
ar
X

iv
:2

30
4.

10
55

2v
2

 [
cs

.L
G

]
 2

5
A

pr
 2

02
4

Approximation and interpolation of deep neural networks

Vlad Raul Constantinescu1,2 and Ionel Popescu1,3

1University of Bucharest, Faculty of Mathematics and Computer Science, 14 Academiei str., 70109, Bucharest, Romania, 14
Academiei str., 70109, Bucharest, Romania

2“Gheorghe Mihoc – Caius Iacob” Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy, 13
Calea 13 Septembrie, 050711 Bucharest, Romania

3Simion Stoilow Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, RO-014700 Bucharest, Romania

April 26, 2024

Abstract

In this paper, we prove that in the overparametrized regime, deep neural network provide universal approx-
imations and can interpolate any data set, as long as the activation function is locally in L1(R) and not an affine
function.

Additionally, if the activation function is smooth and such an interpolation networks exists, then the set of
parameters which interpolate forms a manifold. Furthermore, we give a characterization of the Hessian of the loss
function evaluated at the interpolation points.

In the last section, we provide a practical probabilistic method of finding such a point under general conditions
on the activation function.

1 Introduction

In light of the interpolation threshold outlined in the double descent phenomena of [5], a critical issue in neural
networks is to have guarantees that interpolation is indeed achieved. We tackle this problem for the case of feed-
forward neural networks and demonstrate that this holds generally, as long as the activation function is not affine.
To the best of our knowledge, this interpolation phenomenon has not been fully proved in the literature with such
generality.

1.1 Interpolation of deep neural networks

Recent advances have focused on understanding the locus of global minima for overparametrized neural networks
[7, 18, 10, 16, 2, 15, 4, 1] when the activation function is continuous. Specifically, [18] proves that a shallow neural
network with a hidden layer of width at least d, where d is the number of data points, and with a non-polynomial
continuous activation function, can interpolate any dataset of d points. We generalize the results of [7, 18] for a
broader class of activation functions and neural network architectures. We establish that in the overparametrized
regime, any dataset consisting of d points can be interpolated by a deep neural network with at least d neurons
in each hidden layer, where the activation function is locally integrable and not almost everywhere an affine
function. Additionally, if the activation function is smooth, the locus of global minima of the loss landscape in an
overparametrized neural network forms an n− d dimensional submanifold of Rn, provided the neural net has n
parameters and is trained on d data points, with n > d.

We further explore the case of shallow neural networks with polynomial activation functions and show that
under certain conditions, interpolation can be achieved.

1.2 Universal Approximation and Network Density

In addition to interpolation, another significant aspect of neural networks that has been extensively studied is
their capability for universal approximation [18, 8, 12, 3, 14, 11, 17, 13], especially with general activation func-
tions. While much of the literature focuses on ReLU activation or sigmoidal activation functions [8, 11, 17], [18]
demonstrates that the set of all shallow neural networks is dense in C(Rp), with respect to the topology of uniform
convergence on compacts, provided the activation function is continuous and not polynomial. In this section, we

1

http://arxiv.org/abs/2304.10552v2

extend these results, proving that neural networks of any depth are dense in C(Rp), assuming the activation func-
tion is continuous and not affine. A similar result can be found in [14], which proves the density property for
deep neural networks with non-affine activation function and with a supplementary condition for the activation
function of being differentiable in at least one point.

We also describe the eigenspectrum of the Hessian of the loss function of a shallow neural network evaluated
at the global minima.

1.3 Numerical Methods and Gradient Descent

A critical question is how one can find such an interpolation point. One of the numerical methods used for training
neural networks is the (stochastic) gradient descent method. For convex problems, there is extensive literature
on convergence results for (stochastic) gradient descent [6]. However, in the non-convex scenario, first-order
methods like gradient descent can get stuck at a saddle point. We address this issue by reducing the minimization
of a non-convex loss function to a simple linear regression problem, as demonstrated in [16] for shallow neural
networks using a smooth activation function with a bounded derivative and a number of hidden nodes of order
O(d log2(d)). Employing similar techniques, we extend this result to shallow neural networks with a continuous
activation function that is not a polynomial of degree less than d − 2. The reduction is accomplished through a
random initialization of the input-to-hidden weights and optimization over the output layer. Our result improves
on the findings of [16] by reducing the number of hidden neurons required to order O(d log(d)). We then extend
this approach to general activation functions which are not affine but with deep neural networks.

2 Interpolation of deep neural networks

We consider a neural network of any architecture (eg., feedforward, convolutional, etc.), with weights w =
(w1, w2, . . .) and biases b = (b1, b2, . . .). The number of weights and biases is n, and we train our neural net-
work on d data points (xi, yi)i=1,d, where xi ∈ R

p and yi ∈ R. We assume that the xi are distinct and our neural
network is overparametrized, i.e. n > d.

