u of the equation
Au = fO4 D;f?
satisfies

_ ulr) —u . —€
(@) +p(e) = sup  LAD Bl < gy ()t
YEB,(z)/2(w) |z =yl

Remark 5.20. The existences of solutions in Theorem [5.17 (resp. EI8) follows from
Theorem B8 (resp. A12). Therefore, the global uniqueness theorem, Theorem B.24]
(resp. TT), also holds for the solutions in this corollary.

For example, suppose that f* € L 412(Q) and 1, ..., f¢ € Ly 4(Q) under the
same assumption as in Theorem [B.17 Then Theorem [B.1§ implies a solution u €
Hj 4 5(9) of equation (5.28). Furthermore, due to Theorem[5.I7 and Theorem [3.24,
this u satisfies estimate (£.29).

5.3. Domain with thin exterior : Aikawa dimension.

The notion of the Aikawa dimension was first introduced by Aikawa [2] to observe
the quasiadditivity of the Riesz capacity. We recall the definition of the Aikawa
dimension. For a set £ C R%, the Aikawa dimension of E, denoted by dim A(E), is
defined by

dim4(E) = inf {ﬁ >0: sup

— ———dy < oo}
pEE, >0 rf B, (p) d(ya E)diﬁ

with considering % = 00.
In this subsection, we assume that d > 3, and €) satisfies

Bo:=dimy Q¢ <d—2.

Theorem 5.21. For a constant 8 < d — 2, if there exists a constant Ag such that

sup

-~ . dy< A< oo, 5.33
peQC, r>0 Tﬁ B, (p) d(ya Qc)diﬁ ? ( )

then the function
o) = [ o=yl 2ol dy
is a superharmonic function on R® with —A¢ = N(d)p~@T8. Moreover, we have
N~='p(x) =P < g(x) < Np(a) =247 (5.34)
where N = N(d, 5, Ag).

Before proving Theorem [£.21] we first look at corollaries of this theorem.



72 JINSOL SEO

Corollary 5.22. The Hardy inequality (L3)) holds on Q, where Co(Q) depends only
on d, By and {Ag}s>p,-

Proof. We first note that this corollary is implied by [2, Theorem 3], which estab-
lishes that if p € (1,00), @ > 0, v € R satisty

—(p—1)(d — dima(Q%)) < v < d—dima(Q°) — ap,
then

a2 p
/ deﬁN de for all u € C°(RY),
ra p(z)oPH R p(x)7

where N = N(d, {Ag}g>dima(0c), D, @, 7), and (=A)*/ 2y := F~1(| - |*F(u)). Ac-
tually, [2, Theorem 3] is more general than this corollary, and the proof is based on
Muckenhoupt’s A, weight theory.

Considering only Corollary [5.22 this result can be proved differently. We first
note the following inequality provided in [8, Lemma 3.5.1]: if f € C2°(R%) and 5 > 0
is a smooth superharmonic function on a neighborhood of supp(f), then

/ _As|f|2dx§/ VfPde forall feC(RY) (5.35)
R4 Rd

S

(the proof of this inequality is based on integrating ’V =/ S)Vs‘2 and perform-
ing integration by parts). Take any 5 € (Bp,d — 2), and let ¢ be the function in
Theorem [£.21] so that

—A¢p>Nip 26 >0 (5.36)
where Ny = N(d, 8, Ag) > 0. Fix f € C=(Q). For 0 < € < d(supp(f), 99Q), let ¢(°)
be the mollification of ¢ in (ZI]). Observe that

~A) = N (p2) ) = N p+ %O on R,
where N; is in (530]). By appling the monotone convergence theorem to (5.35]) with
s = ¢(°)(see Lemma 20), we obtain ([3) with Co(2) = N;. O
Corollary 5.23. For any p € (1,00) and 0 € R satisfying
Bo<8<(d—2~PBo)p+ o,

Statement[5.3 (Q, p, 0) holds. In addition, Ny in (B2) and N2 in (53) depend only
on d: P, 7, 97 [307 {Aﬁ}ﬁ>50

Proof of Corollary .23, Choose 3 € (8o, d — 2) satisfying
<< (d—2-P)p+8.

By Theorem [5.21], there exists a superharmonic function ¢ satisfying ¢ ~ p~¢+2+8
and therefore by Remark [5.4] the proof is completed. O

Proof of Theorem [5.21. We first prove (5.34). For a fixed 2 € R?, there exists p, €
O such that |x — p,| = p(x) =: p,. Put

Ey = B(z,27'p,) and E; = B(z,27 'p,)\ B(z,27 ?p,)
for =1, 2, ..., and put
I =/ |z =y~ p(y) " Py

J
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for j=0,1,2,...,s0that ¢(x) = > I;. If y € Ey then %pz < p(y) < 2py, which
J€No
implies
Io ~a.5 p;dﬂ%/ |z — y| "2 dy oy pdTHHE
B(z,pz/2)

For I, j > 1, observe that

0<D I <Y (272p,) "2 /( p(y)~ " dy
j=1 j=1 B

©,20=1p,)

<y pmildm) pdt / ey Py
j=1 B(pz,29ps)

< N( Z 2—j(d—2—6)>p;d+2+,@ '
j=1

where N = N(d, 3, Ag). Since the summation in the last term is finit, (534) is
proved.
To prove that —A¢ = N(d)¢ in the sense of distribution, recall that

Al = yI7?) = N(d)do(z ~ )

in the sense of distribution, where do(+) is the Dirac delta distribution. Due to (533)
and ¢ ~ p~4t2+8 4 is locally integrable. Therefore, by the Fubini theorem, for any
¢ € C*(R%) we obtain

[ ole)(=a0@ s = [ ([ o=y =A0() da) ote) 7 ay

=N | ¢ (y)ply) =7 dy.

6. APPLICATION II - VARIOUS DOMAINS WITH FAT EXTERIOR

In this section, we present results for the exterior cone condition, convex do-
mains, the exterior Reifenberg condition, and Lipschitz cones. These domains and
conditions imply the fat exterior condition.

Throughout this section, we consider a domain Q C R¢, d > 2.

6.1. Exterior cone condition and exterior line segment condition.

Definition 6.1 (Exterior cone condition). For § € [0,5) and R € (0, 00|, a domain
Q) C R? is said to satisfy the exterior (6, R)-cone condition if for every p € 050,
there exists a unit vector e, € R? such that

{z € Br(p) : (x—p)-ep,>|z—p|lcosd} C N°. (6.1)
Note that the left hand side of (G is obtained by applying a translation and a
rotation to the set

{z = (z1,...,24) € Br(0) : 1 > |z|cosd}.
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The exterior (0, R)-cone condition can be called the exterior R-line segment
condition, due to

{r€Br(p) : (x—p)-ep>|z—pl} ={p+re, : T €[0,R)}.

For examples of the exterior cone condition and exterior line segment condition, see
Figure below.

) !

~ - -

A. Lipschitz boundary B. Exterior C. Exterior oo-line
condition (§,00)-cone condition segment condition

(does not satisfy Lipschitz (does not satisfy (d, R)-cone
boundary conddition) condition, V ¢, R > 0)

FIGURE 6.1. Examples for exterior cone condition

Ezample 6.2. Suppose that there exists K, R € (0, 00] such that for any p € 99,
there exists a function f, € C(R?~!) such that

fo0) = [o(Z) < Kly' = 2| forall 3,z eR¥™', and (6.2)
QNBr(p) ={y= (v ya) ER"" xR : ya> f(y') and |yl <R}  (6.3)
where (v, ya) = (y1,- -+ ,yq) in ([@3) is an orthonormal coordinate system centered

at p. Then € satisfies the exterior (J, R)-cone condition, where ¢ = arctan(1/K) €
[0,7/2).
Moreover, if f € C(R™1) satisfies ([6.2) with f, = f, then a domain
{(@,2,) ER" X R : 2, > f(2))}
satisfies the exterior (d, c0)-cone condition, where § = arctan(1/K).
For ¢ € (0,7), let
Es:={0€0B1(0) : 01 > —cosd}

(see Figure below). We denote the first eigenvalue of the Dirichlet spherical
Laplacian on Ejs as Ay (see Proposition [6.241(1)). Alternatively, we can express Ag
as follows:

S0 1(0) 2 (sin 0)42de
mn 9
J€F—s [T70| £(B)[2(sin 6)1—2d0

As = (6.4)

where F;_s is the set of all non-zero Lipschitz continuous function f : [0,7—¢] — R
such that f(m — ) =0 (see [19]).
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\

FIGURE 6.2. Ej

We also define
2
NPE N (= S

and when d = 2, we define \g = %

The following quantitative information of As and As is provided in [9]:

Proposition 6.3. Let § € (0, 7).
(1) If d =2 then A\s = /A5 = 2(:_5) > %

(2) If d =4 then \s = —1 + T+ A; = 2.
(8) Ford >3,

As > (/Ow_é(sin t)_d+2(/0t(sin )42 dr) dt)

Moreover, Ao =d—1, lim As =0, and lim As = +o0.
50 5

Note that when d = 3, A5 > |log sin 2| ~L.
Remark 6.4. For each § > 0, there is a function F € C(Ej) N C*°(E;s) such that
F>0 and AsF+AsF =0 on Es , and F|E_5\E5 =0

(see, e.g., [19, Section 5]), where C*°(Ejs) and Ag are introduced in Subsection [G.4
It follows from (G.41) that the function

vs(x) = [z[M F(z/|z))
is harmonic on
Us :={y € B1(0) : y1 > —|y|cosd},
and vanishes on 0Us N By (0).

With help of A5, we state main results of this subsection.
Theorem 6.5. For
del0,n/2) if d=2, and 0€(0,7/2) if d>3,
let Q C R? satisfy the exterior (8, R)-cone condition, where
R e (0,00 if Q is bounded, and R=o00 if Q is unbounded.

Then § satisfies LHMD(\s), where My, in (&8) depends only ond, 6 and diam(Q)/R.
If Q is unbounded (and R = o0), then for we can drop the dependence of My, on
diam(Q2)/R .
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Before the proof of Theorem [6.5] we state a corollary which follows from Theo-
rem and Corollary [5.13]

Corollary 6.6. Let p € (1,00). Under the same assumption of Theorem [G0, if
0 € R satisfies

2-—(p—-1DAs<0—d< =2+ Xs,
then Statement[5.3 (2, p, ) holds. In addition, Ny in (&2) and Ny in (B3) depend
only on d, p, 0, v, 6, diam(Q?)/R, and if 2 is unbounded (and R = occ) then we can
drop the dependence of N1 and Nz on diam(Q)/R.