We denote by fw,b the function given by our neural network. For each data point (xi, yi), we define fi(w, b) =
fw,b(xi) − yi. We suppose that each fi(w, b) is smooth in w and b. For example, if our neural network is feedfor-
ward, the smoothness of the activation function σ implies the smoothness of fi(w, b).

For the training of our neural net, we use the mean squared loss function

L(w, b) =

d
∑

i=1

fi(w, b)2

From our definition of the loss function, we observe that L(w, b) ≥ 0. If M = L−1(0) is nonempty, then M is
the locus of global minima of L. Also, the locus of global minima can be written as

M =
d
⋂

i=1

Mi,

where

Mi = f−1
i (0)

The following theorem is a result of [7] which we state here for the case of smooth activation functions.

Theorem 2.1. In the framework above, the set M = L−1(0) is generically (that is, possibly after an arbitrarily small change
to the data set) a smooth n− d dimensional submanifold (possibly empty) of Rn.

In this paper, we will prove that for a class of feedforward neural networks, the set M = L−1(0) is non-empty.
In this context, fw,b is written in matrix form as

fw,b(x) = Wlσ(Wl−1σ(. . . σ(W1x− b1) . . .)− bl−1)− bl,

where Wi ∈ Mni−1×ni
(R), bi ∈ R

ni and n0 = p, nl = 1. Moreover, we use the convention that σ applied to a
vector is simply the component-wise evaluation:

σ(v1, v2, . . . , vk) = (σ(v1), σ(v2), . . . , σ(vk)).

2

2.1 The general case of activation functions

2.1.1 The non-polynomial case and shallow networks

When the activation function σ is continuous and not a polynomial, any shallow neural network, i.e. a feedforward
neural network with one hidden layer, can interpolate any data set [18]. In this paper, we will prove first the same
result for activation functions σ, which satisfy the following assumption:

Assumption 2.2. The activation function σ is locally integrable, i.e σ ∈ L1
loc(R), and is almost surely not a polynomial of

degree less or equal than d− 2, i.e. there exists no polynomial P of degree at most d− 2 such that σ = P almost surely.

Theorem 2.3. Let (xi, yi)i=1,d be a data set with xi ∈ R
p, yi ∈ R, and with xi assumed distinct. Assume that σ satisfies

Assumption 2.2. Then, for any h ≥ d, there exists a shallow neural network with width h ≥ d, with activation function σ
such that it interpolates our data set, i.e. fw,b(xi) = yi for all i.

Proof. The idea is to refine the proof of Theorem 5.1 from [18]. The output function of a shallow neural network is
written in the matrix form as

fw,b(x) = vTσ(Wx− b)− b′,

where W ∈ Mh×p(R), v ∈ R
h, b ∈ R

h and b′ ∈ R. The entries of w and v are the weights, and the entries of b, b′

are the biases. For our neural net, we take b′ = 0 and h = d. If h > d, then we set the weights and biases after the
first d nodes to be equal to zero. Hence, we can reduce our construction to h = d. Let w1, . . . , wd be the lines of W
and v = (v1, . . . , vd). Since the xi are distinct, we can find a vector w ∈ R

p such that wTxi = ti are distinct for all
i. We set wi = aT

i w for some ai ∈ R, i = 1, d. Therefore, we have to show that there exists (ai, bi, vi)i=1,d such that

d
∑

j=1

vjσ(ajti − bj) = yi,

for all i. This interpolation problem is equivalent to proving the linear independence (over a and b) of the d
functions σ(ati − b). If we have linear independence of these functions, then we can find (ai, bi)i=1,d such that the
matrix system of our interpolation problem







σ(a1t1 − b1) . . . σ(adt1 − bd)
...

. . .
...

σ(a1td − b1) . . . σ(adtd − bd)







is nonsingular. And from here we can determine (v1, . . . , vd) uniquely. Suppose that our d functions are linearly
dependent. This means that we can find nontrivial coefficients (ci)i=1,d such that

d
∑

i=1

ciσ(ati − b) = 0. (1)

Let ζ ∈ C∞
0 (R, [0,∞)), i.e. ζ is non-negative, infinitely differentiable with compact support and

∫

R
ζ(x)dx = 1. We

define for ǫ > 0, the following function

σǫ(t) =

∫

R

1

ǫ
ζ

(

t− x

ǫ

)

σ(x)dx

Since σ ∈ L1
loc(R), standard arguments show that

σǫ

L1
loc−−−→

ǫ→0
σ

In particular, we also have along a subsequence ǫn which converges to 0 such that σǫn converges to σ almost surely.
The key observation is that if σǫn is a polynomial of degree less than d − 2 for every n, then in the limit we also
have that σ is almost surely a polynomial of degree at most d− 2.