To prove Theorem we use the boundary Harnack principle on Lipschitz do-
mains.

Proposition 6.7 (see Theorem 1 of [75]). Let D be a bounded Lipschitz domain,
A be a relatively open subset of 0D, and U be a subdomain of D with OU NOD C A
(see Figure[6.3 below). Then there exists N = N(D, A,U) > 0 such that if u,v are
positive harmonic funtion on D, and vanish on E, then

<N for any xp,z€U.

A

FIGURE 6.3. D, A, and U in Proposition [6.7]

The boundary Harnack principle has also been established for a more general
class of domains, so-called non-tangentially accessible domains, by Jerison and
Kenig [29].

Proof of Theorem[6.3. By Remark 510 it is sufficient to prove that there exists a
constant M > 0 such that

oA A
w(z,p,7) SM(M) " for all x € QN B(p,r)
r

whenever p € 9Q and r € (0, R). For any p € 9, there exists a unit vector e, € R?
such that

Cp,:={yeBgr(p) : (y—p)-ep,>|y—plcosd} C N°.
Since
QN B.(p) C Br(p)\Cp and QNIB,(p) CIB-(p)\ Cyp,

we have

w(@,p,r) <w(z, Br(p)\ Cp, 0B:(p) \ Cy), (6.5)

by directly applying the definition of w(-, p,r) (see (&3)). Consider a rotation map
T such that T'(e,) = (—1,0,...,0), and put To(z) = 7T (z — p). Then

w(z, B(p)\ Cp, 0B,(p) \ Cp) = w(To(x),Us, Es), (6.6)
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where
Us={y € B1(0) : y1 > —|y|cosd} and FEs = {y € 0B1(0) : y1 > —|y|cosd}.

Due to ([G.5) and (6.6), it is sufficient to show that there exists a constant M > 0
depending only on d and ¢ such that

w(x,Us, B5) < M|z|* for all x € Us, (6.7)

- Case 1. § > 0.

Put v(z) = |2|* Fy(x/|z|) where Fy is the first Dirichlet eigenfunction of spher-
ical laplacian on Es; C 0B1(0), with supg, Fo = 1 (see Remark [6.4)). Note that
Us is a bounded Lipschitz domain, and w(-,Us, E5) and v are positive harmonic
functions on Uy, and vanish on dUs N By. By applying Proposition [6.7] for D = Us,
A = (0Us) N B1(0), and U = Us N By 2(0), we obtain that there exists a constant
No = Ny(d, ) > 0 such that

w(z,Us, E5) < Nov(z) < Nolz|*  for x € Usn B /2(0).

Therefore (6.7) is obtained, where My = Ny V 2*0.
-Case 2. 6 =0and d = 2.
We consider R? as C. Note

Up={re" : r€(0,1),0 € (—m,m)}, Eg={e"? :0¢c(—m m)}.

Observe that a function s is a classical superharmonic function on Uy if and only if
s(2?) is a classical superharmonic function on B;(0) NR% (use Proposition 2.4). It
is implied by the definition of PWB solutions (see (&.3])) that

w(2, Uy, Eg) = w(z, B1(0) NRY,0B,(0) NRY).

Since the map z = (21, 22) ~— 21 is harmonic on B;(0) NR2, by Proposition (.7
with D = B;(0) NR%, we obtain that

w(z,B1(0) NRY, (0B1(0)) NRY) < N|z| for z € Bys(0) NRE, (6.8)

where N depends on nothing. Therefore the proof is completed. O

6.2. Convex domains.
We recall the definition of convex set. A set E C R? is said to be convez if
(1—t)z+ty e E for any x, y € E and t € [0,1].

Remark 6.8. We claim that for an open set Q C R?, Q is convex if and only if for
any p € 0§, there exists a unit vector e, € R? such that

Qc{z : (z—p)-e, <0} =0, (6.9)

(see Figure below).

Let © be a convex domain, and fix p € 9. Since the set {p} is convex and disjoint
from €2, the hyperplane separation theorem (see, e.g., [65, Theorem 3.4.(a)]) implies
that there exists a unit vector e, € R? such that (€9) holds.

Conversely, suppose that for every p € 012, there exist a unit vector e, satisfying
(G.9). Then £ :=(,cpq Up is convex, @ C E, and ENIQ = (). These imply E' = Q.
Therefore our claim is proved.
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FIGURE 6.4. e, in (6.9), and F, in (6.13)

Remark 6.9. The argument to obtain (6.8]) also implies that for any d € N,
w(z, B1(0) NRYL, (9B1(0)) NRY) < N(d)|z| for all x € By(0) NRY.

By translation, dilation and rotation, we obtain that for a convex domain 2 and
p € 01,

w(z,p,7) < w(z, Be(p) N Uy, (0B, (p) N Uy) < N(d) 22l

r

for all x € B,(p) N Q, where U, is the set on the right-hand side of (€.9]). Conse-
quently, 2 satisfies LHMD(1), where M; in (5.8) depends only on d.

This result also implies that the Hardy inequality (I3) holds on ©, where Cy(2)
depends only on d (see Remark [.T11]). However, it is worth noting that Marcus,
Mizel and Pinchover [59, Theorem 11] provided that for a convex domain €, (I3)
holds where Co(€2) = 4, and Co(§2) cannot be chosen less than 4.

Krylov [46] provided results for the Poisson equation and parabolic equations in
Ri. In this subsection, we extend this result for convex domains; see Corollary [6.11]
Recall the definitions of M (v, v2) and Mz (v, ve) in the front of Section [

Theorem 6.10. Let Q be a conver domain. For any (a¥)axa € U M(v2,1),
0<v<1

d
Z OéijDijp <0
i,j=1
in the sense of distribution.
We temporarily assume Theorem [6.10] and prove Corollary [6.11]
Corollary 6.11. Let Q C R? be conver, p € (1,00), v € R, and § € R with
—p—1l<f—-d<-1.
(1) For any X\ >0 and f € H) ., (), the equation
Au—du=f.

. . . 2
has a unique solution u in H;g (Q). Moreover, we have

ol gy + Ml o < Nl iy, o0 (6.10)

p,0+2p
where N1 = N(d, p,,0).
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(2) Let T € (0,00] and L € Mr(v,v™1t) for some v € (0,1]. For any ug €
B;;gigz/p(Q) and f € H) 4.5 (Q,T), the equation
Ou=a"Diju+f onQx(0,T] ; u0,-)=ug
has a unique solution u in H;;z(Q). Moreover, we have

||“||H;;2(Q) < N2(||u0||B;;i;2/P(Q) + ||f||H;”9+2p(Q)) ; (6.11)

where No = N(d,p,0,7,v).

In particular, 2 is not necessarily bounded, and N1 and No are independent of Q.

Proof of Corollary 611l Since Q is convex, (L3 holds on Q where Cy(Q2) = 4.

Put ¥ = p which is the regularization of p in Lemma Bl (1) so that constants

Cz(p) and Cs(p, p)(in Definition BI]) can be chosen to depend only on d. It follows

from Proposition E21(2) that for any u € (—=1/p,1 —1/p), u € I(p,v?,p), and the

constant Cy in ([@3]) can be chosen to depend only on p, p and v. Putting
0—d+2 1 1

—— =l )

-2 1-=
p p p

and applying Theorems and [4.12] we finish the proof. O

Proof of Theorem[G.I0l For p € 09, put W,(z) = (p — x) - e, where e, is a unit
vector satisfying (6:9). We first claim that

p(x) = ple%fQ Wy(z) forall z €. (6.12)

For a fixed x € (), we have

inf = inf d(z,F,) >
Jnf Wp(x) = inf d(z,F,) > p(e),

where
Fy:={yeR: (y—p)-e, =0} CQ° (6.13)

(see Figure[6.4labove). For the inverse inequality, take p, € 0Q such that |z —p,| =
p(x). Since
B(z,p(x)) CQ and p, € 0B(z,p(z)),

we obtain that e,, = (px — x)/|ps — z|. Therefore
it Wiy(a) < Wy (@) = |ps — o] = o).

Let A = (a¥)gxq € M(v2,1), v € (0,1], and take B € M(v, 1) such that B2 = A.
For any p € 09,
A(W,(B-))=0 onB'Q.
Due to ([GI2)) and Proposition [.5(2), we obtain that p(B-) is a infimum of clas-
sical superharmonic functions, and therefore p(B-) is a superharmonic function.
Consequently we have
(@Y Dijp, ¢) = det(A)/*(A(p(B-)),{(B-)) <0

for any ¢ € C°(Q) with ¢ > 0. O
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6.3. Exterior Reifenberg condition.

The notion of the vanishing Reifenberg condition was introduced by Reifenberg
[64], and has been extensively studied in the literature (see, e.g., [10} 12} 311 [67]).
The following definition can be found in [10, BI]: For § € (0,1) and R > 0, a domain
Q C R? is said to satisfy the (0, R)-Reifenberg condition, if for every p € 9§ and
r € (0, R], there exists a unit vector e, , € R? such that

QNBy(p) C{x € By(p) : (x—p)-epr <6r} and

QN B, (p) D {x € B,(p) : (x—p)-epy > —0r}. (6.14)

In addition, € is said to satisfy the wanishing Reifenberg condition if for any
d € (0,1), there exists Rs > 0 such that Q) satisfies the (0, Rs)-Reifenberg condi-
tion. Note that the vanishing Reifenberg condition is weaker than the C'-boundary
condition; see Example [6.141(2) and (3).

It was established by Kenig and Toro [32, Lemma 2.1] that if a bounded do-
main satisfies the vanishing Reifenberg condition, then this domain also satisfies
LHMD(1 —¢) for all € € (0,1). Combining this with Corollary 513 we obtain that
Statement (Q,p,0) holds for all § € (d —p—1,d — 1). Furthermore, in addition
to the Poisson and heat equations, there have been studies on elliptic and parabolic
equations with variable coefficients on domains satisfying the vanishing Reifenberg
condition (see, e.g., [10, 111 [13], 18])

In this subsection, we present the totally vanishing exterior Reifenberg condition
which is a generalization of the Reifenberg condition, and we obtain a result similar
to Corollary for domains satisfying the totally vanishing exterior Reifenberg
condition; see Definition and Corollary

Definition 6.12 (Exterior Reifenberg condition).
(1) By ERgq we denote the set of all (6, R) € [0, 1] x R} satisfying the following:
for each p € 012, and each connected component Q](;)R of QN B(p, R), there

exists a unit vector el(f)R € R? such that

Oy C{x € Br(p) : (x—p)- el < OR}. (6.15)

By 6(R) := 0 (R) we denote the infimum of § such that (J, R) € ERq.