Consequently, we can reduce the problem to the case where σ is replaced by σǫ for some ǫ > 0. Using now (1)
we will continue to have the same relation also for σǫ. Thus from now on we simply assume that σ is smooth and
(1) is satisfied. If we differentiate k times relation (1) with respect to a, we get

d
∑

i=1

cit
k
i σ

(k)(ati − b) = 0.

3

Since σ is not a polynomial of degree less or equal than d − 2, for any k = 0, d− 1 we can find bk ∈ R such that
σ(k)(−bk) 6= 0. Taking a = 0 and b = bk for each equation, we get a system of d equations

d
∑

i=1

cit
k
i = 0, (2)

for each k = 0, d− 1. Since the matrix system of (2) is a Vandermonde matrix, and the ti are distinct, we get that
all ci must be equal to 0, which is a contradiction.

2.1.2 The general non-affine activation functions and deep neural networks

Assumption 2.4. The activation function σ is locally integrable, i.e σ ∈ L1
loc(R), and is almost surely non-affine, i.e. we

can not find a, b ∈ R such that σ(x) = ax+ b almost surely.

Now we will extend the interpolation property from shallow neural networks to the class of all deep feedfor-
ward neural networks. More precisely, we have the following result

Theorem 2.5. Let (xi, yi)i=1,d be a data set with xi ∈ R
p, yi ∈ R, and with xi assumed distinct. Assume that σ satisfies

Assumption 2.4. Then there exists a feedforward neural network with activation function σ that interpolates our data set.

Proof. If σ is not a polynomial function, then we know from Theorem 2.3 that there exists a shallow neural network
that interpolates our data set. So it remains to study the case when σ is a polynomial of degree greater than one.
The strategy will be to reduce this case to the case of Theorem 2.3. Let fw,b be a neural network with l hidden
layers and each hidden layer has width d. On the first hidden layer, we compute σ(W1x − b1), Moving to the
subsequent hidden layers, the procedure entails multiplying each element from the preceding hidden layer by a
scalar w2 and applying the activation function σ. This process is repeated for the remaining hidden layers.

x1 x2 x3 x4

y

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

Figure 1: Example of such a neural network arhitecture

Such a network can be represented as

fw,b(x) = vT g(W1x− b1)

where g(x) = σ(wl−1σ(. . . σ(w3σ(w2x)) . . .). Since σ is a polynomial of degree m, where m > 1, we can choose
wi such that g will be a polynomial function of degree ml−1. Choosing l such that ml−1 > d − 2, the interpola-
tion problem of a deep neural network with activation function σ is reduced to a shallow neural network with
activation function g that satisfies the conditions of Theorem 2.3.

With these settings described above, we have the following consequence.

4

Corollary 2.6. Let (xi, yi)i=1,d be a data set with xi ∈ R
p, yi ∈ R, and the xi are distinct. Assume that the activation

function σ is smooth and not affine. Let L be the mean squared loss function of a feedforward neural network with activation
function σ. Then, there exists a feedforward neural network with activation function σ such the set M = L−1(0) is generi-
cally (that is, possibly after an arbitrarily small change to the data set) a smooth n− d dimensional submanifold nonempty of
R

n.

Proof. This is a consequence of Theorem 2.1 and Theorem 2.5.

2.1.3 Extensions of interpolation for polynomial activation function

If the activation function σ is a non-constant polynomial, the interpolation problem depends very much on the xi

and the degree of σ. More precisely, we have the following result

Proposition 2.7. Let (xi, yi)i=1,d be a data set with xi ∈ R
p, yi ∈ R, and the xi are distinct. If σ is a polynomial of degree

m, then we have the following two statements

1. If d >
∑m

k=1

(

p+k−1
k

)

, then the interpolation problem in Theorem 2.3 is not possible.

2. If d ≤ ∑m

k=1

(

p+k−1
k

)

and (1, xi, x
⊗2
i , . . . , x⊗m

i)i=1,d are linearly independent, then the interpolation problem in
Theorem 2.3 is possible.

Proof. Since the interpolation problem is equivalent to proving that the functions σ(wTxi − b) are linearly inde-
pendent (over w and b), we will show that one can find nontrivial coefficients (ci)i=1,d such that

d
∑

i=1

ciσ(w
Txi − b) = 0, (3)

for any w ∈ R
p and b ∈ R. Since σ is a polynomial of degree m, equation (3) is equivalent to

d
∑

i=1

ci(w
Txi)

k = 0, (4)

for any k = 0,m and w ∈ R
p. And equation (4) is equivalent to

d
∑

i=1

cix
⊗k
i = 0, (5)

for any k = 0,m. Thus, our problem is reduced to finding a linear combination of the elements (1, xi, x
⊗2
i , . . . , x⊗m

i).
It is well known that Symk(Rp), i.e. the space of symmetric tensors of order k, is spanned by elements of the

form v⊗k and has dimension
(

p+k−1
k

)

. Consequently, if the number of data points xi is bigger than the dimension

of
⊕m

k=1Simk(Rp), which is
∑m

k=1

(

p+k−1
k

)

, then we can find a linear dependence.