(2) For 6 € [0, 1], we say that Q satisfies the totally 0-exterior Reifenberg con-
dition (abbreviate to ‘(TER;)’), if there exist 0 < Ry < Ro < o0 such
that

0a(R) <6 whenever R< Ry or R> R . (6.16)

(3) We say that ) satisfies the totally vanishing exterior Reifenberg condition
(abbreviate to ‘(TVER)’), if Q satisfies the d-condition for all ¢ € (0, 1]. In
other word,

lim 551(R) = lim 551(R) =0.
R—0 R—oo

For a comparison between the Refenberg condition and (TVER), see Figure
and Example below.

In this subsection, we provide results on domains satisfying (TERs) for suffi-
ciently small 6 > 0. However, our main interest is thd condition (TVER).
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M

./ ! .

Totally vanishing exterior =~ Totally vanishing exterior
Reifenh diti Reifenberg condition Reifenberg condition
cliehberg condition (Definition [[T3)) (Definition [612))

Vanishing

FI1GURE 6.5. Totally vanishing exterior Reifenberg condition

Remark 6.13.  We claim that for any R > 0, (6(R), R) € ERq. Take a sequence
{0, }nen such that (6,,R) € ERq and 6, — §(R). Let p € 09, and let Q) be a
connected component of QN B(p, R). There exists a unit vector e,, such that

Q9 < {z € Brp) : (x—p)-en <R}. (6.17)

Since {en}neny C 9B(0,1), there exists a subsequence {e,, }ren such that e, :=
lim e, exists in 9B(0,1). It is impliled by (6.I7) that

k—o0
Q9 ¢ {z € Br(p) : (x—p)-e, < I(R)R}.
Therefore (6(R), R) € ERq.

Ezample 6.14.

(1) If Q satisfies the (4, Ry)-Reifenberg condition, then §(R) < 6 for all R < Ry,
indeed the first line of (G.I4]) implies (G.I5]) with e,(f,)r = e, . Moreover, if
is bounded, then Propositoin implies 6(R) < diLR(Q). Therefore, if 2
is a bounded domain satisfying the vanishing Reifenberg condition, then €2
also satisfies (TVER).

(2) By M (R%1) we denote the little Zygmund class which is the set of all
f € C(R4™1) such that

. |f(x+h) =2f(x) + f(x—h)]
pmy sup ] =0.

For f € A.(R41), put
Q={(z,zq) ER"I xR : 24 > f(z')}.
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Then, as mentioned in [I2] Example 1.4.3] (see also [I7, Theorem 6.3]),
Q satisfies the vanishing Reifenberg condition, which implies ]1%im0 0a(R) =
—

0. Moreover, since A := ||f|lcge-1) < oo, Proposition implies that
§(R) < M}w. Therefore Q satisfies (TVER).

(3) Suppose that 2 is bounded, and for any p € 99 there exists R > 0 and
f € MA(R41) such that
QN B(p,R) = {y = (y,yn) € R xR : ly| < R and y, > f(y')},

where (y',yn) = (Y1, ... ,Yn) is an orthonormal coordinate system centered
at p. Then  satisfies the vanishing Reifenberg condition, and therefore 2
satisfies (TVER).

(4) Let Q satisfy the exterior Ry-ball condition, i.e., there exists Ry > 0 such
that for any p € 0%, there exists ¢ € R? satisfying [p — ¢| = Ry and
B(q, Ry) C Q°. Then §(R) < R/(2Ry), and therefore }l%irﬁno §(R) = 0.

(5) If a domain  is an intersection of domains satisfying the totally vanishing
Reifenberg condition, then Q satisfies (TVER).
A sufficient condition for Rlim 0a(R) = 0 is that dg(R) < 1/R. We now provide
—00

an equivalent condition for Q to satisfy dq(R) < 1/R. Note that the definition of
dao(R) implies that Rdq(R) increases as R — oo, and therefore if do(rg) > 0 for
some 19 > 0, then dg(R) 2 1/R as R — co.

Proposition 6.15.

sup Réq(R) = sup d(p,d(Qen.))
R>0 pEIQ

where Q¢ n. is the convex hull of Q, i.e.,
Qen. ={(1 -tz +ty:z,ycQ, t[0,1]}.
Remark 6.16.
(1) Qc.n. is an open set, and the smallest convex set containing €.
(2) Proposition [6.15] implies that dq(-) = 0 if and only if € is convex.
Proof of Proposition[6.10. We only need to prove that for 0 < Ny < oo,

sup Rig(R) < Ny <= sup d(p, 8(Qc,h,)) <Np. (6.18)
R>0 peDQ

Step 1. We first claim that the LHS of (6.I8) holds if and only if for any p € 992,
there exists a unit vector e, such that
Qc{zreR?: (x—p)-e, < No}. (6.19)

The ‘if” part is obvious, and therefore we only need to prove the ‘only if’ part.
Therefore we assume that the LHS of (6.I8) holds. Fix p € 09, and take {Q, }nen
satisfying the following:

(1) Q, is a connceted component of QN B, (p);
(2) W CQyCcQzC---.
Since () is a domain, € is path connected, which implies

U =0. (6.20)

neN
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Since RO(R) < Ny, for each n € N there exists e,, € 9B1(0) such that
Q,c{zeR?: (z—p)-e, < No}. (6.21)
Since 9B (0) is compact, there exists a subsequence {e,, } such that
3 khﬁnolo en, =: ep € 0B1(0).
Due to (620) and (62I]), we obtain that (619) holds for this e,,.
Step 2. Due to (GI8), we only need to prove the following: for p € 99,
([GI9) holds for some e, € 9B1(0) <= d(p,d(Qen.)) < No.
(=) Observe that
peINC Qep C{reR: (x—p)-e, < No}.
Put
ag=sup{a>0:p+ae, € Qon}.
Then p + apep € 9(Qe.n.), and therefore d(p, 8(Qc,h,)) < ag < Ny.
(<) Take g € 9(2c.n.) such that
p—ql = d(p,0(Qn.)) < No.
Due to Remarks and [6.16] (1), there exists a unit vector e, such that
Qen. C{zeRY: (x—q) ¢, <0}.
This implies that for any x € Q C Q¢.1,.,
(x—p)-ég<(q—p)-é<|p—ql <No.
Therefore ([G.I9) holds for e, := ¢&,. O
Remark 6.17. From Step 1 in the proof of Proposition [6.15] it can be observed

that this proposition remains valid even if the definition of dq(R) is replaced by

the infimum of 6 > 0 such that, for any p € 0, there exists a unit vector e, r
satisfying (LIH) with » = R.

Now we state the main result of this subsection. We temporarily assume The-
orem [6.18 and Corollary [6.19 (they are proved in the end of this subsection), and
prove Corollary [6.20]

Theorem 6.18. For anyv € (0,1] and e € (0,1), there exists 61 > 0 depending only
on d, €, v such that if Q satisfies (TERs), then there exists a measurable function
¢ : Q0 — R satisfying the following:

(1) For any (a")gxa € M(¥%,1), a¥ D;;¢ < 0 in the sense of distribution

(2) There exists N = N(d,v, €, Ro/Rs) > 0 such that

N~1p(2)' ¢ < ¢(x) < Np(z)' =€ for all x € Q,
where Ry and Roo are constants in (6.10).

Corollary 6.19. For any € € (0,1), there exists 02 > 0 depending only on d, €
such that if Q satisfies (TERs), then Q satisfies LHMD(1 —¢€). Moreover, My_. in
B0 depends only on d, € and Ry/ R, where Ry and R, are constants in (6.10)).
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Corollary 6.20. Let p € (1,00), 0 € R, v € R, v € (0, 1] with
—p—1l<f—-d<-1.

Then there exists § > 0 depending only on d,p, e,v such that if Q satisfies (TERs),

then the assertions of (1) and (2) in Corollary [611] hold for this ), where Ny in

©I0) depends only on d, p, v, 8, Ro/Roo, and Ny in (€I1) depends only on d, p,
v, 0, v, Ry/Roo. Here, Ry and R are constants in (GI6]).
Proof of Corollary[6220. Take e € (0,1) such that
—p—1+(p—-1le<f—-d<-1—c¢
and put
0—d+2
ST S e (— 1= 9.

p(l—¢€) ( p p)

Put § = §; A d2 > 0, where §; and d5 are constants in Theorem and Corol-
lary [6.19] respectively, for given € and v.

By Corollary [6.19 and Remark 5.1T], the Hardy inequality (IL3]) holds on £ where
Cp(£2) depends only on d, €, R /Rg. Let ¢ be the function in Theorem [6.18 Due
to Proposition £.2}(2), we obtain that p € I(¢,v?,p) and C4 in ([@3) can be chosen
to depend only on u, v, and p. Put ¥ = p'~¢ which is a regularization of ¢. Then

Co(¥) and Cs(¢,¥) can be chosen to depend only on d, €, v and Ry/Rs. By
applying Theorem [3.I8 and Theorem [£12] the proof is completed. O

To prove Theorem [6.18] we need to construct functions used instead of the har-
monic measure.

Lemma 6.21. Suppose that (6, R) € ERq. For any v € (0,1) and p € 99, there
exists a continuous function w, g : @ — (0,1] satisfying the following:
(1) For any B € M(v,1), wy, r(B-) is a classical superharmonic function on
B~1Q.
(2) wpr=1on{zxecQ: |z—pl >(1-0R}.
(8) wpr < M6 on QN B(p,dR).
Here, M depends only on v and d. In particular, M is independent of §.