On the other hand, if d ≤ ∑m

k=1

(

p+k−1
k

)

, and the vectors (1, xi, x
⊗2
i , . . . , x⊗m

i)i=1,d are linearly independent,
then ci must all be equal to 0, thus the interpolation is possible.

As the following results in this section heavily rely on property 2 stated in Proposition 2.7, we introduce the
following assumption.

Assumption 2.8. Let (xi, yi)i=1,d be a data set with xi ∈ R
p, yi ∈ R. We require that d ≤ ∑m

k=1

(

p+k−1
k

)

and also that

(1, xi, x
⊗2
i , . . . , x⊗m

i)i=1,d are linearly independent.

With these settings described above, we have the following consequence.

Corollary 2.9. Let (xi, yi)i=1,d be a data set and σ a polynomial function. Assume that the activation function σ and our
data set satisfy Assumption 2.8. Let L be the mean squared loss function of a shallow neural network with the hidden layer
of width h ≥ d. Then, the set M = L−1(0) is generically (that is, possibly after an arbitrarily small change to the data set) a
smooth n− d dimensional submanifold nonempty of Rn.

Proof. This is a consequence of Proposition 2.7 and Theorem 2.1.

5

3 Density of deep neural networks

Let Ml be the set of all feedforward neural networks with l hidden layers, i.e.,

Ml =
{

fw,b : Rp → R|fw,b(x) = Wlσ(Wl−1σ(. . . σ(W1x− b1) . . .)− bl−1)− bl,∀Wi ∈ Mni−1×ni
(R),∀bi ∈ R

ni
}

And let M denote the set of all feedforward neural networks, i.e.,

M =

∞
⊕

l=1

Ml

If one considers only the set of shallow neural networks, then we have a density result if and only if the activation
function is not a polynomial function (see [18]). The following result is a generalization for the set of all neural
networks.

Theorem 3.1. For a given continuous σ : R → R, the space of deep neural networks is dense in the set of continuous
functions C(Rp), with respect to the topology of uniform convergence on compacts, if and only if σ is not affine.

Proof. In the case σ is not a polynomial, this is covered by Pinkus. So the only case that remains is the one when σ
is a polynomial.

Let σ be a polynomial of degree m > 1. We will prove that the closure set of M contains all monomials in p
variables and this way we obtain the density property. Let f(w, b) ∈ M be a feedforward neural network with l
hidden layers, and each hidden layer of width 1. Such a network can be written as

f(w, b) = vg(< w, x > −b) (6)

where w ∈ R
p, b ∈ R, v ∈ R, and g is defined as in Theorem 2.5 . Consider the following expression

(g(w1x1 +w2x2 + . . .+(wi +h)xi + . . .+wpxp − b)− g(w1x1 +w2x2 + . . .+wixi + . . .+wpxp − b))/h ∈ M (7)

Such an expression can be represented by a feedforward neural network with l hidden layers, and each hidden
layer of width 2 as in Theorem 2.5. Taking h → 0, we get

∂

∂wi

g(< w, x > −b)|w=0 = xig
′(−b) ∈ M

And by the same argument, we get

∂

∂wi1
1 ∂wi2

2 . . . ∂w
ip
p

g(< w, x > −b)|w=0 = xi1
1 xi2

2 . . . x
ip
p g(i1+i2+...ip)(−b) ∈ M

Since σ is a polynomial function but not affine, g will be a polynomial function of degree ml−1. So there exists
a point b0 such that g(i)(−b0) 6= 0) for 1 ≤ i ≤ ml−1. Therefore all monomials of degree less than ml−1 are in the
closure of M. Since we can choose l as large as we want, we get that all monomials are in the closure of M.

4 The Hessian for the global minima

In this section, we describe the Hessian eigenspectrum of the loss function L evaluated at a point m ∈ M = L−1(0).
The following proposition is a result of [7], and it is true for any neural network architecture.

Proposition 4.1. Let M = L−1(0) =
⋂

Mi, where Mi = f−1
i (0), be the locus of global minima of L. If each Mi is a

smooth codimension 1 submanifold of Rn, M is nonempty, and the Mi intersect transversally at every point of M , then at
every point m ∈ M , the Hessian evaluated at m has d positive eigenvalues and n− d eigenvalues equal to 0.

Consider now a shallow neural net as in Corollary 2.6 or Corollary 2.9. Then we have the following Corollary
of Proposition 2.7 :

Corollary 4.2. Let L be the mean square loss function of a neural net as described above. Then, M is nonempty, and the
Hessian of L, evaluated at any point m ∈ M = L−1(0) has d positive eigenvalues and n− d eigenvalues equal to 0.

Proof. Without losing the generality, suppose our shallow neural network is in the setting of Corollary 2.6.
The locus of global minima M = L−1(0) is the intersection of Mi, where

Mi = {(w, b) ∈ R
n|fw,b(xi) = yi}

Due to Proposition 2.7, it suffices to prove that M is non-empty, Mi are smooth of codimension 1, and that Mi

intersects transversally at each point of M .

6

The nonemptiness of M follows from Corollary 2.6. Each Mi is smooth of codimension 1, again by Corollary
2.6. for d = 1. It remains to prove that the intersection of Mi is transversal. Let m = (w, b) ∈ M . We assume that
the intersection at m is not transversal. This means the tangent space TmM1 = TmMi for all i. From our notations,
we have that

fi(w, b) = W2σ(W1xi − b1)− b2 − yi,

The equality of the tangent spaces at m, means that their normal vectors are collinear, i.e. ∇fi(w, b) = αi∇f1(w, b)
for some αi ∈ R. If we compute the partial derivatives with respect to W1, b1, and b2, we get

∂fi
∂W1

(w, b) =− ∂fi
∂b1

(w, b)⊗ xi

∂fi
∂b2

(w, b) =− 1

From the partial derivative with respect to b2, we get that αi = 1 for all i. Thus,

∂fi
∂b1

(w, b) =
∂fj
∂b1

(w, b)

∂fi
∂b1

(w, b)⊗ xi =
∂fj
∂b1

(w, b)⊗ xj

for all i, j. Since σ is smooth, we can find an interval I such that σ′ does not vanish on it. We consider a point
(w∗, b∗) ∈ R

n such that all entries of W1 are equal to 0, all entries of W2 are different from 0, and all entries of −b1
belong to I . With this setting, each component of ∂fi

∂b1
(w∗, b∗) is different from zero . So from the last two relations,

we get xi = xj for all i, j, which is a contradiction with the assumption of our data set.

5 Convergence to the global minima

In Section 2, we established the existence of an interpolation point. In this section, we present a method which
probabilistically determines this point. This approach involves initializing the input-to-hidden weights randomly
and optimizing the out-layer weights v ∈ R

h. This idea is inspired from [16]. Before we jump into the details, we
will absorb the biases into the weights, simply adding to the inputs vectors xi the p+1 coordinate equal to 1. Thus
in the rest of this section, we will assume that xi is constructed this way and we will call this again xi to keep the
notations simple. Notice that the dimension of the vector changes now from p to p+ 1.

Now, we need to minimize the loss function:

L(v) :=
d
∑

i=1

(vTσ(Wxi)− yi)
2 = ||σ(XW T)v − y||2,

which is a simple linear regression problem. Moreover, if σ(XW T) has full rank, then the global minimum of this
optimization problem is given by

ṽ := φT (φφT)−1y

where φ := σ(XW T). So we ask how much overparameterization is needed to achieve a full rank for the matrix
σ(XW T). Observe that

φφT = σ(XW T)σ(XW T)T =
h
∑

l=1

σ(Xwl)σ(Xwl)
T .

where wl is the l-th line of W . This leads us to the following definition.

Definition 5.1. Let w be a random vector with a N (0, Ip+1) distribution. We define the following matrix

Σ̃(X) := Ew[σ(Xw)σ(Xw)T]

And let λ̃(X) be the minimum eigenvalue of Σ̃(X), i.e. λ̃(X) := λmin(Σ̃(X))

The following Proposition is a consequence of the interpolation property.

Proposition 5.2. If the activation function σ and our data set (xi, yi)i=1,d satisfies Assumption 2.2 or 2.8, then λ̃(X) > 0.

7

Proof. Let v ∈ R
d such that vΣ̃(X)vT = 0. This is equivalent to

d
∑

i=1

viσ(w
Txi) = 0, (8)

for almost every w ∈ R
p+1. If σ satisfies Assumption 2.2, then, using the same arguments as in Theorem 2.3, we get

that v = 0. Otherwise, we use the reasoning from 2.7. Therefore, Σ̃(X) is a symmetric positive definite matrix.

In [16], using matrix concentration inequalities and Gaussian Lipschitz concentration inequalities, one can
prove the non-singularity of φφT when the activation function σ has a bounded derivative. Using similar argu-
ments as in [16], we extend this result for continuous activation functions σ which are not polynomials of degree
less than d− 2.

We state here one result which plays the leading role in our arguments.