Proof of LemmalG.Z1l If § > 1/8, then by putting w, g = 1 and M = 8, this lemma
is proved. Therefore we only need to consider the case § < 1/8. For a fixed p € 99,
let {QS)R} be the set of all connected components of QN B(p, R). For each i, take

a unit vector el(f;)R satisfying (GI5). Put

g=p+RO+1/4el, (6.22)
so that
p—ql=R(@E+1/4) and Q) NB(g, R/4)#0 (6.23)
(see Figure [6.6] below).
Put

_ 1— (4R —g|)>

W(i) (‘T) 1 —922-v=32d

(6.24)

Then we have

Zalekl W®H <0 on R\ {g}, forall (@)gxqe€ M2 1).
k,l
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FIGURE 6.6. ¢ and B(q, R/4) in ([622), (6.23)

Indeed, for f € C?(Ry), if f/ >0 and f” <0 then

d
> "Dy (f(l2)))

k=1
L ofk Kl
—;ﬂﬁﬁ%ﬂﬂm®+<zﬁl~—Z“Qf”ﬁfﬂm (6.25)
d— v?
<V F(el) + 7 ().

Observe that
0< W9 (2) < My(4R Yo —q| — 1) if |z —q| > R/4;
WO(z) >1 if o —q| > R/2,
where My is a constant depends only on v and d. Due to ([6.23]) and that 6 < %, for
T € Q;Z;)R,

R R
if |z—p/ <R, then Z§|x—q|§2+25R,
if |z—p/>(1—-0R, then |z—q| > (3_485)3 > ?
Therefore we obtain that
0 <W®(z) <8Mos  if |z —p| <R
W (z)>1 if le—p|>1-9)R.
Put
(i) : (1)
wy () = WW(z) Al ?f T€Q,p
1 if € Q\B(p,R).

Then wy, g is continuous on €, and satisfies (2) and (3) of this lemma. (1) of this
lemma follows from (6.24]) and Proposition O

Proof of Theorem[6.18. We only need to prove for v € (0,1). Let M > 0 be the
constant in Lemma [6.21] For a fixed € € (0,1), take small enough ¢ € (0,1) such
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that Md < §17¢, and take small enough 7 € (0,1) such that
(1—m)Ms+n<dte.

We assume that Q satisfies (616) for this §. By using dilation and Remark 613
without lose of generality, we assume that (§, R) € ERq whenever R < Ry =
Ry/Roc (<1)or R>1.

Step 1. Put

ko=min{keN: " <Ry} and T={ke€Z: k<0 or k>ko},
so that (6,6%) € ERgq for every k € Z. For each p € 9Q and k € T, put
b = 0 (L= m)wy 50 + 1)
where w), 5 is the function wy, g in Lemma 621 with R = 6*. Note that
d)p,k(z) < 5(k+1)(1—e) on O ﬂE(p,5k+1);
bp.1(x) = 6819 on QNaB(p,d*);
n-0"1=9 < ¢, <*179  on QN B(p,d*).
Put
(bél)(x) = 1inf{ppx(z) : k> ko, |z —p| <} for |z—p|<d;
(bz(f)(x) =inf{gpr(x) : k<0, |z —p| < (5k} for |z—p|>4.

The similar argument with the proof of Theorem implies that for any B €
M(v, 1), él)(B -) and gb](f) (B-) are classical superharmonic functions on

{B7'z : 2 € QN B(p,6*)} and {B7'z:zecQ\ B},
respectively. Moreover, for each i € {1,2}, ¢§:i) (x) satisfies
nlz —p'=¢ < o (@) < 67w —p|' (6.26)

on its domain.
Step 2. Observe that
04 (1) < dppo () < 6WHDAZI if o — | = gttt (6.27)
04 (1) = By o () = 307 if o —p| = o0 |
Put v = —v~2d + 2 < 0 and take a1, #1 € R such that f(t) := a3 — B1t” satisfies
f(oFoTy = sto A=) and  f(gk0) = gholl=) (6.28)

Since f(§F0*1) < f(6%0), we have 81 > 0, which implies the following:
e Due to ([6.25), for any (a')gxq € M(v?,1),

ZaijDij (f(l : —pl)) <0;

e f(t) increases as t — co. In particular, f(t) > §ko+1(=¢) for all ¢ > ho+1,
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Put
él) on {3: €N |z—pl < 5’“0“}
51(71) = ,(31) Af( - —pl) on {x €0 kot <z —p| < 5’“"}
(- =pl on {xEQ:|x—p|Z5k°}.

87

Due to Proposition 5.5 (4), (6€21), and (6.28), we obtain that for any B € M(v, 1),

NZ(,l)(B -) is a classical superharmonic function on B=1(Q.
Take as > 0, B2 € R such that
agnd' T+ Bo = f(6) and azé T+ Bo = f(1).

Then, due to ([6.26]) and ([6.29)), 51(,2) = aggbz()z) + B2 satisfies that

(6.29)

oM (z) = f(8) < ¢P(z) on {z€Q: |z —p| =8} (in the sense of limit);

o (x) = f(1) 2 6P (x) on {z€Q:|r—p|=1}

(6.30)

(see ([6.26))). Due to Proposition 5.5 (4), (€30), and that as > 0, the function

51(01) on {xeQ:|z—p <d};
bp(z) := ¢](01)/\¢§)2) on {z€Q:6<|z—p/<1};
1(72) on {z€Q:|z—p >1},

satisfies that for any B € M(v, 1),

¢p(B+) is a classical superharmonic function on B~'(2.

Step 3. We claim that for every z € €,
N7a —p|' = < ¢p(a) < Nlw—p|' ™,
where N = N(d, ¢, v, El) > 0. Note that

1) on {zeQ: |z—p| <ot}

AL —pl)  on {weQ:shot < |z —p| < ot}
¢p=1¢ F(l-—pl) on {zeQ: v <|zr—p| <o}

(- =phAdY  on{reQ:ds<lz—p/ <1}

~1(72) on {xEQ:|x—p|21}.

Step 3.1) It is provided in ([G26]) that
Nz —p|'c < ¢1(71)(;v) <5 —p/'c on {zeQ:|z—p/ <t}
Step 3.2) Since
f&y=a1 —=p1t”, 1 >0, and y<—-d+2<0,
we have
gRot =) — f(gkoty < f(lo —p|) < (1) if SFTr <jz—p| <1
(this implies that f(1) = a3 — 81 > 0).

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

Step 3.3) Note that 51(72) = 042@(72) + B2 and ag > 0. Take K > 1 such that

aanK ¢ > 2|6
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For z € Q satisfying 0 < |z — p| < K, it follows from ([6.26]), (629), and ([G35]) that
(Ef) () > agnd =€ + By = f(8) > 6koFDI=9  and
51()2) () < apd KT+ By
Therefore there exists N = N (0, aa, B2, K) such that
N~z —p|' ™ < 6 (x) < Nl —pl'*. (6.36)
Step 3.4) If |x — p| > K, then
2|Ba] <K'~ < agnlz —p|'c.

Due to (G.28]), we have

o —€ Py —1+e —€
e —pl' 7 < 6P (@) < (67 4 ) —pl (6.37)

Since kOlea a1 ﬁlv a2, 627 K depend Only on da v, €, 55 EO) (m - m lmply
©.32).
Step 4. Put ¢(x) := inf ¢p(z). Then
peEON

N~'p(z) < ¢(z) < Np(z),

where N is the same constant as in (6.32)). For any fixed B € M(v, 1), due to ([6.31))
and Proposition 5.51(2), ¢(B ) is superharmonic on B~1(Q. O

Proof of Corollary[6.19. For a given € > 0, let § be the constant in Theorem
with v = 1/2, and supposes that (6.16) holds for this §. The proof of Theorem [G.18
(see (63T and (632)) implies that for each p € 91, there exists a classical super-
harmonic function ¢, such that

Ntz —p|'¢ < ¢p(x) < Nolw —p|*=¢ for any x € Q,
where Ng = N(d, ¢, R/Ro) > 0. Note that
Nor~'¢¢, >1 on QNAIB.(p).

From the definition of the harmonic measure w(-,p,r) (see (B3)), we obtain that
if r >0 and x € QN B,(p), then

— 1—e¢
w(e.p.7) < Nor™ gy (a) < N3 (L2
-

Therefore we obtain (5.6) with o = 1 — € and M,, = NZ. O

6.4. Conic domains.
S?-1 denotes the set {x € R? : |z| = 1}, and As denotes the surface measure on
S4-1. Note that for any nonnegative Borel function F' on R?\ {0},

/Rd\{o} F(z)de = /OOO (/Si F(ro) dAS(a))rd—l dr.

Let M be a relatively open set of S?~1, and define
Q= {recR\ {0} : — e M}

||

which is the conic domain generated by M (see Figure below).
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\/

FIGURE 6.7. Conic domains

We denote
B%:QQBR(O) and Q%:(I_R271]XB§%

In this subsection, we suppose that M satisfies Assumption[6.23} this assumption
is satisfied if M is a Lipschitz domain in S?~!. We prove that if u satisfies

ur = Au in Q%;
u=0 on (0,1] x ((6Q) N B1(0)),
then for any A € (0,A\g) and 0 < R < 1,

lu(t, )| Spmae | sup [u|  whenever (t,z) € Q% (6.38)
Q

Q@1

(see Remark [6.26]), where )\ is the constant defined in (6.47T).

Remark 6.22. As shown in [42], estimate ([6.38)) is closely related to Heat kernel
estimates. In [42] Lemma 3.9], Kozlov and Nazarov used the type of estimate (6.38])
to obtain estimates for the kernel G of parabolic equations in C'>'-cones.

Before state the main result of this subsection, Theorem [6.25] we introduce
spherical gradient and spherical Laplacian, avoding notions of differential geometry.
For a function f on M, we denote Fy(x) = f(x/|z|). We denote

C°(M) = the set of all f: M — R for which Fy € C*(Q);
CZ(M) ={f € CF(M) : supp(f) C M}.

The spherical gradient and spherical Laplacian of f € C°°(M), denoted by Vsf
and Agf, are defined by

ng: VFf|M and Agf:AFf|M. (6.39)

A direct calculation gives the following:
e For any f € C(M) and g € C®(M),

[ (91, 9e0) a5 = - [ (8ef)-g s,
M M

where (-, -)q is the inner product on R9.
e For any F' € C>(Q),

1
|VF|* = |D,F|* + T—2|VSF|2 . (6.40)
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e For a function F' € C*°(Q),

d—1 1
AF = D,,F + ——D,F + - AsF. (6.41)

r r
In ([E40) and (641]), F is also considered a function on R x M defined as (r, o) —
F(ro). We leave it to the reader to verify that Vg (resp. Ag) is equivalent with the
gradient (resp. Laplace-Beltrami) operator implied by standard differential struc-

ture on S71; see [30] for the standard differential structure on S4—1.

We make certain assumption about M to applicate the results in Subsections

and [l
Assumption 6.23. We denote dsM = M\ M.
(1) M is a connected (relatively) open set of ST=1 with M # S4—1.
(2)
o As({oeSTIAM ;o —p| <7}
inf 1
pPEIGM T
re(0,1]
(8) Let wo(o) be the first (positive) Dirichlet eigenfunction of the spherical
Laplacian Ag on M (see Proposition[6.24} (1)). There exist constants A, N >
0 such that

>0, (6.42)

wo(o) > N7Yd(o, s M)A . (6.43)
By W3 (M), we denotes the closure of C2°(M) in
Wy (M) == {f € D'(M) = [|fllLacmy + Vs llaagy < 00}
Proposition 6.24.
(1) If Assumption[623. (1) holds, then
S IVswl|® dAg

Aop:= inf IMIYSTLEES 6.44
0 wecl'?;é./\/l) fM |’LU|2 dAS ( )

and there exists a unique wy in C™°(M) N WE(M) such that
wo >0 / |w0|2 dds =1 , Aswy+ Agwg =0. (645)
M

Moreover, wy is bounded on M. Furthermore, the function
Wo(z) == |z|*wo(z/|z)) (6.46)

is a positive harmonic function on ), where

d—2 / d—2\2
Ao = _T+ Ao + (T) >0. (647)

(2) If Assumption[6.23.(2) holds, then
m(QC N B, (p))
in _—
pedN, r>0 rd
(3) Let —eq ¢ M and define ¢4 to be the stereographic projection from S4=1\
{—eq} to R given by

01 Od—1
_ = . 6.48
¢d(o'la yOd 1;Ud) (1+0_d7 ,1+0'd) ( )

>0.
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If ¢4(M) is a John domain in R4~ (see Remark[34 for the definition of
a John domain), then Assumption[6.23.(3) holds.

Proof. (1) ([@44)) follows from [24, Theorems 10.13, 10.18, 10.22]. It is provided in
[24, Theorem 10.11, Corollary 10.12] that there exists a unique wy € C*°(M) N
W1 (M) satisfying (6.45).

To prove the boundedness of wy, without lose of generality, we assume that
—eq = (0,...,0,—1) ¢ M. By ¢4 we denote the stereographic projection from
S\ {—eq} to R4~1 defined by (6.45)). Then ¢4(M) is a bounded domain in R?~1.
Consider the function @y : ¢pg(M) — R defined as wo(¢q(x)) := wo(x). Then wy
belongs to W1 (¢a(M)) and satisfies

d d
Z aijDij@O + ZbiDiﬁo + Agwo =0 in ¢d(M) c R,
i,j=1 i=1
Here, ™, b* € C®°(R91) (i, j =1, ..., d) are smooth functions on R%~! such that
there exists v > 0 satisfying
d
VIEP < ) ai(@)&g <vER VE= (&, &) ERTTY )z e ga(M).
i,j=1

The boundedness of wy follows from classical results for elliptic equations (see, e.g.,
[62, Theorem 3.13.1]), and this implies that wq is bounded.
It directly follows from (641]) that the function Wy in ([6.46]) is harmonic on Q.
(2) For any p € 9sM and r € (0,1), we have

{sceR?:se(1—r/2,1+7/2),0 €S NB,,(p)}
C B:(p)
C{sceR" :se(l—r1+7),0€S" 'NBs(p)}.
Therfore ([6.42) holds if and only if

Q°N B,
inf m(—d(p)) >0, (6.49)
pEIGM T
re(0,1]

where m is the Lebesgue measure on R?. Ir 7 > 2, then B,.(p) D B, /2(0). Therefore
m (N B, (p)) - m(Q°N B, (0)) A (STTH\ M)
m =

o | |
pe@slf{l/l,rzz r >l (2r)d 2dq >0. (6.50)
Consequently, it is implied by ([6.49) and ([G.50) that
QN B,
peIN, r>0 r

(3) We denote Upyq := ¢q(M). It follows from ExampleB.21(2) that Wy (in (6.40]))
is a Harnack function on €. Since Wy is a Harnack function, and ¢4 (resp. (;5;1) is
Lipschitz continuous on M (resp. Upy), we obtain that wg := wy O¢;1 is a Harnack
on Upq (see Lemma[3.3). In addition, d(o, s M) ~ d(¢4(0), U ). By Remark 3.0,
if © is a John domain, then

wo(z') 2 d(z’,0Up)*  for all 2’ € pg(M),
and therefore ([6.43)) is proved. O
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Theorem 6.25. Let M C S~ (d > 2) satisfy Assuption [6.23, and suppose that
u € C®(QY}) satisfies that
uy=Au in QY

lim  wu(t,x) =0 whenever 0<ty <1, xy € (00Q)N B;.

(t,x) = (to,x0)
Then for any € € (0,1) and R € (0,1),
Ju(t, 2)] < N (supul)Wo(a)' =V (t,2) € QF,
QF
where Wy is the function defined in ([€40) and N = N(M, e, R) > 0.
Recall that W3 (BY) is the closure of C°(BY) in W3 (B$).

Remark 6.26. Theorem [6.25] implies that if u satisfies the assumptions in Theo-
rem [6.20] and A € (0, Ag), where Ag is in ([@47T), then

lu(t, z)| < N(sup|u|)|x|’\ on Q% (6.51)
QP

where N = N(M, A, R). We note that for A > X\g, (651)) does not hold in general.
Observe that u(t, z) := Wy(x) satisfies assumptions in Theorem [6:25 Due to (6.44),
there is no constant N satisfying (651) with u(t,z) = Wo(x) and A > A.

Proof of Theorem [6.24
Step 1. Put K = AV A\g where A and )¢ are the constants in (6.43) and (6.4717),
respectively. From direct calculation (see, e.g., [38] Lemma 3.4.(1)]) we obtain that

d(o,090) < d(o,0sM) < 2d(0,090) forall oe M.
Therefore for z € QN B1(0), we have
p(x)K = d(x,00) ~ |;C|Kd(:b/|;v|,8§M)K < Jz|od(z/|x|, s M) < Wo(z).
Due to Proposition 6:2241(2) and Remark BIT} Q satisfies LHMD(«a) for some
€ (0,1). Take small enough ¢ € (0,1) such that
d+4
d+2)"" +a ) d 1-—=6>0
(d+2)"'+a')d<e an d+2>’
and put

0
ﬁt—m and Bm_1_5_26t'

Then ¢, 0, B, B, satisfy ([3T). Put
1—e€
B

such that €;, < 1 < ¢€;,4+1. Since Wy is bounded on B’ (see Proposition [6.24)), we
have

ei:e—k%i for 1 €Ny, and ioz[ K]

sup |W071+Ei““u| <a.e sup lul ,
1

Qi
and therefore we only need to prove that for any ¢ € {0,1,...,ip} and 0 < Ry <
R2 S 17

sup |Wy ' u| < N(D, e, R, r) sup |WO_1+6”1u| . (6.52)
Q Q

Ry Ra
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Step 2. Take 79 € C*°(R) such that no(s) = 1if s < R and no(s) = 0if s > R3,
and put 7(t,z) := no(1 — t)no(|z|*). Note that
1 if t>1-R? and |z| < Ry;
n(t,x) = . >
0 it t<1—R; or |z|>Rs.
Put
v=un, fO:= (O + An)u fii=—2uDymn (i=1,...,d)), (6.53)

so that v € C(QF) NC>(QP) satisfies
d
8tv:Av+f0—|—ZDifi in Q¢ ; v=0 on Q9\QY.
i=1
Step 2.1) We first claim that v € Hj 4 ,(,1). Since

0 % 0 %
o+ ZD Mzt mpny S 1 s + z 191, g0 S 550
(see Lemmas B.8 and BIZI), there exists ¥ € H3 4_,(€,1) such that
d
05 = AT+ O+ Dif' and B(0-)=0.
i=1

For the claim in this step, we only need to prove that

T)ECOO(Q)HC(Q_?) ,and =0 on QF\ QY. (6.54)
Indeed, if ([6.54]) holds, then the maximum principle yields that v = v € H%)d_2(3?, 1).
Since supp(v(t,-)) C B, for each ¢ € [0,1], v belongs to Hy g o(2,1).

Let us prove (6.54)). Since fO, fi € C>°(Q%}), we obtain that v € C*°(Q¥). Note
that BS? satisfies LHMD(o/) for some o/ € (0,1) (see Proposition [6.241(2) and
Remark [5.17]), and therefore there exists a superharmonic function v such that ¢ ~
(pBgz)a/m (see Theorem B.12), where pga(z) := d(x,0B$}). Take 3., 81, 0', ¢ >0
such that (5.31)) holds (for o’ instead of &), and 28] + §’ < 1/2. Then we have

d
1974 ()27 £ 4 3 T+ ()2
i=1

L(at2)y,6(QF, dz dt)

N

d
1ome) =210+ () =2 )
i=1

sup |u| < co.
Qf
Therefore, Theorem and Remark yield that
e~ ~ ©
’ ’ w 1e (U(t7) _U(07)) ’
supt P (pp )~ (1=D'/213 < sup | 5 e < oo (6.55)
Q2 0<t<1 |t — 0|5
(for the first inequality, see Proposition B.I7). Since 7 € C°°(Q$}), (6.55) implies

that v € C(QQ) and v = 0 on QQ \ Q%%. Therefore (6.54)) is proved.
Step 2.2) To prove ([6.52]), assume that the left hand side of ([€.52)) is finite.

Ligy2y/s(QF, dz dt)

A
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Recall that ©Q admits the Hardy inequality (see Proposition [6:2241(2) and Re-
mark BI0), v € Hy 4 (92, 1) (in [@.53)) is a solution of the equation

d
Ow=Av+fo+ Y Dif' 5 0(0,)=0
i=1
(see Step 2.1), and that Wy is a regular Harnack function (see Example 3:2(2)).
Since

H|W0_l+€ipﬂm+lf0| + |W0_1+€ipﬂmfi|

L(d+2)/(5((011] xD;dt d:E)

S sup [Wo e pPul

Ra
—l4e;+8:/K —14e;
SN Slép‘wo et u|:s%p‘wo “hul
Ra Ra

(where N = N(r, Ry, R2, M)), Theorem 518 (with Remark [520]) implies that v €
Wy ML 5 55,2, 1) and

sup t P |Wy e

0,1]x0
Wi 5ot ) — Wy (o, )]
o sup i) :
te(0.1] |t =0 (6.56)
< W—l-‘rei Bz+1 £0 4 W_l"l‘ﬁi B £1
~N ’| 0 P oy Liat2y,s(1—R3,1]x9; dt dz)

<N sup |W071+€”1u| .
Q

Ra

Since v = v in QF , [E56) implies ([E.52). O

APPENDIX A. WEIGHTED SOBOLEV/BESOV SPACES

A.1. Weighted Sobolev/Besov spaces without regular Harnack functions.