Theorem 5.3. (Matrix Chernoff [19]) Let (Al)l=1,l be sequence of independent, random, Hermitian matrices of dimension

n. Assume that 0 � Al � R · In for l = 1, k. Then

P

(

λmin

(

k
∑

l=1

Al

)

≤ (1− δ)λmin

(

k
∑

l=1

E(Al)

))

≤ n

(

e−δ

(1− δ)1−δ

)

λmin(
∑k

l=1 E(Al))
R

for any δ ∈ [0.1)

Now we are ready for the main result of this section.

Theorem 5.4. Let (xi, yi)i=1,d be a data set with xi ∈ R
p+1, yi ∈ R, and assume that xi are distinct. Consider a shallow

neural network with h hidden nodes of the form f(v,W) := vTσ(Wx) with W ∈ Mh×(p+1)(R) and v ∈ R
h. Let µ be

the Gaussian measure. We assume the activation function σ ∈ C(R) ∩ L2(R, µ) and is not a polynomial of degree less than
d− 2. We initialize the entries of W with i.i.d. N (0, 1). Also, assume

h ≥ Cσd log(d)

λ̃(X)

where Cσ is a constant that depends only on σ. Then, the matrix σ(XW T) has full row rank with probability at least
1− 1

d100
.

Proof. It suffices to prove that σ(XW T)σ(XW T)T is non-singular with high probability. First, observe that

φφT = σ(XW T)σ(XW T)T =
h
∑

l=1

σ(Xwl)σ(Xwl)
T ≥

h
∑

l=1

σ(Xwl)σ(Xwl)
T
1{||σ(Xwl)||<Td}.

Here Td is a function of d which will be determined later in the proof. Applying the Matrix Chernoff concentration
inequality for Al = σ(Xwl)σ(Xwl)

T
1{||σ(Xwl)||<Td}, R = T 2

d and Ã(w) = σ(Xw)σ(Xw)T1{||σ(Xw)||<Td}, we get

λmin

(

φφT
)

≥ h(1− δ)λmin

(

E

[

Ã(w)
])

(9)

holds with probability 1−d
(

e−δ

(1−δ)1−δ

)

hλmin(E[Ã(w)])
T2
d . We can fix δ from now on, for instance we can pick δ = 1/2.

Now, it remains to prove that E[Ã(w)] is a positive definite matrix. Let v ∈ R
d such that vE[Ã(w)]vT = 0. This

is equivalent to
d
∑

i=1

viσ(w
Txi) = 0, (10)

for any w ∈ R
p+1 that satisfies almost surely ‖σ(Xw)‖ < Td. Because σ is continuous we actually have relation

(10) valid for all w with ‖σ(Xw)‖ < Td.
We impose now a first condition on Td, namely, we require that σ(0)

√
d < Td. Since the xi are distinct, we can

find a vector w ∈ R
p+1 such that wTxi = ti are distinct for all i. We can take this w such that the last component

is also 0. With the choice of Td, we can now scale w to be sufficiently small so that ‖σ(Xw)‖2 < Td. Then for any
a, b ∈ R that satisfy

∑d

i=1 σ
2(ati − b) < T 2

d we have

d
∑

i=1

viσ(ati − b) = 0. (11)

8

Let ζ ∈ C∞
0 (R, [0,∞)), i.e. ζ is non-negative, infinitely differentiable with compact support on [−1, 1] and

∫

R
ζ(x)dx = 1. We define for ǫ > 0, the following function

σǫ(t) =

∫

R

1

ǫ
ζ

(

t− x

ǫ

)

σ(x)dx

Since σ is continuous, standard arguments show that

σǫ
u−−−→

ǫ→0
σ (12)

Since σ is not a polynomial of degree less than d − 2, we can find M > 0 large enough such that σ|[−M,M] is not a
polynomial of degree less than d− 2. From 12, we can find a small ǫ such that σǫ is not a polynomial of degree less
than d− 2 restricted to [−M,M].

One of the key steps is the following
Claim. Since σǫ is not a polynomial of degree less than d− 2 on [−M,M], we can find

b0 ∈ [−M,M] such that σ(k)
ǫ (−b0) 6= 0 for any k = 0, d− 1.

One way to justify this claim follows for instance from the argument indicated by Pinkus in [18] which actually
refers to [9, Theorem of Agmon, page 53] with an easy adaptation.

Another way to see this is the following. Consider

Dk = {b ∈ (−M,M) : σ(k)
ǫ (−b) 6= 0} for k = 0, 1, . . . , d− 1.

In the first place, we notice Dk are open sets in (−M,M) and Dd−1 6= Ø. By induction we can assume that
Dk+1 ∩ Dk+2 · · · ∩ Dd−1 6= Ø and then taking a b in this intersection and δ sufficiently small such that B(b, δ) ⊂
Dk+1 ∩ Dk+2 · · · ∩ Dd−1. Now, we can argue that there must be b′ ∈ B(b, δ) such that σ

(k)
ǫ (−b′) 6= 0 (otherwise

σ
(k+1)
ǫ (b) = 0). Therefore, b′ ∈ Dk∩Dk+1∩Dk+2 · · ·∩Dd−1 which shows by induction that D0∩D1∩. . . ,∩Dd−1 6=

Ø.
With the above Claim at hand, without loss of generality, we can consider M such that (−b0 − ǫ,−b0 + ǫ) ⊂

[−M,M]. Let Td :=
√
d(supx∈[−M,M] |σ(x)|+ 1). Notice that this Td already satisfies the condition we require for

the choice of w above. We can find a small interval [−ρ, ρ] such that ati − b0 − ǫz ∈ [−M,M] for any a ∈ [−ρ, ρ]
and z ∈ [−1, 1], and from the definition of Td we have

d
∑

i=1

σ2(ati − b0 − ǫz) < T 2
d (13)

for any a ∈ [−ρ, ρ] and z ∈ [−1, 1]. Consequently,

d
∑

i=1

viσǫ(ati − b0) =

∫

R

ζ(z)
d
∑

i=1

viσ(ati − b0 − ǫz)dz = 0 (14)

for any a ∈ [−ρ, ρ].
If we differentiate k times relation (14) with respect to a, we get

d
∑

i=1

vit
k
i σ

(k)
ǫ (ati − b0) = 0.

Taking a = 0 for each equation, we get a system of d equations

d
∑

i=1

vit
k
i = 0, (15)

for each k = 0, d− 1. Since the matrix system of (15) is a Vandermonde matrix, and the ti are distinct, we get
that all vi must be equal to 0. Hence E[Ã(w)] is a symmetric positive definite matrix and φ has full rank with

probability at least 1 − de
−γ

hλmin(E[Ã(w)])

T2
d where γ is a constant depending explicitly on δ. This probability is

larger than 1− 1
d100

as long as

h ≥ Cσd log(d)

λmin(E[Ã(w)])
≥ Cσd log(d)

λ̃(X)

9

Following the same line of reasoning, we have a similar result for polynomial functions. More precisely, we
have the following result

Theorem 5.5. Let (xi, yi)i=1,d be a data set and σ a polynomial function. Assume that the activation function σ and our

data set satisfy Assumption 2.8.Consider a shallow neural network with h hidden nodes of the form f(v,W) := vTσ(Wx)
with W ∈ Mh×(p+1)(R) and v ∈ R

h. We initialize the entries of W with i.i.d. N (0, 1). Also, assume

h ≥ Cσd log(d)

λ̃(X)

where Cσ is a constant that depends only on σ. Then, the matrix σ(XW T) has full row rank with probability at least
1− 1

d100
.

Proof. Following the same reasoning as in Theorem 5.4, we get to the equation

d
∑

i=1

viσ(w
Txi) = 0, (16)

for any w ∈ R
p+1 that satisfies ||σ(Xw)|| < Td. Let Td := σ(0)

√
d+1. Using the same arguments as in Proposition

2.7, equation 16 is equivalent to
d
∑

i=1

vix
⊗k
i = 0, (17)

for any k = 0, m. From assumption 2.8 we get that all vi must be equal to 0. The rest follows as in Theorem 5.4.

For deep neural networks with activation functions which are polynomial functions of low degree, we must
consider feedforward neural networks as described in the proof of Theorem 2.5 for our interpolation problem.
Such a neural network can be written as f(v,W) := vT gσ(Wx), where W ∈ Mh×p+1(R) and v ∈ R

h, and gσ is
σ composed l − 1 times. Therefore, the problem will be to find out how much overparametrization is needed to
achieve full rank for the matrix gσ(XW T). Choosing the number of hidden layers to be equal to [logm(d− 2)] + 2,
where m is the degree of σ, will guarantee that deg gσ > d−2, hence our problem is reduced to Theorem 5.4. More
precisely, we have the following result.

Theorem 5.6. Let σ be a polynomial function of degree m > 1 and (xi, yi)i=1,d be a data set with xi ∈ R
p+1, yi ∈ R, and

assume that xi are distinct. Consider a feedforward neural network as described in Theorem 2.5, i.e., with [logm(d− 2)] + 2
hidden layers and with h hidden nodes on each layer, of the form f(v,W) := vT gσ(Wx) with W ∈ Mh×p+1(R) and
v ∈ R

h, and gσ is σ composed l − 1 times. We initialize the entries of W with i.i.d. N (0, 1). Also, assume

h ≥ Cσd log(d)

λ̃gσ (X)

where Cσ is a constant that depends only on σ and λ̃gσ (X) := λmin(Ew∼N (0,Ip+1)[gσ(Xw)gσ(Xw)T]). Then, the matrix

gσ(XW T) has full row rank with probability at least 1− 1
d100

.