The spaces H ;7 o (2) were initially developed for studying partial differential equa-
tions in domains, as demonstrated in [37, [46] 57]. Moreover, these spaces, along with
similar function spaces like B) ,(£2), have also been found in studies on Fourier mul-
tipliers arising in harmonic analysis, as seen in works such as [14] 23] [53].

In this subsection, we introduce the properties of the spaces H ) ,(2) and B (%),
which are independent of the previous contents of this paper, except for Subsec-
tion B which is used only for specifying p satisfying (A4]). The contents of this
subsection are based on the properties of H7(R?) and B} (R?).

In this section, we assume that

deN, pe(l,o0), v,0€R, Qis an open set in R?,
and denote
Z=A{d, p,n,0}.
By X, and X ,(Q2), we denote either H) (= H}(R%)) and H)4(), or B) (=
B} (R%)) and B ().
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The spaces H) and B) are introduced in Subsections and [£2] respectively.
Recall the following elementary properties of X, which can be found in [70, Corol-
lary 2.8.2, Theorem 2.10.2]:

lafllxy Sapn lallcinallfllx;  and (F(A)lxg Sapqa lfllxg. (A1)
We also recall the definitions of X ,(€2). Fix (o € C¢°(R4) such that
Co>0, supp(Co) Cle'e] and Zco(e" )=1 onR,. (A.2)
neL
Put (1 (t) = Co(e™"t) 4 Co(t) + Co(et), so that
G-C=¢ on Ry. (A.3)

For ¢ € C°(R4), we denote

§my () = E(e”"p(x))
where p(z) is the regularization of p(x) constructed in Lemma B35 (1). Note the
following properties of p and &, (n):
e For each k € Ny, there exists N = Ni(d, k) > 0 such that

Nop(z) < p(x) < Nop(x) and  |D*p(x)| < Nipla) " (A4)

for all k € Ny and = € Q.
e Let £ € C2°(R,) be supported on [e™ ¥, eX] ¢ R4, K € N. For each n € Z,

supp(§(ny) C {z € Q ¢ " K < pla) < e™FY

d (A.5)
Emy € CPRY)  with |[D(,)| < N(a, &) e "ol
In addition, since ZanKH Cole™) =1 on [e K, eX], we have
§m) =E€m) D, Cont) -
[k|<N
We denote
X30(@ = {f € D@ : 7l @) = 2 Il G f)(e" )iy < oo}
nez

B0() = {Uabnez © X7+ 1 s, o= 2 €l g < o0

neZ
For ¢ € C°(Ry), we define the maps
Se:D'(Q) =D RY = {{fulnez : fn € D'(RY)};
Re : D'(RY% - D'(Q)
as

Sef = {(S¢/) }nEZ = {(ff(n))(en')}nez’
Rf{fn} —Zf(n n )

ne
Note that, since (1o = o, R¢, © S, is the identity map on D’(£2). Following [57],
we use the maps S¢ and R to obtain properties of X;e(Q) from the properties of
L' (X7).
We now introduce the properties of X; ¢(€). Since (o is fixed and the spaces
X)) 4(2) are independent of choice of (o (see Proposition [A.31(5)), the dependence



96 JINSOL SEO

on (p will be ignored. For the case X = H, Propositions [A] - [A3] follow from
[57, Section 2, 3] and elementary properies of H,. Corresponding results for the
case X = B can also be obtained in a similar way. However, it needs to be clearly
stated in [57] that the constants in the inequalities in Propositions [A] - [A.3] are
independent of §2. Therefore we provide proof of these propositions to verify the
case X = B and to investigate the dependence of the constants in each inequality.

Proposition A.1. Let § € C°(Ry). For any f € X o(Q2) and { fu}nen € XJ(Q),
1SeF oo < Nflxs o and 1Refadlx o < N g, - (A6)

where N = N(Z,¢,€).
Proof. Take K € N such that supp(¢§) C [e_K, eK] so that
|n — k| >K = CO,(n)g(k) =0.
Due to (A2) and (A7), we have
§n) = Z §(n)Co,(n+k) -

|k|<K

From (A.g)), (AH), and (A.T]), we have
ISy = D I d) " I

ne”z
SKop Z Ze’”II&(n (Co n+k) )(en')HI;(;
|k| <K n€Z
St Z ZG"OII(CO,<n+k>f) (en')HI;(g
|k| <K neZ
ST Z ZG"OH(CO,(nJrk)f) (€"+k')||z;)(g
|k| <K n€Z
< RN (Goom S (€ )
nez
Therefore the first inequality in (A6]) is proved.
Due to (Ag), (A3), and (A), we have
B P
IRelfadlyyo = 3 6o D e e ||
nez keZ r ()
ke DD HCO ) (€™ )En+r) (" )fn-i—k(en')‘
|k|<K n€Z
< n _y||P
STCEK ;Z [ frtn (€™ )l

Sz IR o/

Therefore the second inequality in (AL6) is proved.

x)’

Proposition A.2 (Properties of weighted Sobolev/Besov spaces - I).

(1) X, is a Banach space.
(2) C(Q) is dense in X ().

X3 (Q)
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(3) X, () is the dual of X, (Q), where
1 1 06 ¢
-+ -~ =1 G/fld -+ -~ = d
p P p P
Furthermore, we have
(£:9)]
sup

e =1 [fllxy @ - (A.9)
gecz=), 920 19llx 7 @) X7 6(22)

In particular, X 4(2) is reflezive.
(4) Let p; € (1,00) and v;, 6; €ER for i =0, 1. For any t € (0,1),

(XKoo (0, XL 6, (U], =n X6, ()

where N = N(d,p;,0;,7i,t;i = 1,2). Here, [Yo,Y1]+ is the complex interpo-
lation space of Yo and Y7 (see [69, Section 1.9] for the definition and prop-
erties of the complex interpolation spaces), and p; € (1,00) and v, 0y € R
are constants satisfying

0o 01

1 1—1 t 0
— = — m=0-tp+tn , —=01-t)—+t—. (A.10)
bt Po b1 bt Po Y41
(5) Letp; € (1,00) and 7;, 0; € R fori =0, 1, with vo # v1. For any t € (0,1),
(g 00 () HpL . (), 28 By, () 2w (B 4,(2), Byl g, ()
where N = N(d,p;,0;,7vi,t;9 = 1,2). Here, (Yo,Y1)t,p, is the real inter-

polation space of Yo and Yy (see [69, Section 1.3] for the definition and
properties of the real interpolation spaces), and p; € (1,00) and vy, 6 € R

are constants satisfying (AI0Q).

Proof. (1) We only need to prove that if { f(™},,cy is a Cauchy sequence in X;e(Q),

then this sequence converges in X 5(€2). Due to (A.6), S, f (") is a Cauchy sequence

in lz/p(X;), and therefore there exists lim S¢, ™) =: F in lz/p(X;). Put f =
n—oo

R, F € X)) 4(9), so that

”f - f(n)HX;’e(Q) = ||RC1 (F - SCof(n))HX;’e(Q) 5 ”F - SCof(n)le/p(Xg) —0

t,pe

as n — 0o. The proof is completed.

(2) If f € C2(), then [|(Co,m)f)(€" )|l xy = 0 for all but finitely many n € Z.
Therefore C2°(2) C X)) ,(€2). To prove that C2°(f) is dense in X)) ;(€2), note that

Ce®(R?) is dense in XJ. For any f € X ,(Q) and € > 0, since S¢,f € lz/p(X;),

there exists {g, }nez C C°(RY) such that g,, = 0 for all but finitely many n, and

HSCUf - {g’ﬂ}HlZ/:D(X;)y) < €.

Since g, = 0 for all but finitely many n, g :== R¢,{g»} belongs to C°(£2). Due to

f—=9=Re (Seof —{gn})

and (A.G)), we obtain

If —9||X;’9(Q) < NHSCDf - {gn}ng/p(Xg) < Ne,

where N = N(Z). Since N is independent of ¢, the proof is completed.
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(3) Observe that for any g € X, /() and f € C(Q),

g, ) <D g o )] = D [{C1.m 9 Coim) 1)

nez nez
=D [{(e"*Sc,9)ns (So )n
= S (S (S e

SI ||SC19||1;/9/p+d(Xp’,V)HSCUf”lg/p(Xg)
<z ||g||X;,79,(Q)||f||X;9(Q) .

For g € X,/ (Q), let Ly be the linear map from C2°(Q2) to R defined by

Lof =49, 1)
Then (A11)) and (1) of this proposition imply that L, € (X;e(ﬂ))* with
g, N
[Tyl ~=  sup <z llgll
TG0 7 s @), 120 ||f||x79(s X (D)

In other words, L : g — L, is a bounded linear operator from X;},(Q) to
(X;e(ﬂ))*. We claim that L is bijective and for any g € X, 7, (),
||g||X;/"79/(Q) <z ||Lg||(xg,9(gz))* . (A-12)

- Injectivity : If Ly = 0, then Ly f = (g, f) = 0 for all f € C°(£2). Therefore g is
the zero distribution.
- Surjectivity : For A € (X7 (Q))", AR, is in (I,/7(X7))" = 1/7(X,,) (see,
e.g., [70l Theorem 2.11.2]). Therefore there exists {gn tnez € l;e/p(X;'y) such that
AR A fn} = (Gns fn)  for all {f,} € 19/7(X7), and
oo (A.13)
19y =2 1A gy
For any f € C°(Q),
Af = A(RC1 SCof) = (ARC1) (SCOf)

=D (Gn (SeoNn) = D e Gule™ )o,(m: f) (A.14)

neN neN
= (Reo{e ™gn}. f)-
Since
™G 2y = I Hlyom sy < 0
we have ' ’
g:=Re,{e "gn} € X, 7,(9), (A.15)
Consequently, (A14)) and (A15) yield A = Lz, and teh surjectivity is proved.
- (AI12) : Let g € X}, (Q). For A := Ly, we recall {g,} and g := Rey{e g, }
n (AT3) - (AI5). Since L is bijective, § = g. It is implied by (A6), (A13) - (A15)

that
||9||X @) S ||{gn}||l e ||AR<1H( e ix)T S S A @) -
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Although we have only proved
g, N >|

1£1x7 Szl @ (A.16)

sup
feC=(Q), f#£0

for g € X, 7/(9), the proofs of (ATIIl) and (Imb imply that (A1) holds for all
g€ D(Q).