6 Extensions and Comments

In this paper we treat the general case of interpolation for neural networks of regression type, i.e., the output is
continuous. Though the output is one dimensional, it can be easily extended to the case of the case where the
output is q-dimensional, the argument being that we can concatenate some neural networks for each component
of the output.

We can extend the approximation result to the case of measurable functions using the Lusin’s general approxi-
mation result. In particular we can guarantee that for any function f : [0, 1]p → R

q measurable function, and any
δ > 0, we can find a continuous function f̃ : [0, 1]p → R

q such that f = f̃ on a closed set of measure 1−δ. Then we
can use the approximation result to approximate f̃ and in turn to approximate also f on a set of measure 1− δ. We
discussed this for the case of functions on the unit cube, but one can easily extend this to functions on the whole
R

p with the appropriate adjustments.
It is relatively easy to treat the case of classification, i.e. the output is discrete, taking values in some finite set.

The idea is that usually for the classification the output is generated using a softmax activation function which
outputs some probability and the output is the class with the largest probability. Assume that the input data is
(xi)i=1,...,d and the output data is (yi)i=1,...,d ∈ {1, 2, . . . , r}. We can take some (zi)i=1,...,d ∈ R

q such that zi = ek,
the kth standard vector in R

q if yi = k and take the softmax function s(w) = (ew1
∑q

i=1 ewi
, . . . , ewq

∑q
i=1 ewi

) for any

w = (w1, . . . , wq) ∈ R
q . This softmax function maps the zi into yi for each i. Now we can use the results in the

10

paper to create a neural network such that interpolates xi to zi and then, with the softmax activation, it will create
a neural network which will perfectly predict the output yi.

Using the previous arguments we can also show that for any classification problem of the form f : [0, 1]p → F ,
where F is a finite set which is measurable, we can show that for any δ > 0, we can find a classification neural
network NN : [0, 1]p → F such that NN = f on a set of measure at least 1− δ.

Acknowledgement

V.R. Constantinescu gratefully acknowledges support from UEFISCDI PN-III-P4-ID-PCE-2020-2498.

References

[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pages 242–252. PMLR, 2019.

[2] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of optimization
and generalization for overparameterized two-layer neural networks. In International Conference on Machine
Learning, pages 322–332. PMLR, 2019.

[3] Eric B Baum. On the capabilities of multilayer perceptrons. Journal of complexity, 4(3):193–215, 1988.

[4] Mikhail Belkin. Fit without fear: remarkable mathematical phenomena of deep learning through the prism
of interpolation. Acta Numerica, 30:203–248, 2021.

[5] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning practice
and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences, 116(32):15849–15854,
2019.

[6] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends® in Machine
Learning, 8(3-4):231–357, 2015.

[7] Yaim Cooper. Global minima of overparameterized neural networks. SIAM Journal on Mathematics of Data
Science, 3(2):676–691, 2021.

[8] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals
and systems, 2(4):303–314, 1989.

[9] William F Donoghue. Distributions and Fourier transforms. Academic Press, 2014.

[10] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global minima of
deep neural networks. In International conference on machine learning, pages 1675–1685. PMLR, 2019.

[11] Boris Hanin and Mark Sellke. Approximating continuous functions by relu nets of minimal width (2018).
arXiv preprint arXiv:1710.11278.

[12] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251–257,
1991.

[13] Jesse Johnson. Deep, skinny neural networks are not universal approximators. arXiv preprint
arXiv:1810.00393, 2018.

[14] Patrick Kidger and Terry Lyons. Universal approximation with deep narrow networks. In Conference on
learning theory, pages 2306–2327. PMLR, 2020.

[15] Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-parameterized non-
linear systems and neural networks. Applied and Computational Harmonic Analysis, 59:85–116, 2022.

[16] Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization: Global convergence guar-
antees for training shallow neural networks. IEEE Journal on Selected Areas in Information Theory, 1(1):84–105,
2020.

[17] Sejun Park, Chulhee Yun, Jaeho Lee, and Jinwoo Shin. Minimum width for universal approximation. arXiv
preprint arXiv:2006.08859, 2020.

[18] Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta numerica, 8:143–195, 1999.

[19] Joel A Tropp et al. An introduction to matrix concentration inequalities. Foundations and Trends® in Machine
Learning, 8(1-2):1–230, 2015.

11

http://arxiv.org/abs/1710.11278
http://arxiv.org/abs/1810.00393
http://arxiv.org/abs/2006.08859

	Introduction
	Interpolation of deep neural networks
	Universal Approximation and Network Density
	Numerical Methods and Gradient Descent

	Interpolation of deep neural networks
	The general case of activation functions
	The non-polynomial case and shallow networks
	The general non-affine activation functions and deep neural networks
	Extensions of interpolation for polynomial activation function

	Density of deep neural networks
	The Hessian for the global minima
	Convergence to the global minima
	Extensions and Comments