The reflexivity of X ,(2) follows from that (X;e(ﬂ))** ~ (Xp_,je,(ﬂ))* ~
X, ().

(4) Although the formula for € in (AI0) is different within [57, Proposition 2.4,

the formula in (A.10Q) is sufficient for our purpose. Indeed, this proposition is implied
by Proposition [A] [69, Theorem 1.2.4], and that

(g7 (Xp0), gt /PH (X )], = 1t/ P(X )

where N = N(d, p;, v, t;1 = 1,2) (see, e.g., [69, Theorem 1.18.1, Theorem 2.4.2/1]).
(5) This proposition is implied by Proposition[AT], [69, Theorem 1.2.4], and that

(lzg/po(Hgo) lfh/m(H'n))tm ~N lzi/pt(B;’t)

(see, e.g., [69, Theorem 1.18.1, Theorem 2.4.2/1.(a)]). O

Proposition A.3 (Properties of weighted Sobolev/Besov spaces - II).
(1) If p > 2, then
115y 0 Sz 1f11E7 00
and if 1 <p < 2, then
I 1le ) Sz 1187 400 -
(2) For any s < v,
||f||H «) + ||f||BS o) ) Stos ||f||x7 Q) -
(8) (Sobolev embedding) Let p; € (1,00) and 7, 6; € R fori =0, 1, with that
d d 6o _ 61

Yo>7, Y- —=71——, —= .
Po P1 Po P1

Then
111, o+ 10 s o < Nlfllxco s
where N = N(d, p;, i, 0:;1 = 1,2).
(4) (Pointwise multiplier) For k € Ny, let a € Ck _(Q) satisfy
|a|,(co) = sup Z plel| D% < oo .
|| <k

If |v| < k then
0
lafllr ) Sz lali1F a7 0 (A.17)
for all f € H) ,(Q), and if |y] <k then

0
lafl 5y @ Sz lalIfl57 @

for all f € B) 4().



100 JINSOL SEO

(5) For any n € C*(Ry),

>l H) )5y Sn £ ) » (A.18)
nez
where N = N(Z,n) > 0. If n additionally satisfies
Jnf L;Zn(e"t)} >0, (A.19)
then
||f||§(;9(9) SN %eneH(W(n)f) (en.)H?{; 7 (A.20)

where N = N(Z,n) > 0.
(6) For any s € R,

10°fllxy o) ~z.s 1fllxz,, o) - (A.21)

p,0+sp

(7) For any k € N,

k
17l o0 =2 S ID e oy
i=0
(8) For a fized constant A > 1, if [ is distribution on Q and f is supported
on{xr e : A7t < p(x) < A}, then f € X, 4(Q) if and only if f € X}).
Moreover, we have

1fllxy ey ~z.8 [fllx7 (0 -

(9) Let t € (0,1), and let p; € (1,00), 0;, v € R (i = 1, 2,¢) are constants
satisfying (AIQ). Then

1£1lxze . @) SN IFI X”% @,

Proof of Proposition [4.3

[70(112 This .fO.HOW; ?fr;);r; t(ha;c])Hg CByifp>2,and B) C H) if 1 <p <2 (see,e.g.,
, Proposition 2.3. (11))).
(2) This follows from tha‘F X, C HyNB;, (see,e.g., [T0, Proposition 2.3.2/2.(ii)]).
(}?;) Note that py < p1. Since X3° C X1 N B! (see, e.g., [70, Theorem 2.7.1]),

we have

/p1 "
(S el am)e i) + (S el iam)ei,)”

nez nez
1/p1
<N( 3N (F o) €y )
neZ
1/po
<N (X (o)l )
neZ

where N = N(d,p;,vi;1=0,1).
(4) If either k > |y| and X = H or k > |y| and X = B, then for any f € D'(w)
and a € C*(RY),

lafllxy Sapr lallorsllfllxg - (A.22)
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From direct calculation, one can observe that for any k € Ny and a € CF (1),

lla(e™ )Cr,mllex < N(d,k)lal” .
By (AJ) and (A22), we have
Haf”?(;’e(sz) = Zen9||a )i,y - fle n')CO,(n)”Z;(g

nez
n 0 n
Sz Y el 1 o, g = lali” 17 oy -
nez

(5) (AI8) is directly implied by ([A.6]). To prove the second assertion, we assume
(AI9). Put no(t) := >,z n(e"t), so that

e C=R,), mle)=m(-), and 3 (n/m)(e-)=1 on Ry. (A23)
nez
(A223)) implies that there exists K € N such that
> (/mo)(e*) =1 on e e].
|k|<K
Therefore we obtain that

Co,(n) = Co, n)z (n/m0)n—x = Zﬁ(nk S0 Znn k) Co/ﬁo)n),

k<K k<K Mo.(n=k) 5k
(A.24)

where the last inequality follows from the definition of ny. By (A1), (AF), and
(A24), we have

Z "N (Co,n) f) (€™ )||§(;

neZ

SN D D€ G0/ m0) oy (€ ) (- F) (" Iz

|k|<K n€Z

v 3 S )

|k|<K n€Z

v Y S e )@

|k|[<K n€Z
S S ) €l
nez
where N = N(d, p,v,0, K). By (AI7) and (A23), the proof is completed.
(6) Put n(t) = t5¢y(¢). Due to (A2), we have
1nf Z n(e"t) > 0.
" nez
Since
p)*Co(my (@) = € (e7"p(2)) "Go(e™" plx)) = €™y (2)
(A2])) is implied by (5) of this proposition.
(7) We only need to prove for k = 1. Note that

10,00 F) (€™ lx ey [1(Go,m) F) (€)1 + €™ (Do, ) (€7 )l -1 -
(A.25)
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By direct calculation, we have
D(Co,tny f) = Co,0m) (D) + €7 (Co) ) (DD f - (A.26)
By (AI3]) and (4) of this proposition with (A4]), we have
> (@ (DA) DI s S DR o1y S WLy (A27)

nez
where N = N(d, p,0,v). By combining (A28 - (A27), we obtain

11 ey =2 3 e (1 Gom )€y + €1 (DG D))y )

neZ
=2 |51y TIPS x5t o)

(8) Let Ng be the constant in (A4]), and take B € N such that

Z Co(e™)=1 on [(QNQA)_l,QNQA],

In|<B
so that
Z Co,my =1 onE:={xec: (24)7! < p(z) <24} .
In|<B

Let f be a distribution on Q and supported on {x € Q : A~! < p(z) < A}. Then f
is also a distribution on R?. Since f(y ) = 0 for all |n| > B, it follows from (A
that

11 ey = 32 I )y < NIfIly;  and

|n|<B

1A% =1 D2 ComPIEy <N D ellGo,mhe); < NIl ,

In|<B |n|<B

where N = N(d,p,0,~, B).
(9) Due to Proposition [A:21(4) and the interpolation theory (see, e.g., [69, The-
orem 1.9.3/(f)] and its proof), we obtain that for any f € X7, ()N X", (Q),
0,Y0 Pp1,01

Ilhesecon < N o @z, o], < e/

where N = N(d,p;,0;,7vi,t;i = 1,2) and [X;(?’(,O(Q) X! 0, ()], is the complex

interpolation space of X0, (©2) and X' , (). Therefore the proof is completed.
(]

Remark A.4. As stated in [57, Proposition 2.2.4], Proposition [A-3](5) can be gen-
eralized as the following:

o Let {1y }nez C C°(N) satisfies that
(1) There exists a constant a > 1, ko € N such that

supp(n,) C {x € Q : a" M < p(z) < @™ tro} V nez;
(2) There exist { Ny, }men, C Ry such that for any m € Ny, sup |[D™n,,| <
Q
N,,,a™™
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Then for any u € X/ ,(Q2), (AIS) holds for {n,} instead of {n(,)} (where N
in (A18) depends only on d, p, 8, v, a, ko, { Ny }). Moreover, if there exists
€0 > 0 such that 3 _, 7, > € on €, then (A.20) holds for {n,} (resp.
o™, o) instead of {1} (resp. e, €"?), (where N in (A:20) depends only
ond, p, 0,, a, ko, {Nm}, €)-

The proof of this statement is almost same with the proof of Proposition[A.3l(5);
note that there exists K € N depending only on « and kg such that for any ng € Z,

#{neZ: [e" e N [oz"ofko,oz"“k“] #P} < K;
#{Tl c7 - [anka,oénJrko] N [engflvenqul] 7& @} < K,
where #A is the number of elements in a set A. The above statement implies that

if n € C°(Ry) satisfies (A19)), then

11 gy = S n@fe oy, ¥ feDRY), (4.28)
’ neZ

and if n € CX°(R4) satisfies (A19) for 2" instead of ™, then

ol oy = S22l o)l%; ¥ g€ DRI\ (o)), (A29)
nez

In [45, 46, 48], the space H) 4(R%) is defined by (A28). In addition, in [53] the
space H) (R?\ {0}) is defined by (A29).

A.2. Auxiliary results.

Lemma A.5. Let p € (1,00), 7, 8 € R. There exist linear maps
Ai 2 X 5(9) —-D(Q) , i=0,1,...,d,

such that for any f € X ,(Q),

d
f=Nof+) Di(Aif)

i=1

and

d
”AOfHXIj’ng(Q) + Z ”Aifnxg;gip(gz) < N”f”X;’,g(Q) (A-30)
1=1

where N depends only on d, p, v, 0.

Proof. Recall (A2)) and (A3)). Put
Lo=(1-A)" and L;=-D;(1-A)"' fori=1,...,d,

which are linear operators on X7. It is implied by element properties of X' that
for any g € X)),

d d

Log + Z D;L;g=g and Z ||Li9||xg+1 Sd.p,y ||9||X; . (A.31)
i=1 i=0
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Put
Ao f(z ZCl ) ( LO[ Co,(n)f)(e" )} (e™"x)
nez
- Z Z (DiC1(ny) ()L i[(CO,(n)f) (en')} (e™"z)
1=1 nez
d
= RCl (LOSCof) (*T) - Z (Dlﬁ) (*T) : Rno (LiSCof) (I) )
=3 €1 (@)L [(CO,(n)f) (6"')} (e "x)
nez
=p(x) - Ry, (LiSeo f) (x) for i=1,...,d,

where no(t) := (1) (£), m(t) = t~'¢i(t), and
Li{fn} :={Lifn} for {fu}nez € lz/p(H;)-
Due to (M) we have

d
Aof + Z DA f = Z (Cl (n)( {(Lo + Z D;L;) [(Co,(n)f)(en')” (e ))

neZ i=1

= Z |:<1,(n)<0,(n)f:| =f.

neZ

Therefore we only need to prove (A30). Due to (A6]), (A3]), and Proposition[A3](5),

we have

d
180 f 1l gry51 ) + ; 1Al

d
SVIRG (LoSeo ) iy + D (IBao (LiSeo £ a1 @y + 1B (LiScol) sy s )
=1
d
SN D ILiSeo fllgrmgryery Sn 1Sl lrmaryy S Il @
=0
Therefore the proof is completed. O

Recall that for a regular Harnack function ¥ on €2,

UX)o(Q) = {f : U e X],(D)} and [Iflloxy @ = 1T fllx7, @) -
Lemma A.6. Let n € C*(RY) satisfy
n=1 on B(0,1/2), supp(n) C B(0,1), /Rdndle.
Fori e N, let N(i) € N satisfy
supp( Y Gom) < {w €@+ (N()/2) ! < o) < N(i)/2).

In|<i
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Let Ay, A;j, A, j i are linear functionals on D'(Q2) defined as
. N@) k!
Aif = ( > Co,<n))f s Aif(@) =G oA S (@) Aigaf = (A )T )
In|<i
where
W) i= [ o~ ey = (he n((z = )/e))
Rd
Then for any regular Harnack function ¥, the following hold:

(1) For any f € D'(Q), A, jnf € C(Q).
(2) For any f € ¥X ,(Q),

sup IAiflloxy @ < Mllfllexy @
sup i fllexy @ < Nallflloxy @
Sl}ip ||Ai,j,kf||‘yxg’9(sz) < N3||f||qlxg’9(sz)
where N1, Na, N3 are constants independent of f.
(3) For any f € $X ,(Q),
kli)ngo Nijwf=MNsf , Jli)rgo Aoif=Mf, Zli)rgo Nif=f in UH),(Q).

Proof. (1) It follows directly from properties of distributions.
(2), (3) Note the following elementary properties of X for any F € X7,

sup || F [ xy +sup [n(G ") Fllxy < N(d,p,v,m)|Pllxy
e>0 JEN (A32)
lim F9 = lim n(j " )F=F in X].

e—0 Jj—oo

Step 1 : A;
Let f € X (). It is implied by (A.I) and (A.5) that

||f - Aif”p\l;X;’e(Q) < Z H(\Il_l][CO,(n))(en')H?(;’ < Hf”pq;)(;’e(g)' (A'33)

In|>i—1
Therefore we have
sup [Aifllex; @) < Nllflexy @ and  lim | = Aifllexy @) = 0.

where N = N(d,p,0,7).

Step 2 : A;;
Note that W='A;f and W~'A; ; f are supported on

{zeQ: NG <plx) <N},
It is implied by Proposition[A3l(8) and (A32) that
1Af = Aii flloxy @y =ne (=G )T Ay =0 as j = o0,
HAiJ’fH\pxgﬁ(Q) =N H“IJ?lAMfHXQ SN H\IFlAifHXQ, =Na HfH\pXije(Q)’

where NQ - N(d7p, s 97 iv 77)
Step 3 : A
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Put
Kij={z€Q: NG <p(z) <N(), |2| <25},
and note that K;; is compact subset of Q. Since ¥, U=1 € C>°(Q), Proposi-
tion [A31(8) and (A yield that if g € D'(Q) is supported on K ;, then

l9llwxy @) = ||‘1’719||X;19(Q) ~n 18 gllxy ~=n gl xy, (A.34)

where N = N(d,p,v,0,1,7,¥). For any k € N, A; ; f and A; ; are supported on
K; ;. Therefore it follows from (A:32) and (IM) that

(N@E™R™)
1As ke fllwxy @) =na [[(Aiif) [P
Sns 1A fllxy ~ns ||Awf||'1/X” @ SN 1 lwxs @)

and
3 —1
180 = Nigallgx, , =no 1A f = (Aisf) e )”XS =0 ask— oo,
where N3 = N(d,p,0,v,%,i,7,7). -

A.3. Equivalent norms.

Proposition A.7. Let ® be a regular Harnack function, p € (1,00), k € Ng, and
6 € R. There exists a constant N = N(d,p, k, 0, C2(®)) such that

k
P ~ m rym 6—d
1911 oy 2 32 [ lmpmgpary s,
Proof. Make use of Proposition [A.3l(7) and Lemma [3.12/(3) to obtain

k k
12 f s o = D ID (@ Ly oy = D 1SD FllLy o0, (A.35)
=0

=0
By (AZ38), we only need to prove for & = 0. Since ||f||’;l(, =117 (ray» We obtain

1971, s = ¢ [ 1o @A) da

nez

1w (3 e wl?) de

nez
~40 / |fIPoPp? = da
Q

where the last inequality follows from (A.2)). O

Proposition A.8. Let ® be a regular Harnack function, p € (1,00), k € Ny,
€ (0,1), and 0 € R. There exists a constant N = N(d, p, k, a, C2(®P)) such that

k
197 s 2w 3 [ 10" DH P07 da (A.36)
P i=0

kel Ik Ep
+/ (‘/| |< £ = fifz y|£ra];(y)| d?J)‘I)(x)pp(x)(k-‘ra)P-i-O—ddx
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Proof. Step 1. Our first claim is that

”f”pg,g(gz) = HfHLp,g(Q) (A.37)
. @O f) ) GO
Q (2) |z — y|dtor v

We note the following equivalent norm of Besov spaces:

flP
D ~dpo b 7d d A.
115 g W, + [ O IO asay s

(see,e.g., [T0, Theorem 2.5.7/(i)]). Recall that for £ € C2°(R.), we denote &(,,)(z) =
&(e™"p(z)). From (A.38) we have

1 e o v D €™ [ (o.my £ (€™ )Hﬁ

kEZ
n,\|P
P R4 x R4 |~”U — yl|dtor
=11+ 1.
Proposition [A7 implies

I =apo T, ,-

Change of variables implies

S0 @I @) = o WI D nio-asa o,
L2 = //]Rded | o dy

T — |d+ap
keZ
’ﬂ n F p
YL LG ETLUT
kez ” /RIxR Ty
() F ()P + |0 () F(y)|P
Z// oy @F@P + o WEWP
kez’ Jlz—yl=>p(x)/2} |$L'—y| P
— p
+Z// 1(n) () Zina)zgyﬂ ()P dady
=) Jo—yi<p@/zr 17—l
|F'(x) — F(y)[?
>/ oy LW g,
k% {lz—y|<p(z)/2} | — y|dtop

=1+ ho+1rs,
where
F=p0d/prar and p(t) =t O D/r=agy(1).
Observe that for any ¢ > 0,
Sl 2x 1 and S e e P Sy i, (A39)

nez nez
where N = N(d, p, 6, «). It follows from (A39) that

[F()P + |[F(y)|” P ()0~
Loy =y //1/|:E y|>ee) |z — yldt+ar dydo :N~/§2|f(x)| P(CC)G ddx7
(A.40)




108 JINSOL SEO

where N = N(d, p, 0, «), and the last inequality is implied by that
lz—yl = p(x)/2 = |z—yl=py)/3.
To estimate I o, observe that for x, y € Q with |z — y| < p(z)/2,

5 @)~y @ S 3 e ol / ol (e ()| ar)”

neZ

< el / S e (A

Swlr—yl? / e Pdr,
0

where x,, = (1 — r)xz + ry and N = N(d,p, 6, ). Here, the first inequality follows
from that |Vp| is bounded on €2, and the last inequality follows from (A.39). Since
p(zr) 2 p()/2, we have

Z 1) () = ey WP SN |z —y[Pp(z)P,

where N = N(d, p, 0, «). Consequently, we obtain
()P p(x)~" / o—d
I —d dz <gj.a P dex. (A.42
2 //| s e W San [ LG )dr (242
Due to (AA40Q) - (lmb and that
Ly S+ Do SIS,

we have
1B ) = 1112y 00) + T23-

By applying (A.39)) to I3, (A.37) is proved.
Step 2. Now, we prove ([A36) for k¥ = 0. Denote F := pld=d/ptaf Since
@ - pl0=dD/rFe s o vegular Harnack function, if |z — y| < p(x)/2, then
“(I):EF (y)| — ®(2)p(x) 0= D/Pre| f(z) f(y)”
< [b(a)) O 7 - <I>(y)ﬁ(y)(9‘d 40|15y (A3
<Nlz - yl @ (y)p~ (y)|F(y)]

where N = N(d, Co(®)). By combining (A37) (for UF instead of f), (A43), and
that

(lz —yl- 2@ WIFW))" o 9—d
/Q/y:m_y@(y) T — yJior dyde/Qlf(y)l (y)"ply)” " dy,

we obtain (A30]) for k = 0.
Step 3. Let k > 1. The argument for (A.35)) (see with Proposition [A3](2)) also
implies that

k—1

||‘I’f||35;a(sz) = Z ”(I)DifHBg’er(Q) + ||(I)Dkf||B§’9+kp(Q) :
=0
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By Propositions [A3l(2) and (7), we have

k—1 k-1
Z ||(I)le||Lp,9+iP(Q) S Z ||‘1’le||3§,9+@<9>
i=0 =

k—1

k
S Z ||¢D1f||H11),9+ip(Q) = Z ||(I)le||Lp,e+ip(Q)
i=0 =0
1

> e

p,0+kp

S @D, o) + VD fllpa (o
1=0

Therefore, we have

k k—1
19 ooy = D0 1D sy = S 19D L o0 + 19D iy, o
i=0 i=0
By Proposition [A7] and the result of Step 2 ((A.36]) for k¥ = 0), the proof is com-
pleted. (I
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